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Abstract: Prognostics have started to be applied to Proton Exchange Membrane Fuel Cells
(PEMFC). Indeed, it seems an interesting solution to help taking actions that will extend their
lifetime. PEMFC are promising solution for combined heat and power generation (µCHP).
As power suppliers, they cannot afford running to failure. This work presents a prognostics
application on a PEMFC following a µCHP profile. A critical issue with such a mission
profile is to be able to model the variation of the power demand. So a key point of this
work is the presentation of a model introducing the time dependency of the mission profile
as well as the degradations of different inner components of the PEMFC. This model starts
from a classical polarization expression transformed based on a detailed understanding of the
degradation phenomena and the introduction of time-varying parameters. This model is able to
follow accurately the behavior of the PEMFC during its functioning. It is then used to perform
prognostics and predict the future behavior of the stack with a particle filter-based framework.
The results are very encouraging as the behavior predictions are accurate, with a low uncertainty
and an horizon as great as thirty days.

Keywords: State of Health, Prognostics, Proton exchange membrane fuel cell,
micro-cogeneration.

1. INTRODUCTION

Proton Exchange Membrane Fuel Cells (PEMFC) have
started their spreading in the industry. Their ability to
produce electricity and heat while rejecting water from
hydrogen and oxygen make them inescapable for the future
of energy conversion. Their range of applications (Wee
(2007)) goes through transportation (car, bus, boats, etc.),
stationary applications (combined heat and power gener-
ation (µCHP)) or powering of portable devices.
Nevertheless, their lifetime still has to be extended to meet
the current needs of industry. An approach to tackle this
problem is to anticipate the failures, and more precisely
thanks to Prognostics and Health Management (PHM)
(Jouin et al. (2013)). PHM is a set of activities that starts
from the monitoring the system, then goes to an ana-
lyzing process consisting in health assessment, diagnostic
and prognostics which finally leads to decisions aiming
at helping the system fulfills its mission while preserving
its integrity. Within the PHM process, prognostics can be
considered as a key element to manage the system. Indeed,
it aims at predicting its future states and failures as well
as its remaining useful life (RUL).
Various prognostics applications on PEMFC have started
to appear during the last two years. They can be di-
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vided into two types of approaches: 1) data-driven ap-
proaches based on artificial intelligence tools such as Echo-
State Networks (Morando et al. (2013)) or adaptive neuro
fuzzy inference systems (Silva et al. (2014)), 2) hybrid
approaches based on filtering methods such as Unscented
Kalman Filter (UKF) (Zhang and Pisu (2012)) or particle
filters (Jouin et al. (2014a,b)). However, none of them has
been able yet to predict the behavior of PEMFC with great
variation of power. Yet, these kind of variations are very
likely to happen in all PEMFC application.
Consequently, this work proposes a prognostics approach
that enable predicting the future behavior of a PEMFC
used with a µCHP mission profile. The main contribution
of the paper is the proposal of a behavioral model including
degradation phenomena and method able to predict the
behavior with a high coefficient of determination with the
data. This model is transformed and used in a particle
filter to make predictions of the system behavior. This
allows estimating the future state of the system almost
on month before with a reasonable certainty.
The present paper is organized as follows. First, an
overview on PEMFC is proposed to better understand the
system and also to set the context of the study. Then in
Section 3, a new modeling of the system behavior including
degradation is developed. Then the prognostics framework
based on a particle filter is introduced in Section 4. This
leads then to the model validation is Section 5 and the pre-
sentation of the prognostics results. Finally, some remarks
about future developments are proposed in the conclusion.



2. TOWARDS PROGNOSTICS OF PEMFC

2.1 An overview of PEMFC

PEMFC is one of the fuel cell types, differing from the
other by the reactants used, the materials of inner com-
ponents, the operating conditions and the application tar-
geted. Descriptions of the different types of fuel cells are
presented in (Sharaf and Orhan (2014)). A PEMFC uses
air (oxygen) and hydrogen to produce electricity, water
and heat. It can be encountered alone or combined with
other devices such as batteries or ultra-capacitors in a wide
variety of applications as introduced earlier.
Different levels of granularity exist when PEMFC is con-
cerned. First, a PEMFC system refers to a PEMFC stack
and all the ancillaries it is interacting with such as energy
collectors, reactant storages, pumps, etc. A non-exhaustive
illustration is proposed on Figure 1(a). The stack is the
part that converts the energy thanks to an assembly of
elementary cells. Their number can vary from a single
one to several hundreds depending of the expected output
power. Finally, a cell is composed of different components
(Figure 1(b)): 2 bipolar plates to bring the reactant and
collect electrons; 2 gas diffusion layers (GDL) to diffuse
reactants toward the electrodes and help to products
removal; 2 electrodes (anode and cathode) where occur
the oxidation and reduction reactions; a proton exchange
membrane and sealing gaskets to ensure the tightness of
the cell.
To provide electricity, different reactions occur within the
stack (Figure 1(c)). At the anode side, hydrogen is oxi-
dized to split into electrons and protons. The electrons go
through an external circuit to provide electricity and the
protons go through the membrane to the cathode side.
Here they meet again the electrons, and also the oxygen
provided to the stack to form water during the reduction
reaction. The reactions involved at the electrodes are:

2H2 → 4H+ + 4e− (1)

O2 + 4H+ + 4e− → 2H2O (2)

The general reaction equation of the system is:

2H2 +O2 → 2H2O + electricity + heat (3)

Different output powers can be obtained from a stack
according the application case. It depends on the input
mission profile which is expressed in terms of current
solicitation (in Amperes). The mission profile strongly
impacts the lifetime of the stack. Also, the ancillaries make
the operating conditions varying (temperatures, pressures,
reactant flows, products evacuations, etc.) to allow the
stack to stay in the best operating conditions. If not, a
severe degradation may happen. In this study, the focus is
the stack and its subcomponents.

2.2 Hypotheses of the study

Although the quality of the stack can influence the per-
formance, here it is considered as well manufactured.
Moreover, the experiments conducted are realized in a
controlled environment: the influence of environment can
be ignored. And it is supposed that whatever the current
variations, the operating conditions are automatically reg-
ulated and set to their optimal values.
The stack cannot suffer from fuel starvation. This limits
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Fig. 1. (a) The stack within the fuel cell system, (b) the
components of the stack and (c) its functioning

the impact of operating conditions on the aging, as out
of range temperatures or humidities for example. Then,
start-up and shut-down of the system and extreme working
temperatures are not considered. Moreover, only phenom-
ena with time constants in hours are taken into account.
Finally, some limitations due to the measure capabilities
have to be introduced. The measurements available are:

• stacks and individual cell voltages;
• time;
• reference and real currents;
• incoming and outgoing gases/water temperatures;
• incoming and outgoing gases pressures;
• relative humidities of incoming and outgoing gases;
• stoichiometries.

Finally, punctual measurements of polarization curves are
performed.

3. MODELING OF PEMFC AGING

As the focus of the paper is on prognostics, the complete
setting of the behavioral model can not be fully detailed
here. Only the main steps are mentioned.
The basis of the model is the polarization curve equation.
That polarization equation basically models the losses that
impact the reversible cell voltage Erev, also called the
Nernst voltage. This voltage would be obtained if all the
energy was converted into electricity without any loss. The
losses can be divided into four categories:

• activation losses (Eact);
• concentration losses (Econc);
• ohmic losses (Eohm);
• and crossover losses (Ecross);

The combination of these losses impacts the voltage, how-
ever each has a different prevalence zone according to the
current density as can be seen on Figure 2. Consequently,
the polarization equation is given by:

E = Erev − Econc+cross − Eohm − Eact (4)

The impact of the concentration and crossover losses
are gathered in a same term. As pure hydrogen diffuses
better than the oxygen in the nitrogen and water, the
concentration losses at the anode can be neglected. By



differentiating the contribution of each electrodes and
adding this last hypothesis, the equation becomes:

E = Erev − Eact,a − Eact,c − Eohm − Econc+cross,c (5)
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Fig. 2. Representation of the different losses on the polar-
ization curve

By replacing the losses by their expressions (please refer to
Sharaf and Orhan (2014) for more details), the polariza-
tion equation can be written as a function of i, the current
density. The current density varies according to the output
power expected from the stack.

E(i) = Erev −
RT

2αaF
.ln(

iloss + i

i0,a
)− RT

4αcF
.ln(

iloss + i

i0,c
)

