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Compressed Sensing with Basis Mismatch :
Performance Bounds and Sparse-Based Estimator

Stéphanie Bernhardt, Rémy Boyer, Sylvie Marcos and Pascal Larzabal

Abstract—Compressed sensing (CS) is a promising emerging
domain which outperforms the classical limit of the Shannon
sampling theory if the measurement vector can be approximated
as the linear combination of few basis vectors extracted from a
redundant dictionary matrix. Unfortunately, in realistic scenario,
the knowledge of this basis or equivalently of the entire dictionary
is often uncertain, i.e. corrupted by a Basis Mismatch (BM)
error. The consequence of the BM problem is that the estimation
accuracy in terms of Bayesian Mean Square Error (BMSE) of
popular sparse-based estimators collapses even if the support is
perfectly estimated and in the high Signal to Noise Ratio (SNR)
regime. This saturation effect considerably limits the effective
viability of these estimation schemes. In the first part of this work,
the Bayesian Cramér-Rao Bound (BCRB) is derived for CS model
with unstructured BM. We show that the BCRB foresees the
saturation effect of the estimation accuracy of standard sparse-
based estimators as for instance the OMP, Cosamp or the BP. In
addition, we provide an approximation of this BMSE threshold.
In the second part and in the context of the structured BM
model, a new estimation scheme called Bias-Correction Estimator
(BiCE) is proposed and its statistical properties are studied. The
BiCE acts as a post-processing estimation layer for any sparse-
based estimator and mitigates considerably the BM degradation.
Finally, the BiCE (i) is a blind algorithm, i.e., is unaware of
the uncorrupted dictionary matrix, (ii) is generic since it can
be associated to any sparse-based estimator, (iii) is fast, i.e., the
additional computational cost remains low and (iv) has good
statistical properties. To illustrate our results and propositions,
the BiCE is applied in the challenging context of the compressive
sampling of non-bandlimited impulsive signals.

I. INTRODUCTION

Compressed Sensing (CS) [1]–[3] is a challenging domain
that has driven a lot of research interests in a wide panel of
applications as for instance Ultra-Sound Imaging [4], MRI
imaging [5], channel estimation [6], array processing [7,8],
RADAR processing [9], etc. CS potentially outperforms the
limit sampling rate predicted by the classical sampling theory
[10]. This is done by exploiting the a priori knowledge that
many natural measurement signals admit a sparse representa-
tion, i.e., as a linear combination of few vectors extracted from
a redundant dictionary. In todays world that has to face more
and more data, this technique has opened many perspectives on
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a wide panel of application domains. The CS framework has
thus driven the design of a plethora of sparse-based estimation
algorithms as for instance the OMP [11], Cosamp [12], BP
[13], LASSO [14].

In the CS framework, we aim to recover the measurement
signal with a sparse representation from a small number
of linear measurements extracted from a known redundant
dictionary [1]–[3]. Note that a similar philosophy can be found
in the frame based theory [15]. The major difference is in the
design of the dictionary. While in the frame based theory, the
dictionary is viewed as a collection of deterministic atoms,
the dictionary involved in the CS framework is the product
of a random overcomplete measurement/sensing matrix and
a deterministic unitary/orthonormal basis matrix [2]. Given a
measurement vector, the inverse problem does not admit an
unique solution and the prominent idea is to select the sparsest
vector as the solution. On the contrary, the unitary basis in
CS and the redundant dictionary in the frame based theory
are based on a similar sampling process of a given continuous
kernel.

Unfortunately, in operational context, the basis matrix is of-
ten known with uncertainty, i.e., there exists a Basis Mismatch
(BM) effect. As noted in the literature, standard sparse-based
estimators become inefficient since their MSEs are saturated
even if the SNR is high and if the support set has been
perfectly estimated. This situation is a severe drawback in real-
word operational context. This non-ideal scenario has been
often observed in practice [16]–[19] and the exact sparse
recovery guarantees for the estimation of a signal corrupted
by a BM has been studied in [20]. In particular, in a Tx
(Transmit)-Rx (Receipt) context, the Rx is usually unaware
(partially or not) of the true dictionary used at the Tx. As
a consequence, a BM degradation may occur at the Rx-
side as for instance a grid mismatching. A common but not
satisfactory strategy to mitigate this problem is to transmit
the entire dictionary as a side information. This is the case
for example in digital data hiding application [21,22] and
compressed wireless communication [23,24], where the Rx
needs to know perfectly the dictionary to estimate the secret
message at the Rx-side with a minimal error probability. In the
context of robust data hiding [25], the dictionary matrix is thus
periodically regenerated and transmitted to the Rx as a side
information acting as an encryption key. This is of course done
at the price of a heavy extra transmission cost. As a partial
conclusion, there is a need to find a new strategy to mitigate
the BM problem.

There exist two main approaches of the BM problem differ-
ing by the assumptions on the perturbation matrix. For instance
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in [26], the Gaussian Error in Variables (EIV) model is adopted
meaning that the perturbation matrix is assumed to follow a
matrix Gaussian distribution. This model is weakly structured
or unstructured and thus is rather generic. In our view, this
context is well adapted to the derivation of fundamental and
theoretical performance limits. The second BM modelization
is based on the assumption that the perturbation matrix is
sufficiently small to approximate the corrupted dictionary by
a first-order Taylor expansion [27]–[29]. This modelization
is highly structured but also more delicate to use. But,
this underlying structure is well adapted to derive practical
estimators. In the first part of this work, we propose the
derivation and the analysis of the Bayesian lower bound in the
context of unstructured BM. In the CS framework (without
BM problem), the utility of the deterministic CRB in the
Genie-Aided or oracle context, i.e., when the support set is
perfectly known, has been investigated and demonstrated in
several publications [30]–[32]. Unlike these contributions, we
assume that our CS model is corrupted by a BM degradation.
In [33], the Bayesian lower bound in the specific case of
direction of arrival estimation is derived in case of structured
BM. Our Bayesian lower bound, taking into account data-
dependence on the noise, provides new insights into the MSE
saturation. The second part is dedicated to the proposition
of a new estimator, called Bias-Correction Estimator (BiCE),
which improves the robustness to BM of any sparse-based
estimators in the structured BM context. In addition, the BiCE
is applied in the important context of the non-bandlimited
signal compressive sampling.

