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ABSTRACT

Compressed Sensing (CS) is now a well-established research area
and a plethora of applications has emerged in the last decade. In this
context, assuming /N available noisy measurements, lower bounds
on the Bayesian Mean Square Error (BMSE) for the estimated en-
tries of a sparse amplitude vector are derived in the proposed work
for (7) a Gaussian overcomplete measurement matrix and (i¢) for a
random support, assuming that each entry is modeled as the prod-
uct of a continuous random variable and a Bernoulli random vari-
able indicating that the current entry is non-zero with probability
P. A closed-form expression of the Expected CRB (ECRB) is pro-
posed. In the second part, the BMSE of the Linear Minimum MSE
(LMMSE) estimator is derived and it is proved that the LMMSE es-
timator tends to be statistically efficient in asymptotic conditions,
i.e., if product (1 — P)? SNR is maximized. This means that in the
context of the Gaussian CS problem, the LMMSE estimator gathers
together optimality in the low noise variance regime and a simple
derivation (as opposed to the derivation of the MMSE estimator).
This result is original because the LMMSE estimator is generally
sub-optimal for CS when the measurement matrix is a single real-
ization of a given random process.

1. INTRODUCTION

In the Compressed Sensing (CS) framework [1,2], it is assumed that
the signal of interest can be linearly decomposed into few basis vec-
tors. By exploiting this property, CS allows for using sampling rates
lower [3] than Shannon’s sampling rate. As a result, CS technics
have found a plethora of applications in numerous areas, e.g. array
processing [4] or the published contributions during the special ses-
sion [5], wireless communications, video processing or in MIMO
radar.

Mean-square error (MSE) lower bounds [6] for the estimation of
the non-zero entries of a sparse vector have been proposed in [7-11].
In particular, the existing literature has studied MSE lower bounds
when the support set (i.e., the indexes of the non-zero entries) is
provided by an oracle or a genie. At first glance, this assumption
seems unrealistic and too optimistic. However, it has been proved
in [7-9] that for a sufficiently low noise variance, it exists sparse-
based estimators, (e.g., [12,13]) unaware of the support which reach
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the oracle MSE lower bound. This existence property explains why
the oracle framework is adopted in this work.

Unlike the existing approaches, our performance analysis is pro-
vided for (%) a Gaussian measurement matrix and (4¢) for a random
support of random cardinality. More precisely, we assume that each
amplitude of interest has the probability P to be non-zero. This sta-
tistical model is called a Bernoulli prior [14] and implies that the
support set is randomly generated with a Binomial-distributed cardi-
nality.

2. CS MODEL AND RECOVERY REQUIREMENTS

Lety be a N x 1 noisy measurement vector in the (real) Compressed
Sensing (CS) model [1-3]:

y=W¥s+n, 1)

where n is a (zero-mean) white Gaussian noise vector with compo-
nent variance o® and W is the N x K sensing/measurement matrix
with N < K. The vector s is given by s = ®60, where ® is a
K x K orthonormal matrix and 0 is a K x 1 amplitude vector. With
this definition eq. (1) can be recast as

y=HO +n 2)

where the overcomplete N x K matrix H = ¥® is commonly re-
ferred to as the dictionary. The amplitude vector is assumed to be
{-sparse, with ¢ < N. With S denoting the set of indices of the
non-zero entries in @ and we have { = [S|. Under this assump-
tion, we can rewrite the first summand in eq. (2) as HO = Hs0s
with Hs = W&, where Os is the vector composed of the entries
in @ with indices in S, i.e. the ¢ non-zero entries of this vector,
and the N x ¢ matrix ®s is built up with the ¢ columns of ® hav-
ing their indices in S. The entries of the measurement matrix, ¥,
are i.i.d. Gaussian distributed with zero mean and variance 1/N.
With this choice the Restricted Isometry Property (RIP) [1-3] is sat-
isfied with high probability [15]. The RIP ensures that practical al-
gorithms can successfully recover any sparse amplitude vector from
noisy measurements. Classical sampling theory states that to ensure
no loss of information the number of measurements, /N, should be
at least equal to K. By contrast, CS shows that this holds true if
N = (O(log(K/L)) < K if the vector 6 is {-sparse in a given
basis @ [1].

