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THERMOCONVECTIVE INSTABILITIES OF 2D POISEUILLE-RAYLEIGH-BENARD FOR SUPERCRITICAL FLUIDS IN MICRO/MACRO-CHANNELS
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The objective of this paper is to study the influence of specific properties of supercritical fluid on the thermoconvective instabilities phenomena comparatively with those observed in the ideal gases case. This study concerns the mixed convection in a supercritical fluid flowing in a millimetric channel heated from below and traversed by a supercritical flow CO2. The dependence of the instability threshold on the Reynolds and Prandtl numbers is investigated as well as the characteristics of the thermoconvective structures for a large range of the relevant dimensionless parameters. The study is carried out by direct numerical simulations based on the solution of the Navier-Stokes equations, coupled with the energy equation and the Peng-Robinson equation of state, in the framework of the low Mach number

INTRODUCTION AND FORMULATION PROBLEM

The study of the famous Poiseuille-Rayleigh-Bénard (PRB) problem for ideal fluids, involving the onset of thermoconvective structures in ducts uniformly heated from below, was the subject of several studies. However, the corresponding problem of thermal instability in PRB configuration for supercritical fluid (SF) has never been studied to our knowledge. Near the liquid-gas critical point, the fluid thermophysical properties are intermediate between those of gases and liquids (for instance, viscosity and diffusivity are similar to those of gases while density is alike that of liquids). Moreover, they are continually adjustable with small variations of temperature and pressure. This flexibility motivated the use of supercritical fluids (namely fluids with temperature and pressure exceeding the critical coordinates) in many industrial applications, (Reverchon and De Marco, 2006;[START_REF] Cocero | Encapsulation and coprecipitation processes with supercritical fluids: fundamentals and applications[END_REF][START_REF] Cansell | Design of functional nanostructured materials using supercritical fluids[END_REF]. The stability of PRB flows depends on three dimensionless parameters:

the Rayleigh Ra, the Reynolds Re and the Prandtl Pr numbers. When the Rayleigh number exceeds a critical value for fixed Reynolds and Prandtl numbers, thermoconvective structures develop in the channel. The instability onset and the development of the associated patterns in PRB flows were extensively studied for incompressible fluids and perfect gas from many years because of the practical but also fundamental interests of this problem. [START_REF] Nicolas | Bibliographical review on the Poiseuille-Rayleigh-Bénard flows: the mixed convection flows in horizontal rectangular ducts heated from below[END_REF] showed that, when the base flow becomes unstable, mainly two kinds of thermoconvective structures may appear: transversal rolls at low Reynolds number (about Re<10) and longitudinal rolls at higher Reynolds number. Transversal rolls are travelling rolls with axis perpendicular to the mean flow direction and these patterns can be considered as a quasi two-dimensional structure, whereas longitudinal rolls consist of helicoidal rolls aligned with the flow direction and the three velocity components are excited. More complex thermoconvective structures, such as superposition of transversal and longitudinal rolls or wavy longitudinal rolls [START_REF] Nicolas | Influence of a white noise at channel inlet on the parallel and wavy convective instabilities of Poiseuille-Rayleigh-Bénard flows[END_REF], among others, were also observed.

Results of linear stability analysis for incompressible flows showed that the transversal rolls are due to a convective or an absolute instability depending on the value of the Rayleigh number [START_REF] Müller | Transversal convection patterns in horizontal shear flow[END_REF][START_REF] Carrière | Convective versus absolute instability in mixed Rayleigh-Bénard-Poiseuille convection[END_REF]. When the flow is linearly convectively unstable, the downstream and upstream fronts of the perturbation spread in the mean flow direction. In the relative reference frame moving with the perturbation, the perturbation amplitude grows with time but, for sufficiently long times, it locally decreases at each axial position. The perturbation finally leaves the system and the flow becomes stable again. On the other hand, in the case of an absolute instability, the initial perturbation locally grows but it also expands in the whole system so that the rolls appear throughout the channel all the time although they move downstream: when a roll moves away, another one is locally generated in its place by the perturbation. Re [START_REF] Müller | Transversal convection patterns in horizontal shear flow[END_REF][START_REF] Carrière | Convective versus absolute instability in mixed Rayleigh-Bénard-Poiseuille convection[END_REF]. Concerning the longitudinal rolls, [START_REF] Carrière | Convective versus absolute instability in mixed Rayleigh-Bénard-Poiseuille convection[END_REF] showed that they can only be convectively unstable and that the critical Rayleigh number Rac is independent of Re and Pr: Rac is the same as for the Initially, the fluid is at a uniform temperature slightly above the critical temperature, Ti'=(1+ε)Tc' (with ε<<1), and at a mean density equal to the critical density ρc', and it flows through the channel according to a Poiseuille profile. Then, the temperature of the bottom wall is gradually increased up to Tch'=Ti'+δT' (with δT' ranging from about some mK to some hundreds mK) from a distance H' from the channel inlet (Fig. 1).

