
HAL Id: hal-01313557
https://hal.science/hal-01313557v1

Submitted on 23 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rational Lyapunov functions and stable algebraic limit
cycles

Emmanuel Moulay

To cite this version:
Emmanuel Moulay. Rational Lyapunov functions and stable algebraic limit cycles. IEEE Transactions
on Automatic Control, 2014, 59 (4), pp.1077-1081. �10.1109/TAC.2013.2283757�. �hal-01313557�

https://hal.science/hal-01313557v1
https://hal.archives-ouvertes.fr


1

Rational Lyapunov functions and stable algebraic
limit cycles

Emmanuel Moulay

Abstract—The main goal of this article is to show that the class
of systems described by a planar differential equation having a
rational proper Lyapunov function has asymptotically stable sets
which are either locally asymptotically stable equilibrium points,
stable algebraic limit cycles or asymptotically stable algebraic
graphics. The use of the Zubov equation is then an adapted tool
to investigate the study of an upper bound on the number of
stable limit cycles and asymptotically stable graphics and their
relative positions for this class of systems.

Index Terms—Rational Lyapunov functions, algebraic limit
cycles, Zubov equation, planar differential equations.

I. INTRODUCTION

The main idea of this article is to show that it is possible
to investigate the stable limit cycles of a planar analytic
system by using rational proper Lyapunov functions. We use
the Zubov equation in this article rather than the Lyapunov
equation. Both are partial differential equations, but the Zubov
equation has a finite value at the boundary of the domain
of attraction contrary to the Lyapunov equation. The Zubov
equation which leads to the knowledge of the domain of
attraction is an adapted tool to investigate the problem of the
relative positions between the connected components of the
domain of attraction of equilibrium points, limit cycles and
graphics, even numerically. It is possible to study the existence
of an upper bound for the number of stable limit cycles and
asymptotically stable graphics for a special class of planar
analytic ordinary differential equations which admits a rational
proper Lyapunov function for each asymptotically stable set.
In this case, the stable limit cycles but also the graphics are
algebraic curves. The properness is essential to investigate the
domain of attraction. In a very special case, it is also possible
to have an upper bound for the number of limit cycles.

Let us recall that the Zubov theorem was given by Vladimir
Ivanovich Zubov in the 1950s and appears in [1, Theorem 19].
This theorem gives a necessary and sufficient condition that
characterizes the domain of attraction of an asymptotically
stable set in terms of a nonlinear partial differential equation
known as the Zubov equation. Notice that the topic of this
article is related to Hilbert’s sixteenth problem which is stated
as follows:
• an investigation of the relative positions of the branches

of real algebraic curves of degree n;
• the determination of an upper bound for the number

of limit cycles H(n) for planar ordinary differential
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equations of real polynomial vector fields of degree n
and an investigation of their relative positions.

This problem is unsolved and a survey about its history can
be found in [2]. The stable limit cycles are one of the three
kinds of limit cycles.

The article is organized as follows. After some notations
and definitions given in Section II, a modified smooth version
of the Zubov theorem for asymptotically stable sets is given
in Section III. The Section IV is dedicated to the study of the
class of systems which admits a polynomial proper Lyapunov
function for each asymptotically stable set. It shows that this
class is not suited for the study of the stable limit cycles. The
right class is the one of systems which admits a rational proper
Lyapunov function for each asymptotically stable set and its
study is addressed in Section V. Finally a conclusion is given
in Section VI.

II. NOTATIONS AND DEFINITIONS

For x, y ∈ Rn, x · y denotes the scalar product between x
and y. A smooth function is a C∞ function.

Throughout this article, we consider a continuous, time-
invariant flow ϕ : R × Rn → Rn. The flow ϕ satisfies
ϕ (0, x) = x and ϕ (t, ϕ (s, x)) = ϕ (t+ s, x) for all t, s ∈ R
and x ∈ Rn (see for instance [3] and [4]).

Definition 1: A set K ⊂ Rn is positively invariant if for all
x ∈ K, ϕ(t, x) ∈ K for all t ∈ R≥0.

