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Abstract: Despite the extensive range of investigations on boronic acids (R-B(OH)2), some aspects
of their reactivity still need to be explored. This is the case for the coordination chemistry of
boronate anions (R-B(OH)3

´), which has only recently been started to be studied. The purpose
of this review is to summarize some of the key features of boronate ligands (and of their cyclic
derivatives, benzoxaborolates) in materials: (i) coordination properties; (ii) spectroscopic signatures;
and (iii) emerging applications.

Keywords: boronate; tri-hydroxyborate; benzoxaborolate; boronic acid; benzoxaborole; coordination
polymer; solid state NMR; IR spectroscopy; crystallography; DFT

1. Introduction

Boronic acids (R-B(OH)2) are a family of molecules which present a wide range of applications [1].
Their main use is as reagents in the Miyaura-Suzuki coupling reaction (2010 Nobel Prize), for
the formation of C-C bonds. Their reactivity is also of great interest for other fields [2–6], like in
organocatalysis [2] and for the development of sensors (detection of carbohydrates, H2O2, fluoride
anions, etc.) [3]. It has also been shown that some boronic acids can play the role of enzyme inhibitors [6],
as is the case for bortezomib (Velcade®), an anticancer molecule used for the treatment of multiple
myeloma (Figure 1).

Benzoxaboroles are cyclic derivatives of boronic acids [7]. While the first synthesis of
a benzoxaborole dates back to 1957, it is only in 2006 that the research community regained interest in
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these molecules, due to their capacity to bind to sugars at physiological pH, moreover with a higher
affinity than the corresponding boronic acids [8]. This property has since been widely exploited,
notably in the biomedical field, where a variety of benzoxaborole-based drugs have been developed,
with antifungal, anti-inflammatory, antimicrobial, antiprotozoal, antiviral or anticancer properties.
In 2014, the first benzoxaborole-based drug, tavaborole (AN2690—Figure 1), received FDA approval
for the treatment of onychomycosis [9].
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exposed at the periphery of the material so that its intrinsic reactivity can be exploited to provide a 
given property to the material (e.g., capacity to bind to diols). This is for example the case for 
polymers developed for the detection of dopamine [12], for chromatographic columns designed for 
the separation of sugars [11,13], and for mesoporous silica nanoparticles allowing the controlled 
release of insulin [14]. Another possibility which has been looked into consists of using the boronic 
acids themselves as building blocks for the preparation of functional (nano)materials. For example, 
covalent organic frameworks (COFs) have been synthesized from boronic acid precursors, in view of 
gas storage and molecular electronics applications [10,15].  

In contrast to boronic acids and benzoxaboroles, their anionic counterparts, boronates and 
benzoxaborolates, had up until recently hardly been looked into as possible building blocks for 
materials applications. This is surprising considering the large number of studies involving other 
organic oxo-anions like phosphonates (R-PO2(OH)−,R-PO32−) and carboxylates (R-COO−) which can 
be found in the literature, where they serve as building blocks for the preparation of coordination 
networks or Metal Organic Frameworks (MOFs), and more generally hybrid organic-inorganic 
materials. The purpose of this article is thus to highlight the work performed over the past five years 
regarding the preparation of the first materials based on boronate and benzoxaborolate units, in 
which the boron is in a tetrahedral configuration (Figure 2).  

In the first part, the intrinsic coordination properties of boronate and benzoxaborolate anions 
will be described, by looking at the crystal structures of phases prepared starting from very simple 
boronic acids and benzoxaboroles. In the second part, the spectroscopic signatures of boronates and 
benzoxaborolates in these materials will be highlighted, as they are of importance for the study of 
more complex hybrid organic-inorganic materials, for which, in some cases, no crystal structure is 
available. Finally, in the third part, the importance of boronates/benzoxaborolates for the preparation 
of new families of materials will be underscored, and emerging applications of (nano)materials 
involving these anions will be highlighted.  
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Figure 1. Representation of the structures of two organoboron drugs commercialized for their
anti-cancer (left) and antifungal (right) properties.