In a preliminary work [START_REF] Ameur | Numerical simulation of the Poiseuille-Rayleigh-Bénard instability for a supercritical fluid in a mini-channel[END_REF], results were obtained by means of 2D numerical simulations for a supercritical fluid modeled by the Peng-Robinson equation of state at a fixed Reynolds number. They revealed that the thermoconvective patterns observed exhibit characteristics of transversal rolls in spite of the quite large Reynolds number, Re≈50.

In the present paper, 2D numerical simulations based on the computational code presented in [START_REF] Ameur | Numerical simulation of the Poiseuille-Rayleigh-Bénard instability for a supercritical fluid in a mini-channel[END_REF] are performed for Reynolds numbers ranging from 12 up to 101 in order to determine the variation of the instability threshold as a function of Re and to characterize more precisely the patterns obtained. The first section is devoted to the mathematical formulation of the problem, the initial and the boundary conditions. Then, the numerical method, based on a Chebyshev collocation approximation, is concisely described.

The results are presented in the third section: first we analyze the onset and the evolution of the thermoconvective structures at a fixed distance to the critical point. Then, we investigate the effect of the channel length on these structures and we introduce a stability diagram that summarizes the results obtained. Finally, the influence of the distance to the critical point on the instability threshold is studied. We end up with conclusions based on the results obtained.

NUMERICAL MODELS

The supercritical fluid is modeled by the Peng-Robinson equation of state. This equation implicitly accounts for the divergence of the thermal expansion coefficient, β', of the isothermal compressibility, ', and of the specific heat at constant pressure, CP', near the liquid-gas critical point. The divergence of the thermal conductivity, ', is modeled by the formula
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, where b' is the background term, namely the conductivity in the absence of any critical anomaly (Sengers and Keyes, 1971;Vesovic et al., 1990). The physical parameters of CO2 were used: Tc'=304.13K, c'=467.8kg.m -3 , =0.75, b'=0.0441265W/m.K.

The evolution of the flow is governed by the time-dependent 2D Navier-Stokes equations coupled with the energy and the Peng-Robinson equations. These equations are solved in the framework of the low Mach number approximation [START_REF] Paolucci | On the filtering of sound from the Navier-Stokes equations[END_REF]: the pressure P' is split into a thermodynamic part Pth' which is constant in space and appears in the energy equation and in the equation of state, and a dynamic part, Pdyn', involved in the momentum equation.

However, the basic approximation of Paolucci is modified as proposed by Accary et al. (2005a) to account for the stratification of the fluid near the critical point since Ma 2 /Fr (where Ma and Fr are the Mach and Froud numbers, respectively) is not in O(Ma 2 ). We chose as reference quantities Tc' for temperature, c' for density, c'R'Tc' for pressure (with 
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with 0 the specific heat ratio for the perfect gas (0=1.4). In the above formulae, the physical parameters β' and CP' are calculated from the equation of state for the initial condition (Ti', ρi'). The dimensionless governing equations are therefore:
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with a and b the dimensionless energy parameter and covolume respectively, and  the Soave function defined by:
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where m is computed from the acentric factor  (=0.225 for CO2) by the following formula:
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In Eqs. ( 1)-( 4), Phyd is the hydrostatic pressure introduced by the modification of the Low Mach number approximation, ey is the unit vector in the y-direction and 6567 . 0
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The initial condition for the dimensionless variables in
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where Re is the Reynolds number defined by
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, with U'mean the mean velocity at inlet, and u and v are the velocity components in the x-and y-directions, respectively. Finally, as it was proposed by Accary et al. (2005a), the stratification of the fluid is taken into account leading to the following initial condition for density and pressure:
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For velocity components, the no-slip condition and a Poiseuille profile are prescribed on the channel walls and at inlet, respectively:
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For thermal boundary conditions, the temperature is kept at its initial value, Ti, at inlet and on the top wall (y=1). In order to avoid a discontinuity of the temperature profile on the bottom heated wall (y=0), the following boundary condition is imposed for 0xL'/H':
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This boundary condition allows a continuous transition between the cold entry zone for 0x1

and the hot zone corresponding to 1xL'/H'.