We recall the definitions about Lyapunov stability.
Definition 2: A compact positively invariant set K ⊂ Rn is

asymptotically stable if the following two conditions hold:
1) K is stable: i.e. for every open neighborhood V ⊆ Rn

of K, there exists an open neighborhood U ⊆ Rn of K
such that ϕ(t,U) ⊆ V for every t ≥ 0.

2) K is attractive: i.e. there exists an open neighborhood
W ⊆ Rn of K such that, for every x ∈ W and every
open neighborhood U ⊆ Rn of K, there exists T ≥ 0
such that ϕ(t, x) ∈ U for all t > T .

The domain of attraction of an asymptotically stable set
K ⊆ Rn is the set A of points x such that, for every open
neighborhood U of K, there exists T > 0 such that ϕ(t, x) ∈ U
for all t ≥ T .
K ⊂ Rn is unstable if it is not stable.
The domain of attraction A of an asymptotically stable set

K is an open invariant set containing a neighborhood of K [1,
Theorem 4].

Let f : Rn → Rn be a Ck function with k ≥ 1 and consider
the system

ẋ = f(x) (1)
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where x ∈ Rn. We assume that system (1) admits a global
flow ϕ(t, x) defined for all t ∈ R, x ∈ Rn and given by the
solutions satisfying ϕ (0, x) = x.

Let us define the notion of equilibrium point and periodic
orbit.

Definition 3: Let x0 ∈ Rn, x0 is an equilibrium point of
system (1) if f(x0) = 0. A solution ϕ(t, x0) of (1) is periodic
if there exists a finite time T > 0 such that ϕ(t + T, x0) =
ϕ(t, x0) for all t ≥ 0. A set O ⊂ Rn, not reduced to an
equilibrium point, is a periodic orbit of (1) if

O = {x ∈ Rn : x = ϕ(t, x0), 0 ≤ t ≤ T} (2)

for some periodic solution ϕ(t, x0) of (1).
Even if it is possible to define a notion of stability, called

orbital stability in [5, Section 4.2], for a periodic orbit in Rn,
we restrict the study to R2 with the more suited notion of
limit cycle. Let us recall some definitions about limit cycles
and their stability given in [6, Section 3.3].

Definition 4: Let x ∈ Rn. The ω−limit set of a trajectory
ϕ(., x) of (1) is defined by

ω(x) :=
⋂
t≥0

{ϕ(s, x) : s ≥ t} (3)

and the α−limit set of a trajectory ϕ(., x) of (1) is defined by

α(x) :=
⋂
t≤0

{ϕ(s, x) : s ≤ t}. (4)

A periodic orbit Γ on R2 is called a limit cycle if it is the
α−limit set or ω−limit set of some trajectory of (1) outside Γ:
i.e. Γ is the set of accumulation points of either some forward
or backward trajectory.

If Γ is the ω−limit set of every trajectory in some neigh-
borhood of Γ then Γ is called stable. If Γ is the α−limit set of
every trajectory in some neighborhood of Γ then Γ is called
unstable. If Γ is the α−limit set of one trajectory other than
Γ and the ω−limit set of one trajectory other than Γ then Γ
is called semi-stable.

A limit cycle is a compact invariant set. A stable limit
cycle is also called an asymptotically stable limit cycle to
be in accordance with the asymptotic stability in the sense
of Lyapunov in the Definition 2. It is worth noting that the
unstability of a limit cycle is also in accordance with the
unstability in the sense of Lyapunov [1, Definition 2].

Let us a give a more precise classification of semi-stable
limit cycles given in [7]. The classical notions of interior and
exterior are defined in [6, pp. 204-205].

Definition 5: A semi-stable limit cycle Γ = ω(x) on R2

with x /∈ Γ is
• semi-stable of type-1 if x is at the exterior of Γ.
• semi-stable of type-2 if x is at the interior of Γ.
• ∞−semi-stable limit cycle if Γ is semi-stable of type-2

and ‖ϕ(t, x)‖ −→
t→+∞

+∞ if x belongs to the exterior of
Γ.

Let us give the definition of an algebraic closed curve and
an algebraic limit cycle which are studied in [8, Section 7.2].