In addition to applications in molecular chemistry, boronic acids and benzoxaboroles are also
increasingly used in materials chemistry [1,7,10,11]. In most cases, the organoboron function is
exposed at the periphery of the material so that its intrinsic reactivity can be exploited to provide
a given property to the material (e.g., capacity to bind to diols). This is for example the case for
polymers developed for the detection of dopamine [12], for chromatographic columns designed for the
separation of sugars [11,13], and for mesoporous silica nanoparticles allowing the controlled release
of insulin [14]. Another possibility which has been looked into consists of using the boronic acids
themselves as building blocks for the preparation of functional (nano)materials. For example, covalent
organic frameworks (COFs) have been synthesized from boronic acid precursors, in view of gas storage
and molecular electronics applications [10,15].

In contrast to boronic acids and benzoxaboroles, their anionic counterparts, boronates and
benzoxaborolates, had up until recently hardly been looked into as possible building blocks for
materials applications. This is surprising considering the large number of studies involving other
organic oxo-anions like phosphonates (R-PO2(OH)´, R-PO3

2´) and carboxylates (R-COO´) which
can be found in the literature, where they serve as building blocks for the preparation of coordination
networks or Metal Organic Frameworks (MOFs), and more generally hybrid organic-inorganic
materials. The purpose of this article is thus to highlight the work performed over the past five years
regarding the preparation of the first materials based on boronate and benzoxaborolate units, in which
the boron is in a tetrahedral configuration (Figure 2).

In the first part, the intrinsic coordination properties of boronate and benzoxaborolate anions
will be described, by looking at the crystal structures of phases prepared starting from very simple
boronic acids and benzoxaboroles. In the second part, the spectroscopic signatures of boronates and
benzoxaborolates in these materials will be highlighted, as they are of importance for the study of more
complex hybrid organic-inorganic materials, for which, in some cases, no crystal structure is available.
Finally, in the third part, the importance of boronates/benzoxaborolates for the preparation of new
families of materials will be underscored, and emerging applications of (nano)materials involving
these anions will be highlighted.
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for the first time [17]. 

The pKa of the boronic acid/boronate couple is generally > 8, and depends on the nature of the 
organic chain linked to the boron [1]. For phenylboronic acid (C6H5-B(OH)2), the pKa is ~ 8.9 (and thus 
similar to that of boric acid B(OH)3), while for methylboronic acid it is ~ 10.4 [1,18]. The pKa of the 
benzoxaborole/benzoxaborolate couple is ~7.3 due to the cyclic form of the organoboron function. 
For benzoxaboroles, pKa values vary depending on the nature of the substituents on the aromatic 
ring, as well as on the methylene group [19]. It is worth noting that the pKa values of boronic acids 
and their  derivatives are globally higher compared to those of other organic acids such as carboxylic 
and phosphonic (Table 1). 

Table 1. pKa values (in water, at 25 °C) of simple boronic acids/benzoxaboroles, in comparison to other 
organic acids. 

Acid-Base Couple pKa Reference
C6H5-B(OH)2/C6H5-B(OH)3− ~8.9 [1] 
CH3-B(OH)2/CH3-B(OH)3− 10.4 [18] 

C7H6BO(OH)/C7H6BO(OH)2− 1 ~7.3 [19] 
CH3COOH/CH3COO− 4.8 [20] 

CH3-PO(OH)2/CH3-PO2(OH)- 2.2 [21] 
CH3-PO2(OH)−/CH3-PO32− 7.5 [21] 
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can potentially play the role of tridentate ligands with respect to metal cations. Examples along this 
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Figure 2. Representation of the structures of boronic acids/boronates (a); and benzoxaboroles/
benzoxaborolates (b). Only the tetrahedral-boron forms of boronate/benzoxaborolate anions are
shown here.

2. Crystal Structures Involving Simple Boronates and Benzoxaborolates

2.1. Acid-Base Properties of Boronic Acids and Benzoxaboroles

In water, boronic acids and benzoxaboroles behave as Lewis acids. Their conjugate bases are
the boronate (also called tri-hydroxyborate) and benzoxaborolate anions, in which the boron is in
a tetrahedral environment (Figure 2). The tetrahedral nature of the boronate anion was elucidated
in 1959 [16], but it is only in 2006 that a crystal structure involving such a boronate anion was described
for the first time [17].

The pKa of the boronic acid/boronate couple is generally >8, and depends on the nature of the
organic chain linked to the boron [1]. For phenylboronic acid (C6H5-B(OH)2), the pKa is ~8.9 (and thus
similar to that of boric acid B(OH)3), while for methylboronic acid it is ~ 10.4 [1,18]. The pKa of the
benzoxaborole/benzoxaborolate couple is ~7.3 due to the cyclic form of the organoboron function.
For benzoxaboroles, pKa values vary depending on the nature of the substituents on the aromatic ring,
as well as on the methylene group [19]. It is worth noting that the pKa values of boronic acids and
their derivatives are globally higher compared to those of other organic acids such as carboxylic and
phosphonic (Table 1).