The paper is structured as the following. The section II
presents an introduction of the CS theory and the BM in
case of structured and unstructured models. Section III de-
rives the Bayesian CRB (BCRB) for unstructured BM and
gives an analytical BCRB for the BMSE saturation. Section
IV introduces the BiCE and presents a complete statistical
performance analysis. Section V applies our results in the
context of compressive sampling of non-bandlimited signals
and the last section concludes the paper.

The notation used through this paper is the following:
scalars, vectors, and matrices are represented by italic lower-
case, boldface lower-case and boldface upper-case, respec-
tively. Sets are denoted by calligraphic upper-case symbols,
e.g., X . The symbols (·)T , (·)−1, (·)† and Tr(·) denote
the transpose, the inverse, the pseudo-inverse and the trace
operator, respectively. Define |X | as the cardinality of set X ,
then vector xX is the |X | × 1 vector with {xi, i ∈ X}. In
the same spirit, matrix XS is the matrix X composed by the
columns indexed by i ∈ X . ‖·‖0 stands for the pseudo-norm
l0, without indication the 2-norm is considered. Distribution
Q ∼ MG (M,U,V) stands for a Matrix Gaussian distri-
bution where M is the location matrix, U and V are the
scale positive definite matrices. The vector computed by the
vectorization of matrix is vecQ ∼ N (vecM,V ⊗U) where
⊗ is the the Kronecker product and N (µ,Σ) is the (vector)
Gaussian discussion of mean µ and covariance matrix Σ. The
Generalized Gaussian distribution is denoted by GN (µ, α, β)
where µ, α and β is location, scale and shape parameters,
respectively. The distribution Inv−χ2

n stands for the central

inverse chi-squared distribution with n degrees of freedom.
Γ(·) denotes the gamma function. The symbol ∂ denotes the
partial derivative operation and we note the first-order (resp.
second-order) derivative of matrix M by Ṁ (resp. by M̈).
The symbol diag(x) denotes a diagonal matrix, where the
elements of the vector x specify its diagonal elements. The
big-O notation is given by O(·). Var (x) is the variance of x.
Furthermore, 〈X〉 is the space spanned by X and 〈X〉⊥ is its
orthogonal space. Finally, the range and the null spaces of X
are defined by R(X) and N(X), respectively.

II. COMPRESSED SENSING (CS) WITH BM

A. The CS framework

Let y be a N × 1 noisy measurement vector that follows
the Compressed Sensing (CS) model [2,3] according to

y = Ψs + n (1)

where n is a centered circular Gaussian white noise of
unknown covariance matrix σ2I and Ψ is the N × K sens-
ing/measurement matrix. Let s be defined as s

def.
= Φθ where

matrix Φ is a K ×K orthonormal basis and θ is a L-sparse
amplitude vector of size K×1. The CS model (1) is given by

y = ΨΦθ + n
def.
= Hθ + n (2)

where H is usually called the N ×K dictionary matrix.
In classical sampling theory, the number of measurement N
needed to ensure that there is no loss of information should be
at least equal to K, where K is given by the Nyquist rate. In
contrast, CS theory reaches this goal for N � K as long as
the K× 1 amplitude vector θS is sparse in a given dictionary
Φ [1] (as for instance, the canonical dictionary of RK , Fourier
dictionary). CS theory allows to solve the ill-posed problem
where the dictionary H is an overcomplete/redundant matrix.
A fundamental question in CS is how many measurements
N , are required to enable the recovery of the amplitude
vector θ. To answer to this question, the properties of the
dictionary matrix H are fundamental to guarantee satisfactory
performance of CS based estimator. In [2,3,34], the authors
introduced the Restricted Isometry Property (RIP) of a matrix
and established its important role in CS. First define the set of
the L-sparse vectors by WL = {θ ∈ RK , ‖θ‖0 = |S| ≤ L}
where S is the support set the location of the non-zero entries
of vector θ. We say that matrix H verifies the RIP of order L
if there exists a constant εL ∈ (0, 1) such as

‖θ‖2 (1− εL) ≤ ‖Hθ‖2 ≤ ‖θ‖2 (1 + εL) (3)

for any vector θ ∈ WL. The RIP characterizes nearly isometric
matrix H for the L-sparse vector θ. In addition, the RIP
ensures that practical algorithms using l1 norm optimization
can successfully recover any compressible amplitude vector
from noisy measurements.
First, note that direct derivation of a matrix H verifying the
RIP is a combinatorial problem since all the possible combi-
nations of L nonzero entries in the vector θ have to be tested.
At first glance, it seems hard to find matrix H. Fortunately,
simple and efficient strategies have been proposed (see [1,34]
for instance) to circumvent this problem. A convenient strategy
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to satisfy the RIP is to consider the entries of the measurement
matrix Ψ as a sub-Gaussian independent and identically dis-
tributed (i.i.d.), with zero mean and finite variance. This choice
ensures that the entries of matrix H will be sub-Gaussian,
i.i.d., with zero mean and finite variance for an orthogonal
basis Φ. The class of sub-Gaussian p.d.f. satisfies the RIP
with high probability since the random quantity ‖Hθ‖2 is
concentrated around ‖θ‖2 with high probability [35].

Finally, the CS model in (2) restricted to the support takes
the following expression:

y = HSθS + n with HS
def.
= ΨΦS (4)

where ΦS is a K × L partial basis matrix. The rank-L
dictionary HS is viewed as a single realization of a given p.d.f.
and thus will be considered in the sequel as a deterministic
matrix.

B. The Basis Mismatch (BM) problem

In the literature, we can find two types of modelization
adapted to the BM problem. So, in the two next sections, we
define these two approaches.

1) Unstructured BM: The BM problem arises when we
have an uncertain knowledge of the true dictionary H. More
precisely, in the BM problem, we have the knowledge of a
corrupted/erroneous dictionary H̃ while the L-sparse signal
admits a decomposition into few vectors belonging to the un-
known deterministic dictionary H. This error can occur during
the noisy transmission of the dictionary between a transmitter
and a receiver, or if the construction of dictionary H̃ is based
on a different discretization of the parameter set. As illustrated
in section V, sparse-based estimators (OMP, LASSO, BP,
Cosamp, ...) exhibit a saturated estimation accuracy even if
the noise variance is low and even worse if the support has
been perfectly estimated.
A generic error modelization is the Gaussian EIV model [26]
described by

H̃ = H + E ∼ MG
(
H, σ2

eIN , IK
)
. (5)

Note that the BM problem described on Fig. 1, is slightly
different that the well-known off-grid (OG) problem and we
can find in [36] a comparison of these two types of uncertainty.
We can described the two problems in the following manner:

BM problem : y = Hθ + n = H̃θ −Eθ + n,

- H is unknown,

- H̃ is known and stochastic (due to E).