Definition 6: A closed curve is called an algebraic closed
curve if it is a connected component of the zero set of some

real polynomial function. A limit cycle is an algebraic limit
cycle if it is a limit cycle and an algebraic closed curve.

Let us give the definition of a graphic. For more details and
some examples, the reader may refer to the Definition 1 in [6,
Section 3.7].

Definition 7: A graphic in R2 is a finite union of homo-
clinic and heteroclinic orbits compatibly oriented and con-
necting a finite number of equilibrium points in a cycle chain
x1 → x2 → · · · → xk → x1. It consists of equilibrium points
and orbits having these equilibrium points as their α− and
ω−limit sets such that the orbits are compatibly oriented.

If the equilibrium points in the cycle chain are consecutively
repeated, one obtains homoclinic orbits which are also called
petals. A graphic is a compact invariant set which is not a
periodic orbit.

Let us recall the definition of a Lyapunov function.
Definition 8: Let K ⊂ Rn be a compact positively invariant

set of system (1) and A ⊂ Rn an open positively invariant set
of system (1) containing a neighborhood of K. A continuously
differentiable function W : A → R≥0 such that
• W (K) = 0;
• W (x) > 0 for all x ∈ A�K;

is a Lyapunov function for system (1) if the Lyapunov equation

∇W (x) · f(x) = −h(x) (5)

holds for all x ∈ A with h : A → R≥0 a positive function
such that h (K) = 0 and h(x) > 0 for all x ∈ A�K. Moreover
if W (x) → ∞ when ‖x‖ approaches ∂A then the Lyapunov
function is said to be proper.

A converse Lyapunov theorem refers to a necessary condi-
tion for asymptotic stability of a compact positively invariant
set involving a Lyapunov function. The reader may refer to
Theorem 2.2 in [4, page 66] for a converse Lyapunov theorem
involving a continuous Lyapunov function and [9], [10], [11]
for a converse Lyapunov theorem involving smooth and/or
proper Lyapunov function. Let us remark that in Theorem 2.2
in [4, page 66], the state space is only supposed to be a locally
compact set.

III. THE ZUBOV THEOREM FOR ASYMPTOTICALLY STABLE
SETS

We will use in the following the Zubov theorem for asymp-
totically stable sets with the Zubov equation rather than the
Lyapunov theorem for asymptotically stable sets given in [4],
[11] with the Lyapunov equation (5). The main reason is the
fact that a proper Lyapunov function has an infinite value
at the boundary ∂A of the domain of attraction which is a
not a good feature for solving, even numerically, a partial
differential Lyapunov equation (5) and for finding A.

Let us give a smooth modified version of the original Zubov
theorem given in [1, Theorem 19] for asymptotically stable
sets. The following result first appears in [9, Theorem 2].

Theorem 9 (Zubov theorem): Let K ⊂ Rn be a compact
positively invariant set of system (1) and A ⊂ Rn an open pos-
itively invariant set of system (1) containing a neighborhood
of K. A is the domain of attraction of the asymptotically stable
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set K if and only if there exist a smooth function V : A → R
and a Ck function h : A → R such that:
• V (K) = h(K) = 0;
• −1 < V (x) < 0 and h(x) > 0 for all x ∈ A�K;
• if A is bounded then limx→∂A V (x) = −1, otherwise

lim‖x‖→+∞ V (x) = −1;
• the Zubov equation

∇V (x) · f(x) = h(x) (1 + V (x)) (6)

holds for all x ∈ A.
Moreover, we have V −1((−1, 0]) = A and V −1(0) = K.

Proof: Sufficiency. Suppose that there exists a smooth
function V : A → R and a Ck function h : A → R such that
the conditions of the theorem are satisfied. Then the smooth
function

W = − ln(1 + V ) (7)

is a proper Lyapunov function for system (1). By using the
Lyapunov theorem for asymptotically stable sets given in [4,
page 66], we have that K is asymptotically stable. Moreover,
by using [9, Theorem 1] and [12, Theorem 1] on each
connected component of A, we obtain that A is the domain
of attraction.