Table 1. pKa values (in water, at 25 ˝C) of simple boronic acids/benzoxaboroles, in comparison to other
organic acids.

Acid-Base Couple pKa Reference

C6H5-B(OH)2/C6H5-B(OH)3
´ ~8.9 [1]

CH3-B(OH)2/CH3-B(OH)3
´ 10.4 [18]

C7H6BO(OH)/C7H6BO(OH)2
´ 1 ~7.3 [19]

CH3COOH/CH3COO´ 4.8 [20]
CH3-PO(OH)2/CH3-PO2(OH)´ 2.2 [21]

CH3-PO2(OH)´/CH3-PO3
2´ 7.5 [21]

1 This entry corresponds to the benzoxaborole/benzoxaborolate couple (Figure 2b).

In boronates and benzoxaborolates, the negative charge is shared between the three oxygen
atoms. This is what makes these anions attractive for coordination chemistry applications, as they can
potentially play the role of tridentate ligands with respect to metal cations. Examples along this line
are provided in the following sub-sections.
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2.2. Boronate-Based Crystal Structures with Alkaline-Earth Metals

A series of investigations aiming at describing the intrinsic coordination properties of the
R-B(OH)3

´ anions in materials have been reported [22–24]. Boronic acids bearing non-coordinating
R- chains were used for this purpose (R- = C6H5-, C4H9-, C8H17-), in order to ensure that the materials
would form only based on the metal-ligand interactions. Reactions were carried out in water (or in
water-ethanol mixtures), by adding a solution of a metal cation into a solution of the boronate (Figure 3),
in order to precipitate a crystalline phase (e.g., a coordination polymer). Due to the high pKa values
of the boronic acid/boronate couples, alkaline-earth metal cations were selected for the precipitation.
Indeed, these ions should not lead to the competitive formation of metal-hydroxide precipitates during
the reaction, in contrast with most other metal ions [20].
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Figure 3. Reaction scheme for the formation of metal boronate crystalline structures by precipitation.

Materials were isolated in most cases as microcrystalline powders [22–24]. Scanning electron
microscopy (SEM) analyses showed that in many cases, the crystallites had a sheet-like morphology,
as illustrated in Figure 4 for the Sr-phenylboronate monohydrate and Sr-butylboronate phases.
Structure determination was made possible by (i) recording X-ray diffraction powder patterns using
synchrotron radiation; (ii) performing a series of additional characterization (notably by IR and solid
state NMR); (iii) modeling the structures computationally, notably to position the hydrogen atoms
and to compute the NMR parameters. All materials were found to present a layered arrangement.
More specifically, they were found to be made of planes of metal cations interconnected by boronate
ligands, with the organic chains facing each other in the interlayer space (Figure 4).
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Based on the different crystal structures solved, the coordination modes of the boronates could be
determined. These anions were found to play the role of bridging ligands, by coordination to two to
three distinct alkaline-earth metals (Figure 5). This demonstrates that boronates, in which the boron
atom is in a tetrahedral geometry, can serve as building blocks for the construction of coordination
networks. Another possibility, not developed in this review but which further underscores the
versatility of boronate ligands, concerns the use of the deprotonated boronate forms (in which the
boron is in a planar environment), to construct hybrid organic-inorganic materials [26].
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2.3. Benzoxaborolate-Based Crystal Structures with Alkaline-Earth Metals

The synthetic strategy used in the case of benzoxaborolates is the same as for the boronates.
The simplest benzoxaborolate (Figure 2b) was precipitated using an aqueous solution of alkaline
earth metal, the reaction being carried out at room temperature, under reflux, or using hydrothermal
conditions (Figure 6) [27]. In the vast majority of cases, microcrystalline precipitates were obtained,
except for two phases, for which single crystals suitable for X-ray diffraction analyses were isolated.
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Figure 6. Reaction scheme for the formation of metal benzoxaborolate crystalline structures
by precipitation.

