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ABSTRACT 

The objective of this paper is to study the influence of specific properties of supercritical 

fluid on the thermoconvective instabilities phenomena comparatively with those observed in 

the ideal gases case. This study concerns the mixed convection in a supercritical fluid flowing 

in a millimetric channel heated from below and traversed by a supercritical flow CO2. The 

dependence of the instability threshold on the Reynolds and Prandtl numbers is investigated 

as well as the characteristics of the thermoconvective structures for a large range of the 

relevant dimensionless parameters. The study is carried out by direct numerical simulations 

based on the solution of the Navier-Stokes equations, coupled with the energy equation and 

the Peng-Robinson equation of state, in the framework of the low Mach number 
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approximation. Simulations were performed for Reynolds numbers ranging from 12 up to 

101. The instability threshold was determined from numerical solutions for several values of 

Re and it was found to vary as a fourth degree polynomial of Re.  

 

KEY WORDS: Mixed convection flows, Poiseuille-Rayleigh-Bénard flows, 

thermoconvective instability, supercritical fluid, numerical simulation, spectral methods. 

 

NOMENCLATURE 

a [-] Energy parameter in the equation of state 

b [-] Covolume in the equation of state 

CP’ [J/(kg.K)] Isobaric specific heat 

CV’ [J/(kg.K)] Isochoric specific heat 

g’ [m/s2] Gravity constant 

H’ [m] Channel height 

L’ [m] Channel length 

P’ [Pa] pressure  

R’ [J/(kg.K)] Perfect gas constant 

t’ [s] Time  

T’ [K] Temperature 

u’ [m/s] Velocity component in the x-direction 

v’ [m/s] Velocity component in the y-direction 

x’ [m] Cartesian axis direction  

y’ [m] Cartesian axis direction  
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Special characters 

α [-] Soave function in the equation of state 

β'  [K-1] Thermal expansion coefficient 

δt [-] Dimensionless time step 

δT’ [K] Temperature increase 

ε [-] 

Dimensionless proximity to the critical point, 

     i c cT T T  

λ' [W/(m.K)] Thermal conductivity 

μ' [Pa.s] Dynamic viscosity 

ρ’ [kg/m3] Density  

χ’ [Pa-1] Isothermal compressibility 

ω [-] Acentric factor  

Ω [-] Computational domain 

∂Ω [-] Boundary of the computational domain 

γ [-] Specific heats ratio 

Subscripts 

b  Background property 

c  Critical property 

dyn  Dynamic part 

hyd  Hydrostatic part 

i  Initial value 

mean  Mean value 
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ref  Reference value 

th  Thermodynamic part 

0  Value for the perfect gas 

   

1. INTRODUCTION AND FORMULATION PROBLEM 

The study of the famous Poiseuille-Rayleigh-Bénard (PRB) problem for ideal fluids, 

involving the onset of thermoconvective structures in ducts uniformly heated from below, was 

the subject of several studies. However, the corresponding problem of thermal instability in 

PRB configuration for supercritical fluid (SF) has never been studied to our knowledge. Near 

the liquid-gas critical point, the fluid thermophysical properties are intermediate between 

those of gases and liquids (for instance, viscosity and diffusivity are similar to those of gases 

while density is alike that of liquids). Moreover, they are continually adjustable with small 

variations of temperature and pressure. This flexibility motivated the use of supercritical 

fluids (namely fluids with temperature and pressure exceeding the critical coordinates) in 

many industrial applications, (Reverchon and De Marco, 2006; Cocero et al., 2009; Cansell 

and Aymonier, 2009). The stability of PRB flows depends on three dimensionless parameters: 

the Rayleigh Ra, the Reynolds Re and the Prandtl Pr numbers. When the Rayleigh number 

exceeds a critical value for fixed Reynolds and Prandtl numbers, thermoconvective structures 

develop in the channel. The instability onset and the development of the associated patterns in 

PRB flows were extensively studied for incompressible fluids and perfect gas from many 

years because of the practical but also fundamental interests of this problem. Nicolas (2002) 

showed that, when the base flow becomes unstable, mainly two kinds of thermoconvective 

structures may appear: transversal rolls at low Reynolds number (about Re<10) and 

longitudinal rolls at higher Reynolds number. Transversal rolls are travelling rolls with axis 

perpendicular to the mean flow direction and these patterns can be considered as a quasi two-
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dimensional structure, whereas longitudinal rolls consist of helicoidal rolls aligned with the 

flow direction and the three velocity components are excited. More complex 

thermoconvective structures, such as superposition of transversal and longitudinal rolls or 

wavy longitudinal rolls (Nicolas et al., 2012), among others, were also observed.  