Remark 2.1 (Identifiability constraint) Given N available mea-
surements, we cannot accurately estimate more than N — 2 param-
eters whose indexes are collected in set T C {1,...,K} of cardi-
nality |Z| < N. In the estimation point of view, considering more



parameters of interest than the number of available measurements
leads to a singular Fisher Information Matrix (FIM). In this sce-
nario, it cannot exist an estimator with finite variance [16,17].

3. LOWER BOUNDS FOR THE BMSE

We define the conditional BMSE given S € P and Z € (2 to be

1
BMSE; = —E
SEe = TE, ug0sss

- 2
o et 1)
where 05 (y,Hs) is an estimate of Os that knows the support S
and respect the identifiability constraint in Remark 2.1.

Remark 3.1 The BMSE( is a natural limit performance criterion
on the BMSE of an estimator unaware of the support.

Averaging the local BMSE - over the random quantities, i.e., S
and |S)| yields the global BMSE:

BMSE =E BMSE,

E
Is|zs|is|

As proved in [18], the conditional ECRB is the tightest Bayesian
lower bound in the low noise regime regrading the considered model.
Consequently, we focus our effort on this lower bound.

The global BMSE is lower bounded by the global ECRB, de-
noted by ECRB, according to

BMSE > ECRB =E ECRB. 3)

\S\!IES\\S\

where ECRB( is the conditional ECRB derived in Appendix 6.1.

3.1. conditional ECRB in case of a Gaussian measurement ma-
trix

Lemma 3.2 For a Gaussian measurement matrix, the local ECRB ¢
given in eq. (7) reads

S|
ECRBs| = 0>~ _.
CR |S| g N — |S|

Proof The proof is straightforward by using eq. (7) and the property
of the Wishart matrices [19] for |S| < N. Let Zs = vV NHs.
Observe that the entries of matrix Z s have now a unit variance. Thus
ECRB, given in eq. (7) reads

S|

-1
ECRB|s) = 0°Egig s Tr [(zgzs) } = JQN_7|S|.

O

Remark 3.3 For a Gaussian measurement matrix, the conditional
ECRB is a function of the random cardinality |S|. Thus, we note
ECRB. = ECRB;g;.

3.2. Global ECRB for a random support of Binomial cardinality

Thanks to the above remark, the global ECRB in eq. (3) is

E
|ECRBys, = > Pr(|S| = 4|Z]) ECRB s/
=1

ECRB =E
S|

3.2.1. Random cardinality with an identifiability constraint

At this point, for 1 < ¢ < K, we have two possible cases:

0ict # 0 with probability P,
0icz = 0 with probability 1 — P.

This is equivalent to modelized the ¢-th entry according to
15(4)1z(7)0; where 15(i) ~ B(P). By doing this, the identifiabil-
ity constraint is taken into account thanks to 17(4). By definition the
cardinality of S conditionally to a given set Z is

1Z1

K
S| Z =Y 1s012() = 3 1s(0) = D 15(0)

i€L

with |Z| = N — 1. So, |S| } Z is the sum of |Z| i.i.d. Bernoulli-
distributed variables and is in fact not a function of set Z but of
its non-random cardinality |Z|. As a consequence, |S|;|Z| ~
BN(|Z|, P). We will note Pr(|S| | Z) = Pr(|S|; |Z]).

3.2.2. Closed-form expression of the global ECRB

Result 3.1 For any amplitude vector prior, for L < N — 1 where
L = E[|S|] and for a probability of success given by P = L/(N —
1), the global (i.e. on set P) ECRB verifies the following inequality:

BMSE > ECRB = o>~ (1 - PN’I) . (4)

1-P
Proof See Appendix 6.2.