Necessity. If K is asymptotically stable with a domain of
attraction A then there exists a converse Lyapunov theorem
involving a smooth proper Lyapunov function W : A → R≥0
[9], [10], [11]. It is obvious to check that the smooth function

V = e−W − 1 (8)

satisfies the Zubov equation (6) with

h(x) = −∇W (x) · f(x). (9)

Moreover, the couple (V, h) satisfies all the conditions of the
theorem.

Remark 10: The original Zubov theorem [1, Theorem 19]
involves continuous only functions V and h. However h is
supposed to be continuous and positive over Rn�K which
is a severe condition. As explained in [9, Theorem 2] and
[12, Corollary 3.1], this condition can be replaced by a mild
condition of regularity and positiveness of h over A�K
because the properness is enough to ensure that A is the
domain of attraction. This fact has also been mentioned in
[13, Theorem 2.11]. The Theorem 9 is also true if f is only
Lipschitz continuous on A and in this case h is also Lipschitz
continuous on A.

Let us give an example of an asymptotically stable limit
cycle by using the Zubov equation (6).

Example 11: Let µ > 0 and consider the system{
ẋ1 = x2 + µx1

(
1− x21 − x22

)
ẋ2 = −x1 + µx2

(
1− x21 − x22

) (10)

Let

h(x1, x2) =
2µ
(
1− x21 − x22

)2 (
1 + x21 + x22

)
x21 + x22

(11)

and the Zubov equation associated with system (10) is given
by

∂V
∂x1

(
x2 + µx1

(
1− x21 − x22

))
+

∂V
∂x2

(
−x1 + µx2

(
1− x21 − x22

))
= h(x1, x2)(1 + V ).

(12)
A solution of the Zubov equation is given by

V (x1, x2) = e
− (1−x2

1−x2
2)

2

x2
1+x2

2 − 1 (13)

where K =
{

(x1, x2) ∈ R2 : x21 + x22 = 1
}

and the do-
main of attraction is given by A = R2�{(0, 0)}. Thus,{

(x1, x2) ∈ R2 : x21 + x22 = 1
}

is an asymptotically stable
limit cycle.

It is worth noting that, in control theory, the Zubov theorem
generally refers to [1, Theorem 22] dedicated to the case of an
equilibrium point, i.e. K = {0}. A proof of this result is also
given in [12, Theorem 3], [14, Theorem 34.1] and discussed
in [13, Section 2.2.7]. A survey concerning the solution of
the Zubov equation in the case of an equilibrium point can
be found in [15, Section II.A] and some recent extensions are
given in [16]. Some examples using the Zubov equation for
the study of an equilibrium point are given in [1].

IV. POLYNOMIAL PROPER LYAPUNOV FUNCTIONS

Let us consider a planar system{
ẋ1 = f1(x1, x2)
ẋ2 = f2(x1, x2)

(14)

where f1, f2 are analytic functions.
Let us denote by P the class of systems (14) admitting

a polynomial proper Lyapunov function W (x1, x2) for each
asymptotically stable set. Such a class of systems is widely
studied in the case of an asymptotically stable equilibrium
point, see for instance [17], [18]. However, we prove in the
following that this class of systems is not suited for studying
stable limit cycles.

Theorem 12: Let S ∈ P then S has no stable limit cycles.
Proof: Suppose that S has a stable limit cycle Γ. As

S ∈ P , there exists a polynomial proper Lyapunov function
W (x1, x2) for each asymptotically stable set K which is
characterized by a Zubov equation (6) whose solution is of
the form V (x1, x2) = e−W (x1,x2) − 1. Let us consider the
set K = Γ. We have K = V −1(0) = W−1(0). Due to the
Zubov theorem 9, W (x1, x2) must be singular on ∂A, i.e.
lim(x1,x2)→∂AW (x1, x2) = +∞. In particular, W (x1, x2)
must be singular on a bounded set included in Γ, which is
not possible with a polynomial function.