OG problem : ỹ = H̃θ + n = Hθ + Eθ + n,

- H is known and non-stochastic,

- H̃ is unknown.

So, in the OG problem, it is assumed that we know
dictionary H and the L-sparse signal admits a decomposition
into few vectors belonging to an unknown corrupted dictionary
H̃.
At this point we can formulate two remarks. Firstly, note that

in the two above models, the noise term Eθ + n is data-
dependent due to the BM E and secondly, the BM context
changes drastically the underlying estimation problem. Indeed,
recall that dictionary H is a fixed and unknown matrix in the
point of view of the considered estimation problem. However,
assuming the mismatched context implies that the known
corrupted dictionary, H̃ turns to be now a random matrix due
to the stochastic nature of its entries.

2) Structured BM: A well-known family of sparse pro-
moting estimators are based on a basis matrix Φ which is
designed by the regular/uniform discretization at rate TS of
a known continuous kernel φ(t). This kernel is dependent on
the considered framework.

In the BM framework, the true/uncorrupted discretization
of the parameter set denoted by {τ1, · · · , τK} is unavailable
to our knowledge. Equivalently, this also means that the
uncorrupted dictionary H based on the true basis matrix,
defined by [Φ]kk′ = φ(t)|t=τk′−TSk where 1 ≤ k, k′ ≤ K,
is also unknown to our knowledge. Now assume that the
mismatch on the basis matrix, denoted by Φ̃, comes from
an uncertain but known discretization of the kernel φ(t), de-
fined by {τ̃1, · · · , τ̃K}. Specifically, we observe the corrupted
parameter τ̃k = τk + ek while ek is an unknown error term
corrupting the unknown parameter τk.

A Taylor expansion of the known corrupted basis Φ̃ is given
by

[Φ̃]kk′ = φ(t)|t=τ̃k′−TSk

= φ(t)|t=τk′−TSk +
∂φ(t)

∂t

∣∣∣∣
t=τk′−TSk

ek′ +O(e2
k′).

So, for a sufficiently small BM, we assume that the known
corrupted basis Φ̃ can be approximated by a first-order Taylor
expansion given by

Φ̃S ≈ ΦS + Φ̇Sdiag(eS)

where [Φ̇S ]kk′ = ∂φ(t)
∂t

∣∣∣
t=τk′−TSk

and eS = [. . . ek′ , . . .]
T

where k′ ∈ S. In term of the dictionary, we have the following
relations:

H̃S = ΨΦ̃S ≈ ΨΦS+ΨΦ̇Sdiag(eS) = HS+ḢSdiag(eS).
(6)

This structured BM modelization has been largely adopted
in the literature (see [26] for instance and the references
therein).

III. BAYESIAN LOWER BOUNDS FOR UNSTRUCTURED BM

In this section, we present the VanTrees’ Bayesian lower
bound for the estimation of a sparse random vector under BM.
In addition, we propose an analytical expression of this bound
that well predicts the saturated BMSE value when the noise
is dominated by the BM effect.

A. The VanTrees’ Bayesian bound

In this section, we derive the VanTrees’ Bayesian bound [37,
38] as a benchmark against which any Bayesian estimator can
be compared. The bound informs us about the smallest BMSE
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Fig. 1. Sparse estimation with BM

achievable. Note that the proposed derivation of the Fisher
Information Matrix (FIM) is similar to the one proposed in
[39]. But our main concern here is to generalize the analysis in
the Bayesian context and to analyze this bound in the context
of the CS framework. Let θ̂ be an estimate of θS , for which
the BMSE is defined by :

BMSES = Ey,H̃S ,θS

∥∥∥θS − θ̂S(y, H̃S)
∥∥∥2

≥ Tr [BS ] (7)

where for 1 ≤ i, j ≤ L,

[B−1
S ]ij =

[
Var

(
∂ log p(y, H̃S ,θS)

∂θS

)]
ij

. (8)

The log-joint pdf is given by log p(y, H̃S ,θS) =
log p(y|H̃S ,θS) + log p(H̃S) + log p(θS).

From model (4) and (5), we can write that

y = H̃SθS −ESθS + n. (9)

Recalling that ES follows a matrix Gaussian distribution of
variance σ2

eI, and that the noise is also Gaussian of variance
σ2, the conditional observation distribution is given by

y|H̃S ,θS ∼ N
(
H̃SθS , (σ

2
e ||θS ||2 + σ2)I

)
. (10)

Furthermore ∂ log p(H̃S)/∂θS vanishes [39] and thus the
trace of the BCRB matrix is given by

BCRBBM = Tr [BS ] = Tr

[(
EθS ,H̃S

(FS) + PθS

)−1
]

(11)

where PθS = Var
(
∂ log p(θS)

∂θS

)
and the FIM FS is given by

the Slepian-Bang formula according to

FS =
H̃T
S H̃S

σ2
e ||θS ||2 + σ2

+
2σ4

eNθSθ
T
S

(σ2
e ||θS ||2 + σ2)2

. (12)

Noting that θS and H̃S are two multidimensional indepen-
dent processes, we have

EθS ,H̃S
(FS) = EθS

(
EH̃S

(H̃T
S H̃S)

σ2
e ||θS ||2 + σ2

)
(13)

+ EθS

(
2σ4

eNθSθ
T
S

(σ2
e ||θS ||2 + σ2)2

)
(14)

where EH̃S
(H̃T
S H̃S) = HT

SHS + σ2
eI. Finally, we obtain

BCRBBM = Tr
[ ((

HT
SHS + σ2

eI
)
P(σ2

e , σ
2)

+ Σ(σ2
e , σ

2) + PθS

)−1]
(15)

where

P(σ2
e , σ

2) = EθS

1

σ2
e ||θS ||2 + σ2

, (16)

Σ(σ2
e , σ

2) = EθS

2σ4
eNθSθ

T
S

(σ2
e ||θS ||2 + σ2)2

. (17)

B. Closed-form expressions of the saturated BMSE for i.i.d.
Gaussian amplitudes

We now make the following assumptions to derive a
closed-form expression of the saturated BCRB, denoted by
BCRBsat

BM, based on the BCRB given in (15):
A1. We consider the low noise variance regime since it is

well known that the BM problem appears only in the
regime where the noise variance is sufficiently low to
be dominated by σ2

e . This fact directly implies that the
BMSE of any sparse-based estimator in this context is
lower bounded by BCRBsat

BM and thus cannot be statisti-
cally efficient. As this property is a highly desired feature
in the context of the estimation theory, the reader can
measure the importance of the analysis of this context.
At contrary, when the noise variance is high with respect
to σ2

e , the uncertainty context is dominated by the error
due to the noise and cannot be measured and thus can be
ignored.