In the case of open systems, the choice of good outlet boundary conditions is crucial and it depends on the problem treated. For instance, for the study of instability phenomena, as that considered in this paper, it is necessary to ensure that the perturbation caused by the outlet boundary condition has no effect on the instability onset. [START_REF] Nicolas | Augmented Lagragian method and open boundary conditions in 2D simulation of Poiseuille-Bénard channel flow[END_REF] compared Orlanski-type conditions give the best results. Our numerical simulations were therefore performed using these outlet boundary conditions for temperature and velocity components.

In terms of dimensionless variables, the boundary condition at x=L'/H' is thus written as:
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RESULTS AND DISCUSSIONS

The fluid was set at 1K above its critical temperature. The dimensionless distance to the critical point is thus ε=3.288×10-3 and the Prandtl number is Pr=31.72. Simulations were performed for values of the inlet mean velocity U'mean ranging from 8.83×10 -4 m/s up to 7.071×10 -3 m/s, leading to Reynolds numbers varying between 12.6 and 101.1. Temperature increases δT' ranging from 1mK up to 100mK were considered so that the resulting Rayleigh number varies between 5.2343610 4 and 5.2343610 6 .

Analysis of the thermoconvective structures

In Fig. 2, temperature fields and vertical velocity component contours at different calculation times are presented for Re=12.6 and Ra=6.80466×10 4 . The contours of v clearly show the perturbation created at the beginning of the heated zone and which grows as it moves downstream. This perturbation finally goes out the computational domain if the simulation is carried out on a sufficiently long time. According to previous theoretical studies on incompressible fluids, this behavior reveals that the flow is convectively unstable. The unstable temperature field exhibits thermal plumes which develop on the hot boundary layer.

These structures are similar to those previously obtained for a supercritical fluid in the Proceedings 1 st Thermal and Fluids Engineering Summer Conference, ASTFE, paper TFESC-12634, 2015 __________________________________________________________________________________________ Rayleigh-Bénard configuration [START_REF] Amiroudine | Direct numerical simulation of instabilities in a two-dimensional near-critical fluid layer heated from below[END_REF][START_REF] Chiwata | Thermal plumes and convection in highly compressible fluids[END_REF][START_REF] Furukawa | Convective heat transport in compressible fluids[END_REF][START_REF] Amiroudine | Piston-effect-induced thermal oscillations at the Rayleigh-Bénard threshold in supercritical He[END_REF]Raspo et al., 2004;Accary et al., 2005b;Accary et al., 2005c). However, in a closed cavity, the bottom wall heating induces a piston effect that homogeneously increases the bulk temperature and that gives rise to a second unstable thermal boundary layer on the top cold wall. In case of the open channel, no piston effect is generated and the heat transfer between the wall and the bulk fluid is only carried out by the thermal plumes. The thermoconvective structures observed are somewhat different for small and large Reynolds numbers. For small values of Re (Fig. 2), the temperature fields exhibit a series of identical plumes which are regularly spaced and which occupy the whole height of the channel. The vertical velocity component contours also reveal the presence of regular structures of the same size. On the other hand, for large Reynolds numbers (Fig. 3), only some plumes (mainly three plumes) are observed and the structures are more chaotic: the thermal plumes are tilted in the direction of the forced flow and the contours of v are deformed.

The influence of the Reynolds number on the instability onset was studied more precisely for the Rayleigh number Ra=2.09360×10 6 (corresponding to δT'=40mK) (Fig. 3). In this case, the couple (x'ins, t'ins), where x'ins is the axial position of this first deformation and t'ins the time at which it appears, is (4H', 0.86s) and (7H', 1.14s) for Re=65.7 and Re=101.1, respectively. Figure 3 also shows that the thermoconvective structures are less pronounced when Re is increased: large plumes are observed for Re=65.7 (Fig. 3.a) whereas the perturbation only gives rise to a little deformation of the isotherms for Re=101.1 (Fig. 3.b).

These differences of the temperature fields for a same value of the Rayleigh number means that the instability threshold depends on the Reynolds number.

