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ABSTRACT

Gated networks are networks that contain gating connections, in which the outputs
of at least two neurons are multiplied. Initially, gated networks were used to learn
relationships between two input sources, such as pixels from two images. More
recently, they have been applied to learning activity recognition or multimodal
representations. The aims of this paper are threefold: 1) toexplain the basic
computations in gated networks to the non-expert, while adopting a standpoint
that insists on their symmetric nature. 2) to serve as a quickreference guide to the
recent literature, by providing an inventory of applications of these networks, as
well as recent extensions to the basic architecture. 3) to suggest future research
directions and applications.

1 INTRODUCTION

Due to its many successful applications to pattern recognition, deep learning has become one
of the most active research trends in the machine learning community (LeCun et al., 2015).
The main building blocks in the deep learning literature areRestricted Boltzmann Machines
(RBMs) (Smolensky, 1986), autoencoders (Hinton & Salakhutdinov, 2006; Vincent et al., 2008),
Convolutional Neural Networks (CNNs) (LeCun et al., 1998) and Recurrent Neural Networks
(RNNs) (Bengio, 2013).

Most of these architectures are used to learn a relationshipbetween a single input source and the
corresponding output. They do so by building a representation of the input domain that facilitates the
extraction of the adequate relationship. However, there are many domains where the representation
to be learned should relate more than one source of input to the output.

In reinforcement learning, for instance, value functions take a state and an action as input, and
output a expected return. In order to deal with continuous states and actions, finding separately the
adequate representations for states and actions to facilitate value function learning might be critical
(Mnih et al., 2015; Lillicrap et al., 2015). Moreover, thereare cases where learning areversible
tripartite relationship might be particularly useful. Forinstance, in control problems, forward models
take a state and an action as input, and output the next state whereas inverse models take the current
state and a desired state as input, and output an action. It would be interesting to learn a single
representation for both models which could be used both in the forward and the inverse way.

Gated networks are extensions of the above deep learning building blocks that are designed to learn
relationships between at least two sources of input and at least one output. A defining feature of
these architectures is that they containgating connections, as visualized in Figure 1. When the
relationships between several sources of data involves multiplicative interactions, such gating con-
nections between neurons result in more natural topologiesand increase the expressive power of
neural networks, because implementing a multiplicative relationship between two layers of stan-
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dard neurons would require a number of dedicated neurons that would grow exponentially with the
required precision (Memisevic, 2013).

Figure 1: Two types of gating connections. On the left hand-side, the h neuron acts as a switch or
gate that stops or not the flow of information betweenx andy. On the right hand-side, the connection
implements a multiplicative relationships between the inputsx andh to provide the outputy. Image
reproduced from (Droniou, 2015).

Although the history of gating connections dates back at least to 1981 (Memisevic, 2013), there
has been a recent surge of interest in these networks. Initially they were mainly used to learn
transformation between images (Memisevic & Hinton, 2007),but they have recently also been ap-
plied to human activity recognition from videos and moving skeleton data from the kinect sensor
(Mocanu et al., 2015), or to recognize offspring relationship from pictures of faces (Dehghan et al.,
2014).

In robotics, gated networks have been used to learn to write numbers (Droniou et al., 2014), as well
as to learn multimodal representations of numbers using images, vocal signal and articular move-
ments with the iCub robot (Droniou et al., 2015). At a higher level, the same tools could be used
to learn affordances, that are often represented as object-action-effect complexes (Montesano et al.,
2008). All these examples have led to the claim that gated networks might be a particularly suitable
tool along the way towardsdeep developmental robotics(Sigaud & Droniou, 2016, to appear).

Despite this growing interest, the literature about gated networks is still sparse enough so that it can
be covered into a short survey. The aims of this paper are to cover the basics of gated networks
for the non-expert, to serve as an inventory of applicationsof gated networks, and to suggest future
research directions and applications.

The rest of this paper is structured as followed. In the next section, we give a detailed account of the
calculations performed by the standard gated network modeland a few variants whose relationship
to the standard model is highlighted after some generalization. In this presentation, we emphasize
the symmetric nature of these networks because it reveals the connections between some of the
surveyed works. Then we present the standard unsupervised learning mechanisms that are used for
tuning these networks, and provide an inventory of the various uses which is summarized into a table.
Finally, we survey a few recent architectures that include the core ingredient of gated networks, and
conclude with directions for future research.

2 STANDARD GATED NETWORK ARCHITECTURES

Gated networks are networks where the input of some computational units (or “neurons”) is a func-
tion of the product of the output of several other neurons. Asillustrated in Figure 1, one can consider
two kinds of connections between 3 neurons. In the first family, a neuronh is used as a switch that
stops or not the flow of information between two other neuronsx andy. This functionality is very
similar to that of transistors as electronic switches in digital circuits. This mechanism is used in the
LSTM family of networks (Hochreiter & Schmidhuber, 1997a; Srivastava et al., 2015), among oth-
ers. In the second family, the gating connection implementsa multiplicative relationship between
two inputsx andy. Note that the latter mechanism is more general than the former, since a value of
0 in h gatesy to 0. The most general view is that neuronh modulates the signal betweenx andy.