To date, the structures of three phases have been solved: two involving Mg2+ and one Ca2+ [27].
Although these structures have an overall layered organization, as shown by powder X-ray diffraction
analyses, the benzoxaborolates here play two different roles: either they bridge different metal
cations, or they simply serve as counter-anions, as illustrated in Figure 7 for the Mg-benzoxaborolate
decahydrate phase.
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Figure 7. Coordination environment of Mg2+ in the Mg-benzoxaborolate decahydrate phase, showing
that the metal cation is linked to 6 water molecules, while the benzoxaborolate anions balance the
charge [27].

Based on the crystal structures solved, several coordination modes to Mg2+ and Ca2+ have
been identified for benzoxaborolates (Figure 8). Clearly, a very large diversity of binding modes is
present, the benzoxaborolate anion being bound to 1 to 3 different metal cations, with both the OH
groups and the oxygen atom of the cycle serving as binding sites. Interestingly, in the case of the
Ca phase, a deprotonated anion was also observed (Figure 8, dashed orange line). Forming such
a deprotonated species was somewhat unexpected given that reactions had been carried out in water,
and that so far deprotonated benzoxaborolates had only been observed when working in anhydrous
conditions [28]. It is interesting to notice that in this Ca-benzoxaborolate structure, in which both planar
and tetrahedral benzoxaborolate anions are present [27], the Ca . . . O distances are all essentially the
same, meaning that the Ca . . . O distance is not directly dependant on the protonation state of the
oxygen in the benzoxaborolate.
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Figure 8. Coordination modes of the simplest benzoxaborolate ligand with respect to alkaline earth
metals (M = Mg, Ca). The deprotonated benzoxaborolate found in the Ca structure is outlined in
dashed orange. Adapted with permission from [27] (copyright American Chemical Society, 2015).

3. Boronate and Benzoxaborolate Spectroscopic Signatures in Materials

3.1. Solid State NMR

Each of the materials presented in the previous section was characterized by multinuclear solid
state NMR. Such characterization is useful not only to validate the structural models proposed on
the basis of the X-ray diffraction analyses, but also to establish the NMR signatures of boronate
and benzoxaborolate anions in solids, which can then be helpful for the study of more complex
organic-inorganic materials.

Among the different NMR-active nuclei present in boronates and benzoxaborolates (1H, 13C, 11B,
17O), boron-11 is the most straightforward to look at by solid state NMR. It is a spin-3/2 quadrupolar
nucleus of high natural abundance (~80%), which allows to clearly distinguish 11B atoms depending
on whether they are in a planar or tetrahedral environment [29]. The 11B magic angle spinning (MAS)
solid state NMR spectra of some of the alkaline-earth metal boronate and benzoxaborolate structures
are shown in Figure 9. In both cases, very different spectra are obtained for the organoboron anions, in
comparison to the corresponding boronic acid and benzoxaborole forms, both in terms of chemical shift
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(δiso), and of quadrupolar parameters (CQ and ηQ). For example, for boronic acids and benzoxaboroles,
CQ ~ 2.8–3.3 MHz, while for boronates and benzoxaborolates, CQ ~ 1.1–1.5 MHz.

Concerning boronates, the 11B lineshape depends on the nature of the organic chain linked to
the boron, and on the coordination environment of the anion. In cases when several coordination
environments are present in a crystal structure, these can be resolved using 2-dimensional experiments
like the multiple-quantum magic angle spinning (MQMAS [29,30]) experiment [23]. Concerning
benzoxaborolates, different signatures are observed for the tetrahedral benzoxaborolate anions
depending on their local environment in the crystal structure. Moreover, the deprotonated
benzoxaborolate anion identified in the Ca-benzoxaborolate phase (in which the boron is in a planar
configuration—see Figure 8) has a completely different 11B NMR signature, with δiso and CQ values
more similar to those of the benzoxaborole, but with a different asymmetry parameter ηQ [27].
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as well as for the corresponding boronic acid and benzoxaborole. The spectra shown here were recorded
under MAS at two different magnetic fields (9.4 T for boronic acids, vs. 14.1 T for benzoxaboroles),
and present second order quadrupolar lineshapes. Adapted with permission from [27] (copyright
American Chemical Society, 2015).