Results of linear stability analysis for incompressible flows showed that the transversal 

rolls are due to a convective or an absolute instability depending on the value of the Rayleigh 

number (Müller et al., 1992; Carrière and Monkewitz, 1999). When the flow is linearly 

convectively unstable, the downstream and upstream fronts of the perturbation spread in the 

mean flow direction. In the relative reference frame moving with the perturbation, the 

perturbation amplitude grows with time but, for sufficiently long times, it locally decreases at 

each axial position. The perturbation finally leaves the system and the flow becomes stable 

again. On the other hand, in the case of an absolute instability, the initial perturbation locally 

grows but it also expands in the whole system so that the rolls appear throughout the channel 

all the time although they move downstream: when a roll moves away, another one is locally 

generated in its place by the perturbation. For fixed Reynolds Re and Prandtl Pr numbers, the 

convective or absolute nature of the instability depends on the value of the Rayleigh number 

Ra. The critical Rayleigh numbers for the onset of convective instability, Rac1, and of absolute 

instability, Rac2, were theoretically established as a function of the Reynolds and Prandtl 

numbers by Müller et al. (1992) using a Ginsburg-Landau equation and by Carrière and 

Monkewitz (1999) from the calculation of the Green function; the formulae of Müller et al., 

(1992)  involve a small-Re expansion whereas those proposed by Carrière and Monkewitz 

don’t. Both critical Rayleigh numbers increase with Re for a fixed Pr and with Pr for a fixed 

Re (Müller et al., 1992; Carrière and Monkewitz, 1999). Concerning the longitudinal rolls, 

Carrière and Monkewitz (1999) showed that they can only be convectively unstable and that 

the critical Rayleigh number Rac is independent of Re and Pr: Rac is the same as for the 
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Rayleigh-Bénard problem, namely Rac =1707.76, in the case of infinite lateral extension 

ducts.  

The physical model considered here to simulate the PRB flows is shown in Fig. 1. It 

consists of a horizontal rectangular channel of height H’=1mm, with an aspect ratio L’/H’=10. 

Initially, the fluid is at a uniform temperature slightly above the critical temperature, 

Ti’=(1+ε)Tc’ (with ε<<1), and at a mean density equal to the critical density ρc’, and it flows 

through the channel according to a Poiseuille profile. Then, the temperature of the bottom 

wall is gradually increased up to Tch’=Ti’+δT’ (with δT’ ranging from about some mK to some 

hundreds mK) from a distance H’ from the channel inlet (Fig. 1). 

In a preliminary work (Ameur and Raspo 2013), results were obtained by means of 2D 

numerical simulations for a supercritical fluid modeled by the Peng-Robinson equation of 

state at a fixed Reynolds number. They revealed that the thermoconvective patterns observed 

exhibit characteristics of transversal rolls in spite of the quite large Reynolds number, Re≈50. 

In the present paper, 2D numerical simulations based on the computational code presented in 

Ameur and Raspo (2013) are performed for Reynolds numbers ranging from 12 up to 101 in 

order to determine the variation of the instability threshold as a function of Re and to 

characterize more precisely the patterns obtained. The first section is devoted to the 

mathematical formulation of the problem, the initial and the boundary conditions. Then, the 

numerical method, based on a Chebyshev collocation approximation, is concisely described. 

The results are presented in the third section: first we analyze the onset and the evolution of 

the thermoconvective structures at a fixed distance to the critical point. Then, we investigate 

the effect of the channel length on these structures and we introduce a stability diagram that 

summarizes the results obtained. Finally, the influence of the distance to the critical point on 

the instability threshold is studied. We end up with conclusions based on the results obtained. 



