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Taking time as a dynamical variable, we study a wave with 4-vector amplitude that has vibrations of matter in space and time. By analyzing its Hamiltonian density equation, we find that the system is quantized and obeys the Klein-Gordon equation. This quantized real scalar field has physical structures that resemble a zero-spin bosonic field.

Introduction

In the formulation of classical and quantum theories, time is principally treated as a parameter in the equation of motion. The theories postulate a time parameter with respect to which the dynamics unfold. Time and space are treated separately. On the other hand, space-time in general relativity is dynamical interacting with matter and radiation. There is no globally defined time in the theory. Space-time is weaved as unity. Thus, the treatment of time in quantum theory and general relativity is rather different. The problems created by these differences in approach are striking especially when one tries to reconcile the two basic theories from a single framework [START_REF] Rovelli | Quantum Gravity[END_REF][START_REF] Anderson | Problem of time in quantum gravity[END_REF].

Apart from the relativistic dynamics that require time to be treated on the same footing as space, there are many cases where time is expected to be associated with an operator in quantum theory, e.g. dwell time of a particle in a region of space [3,[START_REF] Yearsley | Quantum arrival and dwell times via idealized clocks[END_REF], tunneling time [START_REF] Ordonez | Existence and nonexistence of an intrinsic tunneling time[END_REF][START_REF] Kiukas | Tunneling times with covariant measurements[END_REF], or decay time of an unstable particle [START_REF] Madrid | Time as a dynamical variable in quantum decay[END_REF]. In these cases, time seems to play a dynamical role. Although it has been known since Pauli's era about the difficulties of assigning time as a selfadjoint operator [START_REF] Pauli | General Principles of Quantum Mechanics[END_REF][START_REF] Muga | Arrival time in quantum mechanics[END_REF], extensive efforts have been dedicated to resolve the dynamical nature of time in quantum theory [START_REF] Aharonov | Time in the quantum theory and the uncertainty relation for time and energy[END_REF][START_REF] Holevo | Probabilistic and Statistical Aspects of Quantum Theory[END_REF][START_REF] Aharonov | Measurement of time of arrival in quantum mechanics[END_REF][START_REF] Olkhovsky | Time as a quantum observable[END_REF][START_REF] Wang | How to introduce time operator[END_REF][START_REF] Galapon | Post Paulis theorem emerging perspective on time in quantum mechanics[END_REF][START_REF] Brunetti | Time in quantum physics: From an external parameter to an intrinsic observable[END_REF][START_REF] Hegerfeldt | Symmetries and time operators[END_REF][START_REF] Strauss | Study of a self-adjoint operator indicating the direction of time within standard quantum mechanics[END_REF][START_REF] Arsenovic | Dynamical time versus system time in quantum mechanics[END_REF]. In addition to these efforts, various classical and quantum models have also been proposed by T.D. Lee that suggest time can be considered as a fundamentally discrete dynamical variable [START_REF] Lee | Can time be a discrete dynamical variable?[END_REF][START_REF] Lee | Difference equations and conservation laws[END_REF].

As there are many suggested reasons why time shall play a more dynamical role, we ask a few fundamental questions: in classical theory, the amplitude, X, of a wave with vibrations in space can be defined as the maximum displacement of matter in the wave from its equilibrium coordinate. Since matter can have vibrations in the x coordinates, can it also has vibrations in the time coordinate t? In fact, if space and time are to be treated on same footing, it is theoretically possible to define an amplitude T for vibration in time [START_REF] Yau | Emerged quantum field of a deterministic system with vibrations in space and time[END_REF]. Although it is feasible to construct a wave that has vibrations in both space and time, can its properties have something to do with our real physical world?