Remark 3.4 For a large number of measurements, i.e., N > 1!
we can give the following approximation:

P 2 L

~ 2 —
ECRBNUl—P o

4. ANALYSIS OF THE LMMSE ESTIMATOR IN THE LOW
NOISE VARIANCE REGIME

4.1. Global BMSE of the LMMSE estimator

Result 4.1 In the low noise variance regime and for uncorrelated
amplitudes of variance o3, the BMSE of the LMMSE estimator is

given by
N
BMSE ~ ¢” (1 — oo
S o (7]1 SNRm) 5)
where 11 and 12 are given in eq. (6) and eq. (7) with P' = L/(N —
2).

Proof See Appendix 6.3.

4.2. Discussion on the asymptotic statistical efficiently of the
LMMSE

Result 4.2 [n the low noise variance regime, the ratio between the
global BMSE of the LMMSE estimator and the global ECRB on set

P for N > 1 is given by ggﬁgg ~1-—

1
(1—P)2SNR "

"Note that it is assumed that L is not neglected with respect to N.



(N—1)NP' = NP'(1-P')— (NP')?+ NPV

meo= (1—- P)2N(N — 1)

— N—
N(N+1)(N—-1) P/ 1(] P/)Z

(N+ )P = (N+ )PV - NN+ 1) PN = P) -
(1= P)3(N —

D(N+1)

Proof For N >> 1, the following approximations hold: P’ =~ P,
m ~ ECRB/o? and 12 = ﬁ. Using the expression of
ECRB and the Result 4.1 provide the desired result. [J

Remark 4.1 Based on the above result, in the low noise regime and
for a large number of measurements, the LMMSE estimator tends to
be statistically efficient according to the following criterion:

max {(1 — P)? SNR} .

This means that we can identify the key quantities to character-
ize the performance of the LMMSE estimator. More precisely, the
LMMSE estimator tends to be efficient if at least one of the following
conditions is satisfied.

C1. The SNR goes to infinity with finites N and L. Note that if
P — 1 and a large L can mitigate the statistical efficiency of
the LMMSE estimator even for a high SNR.

Ca. The number of measurements goes to infinity. In this last case,
P — 0. So, in the case of highly sparse amplitude vector, the
statistical efficiently of the LMMSE estimator is governed by
the SNR.

In our view, this result is original and important. Indeed, it is
well-known that the LMMSE estimator for deterministic matrix Hs
is sub-optimal, i.e., does not reach the BCRB or the ECRB (indiffer-
ently for deterministic matrix Hs) for any amplitude vector priors
excepted for the Gaussian prior [20]. In the Gaussian case, it is well-
known that the LMMSE estimator is in fact the MMSE estimator and
is thus statistically efficient. In the CS framework where Hs is time-
varying/stochastic, the situation is rather different and to the best of
our knowledge has not been fully investigated. This fact explains
why the LMMSE estimator optimality for any priors seems to us an
original contribution. This result is also of great practical interest
because the LMMSE estimator has been introduced in the statistical
signal community thanks to its easy computation (recall that only the
second-order statistics of the amplitude source vector are needed).
At contrary the optimal MMSE estimator needs to know the poste-
rior distribution which is generally mathematically intractable unless
for the Gaussian prior. So, when Hs is time-varying/stochastic, the
LMMSE estimator gathers together asymptotic (in number of mea-
surements or/and in SNR) statistical optimality and a simple compu-
tation. These two characteristics being generally contradictory.