Proceedings 1st Thermal and Fluids Engineering Summer Conference, ASTFE, paper TFESC-12634, 2015 

__________________________________________________________________________________________ 

 

 7 

2. NUMERICAL MODELS 

The supercritical fluid is modeled by the Peng-Robinson equation of state. This equation 

implicitly accounts for the divergence of the thermal expansion coefficient, β’, of the 

isothermal compressibility, ’, and of the specific heat at constant pressure, CP’, near the 

liquid-gas critical point. The divergence of the thermal conductivity, ’, is modeled by the 

formula  
0.5

[1 1 ] 


     b cT T , where b’ is the background term, namely the conductivity 

in the absence of any critical anomaly (Sengers and Keyes, 1971; Vesovic et al., 1990). The 

physical parameters of CO2 were used: Tc’=304.13K, c’=467.8kg.m-3, =0.75, 

b’=0.0441265W/m.K. 

The evolution of the flow is governed by the time-dependent 2D Navier-Stokes equations 

coupled with the energy and the Peng-Robinson equations. These equations are solved in the 

framework of the low Mach number approximation (Paolucci, 1982): the pressure P’ is split 

into a thermodynamic part Pth’ which is constant in space and appears in the energy equation 

and in the equation of state, and a dynamic part, Pdyn’, involved in the momentum equation. 

However, the basic approximation of Paolucci is modified as proposed by Accary et al. 

(2005a) to account for the stratification of the fluid near the critical point since Ma2/Fr (where 

Ma and Fr are the Mach and Froud numbers, respectively) is not in O(Ma2). We chose as 

reference quantities Tc’ for temperature, c’ for density, c’R’Tc’ for pressure (with 

R’=188.92J.kg-1.K-1 the perfect gas constant), H’ for length,      refU g T H  for velocity 

(with g’ the gravity),  refH U  for time and b’ for thermal conductivity. The specific heat at 

constant volume CV’ and the dynamic viscosity μ’ were fixed to their background values: 

C’Vb=632.9J.kg-1.K-1 and ’b=3.2702×10-5Pa.s. The dimensionless numbers involved are then 

the Prandtl number, Pr, the Rayleigh number, Ra, the Mach number, Ma and the Froud 

number, Fr, which are defined by:  
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22 3

0

 , =  ,  , 
   

   

        
  

     

ref refP b c P

b b b c

U UC g C T H
Pr Ra Ma Fr

g HR T
 

with 0 the specific heat ratio for the perfect gas (0=1.4). In the above formulae, the 

physical parameters β’ and CP’ are calculated from the equation of state for the initial 

condition (Ti’, ρi’). The dimensionless governing equations are therefore:  

 

 . 0





 
t

V  (1) 

   
1 1

. .
3

   
  

             
dyn i y

Pr
P

t Ra Fr

V
V V V V e  (2) 

     0
0

0

. 1 . .



   
  

         
  

T P Pr
T T T

t T Pr Ra
V V  (3) 

  2

2 2

 

1 1 2

 

  
  

  
th hyd

a TT
P P

b b b
 (4) 

 

with a and b the dimensionless energy parameter and covolume respectively, and  the 

Soave function defined by:  

   
2

1.487422  , 0.253076 ,  1 1      
 

a b T m T  

where m is computed from the acentric factor  (=0.225 for CO2) by the following formula:    

20.37464 1.54226 0.26992   m . 
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In Eqs. (1)-(4), Phyd is the hydrostatic pressure introduced by the modification of the Low 

Mach number approximation, ey is the unit vector in the y-direction and 

6567.000  bbVbCPr  . 