− i.(Rion +Rele +Rcr) +Bc.ln(1− i

imax,c
) (6)

where:
- R is the gas constant equal to 8.3145 J.mol−1.K−1;
- T is the stack temperature;
- αa and αc are the charge transfer coefficients at the anode
and at the cathode;
- F is the Faraday’s constant equal to 96 485 C.mol−1;
- iloss represents the internal currents within the stack.
Here we assume that it can be assimilated to the hydrogen
crossover current alone and that no current caused by
membrane shorting appears;
- i0,a and i0,c are the exchange current densities at each
electrode;
- Rion, Rele and Rcr are respectively, the ionic, electronic
and contact resistances;
- Bc is an empirical parameter allowing taking into account
the effect of water and gas accumulations leading to non-
uniform current densities on the electrode.
- imax,c is the limiting current at the cathode, it is the
asymptotic value of the current for which the rate of
disappearance of the product equals to the rate of their
transport.
The power demand might not be satisfied all along the
stack lifetime as numerous degradations occur within
the stack during the aging. This has to be modeled
and introduced in the last equation. A literature review
shows that the main phenomena to take into account are:
the loss of active area at the electrodes, the crossover
of hydrogen through the membrane, the variations in
the ohmic and protonic resistances and the changes gas
diffusion. Moreover, the model described by equation (6)
is built for a single cell, so it is multiplied by the number
of cells in the stack (n) to obtain the stack voltage. Some
works tend to show that cells degrade in an heterogeneous

way according to their location within the stack (Bose
et al. (2013); Radev et al. (2013)). This is taken into
account by introducing a corrective term p that models
these heterogeneities:

Vstack = n.Vmean,cell − p (7)

Finally, by replacing some parameters by expressions mod-
eling their aging, using (7) and multiplying by the current
to obtain a power, the final model is:

P (I, t) = n.I(t).[Erev

−
RT

2αaF
.ln(

iloss,0.exp(bloss.t) +
I(t)

A0.exp(bA1.t)+A1.exp(bA2.t)

i0,a
)

−
RT

4αcF
.ln(

iloss,0.exp(bloss.t) +
I(t)

A0.exp(bA1.t)+A1.exp(bA2.t)
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)

−
I(t)

A0.exp(bA1.t) +A1.exp(bA2.t)
.(Rion,0.exp(bion.t) +R0 + bR.t)

+ (Bc,0 + bB .t).ln(1−
I(t)

A0.exp(bA1.t)+A1.exp(bA2.t)

4F
RT

(
DO2,0+bD.t

LGDL

)
PO2

)]− p (8)

A validation of this model is proposed in Section 5.

4. MODEL UPDATING AND PROGNOSTICS WITH
PARTICLE FILTERS

This section presents the tool elected to perform prog-
nostics, namely, the particle filter. It also introduces the
model transformation necessary to use equation (8) within
the prognostics framework.

4.1 Particle filters for prognostics

For this prognostics application, a particle filtering frame-
work is chosen. Particle filters have the ability to estimate
a nonlinear state and to adjust the parameters of the model
at the same time. Moreover, as it generates a probabilistic
output to represent the state of the system, it greatly helps
to deal with the uncertainty inherent to prognostics.

Problem statement To use particle filters, the problem
has to use the Bayesian framework formulation. A state
and a measurement model are defined according to the
following expressions:

xk = f(xk−1, uk, ωk) (9)

zk = h(xk, vk) (10)

where {xk, k ∈ N} describes the evolution of the state with
time and is modeled as a Markov process of initial distribu-
tion p(x0) and a transition equation p(xk|xk−1) obtained
from (9); uk is the input of the system (here the power
demand); {yk, k ∈ N∗}, are measurements, assumed to be
conditionally independent given the process {xk, k ∈ N}
and of marginal distribution p(zk|xk); finally ωk and vk
are process and measurement noises.
In a Bayesian approach, the state is estimated recursively
according to two stages:

(1) prediction: it uses the state model to estimate the
current state at time k via Chapman-Kolmogorov
equation:

p(xk|z1:k−1) =

∫
p(xk|xk−1)p(xk−1|zk−1)dxk−1

(11)



(2) update: it uses the latest measurement to modify the
prediction probability density function (pdf) with the
Bayes rule:

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k)

p(zk|z1:k−1)
(12)

This forms the optimal Bayesian solution. However, it
is only a conceptual solution: in general it cannot be
determined analytically. For that purpose, a whole family
of filtering tools exists ranging from the Kalman filter
(KF) and its variations (extended KF or unscented KF),
histograms and particle filters.

Particle filter principle An illustration of the principle
is proposed in figure 3. To solve the Bayesian problem, the
particle filter performs as follow:

(1) Initialization: N particles are created based on the
initial state of the system. According to Thrun et al.
(2005), if one knows the values of the initial state x0,
the initial distribution should be initialized with a
point mass distribution centered on the correct value
of x0 and 0 probability assigned anywhere else in the
state space;

(2) Prediction: at time k, the prior probability distri-
bution p(xk|xk−1) is evaluated thanks to the state
model, the evaluated state xk−1 at time k−1 and the
inputs of the system uk.;

(3) Update: a new measurement is available, weights are
calculated and given to the particles according to
their matching with the last measurement (likeli-
hood).