A2. The last assumption is to assume that the L amplitudes
belonging to the support, i.e. taking non-zeros values, fol-
low an i.i.d. centered Gaussian distribution with variance
σ2
θ/L. So, the sparse amplitude vector, denoted by θ, is

composed by K−L zeros-values and L random non-zero
amplitudes. In this case, the prior matrix of the BIM is
given by PθS = L

σ2
θ
IL.

Lemma 3.1: In the low noise variance regime, we have

lim
σ2→0

P(σ2
e , σ

2) =
L

(L− 2)σ2
eσ

2
θ

, (18)

lim
σ2→0

Σ(σ2
e , σ

2) =
2N

(L− 2)σ2
θ

IL. (19)

Proof We first prove (18). For centered i.i.d. Gaussian am-
plitudes of variance σ2

θ , we have 1/||θS ||2 ∼ Inv − χ2
L.

Thus, for L > 2, EθS
1

||θS ||2 = L
σ2
θ(L−2)

. Using the fact
that limσ2→0 P(σ2

e , σ
2) = 1

σ2
e
EθS

1
||θS ||2 , we obtain expression

(18).
To prove (19), it is easy to see that EθS

(
θSθTS
||θS ||4

)
is

a diagonal matrix proportional to the identity matrix, i.e.
EθS

(
θSθTS
||θS ||4

)
= t IL. Note that Tr

[
EθS

(
θSθTS
||θS ||4

)]
=
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EθS

(
1

||θS ||2

)
= L

(L−2)σ2
θ

. Thus, we obtain t = 1
(L−2)σ2

θ
.

Using the fact that limσ2→0 Σ(σ2
e , σ

2) = 2NEθS

(
θSθTS
||θS ||4

)
,

we obtain expression (19). �

An approximated lower bound for the BMSE saturated is
given in the following result.

Result 3.2: For i.i.d. Gaussian amplitude vector, for large
N and L of same order of magnitude and for σ2

e small with
respect to O(1/L), the BMSE of any sparse based estimators
is lower bounded by

BCRBsat
BM ≈ HN,Lσ2

θσ
2
e . (20)

where HN,L = NL
N−L .

Proof Using the above Lemma, we obtain

BCRBsat
BM ≈

σ2
θσ

2
e (L− 2)

L

× Tr

[(
HT
SHS + σ2

e

(
2
N

L
− 1 + L

)
I

)−1
]
.

(21)

For large L and N of same order of magnitude, 2NL − 1 +
L ≈ O(L). So, for σ2

e small with respect to O(1/L), a Taylor
approximation is

BCRBsat
BM ≈ σ2

θσ
2
e Tr

[(
HT
SHS

)−1
]

(22)

Random Matrix Theory [40,41] provides some powerful
(doubly) asymptotic, i.e. for N,L → ∞ with N/L → c
(meaning that L and N are of same order of magnitude),
closed-forms for the empirical moments. More precisely, we
have limN,L→∞

1
NTr

[(
HT
SHS

)−1
]
→ 1

c−1 in almost sure
convergence. In this work, this (doubly) asymptotic context is
not assumed. But, interestingly, the above limit for finites N
and L of same order of magnitude remains an accurate numer-
ical closed-form approximations given by Tr

[(
HT
SHS

)−1
]
≈

NL
N−L = HN,L. This property is illustrated on Fig. 2. Conse-
quently, using it with (22), we obtain (20). �

2 4 6 8

10
2

10
3

10
4

Ratio N
L

 

 

f (L) = Tr[(HT
SHS)

−1)]
H200,L

Fig. 2. Approximation of f(L) by HN,L (involved in the proof of Result
3.2) for large N , Vs. ratio N/L with σ2 = 10−10, K = 300 and 20 ≤ L ≤
N − 1 where N = 200.

IV. BICE FOR A STRUCTURED BM

In this section, the BiCE is introduced as an universal
solution to improve any sparse-based estimator under BM. A
complete statistical analysis of the BiCE is also provided.

A. Principles and description of the BiCE

The BiCE is designed as an efficient and computational
attractive post-processing estimator which is able to enhance
any sparse-based recovery estimator, denoted by θ̂(y), in case
of a structured BM.

In the BM problem (see section II.B), the corrupted dictio-
nary H̃ = ΨΦ̃ is available to our knowledge and is designed
based on a known but erroneous discretization parametrized by
{τ̃1, . . . , τ̃K} of a continuous kernel φ(t). As a consequence,
matrix [Φ̃]kk′ = φ(τ̃k′ − TSk) is known but corrupted by an
BM error with respect to the true but unknown discretization
{τ1, . . . , τK}. The initial idea of the BiCE is to remark that
as Φ̃ is available to us, its first-order derivative, given by
[ ˙̃Φ]kk′ = ∂φ(t)

∂t

∣∣∣
t=τ̃k′−TSk

, is also known. So, the first-order

derivative of the corrupted dictionary given by ˙̃H = Ψ ˙̃Φ can
be exploited jointly with the corrupted dictionary H̃. For a
given support, the subspaces 〈H̃S〉 and 〈 ˙̃HS〉 are available to
us and completely characterize the following range and null
subspaces:

R
(
E

H̃S
˙̃HS

)
= 〈H̃S〉 and N

(
E

H̃S
˙̃HS

)
= 〈 ˙̃HS〉 (23)

where E
H̃S

˙̃HS
stands for of an oblique projector [42] defined

by

E
H̃S

˙̃HS
= H̃S

(
H̃T
SP⊥˙̃HS

H̃S

)−1

H̃T
SP⊥˙̃HS

(24)

in which P⊥˙̃HS
is the orthogonal projector on subspace 〈 ˙̃HS〉⊥.