13C solid state NMR experiments have also been carried out on the different materials. In the
case of the butylboronate phases, they were found to be particularly useful to validate the structural
model proposed by X-ray diffraction [23]. 1H solid state NMR analyses, performed using either fast
MAS conditions and/or with 1H homonuclear decoupling sequences (e.g., DUMBO- decoupling
under mind-boggling optimization [31]), were shown to be informative on the number of strong
H-bonds present in the materials, and to complement well the studies performed using infra-red
(IR) spectroscopy [22–24]. Finally, it should be noted that 17O solid state NMR experiments have not
been reported on these phases so far, due to its very unfavorable NMR properties (very low natural
abundance and low resonance frequency) [29,32].

Another way to gain insight into the structure of coordination networks involving boronate and
benzoxaborolate ligands consists of studying the NMR signatures of the metal ions to which they
are bound. Most of the crystalline structures mentioned above have been characterized using 25Mg,
43Ca and 87Sr solid state NMR, as illustrated in Figure 10. Alkaline earth metals are very challenging
for NMR, due to their low resonance frequency, low natural abundance, and/or large quadrupole
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moment, and their isotopic enrichment is costly [33–35]. Nevertheless, 25Mg, 43Ca, and 87Sr NMR
spectra can provide important clues concerning the local environments of the metals. In particular,
δiso(43Ca) is highly informative about the local structure around calcium, and it was shown that it
could be used as a very sensitive probe for positioning the boronate O-H groups around the Ca2+,
using a combined experimental-computational approach based on advanced DFT calculations [22].
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and [27] (copyright American Chemical Society, 2015).

3.2. Infrared Spectroscopy

Within the crystal structures of alkaline-earth metal boronates and benzoxaborolates, other weak
interactions are present in addition to the metal-ligand ones. In particular, hydrogen-bonds play a key
role. They can be identified easily by infrared spectroscopy, leading to broad bands between ~3500
and 2900 cm´1. The other OH groups, which are not involved in any H-bonding, lead to sharper
bands at higher frequencies, as illustrated in Figure 11 for two phenylboronate phases.

To go further in the interpretation of these IR spectra, the O-H stretching modes were calculated
by DFT, starting from the crystal structures in which the protons had been positioned using
an “NMR-crystallography” type of approach [22–24]. As shown in Figure 11, although small shifts
remain between experimental and calculated values, DFT calculations can nevertheless be useful to
identify some of the stretching bands, such as those belonging to the bridging water molecules in the
case of the Sr(C6H5-B(OH)3.H2O phase [24]: the O-H stretching modes of water appear as a broad
resonance beneath the sharper C-H stretching frequencies of the phenyl group.

Overall, the studies performed on the alkaline-earth metal boronates and benzoxaborolates have
shown that the use of multinuclear solid state NMR and infra-red spectroscopy, in conjunction with DFT
calculations, are essential to fully grasp the structure of the coordination networks. This is particularly
true when trying to establish the H-bond network in structures for which no single-crystal X-ray
diffraction data were available. Understanding in detail the structure of boronate-based coordination
networks can be of importance to fully rationalize their properties, and hence combining advanced
spectroscopic analyses with advanced computational methods is crucial.
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(copyright Wiley-VCH, 2013), and [24] (copyright Wiley-VCH, 2015).

4. Emerging Applications of Materials Involving Boronates and Benzoxaborolates

4.1. New Functional Coordination Polymers Based on Boronates

4.1.1. Boronates as a New Class of Ligands

In order to demonstrate the utility of boronate ligands for the construction of novel coordination
networks, their coordination properties were compared to those of other tridentate ligands, such
as phosphonates. Phosphonates are indeed already widely used for the preparation of MOFs
and other hybrid materials [36]. Four Ca-phosphonate phases were thus synthesized, using
either phenylphosphonate or butylphosphonate ligands: Ca(C6H5-PO2(OH)2, Ca(C6H5-PO3)¨ 2H2O,
Ca(C4H9-PO2(OH))2, Ca(C4H9-PO3)¨ H2O [37]. The mode of binding of these phosphonates to
Ca2+, whether in their simply deprotonated form R-PO2(OH)´ or their fully deprotonated form
R-PO3

2´, were then compared to those of the phenylboronate (C6H5-B(OH)3
´) and butylboronate

(C4H9-B(OH)3
´) anions. As shown in Figure 12, for each organic chain (phenyl or butyl), the modes

of binding of the phosphonates differed from those of the boronates, whatever the protonation
state of the phosphonate. Similar conclusions could also be drawn from the comparison of the
strontium structures Sr(C6H5-B(OH)3)2¨ H2O and Sr(C6H5-PO2(OH))2 [22]. Overall, these comparisons
underscore the difference and complementarity of boronates with respect to common ligands like
phosphonates, and point to the fact that boronates can act as a new class of building blocks for
preparing coordination polymers.
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Actualité Chimique, 2014), and [37] (copyright Royal Society of Chemistry 2013).