The polynomial proper Lyapunov functions are not suited
to the study of limit cycles, but rather to the study of asymp-
totically stable equilibrium points. A non proper Lyapunov
function still remains as a possible solution to prove the
asymptotic stability. For instance, the polynomial Lyapunov
function

W (x, y) =
(x2 + y2)2

4
− x2 + y2

2
+

1

4

can be used for the stable limit cycle of system (10). However,
if the Lyapunov function W is not proper then it is not possible
to ensure that the domain of definition of W coincides with
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the domain of attraction (see [9], [12]). So, the properness is
a key point to address the study of the asymptotic stability
involving the domain of attraction.

The polynomial Lyapunov functions can also be excluded
for some systems of the form (14) having a globally asymp-
totically stable equilibrium point, see for instance [19].

The following example shows that a Zubov equation in-
volving a natural function h for a locally asymptotically stable
equilibrium point embedded in a limit cycle leads to a rational
proper Lyapunov function. Even if it does not exclude the
existence of other types of proper Lyapunov functions, it also
indicates that polynomial proper Lyapunov functions are too
restrictive for the study of limit cycles.

Example 13: Consider system (10) of the example 11 with
µ < 0. Let 0 ≤ x21 + x22 < 1 and consider the function

h(x1, x2) = −2µ
x21 + x22

1− x21 − x22
(15)

and the Zubov equation associated to system (10)
∂V
∂x1

(
x2 + µx1

(
1− x21 − x22

))
+

∂V
∂x2

(
−x1 + µx2

(
1− x21 − x22

))
= h(x1, x2)(1 + V ).

(16)
A solution of the Zubov equation is given by

V (x1, x2) = e
x2
1+x2

2
x2
1+x2

2−1 − 1 (17)

where K = {(0, 0)} and the domain of attraction is given by
the set A =

{
(x1, x2) ∈ R2 : x21 + x22 < 1

}
. Thus, {(0, 0)} is

an asymptotically stable equilibrium point and it is possible to
show that ∂A =

{
(x1, x2) ∈ R2 : x21 + x22 = 1

}
is an unstable

limit cycle (see [7]).
It is worth noting that polynomial proper Lyapunov func-

tions could be used with semi-stable limit cycles, for instance
for a system having only embedded semi-stable limit cycles
of type-1 with an asymptotically stable equilibrium point
embedded in the smaller semi-stable limit cycle.

V. RATIONAL PROPER LYAPUNOV FUNCTIONS

Let us denote by Fν,δ the class of systems of the form (14)
admitting a rational proper Lyapunov function W (x1, x2) =
N(x1,x2)
D(x1,x2)

in which the degree of N(x1, x2) is lower than ν > 0

and the degree of D(x1, x2) is lower than δ > 0 for each
asymptotically stable set. This class Fν,δ is more interesting
than P because it allows the study of stable limit cycles.
The number of stable limit cycles and asymptotically stable
graphics of a system in Fν,δ is denoted by Hs(ν, δ).

Theorem 14: Let S ∈ Fν,δ then all asymptotically stable
sets are either:
• locally asymptotically stable equilibrium points;
• stable algebraic limit cycles;
• asymptotically stable algebraic graphics;

and Hs(ν, δ) ≤ ν
2 . For all stable algebraic limit cycles Γ =

ω(x) with x = (x1, x2) /∈ Γ, all bounded α(x) are planar
algebraic closed curves and their number is lower than δ

2 .
Proof: As S ∈ Fν,δ , there exists a rational proper

Lyapunov function W (x1, x2) = N(x1,x2)
D(x1,x2)

whose degree of
N(x1, x2) is lower than ν and whose degree of D(x1, x2)

is lower than δ for each asymptotically stable set which is
characterized by a Zubov equation (6) whose solution is of
the form V (x1, x2) = e−W (x1,x2) − 1 (see the Theorem
9). Let us consider the set K defined by the union of all
asymptotically stable equilibrium points, stable limit cycles
and asymptotically stable graphics. Due to the Poincaré-
Bendixson theorem for analytic systems [6, Page 245], the
only possible asymptotically stable sets are asymptotically
stable equilibrium points, stable limit cycles and asymptot-
ically stable graphics. Moreover, the asymptotically stable
equilibrium points cannot be globally asymptotically stable
due to the Zubov theorem (9) and the fact that δ > 0. There
exists V (x1, x2) = e−W (x1,x2)−1 with W (x1, x2) = N(x1,x2)