The BiCE is based on the two following steps.

1) Oblique projection of the measurement vector according
to

yS = E
H̃S

˙̃HS
y. (25)

2) Minimization over θS of the following standard least
squares criterion:

Γ(θS) = ‖yS − H̃SθS‖2 (26)

= ‖E
H̃S

˙̃HS
y − H̃SθS‖2. (27)

We will show in the sequel that the BM effect is mitigated
thanks to the considered oblique projection. Specifically, the
BiCE associated with a sparse-based estimator is described on
Fig. 3 and in Algorithm 1.
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vector θ
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dictionary
H = ΨΦ

n

Sparse
estimation A

θ̂
BiCE ˆ̄θŜy

H̃

L

BiCE-A

Fig. 3. Description of the BiCE-A. Note that algorithm A(·) stands for any sparse-based estimators.

Algorithm 1 BiCE-A(y, H̃, L, φ(t))

Require: y, H̃, L, φ(t), A(·)
Ensure: ˆ̄θŜ

1: Run the sparse-based estimator i.e.,

A(y, H̃, L, φ(t))→ θ̂. (28)

2: Compute ˙̃H = Ψ ˙̃Φ
3: From θ̂ compute Ŝ
4: Using Ŝ, compute H̃Ŝ and ˙̃HŜ
5: Compute E

H̃Ŝ
˙̃HŜ

defined in (24)
6: Minimize Γ(θŜ) defined by (27) according to

ˆ̄θŜ = H̃†
Ŝ
E

H̃Ŝ
˙̃HŜ

y. (29)

B. Analytic expressions of the bias vector and the BMSE
Result 4.1: For a perfect support estimation and for suffi-

ciently small σ2σ2
e , the conditional bias vector and the BMSE

can be approximated according to

b(θS) ≈ σ2
eH†SEHSḢS

ḦSθS , (30)

BMSEBiCE ≈ σ2FS + σ2
θ m

e
4 F̄S (31)

where me
4 = E(e4

i ) and

FS = Tr

[(
HT
ŜP⊥

ḢS
HŜ

)−1
]
, (32)

F̄S = Tr

[
ḦT
SP⊥

ḢS
HS

(
HT
SP⊥

ḢS
HS

)−2

HT
SP⊥

ḢS
ḦS

]
(33)

where Ḧ is the second-order derivative of the dictionary
matrix.

Proof See the appendix VII-A. �

Hereafter, the robustness of the BiCE is examined in the
BM scenario, i.e., where σ2

e is small but dominates the noise
variance σ2.

Result 4.2: In the BM context, the BMSE of the BiCE is
given by

BMSEBiCE ≈ σ2
θm

e
4F̄S = O(me

4). (34)

Proof The proof is straightforward. �

C. Statistical efficiency of the BiCE

1) Without BM : Here, we show that the accuracy of a
sparse-based estimation scheme is not degraded by the BiCE
post-processing where there is no BM. We begin by the
derivation of the biased Interfering-ECRB (I-ECRB) for the
projected measurement vector y onto the subspace 〈ḢS〉⊥.

Lemma 4.3: The biased Interfering-ECRB (I-ECRB) [43]
with respect to the projected measurements U̇T

Sy according
to the orthogonal decomposition P⊥

ḢS
= U̇SU̇

T
S verifies the

following inequality:

E
(
||θS − θ̂S

(
U̇T
Sy
)
||2
)
≥ CS|U̇T

Sy (35)

where
CS|U̇T

Sy ≈ σ
2FS + σ2

θσ
4
e F̄S (36)

where quantities FS and F̄S are given by expressions (32) and
(33), respectively.

Proof See the appendix VII-B. �

Thanks to Lemma 4.3 and Result 4.1, we can formulate the
following remark.

Remark 4.4: For the scenario where there is no BM (σ2
e →

0), we have:
• The BiCE is conditionally unbiased.
• The BMSE of the BiCE converges toward CS|U̇T

Sy given
in (36).

This remark is important because it means that the BiCE
when there is no BM remains statistically efficient with
respect to the projected measurement vector. This is a form of
statistical efficiency.
But this property means that the BiCE efficiency may be sub-
optimal. Indeed, the most favorable or ideal scenario is de-
scribed by the unbiased ECRB, i.e. the ECRB for unprojected
measurement vector and for an unbiased estimator. This lower
bound is

E
(
||θS − θ̂S (y) ||2

)
≥ CS|y = σ2Tr

[(
HT
SHS

)−1
]
. (37)

It is easy to show that CS|U̇T
Sy > CS|y, thus theoretically,

the BiCE efficiency is sub-optimal. But in practice, as we
will show in the simulation section, the biased I-ECRB is
numerically very close to the ideal bound CS |y.
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2) With BM:
a) General expression:

Result 4.5: In the case of BM, the I-ECRB, CS|U̇T
Sy, is a

lower bound of the BMSE of the BiCE.

Proof In the case of BM, the statistical efficiency of the BiCE
is given by the following approximation:

BMSEBiCE − CS|U̇T
Sy ≈ σ

2
θ(me

4 − σ4
e )F̄S . (38)

Using the Jensen’s inequality for a quadratic (convex)
function, we have me

4 ≥ σ4
e and thus BMSEBiCE ≥ CS|U̇T

Sy.

b) Illustration for a Generalized Gaussian distribution
of the error: To illustrate the BMSE of the BiCE and its
statistical efficiency the error vector is assumed to follow
a centered Generalized Gaussian distribution [44] such as
e` ∼ GN (0, σ2

e
Γ(1/s)
Γ(3/s) , s). The Generalized Gaussian distribu-

tion is a general distribution which encompasses the Laplacian
(s = 1), Gaussian (s = 2) and uniform (s → ∞) distribu-
tions. The k-th moment of a centered Generalized Gaussian
distribution is given by me

k = σke

√
Γ(1/s)
Γ(3/s)

k
Γ((k+1)/s)

Γ(1/s) . Thus

me
2 = σ2

e and me
4 = σ4

eks where ks = Γ(1/s)Γ(5/s)
Γ(3/s)2 . Let

σe = d/6 to ensure that for s→∞ the support of the Uniform
distribution matches with the grid spacing d. In this case, the
BM variance is σ2

e = d2/36 and the 4-th order moment is
given by me

4 = ksd
4/(36)2. Note that ks > 1 which shows

regarding equation (34) that the BiCE improves drastically
the estimation robustness in the BM scenario when the grid
spacing d < 1 for a reasonably small additional computational
cost. The statistical efficiency of the BiCE is

BMSEBiCE − CS|U̇T
Sy ≈ σ

2
θσ

4
e F̄S(ks − 1) (39)

which is a decreasing function with respect to s. Thus, the
statistical efficiency of the BiCE is in O(σ4

e ) and the higher
s the better the efficiency of BiCE. Thus, the sharpest prior
leads to the lowest statistical efficiency as illustrated in Fig.
8.