Finally, as we have mentioned at the beginning of this section, all the above results correspond to a convective instability of the flow. However, it must be noted that, for Re=50.6

Proceedings 1 st Thermal and Fluids Engineering Summer Conference, ASTFE, paper TFESC-12634, 2015 __________________________________________________________________________________________ 13 and a wall heating of δT'=100mK (corresponding to Ra=5.23436×10 6 ) the solution obtained in [START_REF] Ameur | Numerical simulation of the Poiseuille-Rayleigh-Bénard instability for a supercritical fluid in a mini-channel[END_REF] exhibits the characteristics of an absolute instability: many thermal plumes develop in the whole channel and, as the structures move downstream, new thermal plumes continuously appear near the beginning of the heated zone.

Stability diagram in (Ra-Re) plane

It is known that, for a fixed value of Re, the PRB flow becomes unstable when the Rayleigh number Ra exceeds a critical value Rac. Linear stability analysis for incompressible flows (Müller et al., 1992, Carrière and[START_REF] Carrière | Convective versus absolute instability in mixed Rayleigh-Bénard-Poiseuille convection[END_REF] showed that Rac varies with Re in the case of transversal rolls whereas it is independent of Re in the case of longitudinal rolls.

Therefore, the evolution of Rac as a function of Re gives information about the type of thermoconvective structures obtained. However, the results of these theoretical studies cannot be directly applied to our configuration since they were established with the assumptions of flow incompressibility and constant properties. It is obvious that these assumptions are totally false in the case of supercritical fluids. Nevertheless, for the Rayleigh-Bénard problem (corresponding to the case Re=0), Carlès and Ugurtas (1999) showed that the instability criterion established for incompressible flows, namely Ra>Rac=1707.76, remains valid for supercritical fluids provided that the Rayleigh number Ra is replaced by the following modified Rayleigh number:
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where ag is the adiabatic temperature gradient,
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. Thus, we may suppose that, for the PRB problem, instability onset for supercritical fluids is governed by Ra*>Rac(Re) with Rac(Re) given by the formulae of [START_REF] Müller | Transversal convection patterns in horizontal shear flow[END_REF]. However, these formulae were established with the assumption of small Reynolds number, which is not the case in the present study.

Consequently, as we couldn't use results of previous theoretical studies, we have investigated numerically the variation of the instability threshold as a function of Re. More precisely, for a fixed Reynolds number, successive simulations were performed by increasing gradually the bottom wall heating δT' with a maximum increment equal to 2mK until the solution obtained was unstable. Obviously, the Rayleigh number Ra for this unstable solution (noted here c a R ~)

is not the actual critical Rayleigh number Rac but it is slightly larger. The same procedure was applied for several values of the Reynolds number (Re=12.6,50.6,65.7,101.1) (Eq. ( 15)) which is slightly larger for all the cases.

Results show that the Rayleigh number for the first unstable solution,

c a R ~ just as * c a R ~,
increases with Re; therefore, the instability threshold depends on the Reynolds number, which confirms that we are still in the range of transversal rolls. We attempted to approximate this threshold by means of a polynomial function of Re. Since linear stability analysis showed that the critical Rayleigh number must be an even function of Re [START_REF] Müller | Transversal convection patterns in horizontal shear flow[END_REF], we considered a polynomial of the following form:

  4 3 2 2 1 Re a Re a a Re a R ~* c    (16)
The coefficient a1 is the value of with the whole set of couples (Ra, Re) for which simulations were performed, are shown in Fig. 4. For information purposes, we also drew the critical Rayleigh numbers for the onset of convective instability Rac1 and of absolute instability Rac2 given by the formulae of [START_REF] Müller | Transversal convection patterns in horizontal shear flow[END_REF]; we recall that these equations are valid just for Re<10 since they were established using a small-Re expansion. 4 shows that the Eq. ( 16) represents quite well the boundary of the instability region of the stability diagram in the (Ra-Re) plane.

Therefore, the critical Rayleigh number for the convective instability seems to vary as Re 4 for our configuration. Furthermore, it is clear that the formula of [START_REF] Müller | Transversal convection patterns in horizontal shear flow[END_REF] is not adapted since convectively unstable flows were numerically obtained for much smaller values of Ra*.

CONCLUSION

In this paper, we studied the Poiseuille-Rayleigh-Bénard problem for a supercritical fluid by means of 2D numerical simulations for a wide range of Reynolds numbers from Re=12 up to Re=101. The thermodynamic state of the fluid is modeled by the Peng-Robinson equation.