5. CONCLUSION

The lowest accuracy for the estimation of a sparse amplitude vector
given N available measurements has been derived for (i) a Gaus-
sian overcomplete measurement matrix and (7¢) for a random sup-
port, meaning that each entry of the vector of interest is modelized as
the product of a continuous random variable and a Bernoulli random
variable indicating if the current entry is non-zero with probability
P. As the Expected CRB is the tightest Bayesian lower bound in

the low noise regime, the conditions for that the oracle LMMSE es-
timator tends to be statically efficient are derived thanks to a simple
criterion. It is proved in this work that the oracle LMMSE estimator
gathers together asymptotic statistical optimality and simple compu-
tation relatively to the MMSE estimator. These two characteristics
being generally contradictory.

6. APPENDIX

6.1. Derivation of the conditional ECRB

The conditional ECRB is based on the deterministic/Bayesian con-
nexion [21]. Following this principle, remark that an alternative
expression of the local BMSE given S can be obtained by rewrit-
ing it as an expected local MSE criterion according to BMSE, =
Erg051sMOBe where the MSE conditioned to Hs and Os is de-
fined as

MSE. = Eymg.05/5//0s — 0s(y, Hs)||*.

The local MSE given Hs, s and S verifies inequality MSE . >
Tr [F5'] where the Fisher Information Matrix (FIM) is given by

_ 9?logp(y|Hs, 0s)
9[0s]:0(0s];

1 .7
[Fslij = Eyns.05,s { } = —5[HsHsl;;

since y|Hs,0s,S ~ N (Hs60s,0°I) [22]. Finally, the trace of
the conditional ECRB takes the following simple expression:

2
o -
ECRB = T-Epg s Tr [(HEHS) 1} . %)
6.2. Proof of Result 3.1
Using eq. (3), Lemma 3.2, Remark 3.3, the ECRB is given by

S o?
— 52 _c - N=__9
ECRB =0 2 N EPr(|S| ) N = P) (

EG — NPN)

where G ~ BN(N, P). Using the first moment of the Binomial
variable G [23] given by EG = N P, we obtain eq. (4).
6.3. Proof of Result 4.1

The conditional BMSE of the LMMSE based on the Bayesian
Gauss-Markov Theorem [20] is given by

BMSE = ) °> "Pr(S,|S| = £)Exgs (BMSEs)
ey S
—1
where BMSEs = LTr {(U%HEHS + Rgsl) ] Exploiting the

decorrelation of the amplitudes and using Zs, we obtain BMSE =
o?Tr [(ZEZs + ﬁl)il] where SNR = 03 /0>. In the low



noise variance regime or for a large SNR, the conditional BMSE
can be approximated thanks to the Neumann expansion according
to
2 T -1 No?
BMSEs = 0Tr (zszs) ~ 2Ty
%%

-<Z§Zs) .

Thus, the global BMSE is given by eq. (5) where

m=>_ Y Pr(S|S|=0EugzsTr -(zgzs) 1]

ey s _
N2 = Z EPr(S, IS| = O)Epzg|sTr (zgzs) -
ey s L _
According to [19], we have
N¢{

Brrg)sTr {(Zgzg)_z} SN0 -V {1 1)

for £ < N — 1. This technical difficulty justifies |S| ~ BN(N —
2, P') with P' = L/(N — 2). Let V ~ BN'(N + 1, P'), then, 2
is given by

S ePr(V = 0)

EV — S Pr(V = 0)
BT A PBN-)((N+1)

T (1=PBIN-D(N+1)

where EV = (N + 1)P’ which leads to eq. (7). Due to the new
constraint on the identifiability constraint, 1; cannot be confuse with
the global ECRB given in eq. (4). But, let G’ ~ BN(N, P'), we
have

(N —1) 2 Pr(G = 0) — S0 2 02Pr(Gr = ¢)

(1—P2N(N — 1)

m=

where S0 2 (Pr(G’ = ¢) = EG' — 0\, (Pr(G’ = £) and

NECPr(G = 0) = BG”? - N L PPr(G = £) with
EG’' = NP' and EG'*> = VarG’' + (NP')?> = NP'(1 — P') +
(N P")? [23] which leads to eq. (6).
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