D. Evaluation of the dominating computational cost in Flops

In this section, the dominating computational cost of the
BiCE is given and compared to the OMP computational cost.
The OMP complexity is in O(LNK) for large K [45]. The
OMP is known to have a relatively low computational cost
with respect to other sparse-based estimators.

The BiCE involves as a first step, the computation of a (N−
L)-rank orthogonal projector, P⊥

ḢS
which can be evaluated at

the cost O((N − L)NL) which is the cost of a reduced-rank
SVD. The second step is the projection Z = P⊥˙̃HS

H̃S which

can be evaluated in O(N2L) and finally, the last step is the
resolution of an ordinary LS criterion given by ZTZˆ̄θS =
Zy which is evaluated in O(NL2). So, we can conclude that
the dominating cost of the BiCE is O(N2L). As N � K
by assumption, we can conclude that the BiCE dominating
computational cost is much lower than the dominating cost of
the OMP.

V. APPLICATION TO THE COMPRESSIVE SAMPLING OF
NON-BANDLIMITED SIGNALS

To illustrate our results, we consider the challenging prob-
lem of the sampling of non-bandlimited stream of pulses. A
typical non-bandlimited continuous-time signal [46,47] which
violates the Shannon’s sampling theory [10] is given by

x(t) =
∑
`∈S

θ`δ(t− τ`) (40)

where δ(t) is the Dirac delta symbol and signal x(t) is
parametrized by L time-delays and amplitudes, denoted by
{τ`, θ`}`∈S , respectively. Note that this model is widely used
in signal-based applications and exhibits sparsity in the time
domain.
Let g(t) be a sampling kernel1 which verifies the Strang-Fix
conditions [51]. Given the available vector s = [s1 . . . sK ]T

constituted by the collection of the sampled coefficients ob-
tained by the noisy uniform sampling of x(t) according to

sk =

∫
g(t− (k − 1)TS)x(t)dt+ nk (41)

in which TS = 1, nk is a real discrete zero-mean white
Gaussian noise process of variance σ2 and∫

g(t− (k − 1)TS)x(t)dt =
∑
`∈S

θ`g(τ` − (k − 1)TS), (42)

the problem of interest can be described as the estimation
of the 2L unknown parameters of interest. We can find several
efficient estimators in the literature [46,47,51].
Unlike the traditional approaches, the considered sampling
problem is formulated, here, in the CS framework. To do so,
the following basis matrix is defined as [Φ]kk′ = g

(
τk′
TS
− k
)

where we have considered a regular K-length partition of
the time-delay range and a sampling kernel given by g(t) =
1
TS

sinc(t) [46,47]. In this section, the time-delays are gen-
erated as L < N integer values extracted from a random
permutation of the set {1, . . . ,K}. As a consequence, matrix
Φ can be approximated as the K-dimensional ”delta spikes”
basis and can be considered as orthonormal. The entries of the
measurement matrix Ψ are generated as an i.i.d. realization of
the distribution N (0, 1/N). Consequently, as the measurement
matrix follows the requirements of section II.A, it follows that
the dictionary matrix H = ΨΦ is incoherent. This means
that the RIP holds with high probability if the compressive
measurement vector given by y = Ψs is a N -length vector
with N = O(L log(K/L)) [1,34,52] which is smaller than
K. So, the compressive sampling model is formally similar to
model (4) and thus can be formulated in the CS framework.

A. Saturated BMSE and BCRB

On Fig. 4, we have drawn the BMSE of the OMP with and
without BM and the corresponding BCRB as a function of the
SNR = E(||θS ||2)/E(||n||2) in dB. As an initial observation,
we can note that the BM effect is highly problematic in the

1Note that the best choice of this kernel is under some aspects always an
open problem [48]–[50].
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regime where the SNR is sufficiently high, i.e., when the noise
variance is dominated by σ2

e . In our simulation set-up, this
SNR limit is around 10 dB. In the case of no BM, we verify
as expected that the OMP BMSE reaches the BCRB without
BM for a sufficiently large SNR. On the other hand, the BMSE
of the OMP with BM suffers from the well-known BMSE
saturation effect even in the high SNR regime and for a perfect
estimation of the support S [16]–[20]. In addition, this figure
shows that the proposed lower bounds under BM, namely
BCRBBM and BCRBsat

BM, accurately predict this behavior.
On Fig. 5, the saturated value of the bound, BCRBsat

BM,
given in (20) is drawn as a function of the ratio N/L and for
different σ2

e . Even if the doubly asymptotic framework of the
RMT is not fulfilled here, we can note the good agreement
of the approximation BCRBsat

BM with the exact BCRB for
different values of σ2

e and for a wide range of ratio N/L, but
not too close to the limit case of N/L → 1. So, BCRBsat

BM

is an accurate prediction of the saturated BMSE effect due to
the BM.
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Fig. 4. BMSEs Vs. SNR in dB. We consider the OMP estimator with and
without BM and the corresponding BCRB. The approximation BCRBsat

BM is
given in (20). We fix L = 50 i.i.d. Gaussian amplitudes, N = 200, K = 300
and σ2

e = 10−4.
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Fig. 5. BCRBBM and BCRBsat
BM, Vs. ratio N/L with σ2 = 10−10, K =

300, 20 ≤ L ≤ N − 1 where N = 200 and for different σ2
e .