Here, we investigate the quantum properties of a plane wave with a 4-vector amplitude (T, X) that has vibrations in space and time. We define the amplitude in time of a plane wave as the maximum difference between the 'internal time" of matter within the wave and the 'external time' measured by a stationary inertial observer outside the wave; its meaning will be further elaborated in Section 2. By studying the Hamiltonian density equation of this planes wave in Section 3, we find that a harmonic oscillating system with vibration of matter in proper time can be the generator for the energy of mass. In Section 4, we show that an oscillator with vibration in proper time can only have one unique amplitude. This leads to our subsequent reasoning that a real scalar field describing the vibrations of matter in space and time shall be quantized; it has no classical description. Furthermore, this quantized real scalar field obeys the Klein-Gordon equation and has properties that resemble a zero-spin quantum field as will be shown in Section 5. Probabilistic nature of the system in the non-relativistic limit will be further demonstrated in Section 6.

Plane Wave with Vibrations in Space and Time

Consider the background coordinates (t, x) for the flat space-time as observed in an inertial frame O. Time in this background is the 'external time' as measured by clocks that are not coupled to the system under investigation [START_REF] Busch | On the energy-time uncertainty relation. Part I: Dynamical time and time indeterminacy[END_REF][START_REF] Busch | On the energy-time uncertainty relation. Part II: Pragmatic time versus energy indeterminacy[END_REF][START_REF] Hilgevoord | Time in quantum mechanics: a story of confusion[END_REF]. We will first study a plane wave with matter that has vibrations in space and time relative to this background coordinate system.

The amplitude for vibration in space, X, of a classical plane wave is well defined; it is the maximum displacement of matter in the wave from its equilibrium coordinate such as in the case for a flexible string under tension. Similarly, let us define a plane wave's amplitude for vibration in time, T , as the maximum difference between the time of matter inside the wave, t f , and the external time, t. Therefore, if matter inside the plane wave carries a clock measuring its internal time, an inertial observer outside will see the matter's clock vibrates with time, t f , as related to his own clock measuring time, t. In other words, we have assumed the matter's internal clock is running at a varying rate relative to the inertial observer's clock. The 'internal time' t f is an intrinsic property of matter 1 . The amplitude (T, X) is a 4-vector such that T 2 = T 2 0 + |X| 2 , where T 0 is an amplitude with vibration in proper time.

The vibrations in space and time can be written as

t f = t + T sin(k • x -ωt) = t + Re(ζ + t ), (1) 
x

f = x + X sin(k • x -ωt) = x + Re(ζ + x ), (2) 
where

ζ + t = -iT e i(k•x-ωt) , (3) 
ζ + x = -iXe i(k•x-ωt) , (4) 
and

ω 2 = ω 2 0 + |k| 2 . (5) 
Thus, time of matter inside the plane wave has this temporal vibration when observed with respect to the external time. This internal time, t f , is a function of the external time, t, and a dynamical variable for the system. For a plane wave with proper time vibrations only, matter has no vibration in space. In this case, ω = ω 0 , |k| = 0, T = T 0 , and |X| = 0 with

ζ + 0t = -iT 0 e -iω0t , (6) 
and

t f = t -T 0 sin(ω 0 t), (7) 
x f = x. (8) 
The internal time passes at the rate 1-ω 0 T 0 cos(ω 0 t) with respect to the external time and has an average value of 1. Matter in this plane wave is stationary in space and will still appear to travel along a time-like geodesic when averaged over many cycles. The nature of this internal time will be further elaborated in Section 4.

We can further define a plane wave,

ζ + = T 0 ω 0 e i(k•x-ωt) , (9) 
such that ζ + t and ζ + x in Eqs.( 3) and ( 4) can be obtained from ζ + as:

ζ + t = ∂ζ + ∂t , (10) 
ζ + x = -∇ζ + . (11) 
Therefore, the vibrations of matter in space and time for a plane wave can be described by ζ + .

Hamiltonian Densities

Let us investigate the properties of a system in a cube with volume V that can have multiple particles with mass m vibrating in space and time. We will impose periodic boundary conditions at the box walls. Instead of carrying out our analysis in terms of the plane wave ζ + and its complex conjugate ζ -, we make the following ansätz

ϕ + = ω 0 m 2V ζ + = T 0 m 2V e i(k•x-ωt) , (12) 
ϕ -= ω 0 m 2V ζ -= T * 0 m 2V e -i(k•x-ωt) , (13) 
where T 0 here is taken as a complex time amplitude and periodic boundary conditions are imposed on the wave vector k.