(4) Resampling : the particles with low weights are elimi-
nated and the other duplicated. Resampling is equiv-
alent to modifying the random measure by improving
the exploration of the state space at k + 1 (Li et al.
(2014)).

4.2 Model update

The first step is to modify equation (8) to obtain a
recursive form of the model that expresses the state at
a time k from the state at time k − 1 and the current
control at time k. As the model coefficients have also
to be evaluated, equations for their update must also
be defined. A classical strategy is to use a random walk
process. Indeed, with a good initialization and a well
chosen number of particles, it will converge to the actual
parameter values according to the law of large numbers.
Consequently, to perform prognostics, we have a set of
expressions:

• one to express the PEMFC state:

P (tk, Ik) = P (tk−1, Ik−1)+
∆I

Ik−1
(P (tk−1, Ik−1)+p)

+ n.(Ik−1 + ∆I).(residual.terms) (13)

As the recursive expression is very long, all the terms
that not contain the state P (tk−1, Ik−1) are gathered
in the expression residual.terms. An important hy-
pothesis is made during the expression transforma-
tion, we suppose that the current is never exactly
equal to 0 even at the open voltage circuit;
• 8 to update the parameters:

parami(tk) = parami(tk−1) + ω (14)
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Fig. 3. Particle filter principle

where ω is a white Gaussian noise with a zero-mean
and a well chosen variance that is small enough to
allows a sufficiently fast convergence to the actual
parameter while being large enough to offer a great
diversity of pathways.

5. EXPERIMENTS AND DISCUSSION

5.1 Micro-cogeneration mission profile

The data available come from stack manufactured by the
CEA LITEN (Technology G). The stack is composed of
8 cells with a total active area of 220 cm2. The mission
profile used for the experiments is punctuated by charac-
terizations and is proposed in Figure 4. It was made to
simulate the mission profile of a combined heat and power
unit all along a year. It starts with a demand that should
be encountered during winters during which a building
has high heating requirements, from approximately 0 to
350 hours. Then comes the spring until approximately
750 hours, the summer until 1030 hours and finally the
beginning of automn.
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5.2 Model validation

Before performing prognostics, the ability of the model to
catch the stack behavior is checked on the whole dataset.
To do so, the time is set to t = 0 and a first set of
parameters (αa, αc, i0,a, i0,c, iloss,0, A1, Rion,0, R0, Bc,0,
DO2,0) is identified by fitting the initial polarization curve
thanks to a least square algorithm. Then the missing
parameters (bloss, bA1, bA2, bion, bR, bB,aging, bD,aging, p)
are identified by fitting the power using the same method.
The model fits almost perfectly to the data as it can be
seen in figure 5 with a coefficient of determination R2 is
equal to 0.9968 and it allows validating the model for a
micro-cogeneration profile.
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imentally versus aging time and comparison with the
model

5.3 Power predictions

The data are split into two parts: a training set used
to learn the model and a validation set that has to be
predicted. To perform the predictions, we assume that the
future power demand is known. In a real case application,
it could be evaluated from historical data. For illustrative
purpose, results with a learning of 600 hours and other for
a learning of 800 are proposed in figure 6.

To evaluate the results, the coefficient of determination
R2 is calculated for both learning and prediction for all
the learning length tested. It is depicted in figure 7. This
coefficient shows that the model learns well the behavior of
the stack and also has great predictive capabilities. Indeed
even with an horizon of 800 hours (i.e. a learning of 400
hours), the prediction have a R2 greater than 0.6 with
data. And logically, this goes greater when the horizon
decreases to reach almost 0.8 for an horizon of 300 hours.
Moreover, it can clearly be seen in figure 6 that the
confidence interval remains narrow around the prediction.
This gives a good credibility to the results.

6. CONCLUSION

This work proposes a new prognostics application on a
concrete industrial case, namely the combined heat and
power generation with PEMFC. It uses simple voltage and
current measurements to predict the future behavior of
the stack expressed in terms of expected power. This is
very interesting as these values are easy to access and do
not imply a heavy equipment to get information of the
system’s state of health.
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A model is built based on a well-known equation but
introducing the time dependency of the mission profile as
well as the degradations of different components of the
stack. A proof of the model ability to follow the behavior
of the stack is presented. With this basis, prognostics is
performed and allows to obtain very good predictions with
a reduce uncertainty with an horizon of approximately 30
days.
A next step of this work is to perform prediction on data
coming from stacks that ran to failure and confirm that it
is well-suited to predict the RUL. Another point will be to
apply such a method with other mission profiles such as
transportation to validate its generic aspect.
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