 

The initial condition for the dimensionless variables in Ω=[0,L’/H’]×[0,1] is:  

 

 , 1  iT x y           (5) 

     
2

, 1.5 1 2 1   ,  , 0    
 i i

Pr
u x y Re y v x y

Ra
     (6) 

 

where Re is the Reynolds number defined by      c mean bRe U H , with U’mean the mean 

velocity at inlet, and u and v are the velocity components in the x- and y-directions, 

respectively. Finally, as it was proposed by Accary et al. (2005a), the stratification of the fluid 

is taken into account leading to the following initial condition for density and pressure:  

 

 
2

2
2,   

1









K y

i K

e
x y K

e
         (7) 

    ,  i thi hydP x y P P y          (8) 

 

with  

 

   

 

2

2 0 1 2 2
21

2 11
,  

1 1 2





  

  

ia b TMa
K K

K Fr b b b
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and 

 
 

2

2
1 22

 1
  ,  1

1 1 2 1

 



 
    

     

K y
i

thi hyd K

a T e
P P y K K

b b b e
 

 

For velocity components, the no-slip condition and a Poiseuille profile are prescribed on 

the channel walls and at inlet, respectively:  

 

       ,0, ,1, =0  ,  ,0, ,1, =0      for 0     u x t u x t v x t v x t x L H    (9) 

     
2

0, , 1.5 1 2 1   ,  0, , 0      for 0 1      
 

Pr
u y t Re y v y t y

Ra
   (10) 

 

For thermal boundary conditions, the temperature is kept at its initial value, Ti, at inlet and 

on the top wall (y=1). In order to avoid a discontinuity of the temperature profile on the 

bottom heated wall (y=0), the following boundary condition is imposed for 0xL’/H’:  

 

         ,0, 2 2 2 18 2            iT x t T T th x th th th     (11) 

This boundary condition allows a continuous transition between the cold entry zone for 0x1 

and the hot zone corresponding to 1xL’/H’. 

 

In the case of open systems, the choice of good outlet boundary conditions is crucial and it 

depends on the problem treated. For instance, for the study of instability phenomena, as that 

considered in this paper, it is necessary to ensure that the perturbation caused by the outlet 

boundary condition has no effect on the instability onset. Nicolas et al. (1997) compared 
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several outlet boundary conditions for Poiseuille-Rayleigh-Bénard flows. They showed that 

Orlanski-type conditions give the best results. Our numerical simulations were therefore 

performed using these outlet boundary conditions for temperature and velocity components. 

In terms of dimensionless variables, the boundary condition at x=L’/H’ is thus written as:  

 

    10  and    ,,for      0,,,, 








yvuTtyHL

xRa

Pr
RetyHL

t



  (12) 

 

3. RESULTS AND DISCUSSIONS 

The fluid was set at 1K above its critical temperature. The dimensionless distance to the 

critical point is thus ε=3.288×10-3 and the Prandtl number is Pr=31.72. Simulations were 

performed for values of the inlet mean velocity U’mean ranging from 8.83×10-4 m/s up to 

7.071×10-3 m/s, leading to Reynolds numbers varying between 12.6 and 101.1. Temperature 

increases δT’ ranging from 1mK up to 100mK were considered so that the resulting Rayleigh 

number varies between 5.23436104 and 5.23436106. 

3.1.  Analysis of the thermoconvective structures 

In Fig. 2, temperature fields and vertical velocity component contours at different 

calculation times are presented for Re=12.6 and Ra=6.80466×104. The contours of v clearly 

show the perturbation created at the beginning of the heated zone and which grows as it 

moves downstream. This perturbation finally goes out the computational domain if the 

simulation is carried out on a sufficiently long time. According to previous theoretical studies 

on incompressible fluids, this behavior reveals that the flow is convectively unstable. The 

unstable temperature field exhibits thermal plumes which develop on the hot boundary layer. 

These structures are similar to those previously obtained for a supercritical fluid in the 
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Rayleigh-Bénard configuration (Amiroudine et al., 2001; Chiwata and Onuki, 2001; 

Furukawa and Onuki, 2002; Amiroudine and Zappoli, 2003; Raspo et al., 2004; Accary et al., 

2005b; Accary et al., 2005c). However, in a closed cavity, the bottom wall heating induces a 

piston effect that homogeneously increases the bulk temperature and that gives rise to a 

second unstable thermal boundary layer on the top cold wall. In the case of the open channel, 

no piston effect is generated and the heat transfer between the wall and the bulk fluid is only 

carried out by the thermal plumes. The thermoconvective structures observed are somewhat 

different for small and large Reynolds numbers. For small values of Re (Fig. 2), the 

temperature fields exhibit a series of identical plumes which are regularly spaced and which 

occupy the whole height of the channel. The vertical velocity component contours also reveal 

the presence of regular structures of the same size. On the other hand, for large Reynolds 

numbers (Fig. 3), only some plumes (mainly three plumes) are observed and the structures are 

more chaotic: the thermal plumes are tilted in the direction of the forced flow and the contours 

of v are deformed.  