In this paper, we focus on the specific family of neural networks implementing a multiplicative
relationship that are built onRBMs and autoencoders and, to a lesser extent, onCNNs andRNNs.
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2.1 FROM GATED RBMS TO GATED AUTOENCODERS AND BEYOND

We now briefly introduce Restricted Boltzmann Machines (RBMs) (Smolensky, 1986), autoencoders
(Hinton & Salakhutdinov, 2006; Vincent et al., 2008), Convolutional Neural Networks (CNNs)
(LeCun et al., 1998) and Recurrent Neural Networks (RNNs) (Bengio, 2013), and show how these
networks have been extended to contain gated connections.

An RBM is not a neural network but a particular probabilistic graphical model (PGM)
(Koller & Friedman, 2009) whose graph is bipartite: one set (or layer) of nodes is called “visi-
ble” and is used as the input of the model, whereas the other layer is “hidden” and is interpreted as
being the hidden cause explaining the input. Both layers aregenerally binary (though it is possible
to extend them to real-valued units) and fully connected to each other. However, there are no con-
nections within a layer, which facilitates inference and training. Training anRBM consists in finding
the parameters (edge’s weights and node’s bias) which maximize the likelihood of the training data.
Importantly,RBMs aregenerativemodels: they can model the probability density of the joint distri-
bution of visible and hidden units, which enables them to generate samples similar to those of the
training data onto the visible layer.

The first instance of a gated network in the deep learning literature was a gatedRBM (GRBM)
(Memisevic & Hinton, 2007). However, this model was using a fully connected multiplicative net-
work that required a lot of memory and computations for inference and training. In the next section,
we present a solution to this issue, that was introduced by Memisevic & Hinton (2010) as a direct
extension of (Memisevic & Hinton, 2007), still usingGRBMs.

Autoencoders also contain an input and a representation layer but, in contrast toRBMs, they are
deterministic models. They are trained to encode the input into the latent representation layer and
then to reconstruct (or decode) the input from that representation. In their basic form, they aredis-
criminativemodels, which can only compute the hidden layer given an input. It was then shown that
a particular class of regularized autoencoder, the denoising autoencoder (DAE), could learn a model
of the data generating distribution. This endow autoencoders with generative properties similar to
those ofRBMs (Vincent et al., 2008). More formally, aDAE can be interpreted as a GaussianRBM
(Vincent, 2011).

This led to a shift fromGRBMs to gated autoencoders (GAEs) (Memisevic, 2008; 2011; 2012) though
research onGRBMs is still active (Taylor et al., 2010; Ding & Taylor, 2014).

Convolutional Neural Networks are an early family of deep learning architectures which are com-
posed of alternating convolutional layers and pooling layers. They are inspired from the human vi-
sion system and they proved particularly efficient for imageprocessing applications. Finally,RNNs
contain at least one recurrent connection, which makes themadequate for dealing with temporally
extended information (Hochreiter & Schmidhuber, 1997b).

The gating idea was also applied toRNNs (Sutskever et al., 2011) andCNNs, either combined to
GRBMs (Taylor et al., 2010) or toGAEs (Konda & Memisevic, 2015), as we outline in Section 5.

2.2 REDUCING THE NUMBER OF MULTIPLICATIVE CONNECTIONS

Implementing a gated network requires memory. Consider thenetwork shown in Figure 2(a), con-
sisting of three layersx, y andh1 whose respective cardinality isnx, ny andnh. Predicting the
output layer̂y givenx andh with such a multiplicative network consists in computing all the values
ŷj of ŷ using

∀j, ŷj = σy(

nx∑

i=1

nh∑

k=1

Wijkxihk) (1)

whereσy is some (optional) non-linearactivationfunction described in more details in Section 2.4.

Alternatively, one may computêx giveny andh or computêh givenx andy using

1Throughout this document, bold lowercase symbols denote vectors, and bold uppercase symbols denote
matrices.
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∀i, x̂i = σx(

ny∑

j=1

nh∑

k=1

Wijkyjhk), ∀k, ĥk = σh(

nx∑

i=1

ny∑

j=1

Wijkxiyj).

Regardless of theσ functions, these models are calledbilinear because, if one input is held fixed,
the output is linear in the other input.

The weightsWijk define a3-way tensor, which is used to computêx, ŷ or ĥ given both other
vectors. This tensor containsnx × ny × nh connections. Ifnx, ny andnh are in the same order of
magnitude, the number of weights (aka parameters) is cubic in this magnitude.

Factored architectures are designed to avoid representingthis cubic number of weights. Two ways
to reduce this memory requirement are:

• Projecting the input and output, potentially high-dimensional signals, into a smaller space
throughfactor layers, and then performing the central product between these smaller di-
mensions.

• Constraining the structure of the global 3-way tensor so as to restrict the number of weights.