The plane wave ϕ ± satisfies the equation of motion:

∂ u ∂ u ϕ ± + ω 2 0 ϕ ± = 0. ( 14 
)
The corresponding Hamiltonian density is

H ± = (∂ 0 ϕ ± ) * (∂ 0 ϕ ± ) + (∇ϕ ± ) * • (∇ϕ ± ) + ω 2 0 ϕ ± * ϕ ± . (15) 
In our analysis, we will work in natural units whereby c = = 1.

Let us look at each term on the right hand side (RHS) of this Hamiltonian density equation. From Eqs. ( 12) and ( 13), the first term of Eq.( 15)

H ± 1 = (∂ 0 ϕ ± ) * (∂ 0 ϕ ± ) = mω 2 0 2V T * T, (16) 
is a Hamiltonian density for vibrations of matter in time. Indeed, mω 2 0 /2 is an usual term that appears in the Hamiltonian of a harmonic oscillator with mass m except the vibration is in time and not in space. (Note that we have not taken into account the order of multiplication between complex conjugates here but shall be considered when the field is quantized.) Similarly, the second term

H ± 2 = (∇ϕ ± ) * • (∇ϕ ± ) = mω 2 0 2V X * • X, (17) 
has the familiar form of a Hamiltonian density with harmonic oscillation in space.

The plane wave ϕ ± is a function of T 0 as shown in Eqs. [START_REF] Aharonov | Measurement of time of arrival in quantum mechanics[END_REF] and [START_REF] Olkhovsky | Time as a quantum observable[END_REF]. The third term on RHS of Eq.( 15) is a Hamiltonian density related to vibrations of matter in proper time,

H ± 3 = ω 2 0 ϕ ± * ϕ ± = mω 2 0 2V T * 0 T 0 . (18) 
After combining the three terms from Eqs.( 16), ( 17) and ( 18), the total Hamiltonian density is

H ± = mω 2 0 V T * T. ( 19 
)
The energy corresponding to the vibration of matter in proper time is of special importance in our study. To better understand its properties, we consider the simple plane waves

ϕ + 0 = T 0 m 2V e -iω0t , (20) 
ϕ - 0 = T * 0 m 2V e iω0t . (21) 
Matter inside this plane wave ϕ ± 0 has vibrations in proper time only, i.e. |k| = 0 and x f = x. Substitute Eqs.( 20) and ( 21) into Eq.( 15), the Hamiltonian density is

H ± 0 = mω 2 0 T * 0 T 0 V . ( 22 
)
The energy contained inside volume V is E = mω 2 0 T * 0 T 0 of a simple harmonic oscillating system in proper time. As discussed in the previous section, the vibration in proper time is an intrinsic property of matter. Energy E shall therefore correspond to some energy related to matter. However, we have only consider matter with mass m in this simple harmonic oscillating system without involving any of the various charges or force fields. No other energy is present in this system except the energy of mass m. Here, we will consider this energy as the internal energy of mass.

Proper Time Oscillator

The energy E for the vibration of matter in proper time is necessary on shell if it is the internal energy of mass. For a single particle system, we have

E = mω 2 0 T * 0 T 0 = m, (23) 
or simply

ω 2 0 T * 0 T 0 = 1. ( 24 
)
In addition to the classical concepts of mass [START_REF] Jammer | Concepts of Mass in Contemporary Physics and Philosophy[END_REF], we suggest here a possibility that a point mass m can have oscillation in proper time with amplitude | T0 | = 1/ω 0 . Only an oscillator with such amplitude is observable in this single particle system.

Let us first consider the point mass in the plane wave ϕ + 0 . A point mass m at rest in space with angular frequency ω 0 and amplitude T0 = 1/ω 0 will have vibration in proper time relative to the external time. The internal time t+ f of the point mass's internal clock observed in frame O is:

t+ f (t) = t - sin(ω 0 t) ω 0 . ( 25 
)
We will assume the point mass observed is located at the origin of coordinate

x 0 , x+ f (t) = x 0 . ( 26 
)
This point mass is stationary in space. Unlike time dilation in relativity, the vibration of matter in time from Eq. ( 25) is not the result of relative movement or gravity. It is an additional degree of freedom introduced to restore the symmetry between space and time in a matter field.