The influence of the Reynolds number on the instability onset was studied more precisely 

for the Rayleigh number Ra=2.09360×106 (corresponding to δT’=40mK) (Fig. 3). In this case, 

the couple (x’ins, t’ins), where x’ins is the axial position of this first deformation and t’ins the 

time at which it appears, is (4H’, 0.86s) and (7H’, 1.14s) for Re=65.7 and Re=101.1, 

respectively. Figure 3 also shows that the thermoconvective structures are less pronounced 

when Re is increased: large plumes are observed for Re=65.7 (Fig. 3.a) whereas the 

perturbation only gives rise to a little deformation of the isotherms for Re=101.1 (Fig. 3.b). 

These differences of the temperature fields for a same value of the Rayleigh number means 

that the instability threshold depends on the Reynolds number. 

Finally, as we have mentioned at the beginning of this section, all the above results 

correspond to a convective instability of the flow. However, it must be noted that, for Re=50.6 
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and a wall heating of δT’=100mK (corresponding to Ra=5.23436×106) the solution obtained 

in Ameur and Raspo (2013) exhibits the characteristics of an absolute instability: many 

thermal plumes develop in the whole channel and, as the structures move downstream, new 

thermal plumes continuously appear near the beginning of the heated zone. 

3.2.  Stability diagram in (Ra-Re) plane 

It is known that, for a fixed value of Re, the PRB flow becomes unstable when the 

Rayleigh number Ra exceeds a critical value Rac. Linear stability analysis for incompressible 

flows (Müller et al., 1992, Carrière and Monkewitz, 1999) showed that Rac varies with Re in 

the case of transversal rolls whereas it is independent of Re in the case of longitudinal rolls. 

Therefore, the evolution of Rac as a function of Re gives information about the type of 

thermoconvective structures obtained. However, the results of these theoretical studies cannot 

be directly applied to our configuration since they were established with the assumptions of 

flow incompressibility and constant properties. It is obvious that these assumptions are totally 

false in the case of supercritical fluids. Nevertheless, for the Rayleigh-Bénard problem 

(corresponding to the case Re=0), Carlès and Ugurtas (1999) showed that the instability 

criterion established for incompressible flows, namely Ra>Rac=1707.76, remains valid for 

supercritical fluids provided that the Rayleigh number Ra is replaced by the following 

modified Rayleigh number:  

 















T

H
aRaRa g


1*   (15) 

where ag is the adiabatic temperature gradient, K/m 05748.0 pig CTga   for 

K1 ci TT . Thus, we may suppose that, for the PRB problem, instability onset for 

supercritical fluids is governed by Ra*>Rac(Re) with Rac(Re) given by the formulae of Müller 
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et al. (1992). However, these formulae were established with the assumption of small 

Reynolds number, which is not the case in the present study.  

Consequently, as we couldn’t use results of previous theoretical studies, we have investigated 

numerically the variation of the instability threshold as a function of Re. More precisely, for a 

fixed Reynolds number, successive simulations were performed by increasing gradually the 

bottom wall heating δT’ with a maximum increment equal to 2mK until the solution obtained 

was unstable. Obviously, the Rayleigh number Ra for this unstable solution (noted here caR
~

) 

is not the actual critical Rayleigh number Rac but it is slightly larger. The same procedure was 

applied for several values of the Reynolds number (Re=12.6, 50.6, 65.7, 101.1). In Table 1, 

we report the values of caR
~

 and of its modified version *
caR

~
 (Eq. (15)) which is slightly 

larger for all the cases. 