In the next two sections, we show that the standard gated network takes the best of both views, by
setting a constraint on the 3-way tensor structure that implements a projection onto factor layers, but
that also avoids representing the full central product. Another striking feature of this architecture is
that the resulting central product does not contain any tunable parameter.

2.2.1 PROJECTING ONTO FACTOR LAYERS

One way of reducing the number of weights consists in projecting thex, y andh layers onto smaller
layers noted respectivelyfx, fy andfh before performing the product between these smaller layers.
Given their multiplicative role, these layers are called “factor” layers. The corresponding approach is
illustrated in Figure 2(b). If the respective cardinality of the factors isnfx , nfy andnfh , the number
of weights of the central 3-way tensor isnfx × nfy × nfh . To tune the whole network, additional
weights must be added to this 3-way tensor, respectivelynx × nfx , ny × nfy andnh × nfh for each
layer, so the total number of weights is(nfx ×nfy ×nfh)+ (nx×nfx)+ (ny ×nfy )+ (nh×nfh).

Figure 2: (a): A fully connected multiplicative network. (b): A simplified network introducing
factor layers. (c): The factored gated architecture. All figures are adapted from (Memisevic et al.,
2010).

In summary, the two input layers amongx, y andh are first projected onto feature spaces through the
corresponding factor layers, then the central 3-way multiplication is performed and finally projected
to the output layer through the last factor layer.

This approach, suggested by Memisevic & Hinton (2007), results in fewer tunable parameters pro-
vided that factor layers contain fewer neurons than the input layers. In that case, the network per-
formsdimensionality reductionon the inputs before tuning the multiplicative weights between the
factors. As a result, the number of weights is still cubic, but of a smaller magnitude. A second benefit
of this architecture is that, in contrast to the one illustrated in Figure 2(a), the introduction of factors
results in the possibility offeature sharingbetween the different external layers (Memisevic et al.,
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2010). However, to the best of our knowledge, this way of reducing the number of parameters of the
gated architecture has not yet been implemented.

Another approach, which is used in all the works surveyed hereafter, consists in rather calling upon
over-completerepresentations (Olshausen, 2003), where factor layers are larger than the input space,
but a regularization method likedenoising(Vincent, 2011) is used to sparsify the activity of the
factors. In this context, introducing the factor layers does not reduce the number of parameters, it
even increases it (Memisevic, 2013).

2.2.2 CONSTRAINING THE 3-WAY TENSOR

Another way of reducing the number of parameters consists inrestricting the weightsWijk to follow
a specific form

Wijk =

F∑

f=1

W x
ifW

y
jfW

h
kf . (2)

With this constraint, the matricesWx, Wy andWh are of respective sizenx × nf , ny × nf and
nh × nf , thus the total number of weights is justnf × (nx + ny + nz), which is quadratic instead
of cubic in the size of input or factors.

Consider again the case whereŷ is predicted givenx andh. Equation (1) can be rewritten as

∀j, ŷj = σy(

nx∑

i=1

nh∑

k=1

F∑

f=1

W x
ifW

y
jfW

h
kfxihk), (3)

which can be reorganized into

∀j, ŷj = σy(

F∑

f=1

W
y
jf (

nx∑

i=1

W x
ifxi)(

nh∑

k=1

Wh
kfhk)). (4)

By noting

fx
f =

nx∑

i=1

W x
ifxi, f

y
f = (

ny∑

j=1

W
y
jfyj), fh

f = (

nh∑

k=1

Wh
kfhk), (5)

we finally get

∀j, ŷj = σy(

F∑

f=1

W
y
jff

x
f .f

h
f ). (6)

The three equations in (5) define three factor layers as explained in Section 2.2.1 and illustrated in
Figure 2(b). However, when looking at the structure of (6), one can see that, instead of having a
full central product, the output of both factor layers –fx andfh in the case of (6) – are multiplied
element-wise through the same indexf , as illustrated in Figure 2(c).

Thus, using the decomposition of (6), it can be seen that thisway of constraining the 3-way tensor
corresponds to using projections as in the previous view, but with three factor layersfx, fy and
fh of the same sizenf , and where the central 3-way tensor has been replaced by 3 two-by-two
element-wise products of the factor layers.

With a more algebraic notation, (5) can be rewritten

fx = Wx⊺x, fy = Wy⊺y, fh = Wh⊺h. (7)

In this notation, we omit the representation of an additive bias term by considering the inputs as being
a homogeneous representation with an additional constant value, in which biases are implemented
implicitly. Equation (6) then becomes

ŷ = σy(W
y(fx ⊗ fh)), (8)

where⊗ denotes the element-wise multiplication illustrated in Figure 3(b).

5



Again, the same decomposition can be applied to predictĥ givenx andy or to predictx̂ giveny
andh, giving rise to

x̂ = σx(W
x(fy ⊗ fh)), ĥ = σh(W

h(fx ⊗ fy)). (9)

A slightly more general version of the same architecture that insists on its symmetric nature can
be obtained by notingWx

in, Wy
in andWh

in the matrices oriented from the input layers towards the
factors, andWx

out, W
y
out andWh

out those oriented from the factors towards the output. The corre-
sponding architecture is depicted in Figure 3(b).