B. Numerical accuracy of the BiCE

Before showing the BMSE measurements of the BiCE, we
illustrate on Fig. 6, the theoretical BMSE of the proposed
estimator given in (31), the approximated biased I-ECRB
and the ECRB are computed. At low SNR when the noise
dominates the BM effect, the theoretical approximated BMSE,
and the two lower bounds are merged, as expected since it
is well-known that the BM effect appears at high SNR. At
contrary, for a sufficiently high SNR (around 20 dB on Fig.
6), the BM becomes the main contribution and dominates the
noise. In this case, we can see that the theoretical approximated
BMSE given in (31) and the biased I-ECRB well predict the
saturated effect due to the BM. This last observation has to
be understood relatively to the ECRB corresponding to the
most favorable scenario since this bound has been derived
for an unbiased estimator and without BM. Fig. 7 considers
the same set-up as in Fig. 6 but is drawn with respect to
σ2

e . We first note that even if σ2
e is small the biased I-

ECRB cannot meet the ideal bound given by the ECRB. But,
the two bounds remains relatively close for σ2

e < 10−3. A
more important observation is that for small σ2

e the theoretical
BMSE of the BiCE coincides with the biased I-ECRB. This
observation illustrates the intimate dependency between of
the BiCE and the presented biased I-ECRB. For higher σ2

e ,
the BMSE of the BiCE and the I-ECRB are not fully in
line. This can be explained by the fact that for high σ2

e , the
first-order Taylor expansion assumed in the BiCE becomes
a rough approximation. But, the biased I-ECRB remains a
lower bound that well predicts the behavior of the BiCE
estimation accuracy. To complete this analysis, expression (35)
is computed on Fig. 8 with respect to the different distributions
(parametrized by s) of the BM error of several variances.
This relation gives a closed-form expression of the difference
between the BMSE of the BiCE and the biased I-ECRB. We
can see that the choice of parameter s has a low impact on
the difference between the BMSE of the BiCE and the biased
I-ECRB. The distributions highly concentred around zero as
for instance the Laplacian distribution are less favorable than
the ”flat” distribution.

Toward the estimation of the support (i.e. the time-delays)
and of the amplitudes for the considered application, we pro-
pose a complete estimation scheme based on the architecture
described on Fig. 3. To do so, we consider three popular
sparse-based estimators: the OMP [11], the Cosamp [12] and
the BP [13] based on the SPGL1 MatLab ToolBox [53].
Unlike, the OMP and the Cosamp, the BP does not known
the cardinality of the support, so the L highest amplitudes
are selected in the output estimated vector. Note that the BP
assumes an a priori knowledge of the noise variance and of
the amplitude prior. This is not the case for the OMP and
the Cosamp. On Fig. 9, we plot the BMSE measurements
for the considered sparse-based estimators and their improved
versions denoted by BiCE-OMP, BiCE-Cosamp and BiCE-BP.
As expected, we first note that even for a small BM, the
BMSEs of the OMP, the Cosamp and the BP are saturated.
At contrary, with a small additional computational cost, our
proposed schemes, namely the BiCE-OMP, the BiCE-Cosamp



9

20 40 60 80

10
−5

10
0

SNR [dB]

B
M
S
E

 

 

BiCE
I-ECRB:C

S|U̇
T

y

ECRB:CS|y

Fig. 6. BMSE and ECRBs Vs. SNR in dB. The approximated BMSEs of
the BiCE are given in expression (45). In addition, the (biased) I-ECRB and
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given by (35) Vs. the choice of the distribution of the BM error (parametrized
by s) and for several values of σ2

e .

and the BiCE-BP exhibit considerably lower BMSEs. So, the
association of a standard sparse-based estimator and the BiCE
allows to improve efficiently the robustness to BM.
In addition, the BMSEs of the proposed schemes in presence
of BM are very close for a wide range of SNR to the ECRB,
given in (37), corresponding to the most favorable scenario.
As a conclusion, our proposed scheme is able to drastically
robustify against BM any sparse-based estimators with a low
additional computational cost and without the knowledge of
the true dictionary.
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Fig. 9. BMSEs Vs. SNR in dB. Standard sparse-based estimators and their
improved versions thanks to the BiCE. We fix N = 200, K = 300, L = 10,
σ2
e = 10−6, σ2

θ = 10−1.

VI. CONCLUSIONS

Compressed Sensing (CS) has a wide range of challenging
signal-based applications. The principle of CS or sparse-based
estimation techniques is to look for a decomposition (i.e.,
an amplitude vector) of the available measurement vector
into few basis vectors. But, in operational context, the basis
matrix may not to be perfectly known. In this work, we
assume that the basis matrix suffers form a mismatch error
and only the Basis Mismatch (BM) matrix is available to us.
Unfortunately, the plethora of existing sparse-based estimators
are not robust to the BM degradation. Specifically, even for
a small mismatch error which dominates the noise variance
and for a perfect estimation of the support, i.e., indexes of
the non-zero amplitudes, the estimation accuracy in terms of
Bayesian Mean Square Error (BMSE), of any sparse-based
estimators is saturated. This means that these estimators are
not statistically efficient and this is a serious drawback in the
concrete exploitation of CS or sparse-based methods. In this
context, we first derive the BCRB under BM and we provide
an approximated lower bound for the saturated BMSE. In the
second part, an estimator, called BiCE for Bias-Correction
Estimator, is proposed for considerably mitigate the BM degra-
dation. The BiCE acts as a post-precessing layer with respect
to any sparse-based estimator and improves the amplitude
vector estimation. The theoretical statistical analysis of the bias
and the BMSE of this estimator is derived. To illustrate the
interest of our approach, the BiCE is applied in the important
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context of the non-bandlimited signal compressive sampling.
Finally, we can say that the proposed estimator has several
advantages since the BiCE (i) is a blind algorithm, i.e., is
unaware of the uncorrupted dictionary matrix, (ii) is generic
since it can be associated to any sparse-based estimator, (iii)
is fast, i.e., the additional computational cost remains low and
(iv) has good statistical properties.