4.1.2. Structures Based on Mixed Boronate/Carboxylate Ligands

Recently, Guillou and coworkers demonstrated the usefulness of boronate type ligands for
preparing functional molecular materials [38]. A series of crystalline coordination polymers were
synthesized using a mixed carboxylate-boronate ligand (prepared from 4-carboxyphenylboronic
acid), and lanthanide ions ((Pr3+´Nd3+, Sm3+´Lu3+, and Y3+). They were characterized by various
techniques including X-ray diffraction and multinuclear solid state NMR (11B, 13C and 89Y NMR).
The luminescence and magnetic properties of the compounds were explored. Some of the materials
were found to have temperature-dependent luminescent properties, which is interesting for the
development of molecular thermometers. Moreover, the magnetic properties of the Yb3+ derivative
were promising, as it was found to exhibit a single molecular magnet behavior. Overall, this shows that
the way in which boronates coordinate to metal ions and thereby lead to new coordination networks
in comparison to more conventional ligands like carboxylates and phosphonates is highly attractive to
prepare novel functional materials.

4.2. Hybrid Materials Involving Benzoxaborolates: Towards New Ways of Formulating Benzoxaborole Drugs

With the increasing number of benzoxaborole-containing drugs under study, the possibility of
formulating them in a wide range of common biomaterials needs to be explored. In particular, the
fast expansion of nanomedicine has led to the development and use of a variety of nanoparticles for
drug-delivery applications [39–41]. In this context, we have recently looked into the formulation of
simple benzoxaboroles (including the antifungal drug AN2690) in two materials already studied in
the pharmaceutical context: an inorganic nanomaterial (Mg-Al layered double hydroxide—LDH) and
a biopolymer (poly-L-lactic acid—PLLA) [27,42]. In the former case, the idea was to intercalate the
benzoxaborole taken in its anionic form (benzoxaborolate) between the positively charged sheets of
the LDH, while in the later case, the benzoxaborole was directly incorporated in the PLLA film.



Crystals 2016, 6, 48 11 of 13

Concerning the LDH-based materials, several different characterization techniques were applied,
in particular multinuclear solid state NMR (11B, 13C, 1H, 27Al, 25Mg, 19F) [27]. Interpretations of the
11B NMR spectra were made on the basis of the data which had been obtained for the crystalline
alkaline-earth benzoxaborolate phases mentionned in section 2.3 and in Figure 9b. It was shown
that the intercalation of the organoboron molecules was successful, and that both the benzoxaborole
and benzoxaborolate forms could be present in the interlayer space. Moreover, it was found that
the materials need to be stored at low temperature to avoid any degradation of the molecules in
the interlayer space and to prevent any further evolutions of their layered organization towards
second staging structures. Finally, release kinetics were studied in a simulated physiological fluid,
showing a rapid release of the intercalated molecules due to exchange of the benzoxaborolates with
the phosphates present in the medium [27]. Subsequently, it was possible to tune these release kinetics
by preparing PLLA-LDH composite materials, which were obtained by dispersion of the intercalated
LDH particles in a PLLA film [42]. Overall, these studies are the first to look into the structure of
more complex hybrid organic-inorganic (nano)materials involving benzoxaborolates, and important
conclusions regarding the choice of the biomaterial for benzoxaborole drug formulations could be
reached. However, it should be noted that investigations are still in progress to understand better
the mode of intercalation of benzoxaborolates with respect to inorganic materials like LDH, using
combined experimental-computational approaches.

5. Conclusions

In this review, we have summarized some of the key results reported in recent years on crystalline
structures involving boronate and benzoxaborolate anions, by emphasizing their coordination
properties and spectroscopic signatures. Although the number of crystalline materials involving these
anions is still scarce, the few examples reported to date underscore the true potential of these anions
for the preparation of new coordination networks (with applications in magnetism or luminescence
for example), or for the search of new means to formulate organoboron drugs. Among the future
directions to explore, the elaboration of nanoversions of the boronate-based coordination networks
will also need to be looked into, because this should help expand their range of properties, as already
shown in the literature for other families of coordination networks [43,44].
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