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FOURIER COEFFICIENTS OF SYMMETRIC POWER
L-FUNCTIONS

HENGCAI TANG & JIE WU

Abstract. Let f be a Hecke eigencusp form of even integral weight k or Maass
cusp form for the full modular group SL2(Z). Denote by λsymmf (n) the nth
normalized coefficient of the Dirichlet expansion of the mth symmetric power L-
function associated to f . In this paper, we establish some bounds for∑

n6x

λsymmf (n),
∑
n6x

λf (nm),

which improve the corresponding results of Lau & Lü [9].

1. Introduction

Let H∗k(Γ) (resp. M∗(Γ)) be the set of normalized Hecke eigencusp forms of even
integral weight k (resp. the set of normalized Maass eigencusp forms) for the full
modular group Γ = SL(2,Z). Each f ∈ H∗k(Γ) ∪M∗(Γ) has the Fourier expansion
at the cusp ∞. Denote by λf (n) the nth normalized Fourier coefficient of f (also
the eigenvalue of f under the Hecke operator Tn). Then from the theory of Hecke
operators, it is now well-known that λf (n) satisfies the Hecke multiplicity

λf (m)λf (n) =
∑
d|(m,n)

λf

(mn
d2

)
(1.1)

for all integers m > 1 and n > 1. Thus for each prime number p there are two
complex numbers αf (p) and βf (p) such that

(1.2) αf (p)βf (p) = 1

and

(1.3) λf (p
ν) = αf (p)

ν + αf (p)
ν−1βf (p) + · · ·+ βf (p)

ν

for all integers ν > 1. The Ramanujan conjecture states that

(1.4) |αf (p)| = |βf (p)| = 1

for all prime numbers p. For holomorphic f , this has been proved by Deligne [3] in
1974. Hence for each prime number p there is a unique θf (p) ∈ [0, π] such that

λf (p) = 2 cos θf (p).(1.5)
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Acoording to the Sato-Tate conjecture, the sequence {θf (p)}p is equi-distributed on
[0, π] with respect to the measure 2

π
sin2 θ dθ, i.e., for any fixed [a, b] ⊂ [0, π],

(1.6)
∣∣{p 6 x : θf (p) ∈ [a, b]}

∣∣ ∼ x

log x
· 2

π

∫ b

a

sin2 θ dθ (x→∞).

This has been proved recently by Barnet-Lamb, Geraghty, Harris et Taylor [1]). For
Maass cusp forms, both conjectures are widely open. In place of (1.4), we have only

(1.7) p−7/64 6 |αf (p)| 6 p7/64, p−7/64 6 |βf (p)| 6 p7/64

for all primes p, due to Kim & Sarnak [6].
For each f ∈ H∗k(Γ) ∪M∗(Γ), its mth symmetric power L-function is defined by

L(s, symmf) :=
∏
p

∏
06j6m

(
1− αf (p)m−jβf (p)jp−s

)−1
(<e s > 1).

Denote by λsymmf (n) the nth coefficient of the Dirichlet expansion of L(s, symmf).
Then it is evident that it is multiplicative function and that (1.5) and (1.7) imply

(1.8) |λsymmf (n)| 6

{
dm+1(n) if f ∈ H∗k(Γ)

n7/64dm+1(n) if f ∈M∗(Γ)

for n > 1, where dm(n) is the nth coefficient of the Dirichlet series ζ(s)m (Riemann
ζ-function). When m = 1, we write L(s, sym1f) = L(s, f) and we have λsym1f (n) =
λf (n) for all integers n > 1.

In this paper, we are interested in the asymptotical behavior of∑
n6x

λsymmf (n),
∑
n6x

λf (n
m) as x→∞.

The case of m = 1 has a long and rich history, see [20] for a detailed description.
Using the Sato-Tate conjecture (1.6), the best known result is∑

n6x

λf (n)�f x
1/3(log x)−(1−8/3π)

due to Rankin [15]. Without (1.6), this inequality holds with a weaker exponent

(1.9) θ1 := 33
35
− 102+7

√
21

210

(
6−
√

21
5

)1/2 − 102−7
√

21
210

(
6+
√

21
5

)1/2
= 0.118 . . .

in place of 1 − 8
3π

= 0.151 . . . . (see [17] for Ramanujan’s τ -function and [20] for
general case) The higher degree cases have been received recently much attention,
see [4, 11, 12, 9, 13]. In particular, Lau & Lü [9] proved the following result : Let
f ∈ H∗k(Γ). Assuming that L(s, symmf) is automorphic, then we have∑

n6x

λsymmf (n)�f,m xm/(m+2) (m > 2)(1.10)

∑
n6x

λf (n
m)�f,m

{
x1/2 log x (m = 2)

xm/(m+2) (m > 3)
(1.11)

for all x > 2. According to [5, 6, 7], L(s, symmf) is automorphic for 1 6 m 6 4.
Therefore for these values of m, bounds (1.10) and (1.11) are true unconditionally.
The same bounds also hold for Maass eigenforms if we assume (1.4).
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The aim of this paper is to prove better bounds.