The temperature fields revealed the existence of thermoconvective instabilities appearing in the form of thermal plumes, similar to those previously observed in the Rayleigh-Bénard configuration. These thermal plumes develop on the hot boundary layer and then move downstream during time. The vertical velocity component contours clearly show the perturbation created at the beginning of the heated zone. When the flow is unstable, this perturbation grows as it moves downstream. In almost all the cases, it finally goes out the computational domain if the simulation is carried out on a sufficiently long time. According to previous theoretical studies on incompressible fluids, this behavior reveals that the flow is convectively unstable.

The influence of the Reynolds number on the convective instability onset and on the development of the structures was studied. The instability threshold was determined from Raspo, I., Zappoli, B. and Bontoux, P., (2004) Unsteady two-dimensional convection in a bottom heated supercritical fluid, Comptes Rendus de Mécanique, vol. 332, pp. 353-360. Reverchon, E. and De Marco, I., (2006) Supercritical fluid extraction and fractionation of natural matter, J. Supercrit. Fluid, 38, pp. 146-166. Sengers, J.V., Keyes, P.H., (1971) Scaling of the thermal conductivity near the gas-liquid critical point, Phys. Rev. Lett.,26, Vesovic, V., Wakeham, W. A., Olchowy, G. A., Sengers, J. V., Watson, J. T. R., Millat, J., (1990) The transport properties of carbon dioxide, J. Phys. Chem. Ref. Data,19,. Polynomial approximation (Eq. ( 16)) of the threshold; (----) Critical Rayleigh number Rac1 for convective instability for incompressible fluids [START_REF] Müller | Transversal convection patterns in horizontal shear flow[END_REF]; (----) Critical Rayleigh number Rac2 for absolute instability for incompressible fluids [START_REF] Müller | Transversal convection patterns in horizontal shear flow[END_REF]. 
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  H for velocity (with g' the gravity),   ref HU for time and b' for thermal conductivity. The specific heat at constant volume CV' and the dynamic viscosity μ' were fixed to their background values: C'Vb=632.9J.kg -1 .K -1 and 'b=3.2702×10 -5 Pa.s. The dimensionless numbers involved are then the Prandtl number, Pr, the Rayleigh number, Ra, the Mach number, Ma and the Froud number, Fr, which are defined by:
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 1 Figure 1: Problem formulation.
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 2 Figure 2: Temperature fields and vertical velocity component contours at T'i=T'c+1K (Pr=31.72) for Re=12.6 and Ra=6.80466×10 4 (δT'=1.3mK).
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 3 Figure 3: Temperature fields and vertical velocity component contours at T'i=T'c+1K (Pr=31.72) for Ra=2.09360×10 6 (δT'=40mK) and two values of Re: (a) Re=65.7, (b)
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 4 Figure 4: Stability diagram of the PRB flow for a supercritical fluid set at 1K above its

  

  For fixed Reynolds Re and Prandtl Pr numbers, the convective or absolute nature of the instability depends on the value of the Rayleigh number

	Ra. The critical Rayleigh numbers for the onset of convective instability, Rac1, and of absolute
	instability, Rac2, were theoretically established as a function of the Reynolds and Prandtl
	numbers by Müller et al. (1992) using a Ginsburg-Landau equation and by Carrière and
	Monkewitz (1999) from the calculation of the Green function; the formulae of Müller et al.,
	(1992) involve a small-Re expansion whereas those proposed by Carrière and Monkewitz
	don't. Both critical Rayleigh numbers increase with Re for a fixed Pr and with Pr for a fixed
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	Rayleigh-Bénard problem, namely Rac =1707.76, in the case of infinite lateral extension
	ducts.
	The physical model considered here to simulate the PRB flows is shown in Fig. 1. It
	consists of a horizontal rectangular channel of height H'=1mm, with an aspect ratio L'/H'=10.

  . In Table 1, we report the values of

	R ~	a	c	and of its modified version	~	a	* c
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  solutions for several values of Re and it was found to vary as a fourth degree polynomial of Re.
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Table titles Table 1 :

 titles1 Rayleigh numbers corresponding to the first unstable solution for supercritical CO2 set at 1K from the critical point.

	c ~) and modified Rayleigh ( * ( c a R a R ~) Proceedings
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 1 

	Figure 4					
	Re	12.6	50.6	65.7	101.1
	R ~	a	c	2.0937410 4	4.1874910 5	5.2343610 5	1.36093310 6
	R ~	a	* c	2.3946310 4	4.2175710 5	5.2644510 5	1.36394210 6
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