From Eq. ( 25), the internal time rate relative to the external time for this oscillator is ∂ t+

f ∂t = 1 -cos(ω 0 t). (27) 
The average of this time rate is 1. Its value is bounded between 0 and 2 which is positive. Thus, the internal time of a point mass moves only in the forward direction. It cannot move back to its past. If we assume this point mass is a typical particle that has high vibration frequency, e.g. ω 0 = 7.6 × 10 20 s -1 and | T0 | = 1.32 × 10 -21 s for an electron, the particle will appear to travel along a smooth time-like geodesic if the inertial observer's clock is not sensitive enough to detect the high frequency and small amplitude of the vibration. In fact, as the angular frequency increases and approaches infinity (ω 0 → ∞), the amplitude of oscillation becomes negligible (T 0 → 0). Such particle will travel along a near time-like geodesic with no vibration observed. The internal clock of the particle with angular frequency ω 0 → ∞ is a clock suitable for the observer at spatial infinity. Its near time-like geodesic nature is sensitive enough to detect the varying internal time rate of another particle with lower frequency. However, this clock's mass is infinite (m = ω 0 → ∞). As pointed out by Salecker and Wigner [START_REF] Salecker | Quantum limitations of the measurement of space-time distances[END_REF], to obtain infinite accuracy in measuring a clock's time means infinite uncertainty in the clock's mass, and thus the clock's mass needs to reach infinity. Some of the studies regarding quantum clocks in the context of time-energy uncertainty relation can be found in references [START_REF] Hilgevoord | Time in quantum mechanics: a story of confusion[END_REF][START_REF] Karolyhazy | Sixty-Two Years of Uncertainty[END_REF][START_REF] Kudaka | Uncertainty principle for proper time and mass[END_REF][START_REF] Aharonov | Weighing a closed system and the time-energy uncertainty principle[END_REF][START_REF] Briggs | A derivation of the time-energy uncertainty relation[END_REF][START_REF] Greenberger | Conceptual problems related to time and mass in quantum theory[END_REF].

Eqs. ( 25) and ( 26) can be Lorentz transformed to another frame of reference O with background coordinates (t , x ) where the the particle will have vibrations in time and space with amplitudes T = ω/ω 2 0 and X = k/ω 2 0 respectively. (We have assumed frame O is traveling with velocity v = k/ω relative to frame O and the particle begins at origin of the x coordinates at t = 0). The vibrations in time and space are

t + f (t ) = t - ω ω 2 0 sin( ω 2 0 t ω ), (28) 
x

+ f (t ) = vt - k ω 2 0 sin( ω 2 0 t ω ). ( 29 
)
The internal time t + f is measured with respect to the external time in frame O and is not the internal proper time of the particle's internal clock. In frame O , the particle is traveling with a velocity v. The internal proper time measured by the particle's clock is t+

f = ( t + f ) 2 -( x + f ) 2 = t -sin(ω 0 t)/ω 0 as shown in Eq. (25).
Eq. ( 29) is the trajectory of the particle observed in frame O . The particle travels with a velocity

v+ f = ∂ x + f ∂t = v[1 -cos( ω 2 0 t ω )]. ( 30 
)
Apart from this variation in velocity, the internal time rate also varies. From Eq. ( 28), the internal time rate relative to the clock of the inertial observer is

∂ t + f ∂t = 1 -cos( ω 2 0 t ω ). ( 31 
)
We can calculate the amplitudes of vibration for a particle. For example, we can estimate the amplitude of spatial vibration for an electron:

|v| = 0.99999 ⇒ | X| = 8.6 × 10 -9 cm, ( 32 
)
|v| = 0.001 ⇒ | X| = 3.9 × 10 -14 cm. ( 33 
)
In the second, non-relativistic example, the amplitude of the spatial vibration is approximately equal to the diameter of a nucleus which is tremendously larger than the Planck length. However, this vibration also has a very short time scale (≈ 10 -21 s for electron). A particle will therefore appear to travel along a smooth trajectory if the measurements are not sensitive enough to detect the small vibrations.