Figure 3: Two views ofGAEs. (a): Same as Figure 2(c). (b): Another view of the same architecture,
adapted from (Droniou, 2015). (c): Simplified notation corresponding to (b), reused in figures 5, 6
and 7.

Following these notations, if we consider computations from the input layers to the factors, the red
arrows correspond to

fxin = Wx
inx, f

y
in = W

y
iny, fhin = Wh

inh.

In the other way, from the factors to other factors, the blue arrows correspond to

fxout = f
y
in ⊗ fhin , f

y
out = fxin ⊗ fhin , fhout = fxin ⊗ f

y
in.

Finally, towards the output we have

x̂ = σx(W
x
outf

x
out), ŷ = σy(W

y
outf

y
out), ĥ = σh(W

h
outf

h
out).

By connecting the above elements together, the complete input-output functions are

ĥ = o(x,y) = σh(W
h
out((W

x
inx)⊗ (Wy

iny))), (10)

x̂ = p(y,h) = σx(W
x
out((W

y
iny)⊗ (Wh

inh))), (11)

ŷ = q(x,h) = σy(W
y
out((W

x
inx)⊗ (Wh

inh))). (12)

Equations (10) to (12) are identical to (8) and (9), and thus they implement (2), provided that the
following weight tying rules are used2: Wx = Wx

in = Wx
out

⊺, Wy = W
y
in = W

y
out

⊺ andWh =

Wh
in = Wh

out
⊺

. A benefit of using such weight tying rules is that it further reduces the number of
parameters. Besides, any pair of the sub-networks described in (10) to (12) shares just one input
matrix.

From the above presentation, it should be clear that the standard gated network architecture is com-
pletely symmetric: the functional role of thex, y andh layers can be exchanged without changing
the computations.

2Different papers choose different conventions for deciding which matrix is the original and which is the
transposed, see for instance (Im & Taylor, 2014), giving rise to different equations to implement (10) to (12).
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2.3 VARIATIONS ON THE CENTRAL TENSOR

The architecture outlined in Section 2.2.2 can be seen either as a particular way to parametrize
the global 3-way tensor, introducing features into its internal structure, or as a way to replace the
central tensor of the approach outlined in Section 2.2.1 by an element-wise product of factor layers.
This approach to implementing the central 3-way tensor can be seen as a degenerate case where all
its non-diagonal elements are null and its diagonal elements are all set to 1. With this definition,
the central product does not contain any tunable parameters. Instead, representation learning is
implemented by tuning the weights of theWx, Wy andWh matrices connecting the external
layers to the factors. Note that using parameters instead ofones onto the diagonal may increase the
flexibility of the model for learning, but it would not improve its expressive power, since the effect
of changing these parameters can be captured by changing theparameters of theW matrices.

The constraint given in (2) is somewhat arbitrary. For instance, the central computation of a gated
architecture can be more complex than a simple element-wiseproduct of factors. The architecture
proposed in (Droniou & Sigaud, 2013) is an instance of such more complex computation. As out-
lined in Figure 4, it also uses factors and a parameter-free tensor, but the structure of the central
tensor has been specifically designed to learn orthogonal transformations. Several motivations for
performing the corresponding computations are given in (Droniou & Sigaud, 2013), together with
the detailed mathematical rationale for such computations.

Note also that, in this architecture, the weight tying rulesare unusual. Instead of havingWin =
Wout

⊺ for all factors,Wh
in andWh

out are untied andWx
in = W

y
in, with standard input-output weight

tying rules on thex andy layers, i.e. Wx = Wx
in = Wx

out
⊺ andWy = W

y
in = W

y
out

⊺. A
consequence of this choice is that the model might not be interpreted as an energy-based dynamical
system, sinceWh

in = Wh
out

⊺

is required so that Poincaré’s integrability criterion holds (Im & Taylor,
2014).

Figure 4: (a) In this architecture, an element-wise productis performed between vectorsgx, gy and
gh of size2n, wheren is the size offx, fy andfh. The vectorgx is obtained by duplicatingfx,
using twice the identity matrix. One half ofgy is identical tofy, the other half is obtained through
the block diagonalBn matrix shown in (b). Finally,gh is obtained fromfh by applying thePn

matrix. Note that the weight-tying rules differ from the ones of standard gated networks.

2.4 ACTIVATION FUNCTIONS

Thex, y andh layers can be either binary of real-valued. Depending on this format, different non-
linearactivationfunctions are used, resulting in different functionalities assigned to the network.

When the content of a sizen layer is binary, there are two options. First, it can represent 2n ele-
ments of a discrete set using standard binary coding rules. In that case, either the model directly
represents the probability of each binary value, as is the case in RBMs, or the binary values are
obtained from real-valued numbers by using a threshold. This latter case is uncommon because of
the non-differentiability of the threshold function. The second option is to represent onlyn ele-
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ments using a “one-hot” representation where one bit is set to 1 and all the others are 0. When the
corresponding layer is used as input, this representation is easy to enforce from the external world.