D(x1,x2)

such that K = V −1(0) = N−1(0). So, the stable limit cycles
and the asymptotically stable graphics are algebraic curves and
factors of the polynomial N(x1, x2). As a planar algebraic
closed curve is defined by an equation of degree larger than 2
(see for instance [20]), the number of stable limit cycles and
asymptotically stable graphics is lower than ν

2 .
For a stable limit cycle Γ = ω(x) with x = (x1, x2) /∈ Γ,

the set α(x) is included in ∂A if it is bounded. Moreover, we
have ∂A = V −1(−1). The only bounded sets in V −1(−1) are
given by D−1(0). Due to the Poincaré-Bendixson theorem for
analytic systems, α(x) is a closed curve. If α(x) ⊂ D−1(0)
then it is a planar algebraic closed curve and a factor of the
polynomial D(x1, x2). As a planar algebraic closed curve is
defined by an equation of degree larger than 2, the number of
bounded α(x) is lower than δ

2 .
The domain of attraction A given by the solution of the

Zubov equation (6) provides the relative positions between the
connected components of the domain of attraction of locally
asymptotically stable equilibrium points, the stable algebraic
limit cycles and the asymptotically stable algebraic graphics.
Even if it is possible to know the existence of a rational proper
Lyapunov function W , it is in general very difficult to have an
explicit expression for W whereas it is possible to compute,
even numerically, a solution for V and A with the Zubov
equation (6).

Example 15: It is worth noting that a graphic can be an
asymptotically stable set. Consider for instance the system in
polar coordinates {

ṙ = r (r − 1)

θ̇ = cos2 θ
(18)

It has a homoclinic orbit, the unit sphere, which is an asymp-
totically stable graphic.

Let us denote by F∞ν,δ the subclass of systems in Fν,δ having
no graphic nor ∞−semi-stable limit cycle. The number of
limit cycles of a system in F∞ν,δ is denoted by H∞(ν, δ).

Corollary 16: Let S ∈ F∞ν,δ then all limit cycles are
algebraic limit cycles and H∞(ν, δ) ≤ δ

2 + ν
2 .

Proof: As S ∈ F∞ν,δ , there exists a rational proper
Lyapunov function W (x1, x2) = N(x1,x2)

D(x1,x2)
whose degree of

N(x1, x2) is lower than ν and whose degree of D(x1, x2)
is lower than δ for each asymptotically stable set which is
characterized by a Zubov equation (6) whose solution is of
the form V (x1, x2) = e−W (x1,x2)− 1. Let us consider the set
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K defined by the union of all asymptotically stable equilibrium
points, stable limit cycles and and semi-stable limit cycles. The
semi-stable limit cycles can be considered in K. Indeed, due
to the Poincaré-Bendixson theorem for analytic systems [6,
Page 245] and the assumptions, there are two possibilities for
a semi-stable limit cycle:
• either its unstable α−limit side converges toward an

asymptotically stable equilibrium point, or a stable limit
cycle, or a semi-stable limit cycle which are all in K.
It means that every solution in a neighborhood of the
semi-stable limit cycle converges asymptotically toward
K.

• either its unstable α−limit side diverges at infinity.
Due to the assumption that S has any ∞−semi-stable limit
cycle, the second case is excluded. There exists V (x1, x2) =

e−W (x1,x2) − 1 with W (x1, x2) = N(x1,x2)
D(x1,x2)

such that K =

V −1(0) = N−1(0). So, the stable and semi-stable limit sets
are algebraic limit cycles characterized by the polynomial
N(x1, x2). As a planar algebraic closed curve is defined by
an equation of degree larger than 2, the number of stable and
semi-stable limit cycles is lower than δ

2 .
Due to the Poincaré-Bendixson theorem for analytic systems

[6, Page 245] and the assumptions, the unstable limit cycles
belong to the set ∂A. Indeed, let x belongs to the interior
of an unstable limit cycle Γ = α(x) then ω(x) is either
an equilibrium point, either a limit cycle. So ω(x) is an
asymptotically stable point or a stable limit cycle or a semi-
stable limit cycle and thus we have Γ ⊂ ∂A. Moreover, we
have ∂A = V −1(−1). As the only bounded sets in V −1(−1)
are given by D−1(0), the unstable limit cycles are algebraic
limit cycles and factors of the polynomial D(x1, x2). A planar
algebraic closed curve being defined by an equation of degree
larger than 2, the number of unstable limit cycles is lower than
ν
2 .