Comparing Eqs. ( 20) and ( 21), the plane wave ϕ + 0 with a particle traveling forward in time is mathematically equivalent to the plane wave ϕ - 0 with a particle traveling backward in time -time reversal symmetry, a property of an antiparticle [START_REF] Feynman | The Theory of Positrons[END_REF]. The internal clock of this antiparticle shall read t-

f (t) = -t + sin(ω 0 t) ω 0 . (34) 
Thus, the internal time rate relative to the external time for the oscillator with amplitude T * 0 = 1/ω 0 is ∂ t-

f ∂t = -1 + cos(ω 0 t). (35) 
The average of this time rate is -1. Its value is bounded between 0 and -2 which is negative. Thus, the internal time of this antiparticle moves only in the backward direction.

Field Quantization

The amplitude of a classical harmonic oscillator with a point mass vibrating in space can take on different values. This is unlike the case for a simple harmonic oscillator with vibration in proper time. The condition that mass is on shell imposes a constraint allowing only an oscillator with proper time amplitude | T0 | = 1/ω 0 to be observed. The classical harmonic oscillator has no such constraint.

As shown in Eq. ( 22), the amplitude T 0 of the plane wave ϕ ± 0 determines the amount of energy in a volume V . On the other hand, amplitude T 0 is constrained by condition [START_REF] Busch | On the energy-time uncertainty relation. Part II: Pragmatic time versus energy indeterminacy[END_REF] which limits the energy observable in the system to the energy of one particle. We can extend this concept to a many particle system that has n integer number of oscillators. Condition (24) can be generalized as

ω 2 0 T * 0 T 0 = n, (36) 
which is a Lorentz invariant. The number of particles observed in the system shall remain the same under Lorentz transformations. Taking the point mass as a particle (antiparticle) with de Broglie's mass/energy (m = ω 0 ) in Eq.( 22),

H ± 0 = nω 0 V . (37) 
The energy in this plane wave ϕ ± 0 with vibrations in proper time is quantized with n = 0, 1, 2, ... Only the energy corresponding to integer number of oscillators can be observed in this system.

Under a Lorentz transformation, ϕ ± 0 → ϕ ± . Instead, let us consider a plane wave ϕ ± n which is normalized in volume V when n = 1,

ϕ ± n = γ -1/2 ϕ ± , (38) 
where γ = (1 -|v| 2 ) -1/2 . Replace ϕ ± with ϕ ± n in Eq. ( 15), the Hamiltonian density for plane wave ϕ ± n is

H ± n = γH ± 0 = nω V . (39) 
The energy in this plane wave ϕ ± n is quantized with n particles (antiparticles) of angular frequency ω in a volume V .

We can obtain a real scalar field by superposition of plane waves,

ϕ(x) = k ϕ + nk (x) + ϕ - nk (x) = k (2V ω) -1/2 (ω 0 T 0k e -ikx + ω 0 T * 0k e ikx ),
which satisfies the Klein-Gordon equation. This field is an infinite array of quantized oscillators. Its Hamiltonian density equation is,

H = 1/2[(∂ 0 ϕ) 2 + (∇ϕ) 2 + ω 2 0 ϕ 2 ], (40) 
corresponding to the infinite sum of normal mode oscillator excitation, each one of which is quantized. The energy observable in this real scalar field is necessarily quantized. Therefore, ϕ has no classical analogue. It is strictly a quantized field.