For real-valued layers, the role of the activation functionis to constrain the values of the output layer
into a bounded domain, which can be obtained for instance with a sigmoid or a rectified linear unit,
the latter being more popular in large network due to its faster computation. One can also use the
softplusfunctionσ+, defined asσ+(x) = log(1+exp(x)), which is a smooth version of the rectified
linear unit (Glorot et al., 2011).

To get a representation that is close toa “one-hot” in a real-valued output layer, the activity of the
most active neuron in that layer can be highlighted by using thesoftmaxfunction. If used for instance
on theh layer of a gated network, thesoftmaxfunction is

h = σmax(W
h
outfh), (13)

where

σi
max(h = (h1, . . . , hn)) =

ehi

∑
j e

hj
. (14)

In addition to highlighting the most active neuron(s), thisfunction makes sure that all activities sum
to 1. Hereafter, we call the obtained representation a “softone-hot”.

Finally, if a binary “one-hot” representation was requiredas output, one could apply a postprocessing
“winner-takes-all” function to asoftmaxlayer, but we are not aware of any such use.

3 LEARNING IN GATED NETWORKS

Gated networks have two input layers and one output layer. One way to train such networks would be
to usesupervised learning: for a given pair of input layers, one would provide the expected output,
and then train the network to minimize a function of the errorbetween the expected and the obtained
output. This is used in gatedCNNs and gatedRNNs (see Section 5). ButGRBMs andGAEs are not
trained in this way. Instead, the training process is designed to performunsupervisedlearning, but
differs betweenGRBMs andGAEs. In this paper, we do not cover trainingGRBMs, which is based
on trainingRBMs. We refer the reader to (Swersky et al., 2010) for a clear presentation of the latter
topic. Instead, we focus on trainingGAEs.

Given two input layers,GAEs are trained toreconstructone of them. In order to explain this learning
process, it is useful to recap how it is performed in autoencoders.

An autoencoder is composed of two functions:

• The encoding function that transforms the input vectorx into a latent representationh. A
typical function ish = h(x) = σh(Wx+ b).

• The decoding function that reconstructs a representationx̂ of x from its latent representa-
tionh. A typical function isx̂ = r(h) = σx(W

′h+ b′).

The cost function for autoencoders is generally related to the reconstruction error. This error is
for instance the distance betweenx and x̂, typically the squared error||x̂ − x||2. Learning then
corresponds to applying an optimization algorithm such as agradient-descent to the weights of the
network so as to minimize this cost function. Thus, during training, the network learns the encoding
function and the decoding function simultaneously, usingx̂ = σx(W

′σh(Wx + b) + b′). The
main outcome of this learning process is the generation of the latent representationh, that must be
informative enough about the input so as to allow its correctreconstruction.

To highlight the relationship between autoencoders andGAEs, we now consider thath is the latent
representation andx andy are the input layers. Recalling (10) to (12), there are two ways to define
a GAE as equivalent to an autoencoder. The encoding function is alwaysh = o(x,y), while the
decoding function can be either

x̂ = p(y,h) = p(y,o(x,y)) (15)
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or

ŷ = q(x,h) = q(x,o(x,y)). (16)

Using (10) to (12), (15) can be rewritten

x̂ = σx(W
x
out((W

y
iny)⊗ (Wh

inσh(W
h
out((W

x
inx)⊗ (Wy

iny)))))), (17)

and (16) can be rewritten

ŷ = σy(W
y
out((W

x
inx)⊗ (Wh

inσh(W
h
out((W

x
inx)⊗ (Wy

iny)))))). (18)

One can note thatWy
out does not appear in (17) andWx

out does not appear in (18), thus tuning these
weights is not useful during training unless adequate weight tying rules are applied.

As outlined in Section 2.1, autoencoders can be endowed withproperties similar to those ofRBMs by
using a denoising regularization function. There are threekinds of such functions, namely Gaussian
noise, masking noise and salt and pepper noise (Rudy & Taylor, 2014). It is commonplace to apply
to GAEs these regularization functions as they are to autoencoders. They are generally applied to all
factor layers, but there are some exceptions. For instance,in (Rudy & Taylor, 2014), the denoising
function is applied tox only.

Importantly, minimizing the squared reconstruction errorof a DAE implements a regularized form
of score matching(Vincent, 2011), which is itself a training criterion that favors the encoding of
the manifolds where most of the input data is lying (Hyvärinen, 2005). The same applies toGAEs,
but the nature of the represented manifolds depends on the encoded input-output relationships and
on the format of the external layers. Besides, some other regularizations functions such asdropout
(Srivastava et al., 2014) might also be applied toGAEs, but we are not aware of any work in this
direction. For other practical hints on training gated networks, see also (Memisevic, 2013).