Theorem 1. Let f ∈ H∗k(Γ) and m > 1 be an integer.
(i) Assuming that L(s, symmf) is automorphic, we have∑

n6x

λsymmf (n)�f,m xm/(m+2)(log x)−δm(1.12)

∑
n6x

λf (n
m)�f,m

{
x1/2(log x)1−δ2 (m = 2)

xm/(m+2)(log x)−δm (m = 1 or m > 3)
(1.13)

for x > 3, where

(1.14) δm := 1− 4(m+ 1)

πm(m+ 2)
cot

(
π

2(m+ 1)

)
.

(ii) Bounds (1.12) and (1.13) hold unconditionally for 1 6 m 6 4, and we have

δ1 = 1− 8
3π

= 0.1511 . . . , δ2 = 1− 3
√

3
2π

= 0.1730 . . . ,

δ3 = 1− 16(1+
√

2)
15π

= 0.1803 . . . , δ4 = 1− 5
√

5+2
√

5

6π
= 0.1836 . . . .

(iii) The sequence {δm}m>1 is strictly increasing and lim
m→∞

δm = 1− 8
π2 = 0.1894 . . . .

Remark 1. Recently Lü and Tang [13] obtained the following unconditional bound∑
n6x

λf (n
m)�f x e−cm(f)

√
log x (x > 3)

for f ∈ H∗k(Γ) and 5 6 m 6 8, where the cm(f) > 0 are constants depending on f
and m. Clearly (1.19) of Theorem 3 below implies trivially that∑

n6x

λf (n
m)�f,m x(log x)−δm (x > 3, m > 9).

Theorem 2. Let f ∈ M∗(Γ) and m > 1 be an integer. Assuming the Ramanujan
conjecture (1.4) and that L(s, symjf) is automorphic for 1 6 j 6 2m, we have∑

n6x

λsymmf (n)�f,m xm/(m+2)(log x)−(mηm+2θ1)/(m+2)(1.15)

∑
n6x

λf (n
m)�f,m

{
x1/2(log x)1−(η2+θ1)/2 (m = 2)

xm/(m+2)(log x)−(mηm+2θ1)/(m+2) (m = 1 or m > 3)
(1.16)

for x > 3, where θ1 is given as in (1.9) and

(1.17) ηm :=
m(m+ 2)

m2 + 3m+ 1

(
m+ 3

m+ 2
−
√
m+ 2

m+ 1

)
> 0.

Remark 2. Assuming the Ramanujan conjecture (1.4) for f ∈ M∗(Γ), estimation
(1.22) of Theorem 4 below implies trivially that∑

n6x

λf (n
m)�f,m x(log x)−θ1 (x > 3, m > 1).
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We shall follow Rankin’s method [15] to prove Theorems 1 and 2. For this, we
need to evaluate the quantities∑

n6x

|λsymmf (n)|,
∑
n6x

|λf (nm)|.

In the holomorphic case, we shall combine Wirsing’s well known mean value theorem
on multiplicative functions (see Lemma 2.1 below) and Shiu’s result on short sums
of multiplicative functions [16, Theorem 1] with the Sato-Tate conjecture (1.6) to
prove the following result.

Theorem 3. Let f ∈ H∗k(Γ) and m > 1 be an integer.
(i) We have ∑

n6x

|λsymmf (n)| ∼ Cm(f)x(log x)−δm ,(1.18)

∑
n6x

|λf (nm)| ∼ Dm(f)x(log x)−δm ,(1.19)

unconditionally for x → ∞, where δm is given as in (1.14) and Cm(f), Dm(f) are
two positive constants depending on f and m.

(ii) For any ε > 0, we have

(1.20)
∑

x<n6x+y

|λsymmf (n)|,
∑

x<n6x+y

|λf (nm)| �f,m,ε y(log x)−δm ,

uniformly for x > 3 and xε 6 y 6 x, where the implied constant depends on f,m, ε.

In the case of Maass cusp forms, we can apply Corollary 3 of Nair & Tenenbaum
[14] and Wu & Xu’s method [21] to prove the following result.