In quantum field theory, the transition to a quantum field can be done via canonical quantization. Similarly, we can quantize our system following the same procedures. However, we will not go over this in detail since most of the formulations can be found in quantum theory. Instead, only the key points will be highlighted here. For example, ϕ(x) and its field conjugate π(x) = φ(x) shall be treated as operators on quantization, satisfying the equal-time canonical commutation relations. Other physical observables shall also be promoted to operators. Condition (36) can be extended to the quantized field with

N k = ω 2 0 T † 0k T 0k , (41) 
as the particle number operator after taking into account the ordering between T 0k and T † 0k . We can also define the annihilation operator a k and creation operator a † k as,

a k = ω 0 T 0k , (42) 
and

a † k = ω 0 T † 0k , (43) 
such that N k = a † k a k . Substitute a k and a † k into ϕ, and taking the normal ordering of operators, Eq. ( 40) becomes

H = 1 V k ω k a † k a k , (44) 
which reminds one of the Hamiltonian density for a bosonic field. The real scalar field with vibrations in space and time has physical structures that resemble a zero-spin bosonic field.

Probability Density

To study the case in the non-relativistic limit, we will define a function:

ψ k = ω 0 T 0k √ V e i(k•x-ωct+χ) ≈ ω 2 0 √ V e i(ω0t+χ) ζ + k , (45) 
where

ω c = k • k 2m ≈ ω -ω 0 , (46) 
and e iχ is an arbitrary phase factor. Periodic boundary conditions for a cube with volume V are imposed on the wave vector k. Here, T 0k is considered as a function and not an operator. As we can see, ψ k is a solution for the Schrödinger equation of a free particle, -i∂ψ k /∂t = (2m) -1 ∇ 2 ψ k . The superposition principle holds such that

ψ = e iχ k ω 0 T 0k √ V e i(k•x-ωct) , (47) 
is also a solution for the linear and homogeneous Schrödinger equation. From Eq. (36), the product of ψ k and its complex conjugate ψ * k ,

ψ * k ψ k = ω 2 0 T * 0k T 0k V = n k V , (48) 
is a particle number density. In a quantum wave, the location where a particle can be observed is indeterminate. Only a probability can be assigned. For a plane wave, the probability density has an uniform distribution which is also the particle number density from Eq. (48). The amplitude α k = ω 0 T 0k / √ V in Eq. ( 45) is a probability amplitude. Function ψ has the basic properties of a wave function in quantum mechanics.

It is commonly believed that a matter wave can only have a probabilistic interpretation because the overall phase of a wave function is unobservable. As we have shown, the introduction of the arbitrary phase factor e iχ in Eqs. ( 45) and (47) does not change the the probability density ψ * ψ or the result that ψ satisfies the Schrödinger equation. In fact, the theory developed with wave functions ψ shall be invariant under global phase transformation χ but the relative phase factors are physical. Thus, the overall phase of ψ is unobservable. Function ψ is not required to have the same phase as ζ that describes the physical vibrations in space and time.

Conclusions

In this paper, we treat time as a dynamical variable. Instead of considering proper time as an operator, for example in references [START_REF] Kudaka | Uncertainty principle for proper time and mass[END_REF][START_REF] Greenberger | Conceptual problems related to time and mass in quantum theory[END_REF], we study the possibility that matter can have vibrations in both space and time. We show that if the energy of a proper time harmonic oscillator is taken as the energy of mass, this energy is necessary on shell meaning only one unique amplitude for the harmonic oscillator can be observed, | T0 | = 1/ω 0 . This is unlike a classical harmonic oscillator with vibration in space that can take on different values as its amplitude. (There is no condition analogous to mass on shell that restrict amplitude of vibration in space to an unique value.) The Hamiltonian of the system is quantized. The real scalar field ϕ does not have a classical description but rather shall be treated as a quantized field. In addition, this real scalar field satisfies the Klein Gordon equation and Schrödinger equation. It has properties that resemble those for a zero spin quantum field.

Unlike the 'intrinsic time'[23, 

[START_REF] Busch | On the energy-time uncertainty relation. Part II: Pragmatic time versus energy indeterminacy[END_REF] suggested as a dynamical variable of the studied system (e.g. position of a clock's dial or position of a classical free particle[START_REF] Butterfield | On Time in Quantum Physics -The Blackwell Companion to the Philosophy of Time[END_REF]) that can function to measure time, the 'internal time' defined here is an intrinsic property of matter that has vibration in time.