Results show that the Rayleigh number for the first unstable solution, caR
~

 just as *
caR

~
, 

increases with Re; therefore, the instability threshold depends on the Reynolds number, which 

confirms that we are still in the range of transversal rolls. We attempted to approximate this 

threshold by means of a polynomial function of Re. Since linear stability analysis showed that 

the critical Rayleigh number must be an even function of Re (Müller et al., 1992), we 

considered a polynomial of the following form:  

  4
3

2
21 ReaReaaReaR

~ *
c          (16) 

The coefficient a1 is the value of *
caR

~
 for Re=0, namely the value for the Rayleigh-Bénard 

configuration: 761707.RaaR
~ *

c
*
c  . The coefficients a2 and a3 were fitted on the values of 

*
caR

~
 for the two highest values of the Reynolds number, Re=65.7 and Re=101.1, considering 

that the term in Re4 is more important as Re increases. The resulting values are a2=112.8425 

and a3=1.984210-3. The variation of *
caR

~
 given by Eq. (16) as a function of Re, together 
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with the whole set of couples (Ra, Re) for which simulations were performed, are shown in 

Fig. 4. For information purposes, we also drew the critical Rayleigh numbers for the onset of 

convective instability Rac1 and of absolute instability Rac2 given by the formulae of Müller et 

al. (1992); we recall that these equations are valid just for Re<10 since they were established 

using a small-Re expansion. Figure 4 shows that the Eq. (16) represents quite well the 

boundary of the convective instability region of the stability diagram in the (Ra-Re) plane. 

Therefore, the critical Rayleigh number for the convective instability seems to vary as Re4 for 

our configuration. Furthermore, it is clear that the formula of Müller et al. (1992) is not 

adapted since convectively unstable flows were numerically obtained for much smaller values 

of Ra*. 

4. CONCLUSION 

In this paper, we studied the Poiseuille-Rayleigh-Bénard problem for a supercritical fluid 

by means of 2D numerical simulations for a wide range of Reynolds numbers from Re=12 up 

to Re=101. The thermodynamic state of the fluid is modeled by the Peng-Robinson equation. 

The temperature fields revealed the existence of thermoconvective instabilities appearing in 

the form of thermal plumes, similar to those previously observed in the Rayleigh-Bénard 

configuration. These thermal plumes develop on the hot boundary layer and then move 

downstream during time. The vertical velocity component contours clearly show the 

perturbation created at the beginning of the heated zone. When the flow is unstable, this 

perturbation grows as it moves downstream. In almost all the cases, it finally goes out the 

computational domain if the simulation is carried out on a sufficiently long time. According to 

previous theoretical studies on incompressible fluids, this behavior reveals that the flow is 

convectively unstable.  

The influence of the Reynolds number on the convective instability onset and on the 

development of the structures was studied. The instability threshold was determined from 
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numerical solutions for several values of Re and it was found to vary as a fourth degree 

polynomial of Re.  
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Figure captions 

Figure 1: Problem formulation. 

Figure 2: Temperature fields and vertical velocity component contours at T’i=T’c+1K 

(Pr=31.72) for Re=12.6 and Ra=6.80466×104 (δT’=1.3mK). 

Figure 3: Temperature fields and vertical velocity component contours at T’i=T’c+1K 

(Pr=31.72) for Ra=2.09360×106 (δT’=40mK) and two values of Re: (a) Re=65.7, (b) 

Re=101.1. 

Figure 4: Stability diagram of the PRB flow for a supercritical fluid set at 1K above its 

critical point. (∆) Stable flow; (▲) Convective instability; (●) Absolute instability; (——) 

Polynomial approximation (Eq. (16)) of the threshold; (- - - -) Critical Rayleigh number Rac1 

for convective instability for incompressible fluids (Müller et al., 1992); (− − − −) Critical 

Rayleigh number Rac2 for absolute instability for incompressible fluids (Müller et al., 1992).  
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Table titles 

Table 1: Rayleigh ( caR
~

) and modified Rayleigh ( *
caR

~
) numbers corresponding to the 

first unstable solution for supercritical CO2 set at 1K from the critical point. 
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Table 1 

 

Re 12.6 50.6 65.7 101.1 

caR
~

 2.09374104 4.18749105 5.23436105 1.360933106 

*
caR

~
  2.39463104 4.21757105 5.26445105 1.363942106 
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Figure 2 
Temperature field 
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Figure 3 
Temperature field 
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Figure 4 

 