Finally, the back-propagation algorithm can perform gradient descent on the weights of some or all
the impliedW matrices.

Taken together, the reconstruction function, the regularization function and the learning rules define
many different settings to learn representations withGAEs. We study other combinatorial aspects in
the next section.

4 APPLICATIONS OF GATED NETWORKS

Given what we have presented so far, there are three respectsin which the use of gated networks
may vary. First, as outlined in Section 2.4 the content of thex, y andh layers is either binary, one-
hot or real-valued. Second, as outlined in Section 3, gated networks can be trained in various ways
using various training signals, regularization functionsand cost functions. Third, different layers
can be used either as input or output. All these variations give rise to different functional roles for
the corresponding networks. The goal of this section is to make an inventory of such uses in the
literature, which is finally summarized in Table 1.

4.1 FORMAT OF THE EXTERNAL LAYERS

In Section 2.4, we outlined the different activation functions that are used to deal with different
format of the external layers. Here, we recapitulate the useof these formats in different models.

First, in all GRBMs, theh layer always uses standard binary encoding (Memisevic & Hinton, 2007;
2010).

Furthermore, most models use pixels of two images asx andy input. The transformation be-
tween these images stored inh is either binary (Memisevic & Hinton, 2007; 2010) or real-valued
(Droniou & Sigaud, 2013; Dehghan et al., 2014). In both cases, what is learned is a manifold of the
pixels in thex conditioned on those of they layer, orvice versa(Memisevic & Hinton, 2007).

There are two models where they layer is binary. First, thegated softmax classificationmodel
was used in the context of logistic regression, i.e. classification using a log-linear model, where
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the outputŷ consisted of binary class labels, and the values of theh layer were also binary
(Memisevic et al., 2010).

More recently, in the context of studying the generative property of GAEs, a model was proposed
where they input also consists of a class-conditional, one-hot representation, whereash is a real-
valued representation constrained by a rectified linear unit (Rudy & Taylor, 2014). The network
is trained to regenerate examples from the MNIST and TorontoFaces Database images, thusx is
a vector of pixels. In this context, the model represents class-conditional manifolds, i.e. a set of
manifolds of the input datax with one manifold per corresponding class iny. As the authors state,
this use of theGAE “is akin to learning a separateDAE model for each class, but with significant
weight sharing between the models. In this light, the gatingacts as a means of modulating the
model’s weights depending on the class label” (Rudy & Taylor, 2014).

4.2 TRAINING SIGNAL

As outlined in Section 3,GAEs can be trained to reconstruct eitherx̂ or ŷ. When the input data
is binary, the cross-entropy loss function is the default choice (Rudy & Taylor, 2014). When it is
real-valued, the standard cost function is a squared reconstruction error. Therefore, when training to
reconstruct̂x, it is J = 1

2
||(x̂|y) − x||2, whereas for reconstructinĝy, it is J = 1

2
||(ŷ|x)− y||2.

The first option is the one chosen in (Rudy & Taylor, 2014). This makes the connection to autoen-
coders more explicit because they both takex as input and̂x as output. But this contrasts with the
rest of the literature, where it is more common to train to reconstruct̂y (Memisevic & Hinton, 2007;
2010; Memisevic et al., 2010; Droniou & Sigaud, 2013; Michalski et al., 2014b;a).

A third option exists. If we want the model to be able to reconstruct x̂ giveny andŷ givenx at the
same time, we can use (Memisevic, 2011):

J =
1

2
||(x̂|y) − x||2 +

1

2
||(ŷ|x) − y||2. (19)

A particularly relevant case for using this symmetric signal is the case wherex = y. In that case,
the mapping unitsh learn covariances withinx (Memisevic, 2011).

Interestingly, a model recognizing offspring relationship from pictures of faces combines generative
and discriminative training, using two training signals (Dehghan et al., 2014). From one side, it
learns a representation of the transformation between two faces using the symmetric cost function
given in (19). But it also tries to determine offspring relationship as a binary representation, so it
uses a softmax cost function during a supervised label learning process. Finally, both cost functions
are combined into a weighted sum.

4.3 INPUT-OUTPUT FUNCTION

We have outlined in Section 2.2.2 that the role of thex, y andh layers could be exchanged. This
leads to three permutations where two layers amongx, y andh are inputs, the third layer being the
output. However, given the unsupervised training procedure described in Section 3, we see that, in
addition to the three possibilities outlined above, one canalso use it to predict either̂x or ŷ. Under
this view, learning the latent representationh is a side effect,h being used neither as input nor as
output, but being “reinjected” into the network to reconstruct one of the input layers. The same fact
appliesmutatis mutandisto all other layers.

The different possible output layers result in two main waysto use a gated network. The first one,
the predictive coding view, consists in inferring an outputŷ (or x̂) given an inputx and a context
h. Thetemporalpredictive coding view is a special case of the above, withxt as input andxt+1 as
output. The second one, thetransformation coding view, consists in using the latent representation
h as output, given two input vectorsx andy. The output layerh then expresses some relations
betweenx andy, which may provide abstract representations that can be used for instance in higher
level decision modules.