As the limit cycles are stable, semi-stable or unstable, the
result follows.

At the best of our knowledge, there is no result in the
literature concerning a converse Lyapunov result involving
rational proper Lyapunov functions. However, such a result
should be interesting to investigate the stable algebraic limit
cycles and the asymptotically stable algebraic graphics. It
seems that there is an intriguing link between the class Fν,δ
and the algebraic limit cycles.

An interesting case concerns the exponential stability. It has
been shown in [18] that if we consider exponential stability
only of an equilibrium point on a bounded domain rather than
asymptotic stability, then it is possible to find a polynomial
Lyapunov function W (x) whose degree is lower than an upper
bound which depends on the Lipschitz bound of the system
and also the rate of exponential convergence. We may wonder
if this result can be extended to the neighborhood of a limit
cycle. Indeed, under some assumptions, all solutions starting
on a neighborhood of a limit cycle decay exponentially toward
the limit cycle (see [21]).

VI. CONCLUSION

This article is a first step highlighting a link between the
rational proper Lyapunov functions and the stable algebraic

limit cycles for a planar system. However, further studies of the
class Fν,δ are necessary in order to determine and to classify
the systems which are in the scope of this article.
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[9] L. T. Grujić, “Solutions to Lyapunov stability problems of sets: nonlinear
systems with differentiable motions,” International Journal of Mathe-
matics and Mathematical Sciences, vol. 17, no. 1, pp. 103–112, 1994.

[10] Y. Lin, E. D. Sontag, and Y. Wang, “A smooth converse Lyapunov
theorem for robust stability,” SIAM Journal on Control and Optimization,
vol. 34, no. 1, pp. 124–160, 1996.

[11] F. Wilson, “Smoothing derivatives of functions and applications,” Trans-
actions of the American Mathematical Society, pp. 413–428, 1969.

[12] A. Vannelli and M. Vidyasagar, “Maximal Lyapunov functions and
domains of attraction for autonomous nonlinear systems,” Automatica,
vol. 21, no. 1, pp. 69–80, 1985.

[13] A. Bacciotti and L. Rosier, Liapunov functions and stability in control
theory. Springer, 2005.

[14] W. Hahn, Stability of motion. Springer-Verlag New York, 1967, vol.
138.

[15] R. Genesio, M. Tartaglia, and A. Vicino, “On the estimation of
asymptotic stability regions: State of the art and new proposals,” IEEE
Transactions on Automatic Control, vol. 30, no. 8, pp. 747–755, 1985.

[16] F. Camilli, L. Grüne, and F. Wirth, “A generalization of Zubov’s method
to perturbed systems,” SIAM Journal on Control and Optimization,
vol. 40, no. 2, pp. 496–515, 2001.

[17] M. Peet, “Exponentially stable nonlinear systems have polynomial Lya-
punov functions on bounded regions,” IEEE Transactions on Automatic
Control, vol. 54, no. 5, pp. 979–987, 2009.

[18] M. Peet and A. Papachristodoulou, “A converse sum of squares Lya-
punov result with a degree bound,” IEEE Transactions on Automatic
Control, vol. 57, no. 9, pp. 2281–2293, 2012.

[19] A. A. Ahmadi, “Algebraic relaxations and hardness results in polynomial
optimization and Lyapunov analysis,” Ph.D. dissertation, Massachusetts
Institute of Technology, 2011.

[20] G. Fischer, Plane algebraic curves, ser. Student Mathematical Library.
American Mathematical Society, 2001, vol. 15.

[21] B. Aulbach, “Asymptotic stability regions via extensions of Zubov’s
method- II.” Nonlinear Analysis: Theory, Methods & Applications,
vol. 7, no. 12, pp. 1441–1454, 1983.