VII. APPENDIX

A. Proof of Result 4.1

The measurement vector admits the following expressions:

y = HSθS + n ≈ H̃SθS − ḢSdiag(eS)θS + n. (43)

First remark that the structure of the BM given in expression
(6), leads to the following key relation:

˙̃HS = ḢS + ḦSdiag(eS). (44)

Using the above relation with (43) leads to the following
expression:

y ≈
(
H̃S − ˙̃HSdiag(eS)

)
θS + ḦSdiag(eS)2θS + n

where eS is vector e restricted to the errors corresponding to
the support S. Now apply the BiCE in the case where the
support set has been estimated without error, i.e. Ŝ = S, we
obtain

ˆ̄θS ≈ H̃†SEH̃S
˙̃HS

[(
H̃S − ˙̃HSdiag(eS)

)
θS

+ ḦSdiag(eS)2θS + n
]

≈ θS + H̃†SEH̃S
˙̃HS

(
ḦSdiag(eS)2θS + n

)
and the estimation error is

ˆ̄θS − θS ≈ H̃†SEH̃S
˙̃HS

(
ḦSdiag(eS)2θS + n

)
.

The BMSE depending on the corrupted dictionary matrix is
given by

BMSEBiCE ≈
(
me

4σ
2
θ + σ2

)
Tr

[(
H̃T
SP⊥˙̃HS

H̃S

)−1
]
. (45)

However, this expression is not a closed-form expression
since the( 45) depends on the random corrupted matrices H̃S

and ˙̃HS . Therefore, we aim to approximate this expression
to find a closed-form expression depending only on the un-
corrupted dictionary matrices HŜ and ḢŜ . To do this, we
exploit the first-order Taylor approximation of the orthogonal
projector [54] given by P⊥˙̃HS

≈ P⊥
ḢS
−Λ where

Λ = Ḣ†TS diag(eS)ḦT
SP⊥

ḢS
+ P⊥

ḢS
ḦSdiag(eS)Ḣ†S .

Based on the above approximation and following the
methodology introduced in [43], we can derive after some
calculus the following first-order Taylor approximations:

H̃T
SP⊥˙̃HS

H̃S =
(
HS + ḢSdiag(eS)

)T
·(

P⊥
ḢS
− Ḣ†TS diag(eS)ḦT

SP⊥
ḢS
−P⊥

ḢS
ḦSdiag(eS)Ḣ†S

)
·
(
HS + ḢSdiag(eS)

)
≈ HT

SP⊥
ḢS

HS

and

H̃†SEH̃S
˙̃HS
≈
(
HT
SP⊥

ḢS
HS

)−1

H̃T
SP⊥˙̃HS

≈ H†EHSḢS
+ diag(eS)

(
HT
SP⊥

ḢS
HS

)−1

×
(
ḢT
SP⊥

ḢS
− ḦT

SP⊥
ḢS
−HT

SP⊥
ḢS

ḦSḢ
†
S

)
.

Based on the above expressions, we get that the approxi-
mation of the estimation error vector:

ˆ̄θS − θS ≈
[
H†EHSḢS

+ diag(eS)
(
HT
SP⊥

ḢS
HS

)−1

×
(
ḢT
SP⊥

ḢS
− ḦT

SP⊥
ḢS
−HT

SP⊥
ḢS

ḦSḢ
†
S

)]
n

+ diag(eS)2H†EHSḢS
ḦSθS .

Using that the noise is centered, E
(
diag(eS)2

)
= σ2

eI, and
tacking the expectation conditionally to θS of the estimation
error vector, the bias vector is given by (30).

For the purpose of brevity and as the derivations are tedious
but straightforward, only a coarse sketch of the derivation of
the BMSE is provided here (see the derivations in (46)). By
discarding the terms in O(σ2

eσ
2) in expression (46) gives, after

calculus, expression (31).

B. Proof of Lemma 4.3

Let θ̂S
(
U̇T
Sy
)

be a Bayesian estimator based on the

projected observation U̇T
Sy. Note that U̇T

Sy|θS ,HS ∼
N
(
U̇T
SHSθS , σ

2I
)

. The corresponding BMSE verifies the
following inequality:

E
(
||θS − θ̂S

(
U̇T
Sy
)
||2
)
≥ CS|U̇T

Sy

where CS|U̇T
Sy stands for the biased Interfering-ECRB (I-

ECRB)2 which is defined by

CS|U̇T
Sy = Tr

[(
I +

∂b(θS)

∂θS

)
F(θS |U̇T

Sy)−1

×
(
I +

∂b(θS)

∂θS

)T ]
+ EθS

(
||b(θS ||2

)
where we have remaking that there is no need to the ex-
pectation over the amplitude vector since F(θS |U̇T

Sy)−1 =

σ2
(
HT
SP⊥

ḢS
HS

)−1

and ∂b(θS)
∂θS

≈ σ2
eH†SEHSḢS

ḦS are not
functions of the amplitude vector. The expected norm of the
bias in the above biased I-ECRB is given by

EθS

(
||b(θS ||2

)
≈ σ4

eσ
2
θ F̄S .

Discarding the terms in O(σ2
eσ

2) or in O(σ4
eσ

2) with
respect to the term in O(σ2) for sufficiently small σ2

eσ
2, we

obtain after calculus,

Tr
[(

I +
∂b(θS)

∂θS

)
F(θS |U̇T

Sy)−1

×
(
I +

∂b(θS)

∂θS

)T ]
≈ σ2FS

where FS has been given in (32). Consequently, the biased
I-ECRB takes expression (36).

2The biased I-ECRB is the expected bound over vector θS of the biased
I-CRB given in [43] and defined with respect to the projected measurement
vector U̇T

Sy.
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BMSEBiCE ≈ σ2Tr

[(
H†EHSḢS

)2
]

+ σ2
eσ

2Tr

[((
HT
SP⊥

ḢS
HS

)−1 (
ḢT
SP⊥

ḢS
− ḦT

SP⊥
ḢS
−HT

SP⊥
ḢS

ḦSḢ
†
S

))2
]

+me
4σ

2
θTr

[(
H†EHSḢS

ḦS

)2
]

≈ σ2Tr

[((
HT
SP⊥

ḢS
HS

)−1

HT
SP⊥

ḢS

)2
]

+ σ2
eσ

2Tr

[(
HT
SP⊥

ḢS
HS

)−2 (
ḢT
SP⊥

ḢS
− ḦT

SP⊥
ḢS
−HT

SP⊥
ḢS

ḦSḢ
†
S

)2
]

+me
4σ

2
θTr

[((
HT
SP⊥

ḢS
HS

)−1

HT
SP⊥

ḢS
ḦS

)2
]

(46)
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