Roman Andreev

LEARNING STOCHASTIC EIGENVALUES

Keywords: 2010 Mathematics Subject Classification. 15B51, 35R60, 62M45, 62M40, 65N25, 65N30, 65Y05, 65Y20, 68T37 uncertainty quantification, stochastic eigenvalues, neural networks, sparse grids

The stochastic eigenvalue problem

In this note we compare the out-of-sample prediction of the Smolyak sparse grid interpolant with that of a simple artificial neural network for a stochastic eigenvalue problem. Our model problem is the parametric partial differential eigenvalue problem -∇ • (c(x, y)∇u(x, y)) + u(x, y) = λ(y)u(x, y),

x ∈ D, y ∈ Y,

where D := (-1, 1) 2 is the spatial domain and Y := [0, 1] M is the parameter space. We impose homogeneous Neumann spatial boundary conditions. The conductivity coefficient has the form c(x, y) := 1 + M m=1 ψ m (x)y m .

(2)

We think of the y m ∈ [0, 1] as independent uniformly distributed random variables. Throughout, the stochastic dimension is M = 16 and the ψ m are the indicator functions of the subdomains obtained by partitioning the spatial domain into 4 × 4 equal parts. The problem (1) will be discretized with P1 finite elements with 42 2 unknowns using the Matlab PDE toolbox.

Our quantity of interest is the set of the first 9 eigenvalues,

QI(y) := {1 = λ 1 (y) ≤ λ 2 (y) ≤ . . . ≤ λ 9 (y)}. (3)
For y = 0, the nontrivial ones are

λ 2,3 = 0+1 4 π 2 + 1, λ 4 = 1+1 4 π 2 + 1, λ 5,6 = 0+4 4 π 2 + 1, λ 7,8 = 1+4 4 π 2 + 1, λ 9 = 4+4 4 π 2 + 1
, and the last one is simple. However, as we vary the parameter, the eigenvalues split, leading to a nonsmooth (Lipschitz) dependence on the parameter. For example (figure on the right and Figure 1), interpolating linearly between c(•, y A) = 1 + 1 x1>0 and c(•, y B) = 1 + 1 x2>0 , the eigenvalues #2-3 remain almost identical (slight discretization asymmetry), #5-6 switch midway, while #7-8 (and also #9) remain distinct. These eigenvalue "crossings" or "switchings" make it difficult to capture the parameter dependence over the whole high-dimensional parameter space.

In the next section we discuss two regression methods for that purpose, both based on sampling in the parameter domain: Smolyak interpolation and artificial neural networks.

Two regression methods

The Smolyak interpolant [2]

. For each integer level ≥ 0 let i be a univariate interpolation operator on the interval [0, 1]. We will use the polynomial interpolation operator based on the Clenshaw-Curtis nodes

N 0 = { 1 2 } and N = { 1 2 (1 -cos(2 -kπ)) : 0 ≤ k ≤ 2 }, ≥ 1. (4)
For a multiindex set Λ ⊂ N M 0 , the multivariate Smolyak interpolation operator I Λ is defined by

I Λ := ν∈Λ (j ν1 ⊗ j ν2 ⊗ . . . ⊗ j ν M), (5)
where j := i -i -1 is the univariate increment and i -1 := 0. We confine the discussion to the multiindex sets of a given total level L ≥ 0,

Λ L := {ν ∈ N M 0 : m ν m ≤ L}, (6)
and write I L for the resulting multivariate Smolyak interpolation operator. This multiindex set is monotone: if µ ∈ Λ L and if ν ≤ µ coordinatewise then also ν ∈ Λ L . This, and the nestedness property N -1 ⊂ N of the Clenshaw-Curtis nodes imply the unisolvency of the multivariate interpolation operator on the sparse grid (observe the redundancy in the union)

N L := ν∈Λ L (N ν1 × N ν2 × . . . × N ν M) ⊂ Y, (7)
because the number of collocation nodes in (7) matches the dimension of the range of the interpolation operator (5). With M = 16 stochastic dimensions, the number of collocation nodes is

#N 0 = 1, #N 1 = 33, #N 2 = 545, #N 3 = 6 049, etc. We write Sm[L] := I L • QI : R M → R 9 (8)
for the interpolated quantity of interest. The "rectified linear unit" is the function ReLU : x → max{x, 0}, acting componentwise when applied to a vector. The number of "hidden units" will be H ∈ {M, 4M, 16M }.

A training set or a test set is a collection of reference nodes N ⊂ Y together with the precomputed values of the quantity of interest (3) at those nodes. We refer to a pair (y, QI(y)) as a sample. We consider two types of reference nodes for training the neural network:

(1) the Smolyak collocation nodes N L from (7), and

(2) randomly generated nodes N L of the same cardinality as N L . The random training set is generated only once for each level L and used for all configurations. By "average" we will mean the ensemble average over the training set or over the test set.