The latter view is mostly used to learn transformations between two successive images, so as to ex-
tract features containing temporal information (Memisevic & Hinton, 2007; 2010; Memisevic et al.,
2010; Droniou & Sigaud, 2013; Michalski et al., 2014b;a). Inthis context, the input vectorsx and
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y are successive images, for instance from a video. The extracted transformationsh are content-
independent. For instance, they can represent rotations, independently from what is rotated in the
images. Furthermore, they convey a temporal information about these successive images, thus they
can be used as elementary features in a higher level to model some temporal information. How-
ever, we are not aware of any architecture where these temporal features are actually used to extract
temporally extended information from videos, apart from very preliminary attempts among 3 or 4
successive frames in (Michalski et al., 2014b) using a hierarchical sequence ofGAEs (see Section 5).
The work of (Dehghan et al., 2014) is another instance of the transformation coding view, but where
x andy are temporally independent images.

In many papers, both the transformation representationh and the reconstructed input signalx̂ or ŷ
are studied. As a consequence, in the absence of an external architecture that uses it, it is often hard
to determine which of these signals should be considered as the output of the network. Moreover,
it is often the case that, when learning transformations between two successive images, the learned
transformation is then applied to a new input image to see what output image is “fantasized” by
the network, performing a type of “analogy making”. In this context, the output of the network is
bothĥ andŷ (Memisevic & Hinton, 2007; 2010; Memisevic et al., 2010; Droniou & Sigaud, 2013;
Michalski et al., 2014b;a). Thus in Table 1, we do not strive to determine which layer is the output
of the studied algorithm.

4.3.1 SUMMARY : AN INVENTORY

Table 1 summarizes many uses of the standard gated networks listed above.

Papers x y h act. func. training
(Memisevic & Hinton, 2007; 2010) pixels(t) pixels(t+1) binary proba ŷ

(Memisevic et al., 2010) pixels binary binary proba ŷ

(Memisevic, 2011) pixels pixels =x soft 1-hot relu (x̂, ŷ)
(Droniou & Sigaud, 2013) pixels(t) pixels(t+1) real softplus ŷ

(Rudy & Taylor, 2014) pixels 1-hot real relu x̂

(Dehghan et al., 2014) face 1 face 2 soft 1-hot softmax hybrid

Table 1: Various input-output functions for gated networks. “act. func” stands for the activation
function on theh layer. “relu” stands for rectified linear unit, “real” stands for real-valued. “proba”
stands for a probabilistic activation function. The(x̂, ŷ) training signal stands for the symmetric
cost function given in (19). For thehybrid training signal, see Section 4.2.

Table 1 illustrates that there is a wide variety of ways to usegated networks. This variety is even
greater if we also consider the non-standard architecturessurveyed in the next section.

5 BEYOND STANDARD GATED ARCHITECTURES

In this section, we describe a few architectures that contain a gated network. First, we list some
architectures where the central tensor connects more than 3layers. Then, we present some architec-
tures whose set of connections is not restricted to the central tensor.

5.1 EXTENDED TENSORS

There are some architectures where the central tensor connects more than 3 external layers. Con-
ditional RBMs (CRBMs) areRBMs where some memory of the past input are included into the
input layer so that the architecture can model time-dependent data (Taylor & Hinton, 2009). In
(Taylor et al., 2011), aCRBM is used to model human motion data but, as illustrated in Figure 5, it
is extended with an additionalstylelayer to model different styles of motion.

Thex layer corresponds to the motion input at previous time step.They layer, which is the output,
corresponds to the predicted motion at the current time step. Theh layer is used as in allGRBMs
to learn a representation of the transformation betweenx andy. But, additionally, thez layer
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Figure 5: Four layers can be connected by three tripartite connection blocks (adapted from
(Taylor et al., 2011)).

corresponds to real-valued stylistic features that are fedby discretestyle labels (encoded in thes
layer) and provide some additionalcontextualinformation about the motion.

The resulting architecture is then factored as described above so as to limit the number of parameters,
but it is designed in such a way that the 4 factors are only connected together by triplets using
factored 3-way tensors.

More recently, a “4-way tensor” and its factorization were introduced based inGRBMs
(Mocanu et al., 2015). The central factored operation consists in performing a sum of products
of second order tensors. The models of (Taylor & Hinton, 2009) and (Mocanu et al., 2015) are both
capable of representing sequential data in the limit of theN previous time steps included in the
memory concatenated to the input layer.

5.2 CLUSTERING WITH GATED NETWORKS

In some architectures, the central 3-way tensor is not the only ingredient. For instance, the architec-
ture depicted in Figure 6 uses an additional autoencoding connection with respect to a standardGAE
(Droniou et al., 2015).

Figure 6: Gated network for unsupervised classification (adapted from (Droniou et al., 2015)). The
GAE is represented using the simplified notation of Figure 3(c).With respect to a standardGAE, it
uses an additional autoencoder implemented through theWAE matrix.