The learnable parameters are initialized uniformly at random from [-s, s] where s = 1/ √ M for the first linear layer and s = 1/ √ H for the second one. Then, they are trained in 10k iterations of stochastic gradient descent. Each iteration is a pass over the training set in random order; for each sample (y, q), the learnable parameters α are adjusted (all at once) by the gradient scheme

α ← α -r ∂ ∂α D(q, NN(y)), D(q, p) := 1 9 |q -p| 1 , (12)
where r > 0 is the learning rate (initially, r = 0.1) and | • | 1 is the vector 1-norm measuring the prediction discrepancy. The derivatives of ReLU and | • | 1 are right-continuous. After each iteration, the learning rate is set to 1% of the average prediction discrepancy. The input/output data are offset by their average during the training phase. We write NN[H, N] for the neural network with H hidden units trained on the node set N . We use the torch7 environment for the training.

Evaluation

Given a predictor P = (8) or P = (10), we evaluate its quality over a fixed test set of 100k samples on random test nodes N test ⊂ Y . The average and the standard deviation of the eigenvalues in the test set are as follows (rounded to two postcomma digits): Predictions along a non-axiparallel segment in the parameter space are shown in Figure 1.

eigenvalue: #1 #2 #3 #4 #
We examine the errors δ k (y) := (QI(y) -P(y)) k , y ∈ N test , (13) in the prediction of the k-th eigenvalue. Unsorted predictions occurred at the following rates:

Sm[L] NN[M, N L] NN[4M, N L] NN[M, N L] NN[4M, N L] L = 2 71.5% 3% 0.6% 0.31% 1.3% L = 3 63.5%
2.8% 0.15% 0.02% 0.01%

We call the average δk of δ k the prediction bias. Figures 23show the empirical cumulative distribution function of the bias-free prediction error (δ k -δk) along with the prediction bias δk for different predictors. We observe the following (recall, M = 16 is the stochastic dimension):

(1) For the nonsimple eigenvalues #2, 3, 5, 6, 7, 8, the neural network NN[4M, N L] trained on random nodes performs consistently better in terms of the prediction bias and prediction error variance than the Smolyak interpolation operator Sm[L].

(2) This behavior is reversed for the simple eigenvalues #4 and #9. This is explained by the analytic dependence of simple eigenvalues on the parameter [START_REF] Andreev | Sparse tensor approximation of parametric eigenvalue problems[END_REF]. Increasing the number of hidden units from H = 4M to H = 16M is still not sufficient to surpass interpolation. (3) Training the neural network on the Smolyak nodes as opposed to random nodes clearly decreases the prediction accuracy. (4) The neural network with M hidden units instead of 4M is less competitive on training level L = 3 than on L = 2. (5) The results are essentially the same for the quasi-random Sobol points (as generated by the Matlab command sobolset(M)) instead of the random ones (not shown). Finally, we note that neural networks and sparse grid interpolation have different distributions of offline/online costs. While the offline training of the neural network is lengthy, the online prediction is much quicker than sparse grid interpolation, especially for high-dimensional parameters. However, both effects can be offset by parallelization. Above: The eigenvalues #5-6 switch (left). The eigenvalues #7-8 come close (right). The Smolyak interpolant for #7-8 is outside the range shown. Above: The eigenvalues #2-3 are slightly distinct (due to discretization asymmetry). Above: The simple eigenvalues #4 and #9. Eigenvalue #9 comes close to #10 midway.

2. 2 .

 2 Artificial neural networks. We consider the simple class of neural networks of the form input (M parameters) linear -→ ReLU (H hidden units) linear -→ output (9 real values), (9) or as the composition NN : R M → R 9 , NN = (h → Ch + c) • ReLU • (y → By + b), (10) with the (9(H + 1) + H(M + 1)) learnable parameters {C ∈ R 9×H , c ∈ R 9 } = 2nd all-to-all layer, {B ∈ R H×M , b ∈ R H } = 1st all-to-all layer. (11)

Figure 1 .Figure 2 .

 12 Figure 1. Exact and predicted eigenvalues along the parameter space segment from c(•, y A) = 1 + 1 x1>0 to c(•, y B) = 1 + 1 x2>0 . See #2 for the annotation.

Figure 3 .

 3 Figure 3. As in Figure 2 for the eigenvalues #6, 7, 8, 9 (left to right).

† Université Paris Diderot, Sorbonne Paris Cité, LJLL (UMR 7598 CNRS), F-75205, Paris, France E-mail address: roman.andreev@upmc.fr

Acknowledgment

Supported by the Swiss NSF Advanced Postdoc.Mobility grant #164616.