The network aims at clustering input data into “concepts” corresponding to manifolds in the input
layer, without using supervised learning. For doing so, theinputx is first fed into a standard autoen-
coder using a softmax activation function that performs unsupervised clustering of the input data.
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The softmax activation function implements a competition between the bits of the class layer and
results in the emergence of a soft one-hot representation ofthe corresponding class. Then, given the
input and the obtained class, theh layer implements a parametrization of the input with respect to
the class, using a softplus layer, i.e.h = σ+(W

h
outfh).

Since it uses a soft one-hot, class-conditionaly layer and a real-valued inputx layer, this model can
be seen as a direct extension of the one presented in (Rudy & Taylor, 2014). However, since the
weights are trained simultaneously, the network in Figure 6finds the adequate classes to represent
the data with an accurate parametrization by itself, instead of requiring them as training labels.
This endows the network with unsupervised clustering capabilities that are well beyond those of
standard dimensionality reduction techniques. This modelis then extended to deal with multimodal
information, showing an even improved clustering performance. We do not further study this aspect
here, see (Droniou et al., 2015) for more details.

5.3 RECURRENT GATED NETWORKS

Another architecture based on factoring gating connections is the “MultiplicativeRNN” architecture
(Sutskever et al., 2011) depicted in Figure 7. This is a recurrent architecture trained to deal with
temporally organized information such a text or speech signal.

Figure 7: MultiplicativeRNN.

The key requirement of the architecture is that the recurrent connection responsible for the dynamics
of the hidden variable should be a function of the input layerx. This would lead to a full 3-way
tensor, which the authors factorize as described in Section2.2 to reduce the number of free parame-
ters. With slightly adapted notations to highlight the similarity with other architectures, the internal
computation of the multiplicativeRNN is given by the following equations:

ft = diag(Wfxxt).Wfhht−1 (20)

ht = tanh(Whfft +Whxxt) (21)

ŷt = W
y
outht + by. (22)

A key difference between this work and the other ones presented above is that the architecture
is trained in a supervised way, rather than trained to reconstruct its input. The focus is thus not on
extracting an abstract representation of the input. Another originality is that, instead of being trained
with a standard first order gradient descent algorithm such as back-propagation, the architecture is
trained using a second order method based on Hessian-free optimization (Martens, 2010). To our
knowledge, despite its efficiency, no other gated network has been trained with this method.
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5.4 CONVOLUTIONAL GATED NETWORKS

Convolution is a technique which consists in processing a large image by shifting a smaller filter
to any position in the image and applying it over all positions. For instance, the same filter can
be applied to recognize a pattern at any position in the image. Convolutional gated networks ap-
ply the convolution idea to gated networks. This has been done in GRBMs (Taylor et al., 2010) so
as to extract spatio-temporal features in the context of human activity recognition, and inGAEs
(Konda & Memisevic, 2015) to perform visual odometry from stereo pairs in a sequence of images
captured from a moving camera.

5.5 PREDICTION WITH A SEQUENCE OF GATED NETWORKS

Another architecture models temporal data using a sequenceof GAEs (Michalski et al., 2014b)3.
Beyond a sequence, it even uses a hierarchy ofGAEs to learn transformations of transformations.
The model of (Michalski et al., 2014b), called Predictive Gating Pyramides (PGP), cascades two
level of GAEs to predict sequences. As the authors state, the reconstruction error is inadequate in
their context, thus the model is trained explictly to predict rather than to reconstruct. Actually, it is
trained to predict over multiple steps. A strong assumptionin PGPis that the highest-order relational
structure in the sequence is constant. It uses Back-Propagation Through Time (BPTT) to perform
gradient descent on the weights over time. However, the model is used to learn temporal features, it
does not predict long sequences of images. And a major drawback is that the architecture requires
as manyGAEs as time steps.

6 CONCLUSION

In this paper, we have based our presentation of gated networks on a perspective that insists on their
symmetric nature. Based on this particular perspective, wecould highlight its richness by providing
an inventory of the various ways they have been used so far in the literature. Given this richness,
we believe standard gated networks still have a largely underexploited potential as a unifying tool
for many domains where the relevant information is naturally expressed as tripartite relationships
between three interdependent sources. Apart from the ones proposed in this paper, we hope many
other application domains to gated networks will emerge in the next years.

Furthermore, as pointed out in Section 5, there are still rather few non-standard architectures based
on the factored gating idea. We believe the list of such architectures will expand in the future, and
also that gated networks should be included into more general frameworks that may contain several
instances of such networks, as is already the case with (Michalski et al., 2014b) or (Droniou et al.,
2014).

Finally, among other things, an interesting perspective tothis work consists in combining it with
thecontextual learningperspective (Jonschkowski et al., 2015). Indeed, several contextual learning
patterns might be implemented with gated networks, and someworks about representation learning
with gated networks might be interpreted in the framework ofcontextual learning.
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