Theorem 4. Let f ∈M∗(Γ) and m > 1 be an integer.
(i) Assuming the Ramanujan conjecture (1.4), for any ε > 0 we have

(1.21)
∑

x<n6x+y

|λf (nm)| �f,m,ε y(log x)−θ1 (x > 3).

uniformly for x > 3 and xε 6 y 6 x, where the implied constants depend on f,m
and ε, and θ1 is given as in (1.9). In particular we have

(1.22)
∑
n6x

|λf (nm)| �f,m,ε x(log x)−θ1 (x > 3).

(ii) Assuming the Ramanujan conjecture (1.4) and that L(s, symjf) is automor-
phic for 1 6 j 6 2m, for any ε > 0 we have

(1.23)
∑

x<n6x+y

|λsymmf (n)| �f,m,ε y(log x)−ηm

uniformly for x > 3 and xε 6 y 6 x, where the implied constants depend on f,m
and ε, and ηm is given as in (1.17). In particular we have

(1.24)
∑
n6x

|λsymmf (n)| �f,m,ε x(log x)−θ1
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From Theorems 3 and 4, we can deduce Theorems 1 and 2 with the help of
Theorem 4.1 of Chandrasekharan and Narasimhan [2] (see Lemma 3.2 below).

Acknowledgement. This work was done during the visit of the first author to
Institut Élie Cartan de Lorraine. The hospitality and nice working conditions of
IECL were gratefully acknowledged.

2. Proofs of Theorem 3

First we cite well know Wirsing’s mean value theorem on multiplicative functions
[18, 19].

Lemma 2.1. Let g(n) be a non-negative multiplicative function such that∑
p6x

g(p) ∼ κ
x

log x
(x→∞),(2.1)

g(n) 6 Ad(n)B (n > 1),(2.2)

where κ,A,B are positive constants and d(n) is the divisor function. Then∑
n6x

g(n) ∼ Cgx(log x)κ−1 (x→∞),

where Cg is a positive constant depending on g.

Since |λsymmf (n)| and |λf (nm)| are non-negative multiplicative functions, it is
sufficient to show that they verify the conditions (2.1) and (2.2) of Lemma 2.1.

Denoting by Um(u) the mth Chebyshev polynomial of the second kind, then

λsymmf (p) = λf (p
m) = Um(λf (p)/2) = Um(cos θf (p)) =

sin((m+ 1)θf (p))

sin θf (p)
,

where θf (p) is defined as in (1.5). Since |Um(cos θf (p))| 6 m+ 1, we can write∑
p6x

|λsymmf (p)| =
∑
p6x

∫ |Um(cos θf (p))|

0

1 dt =

∫ m+1

0

∑
p6x

t6|Um(cos θf (p))|

1 dt.

Clearly

t 6 |Um(cos θf (p))| ⇔ θf (p) ∈
{
θ ∈ [0, π] : |Um(cos θ)| > t

}
=: Θm(t).

Since Um(u) is a polynomial, it is easy to see that Θm(t) is an union of finite disjoint
intervals. With the help of (1.6), we can deduce that

(2.3)
∑
p6x

|λsymmf (p)| ∼
2

π
δ∗m

x

log x
(x→∞),

where

δ∗m :=

∫ m+1

0

∫
Θm(t)

sin2 θ dθ dt.
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Now we compute δ∗m. Exchanging the order of integrations, we find that

δ∗m =

∫ π

0

|Um(cos θ)| sin2 θ dθ =

∫ π

0

| sin((m+ 1)θ)| sin θ dθ.

Setting ψ = ψm := π/(m+ 1), we can write

δ∗m =
m∑
k=0

(−1)k
∫ (k+1)ψ

kψ

sin((m+ 1)θ) sin θ dθ

=
m∑
k=0

(−1)k(m+ 1)

1− (m+ 1)2

[
sin θ cos((m+ 1)θ)− sin((m+ 1)θ) cos θ

m+ 1

](k+1)ψ

kψ

=
m+ 1

(m+ 1)2 − 1

m∑
k=0

[
sin((k + 1)ψ) + sin(kψ)

]
=

2(m+ 1)

m(m+ 2)
cot

(
π

2(m+ 1)

)
.

Inserting (2.3), it follows that

(2.4)
∑
p6x

|λsymmf (p)| ∼ (1− δm)
x

log x
(x→∞),

where

δm = 1− 2

π
δ∗m = 1− 4(m+ 1)

πm(m+ 2)
cot

(
π

2(m+ 1)

)
.

This shows that |λsymmf (n)| and |λf (nm)| satisfy the condition (2.1) with κ = 1−δm.
On the other hand, with the help of (1.8) and (1.5), it is easy to see that the

condition (2.2) also is verified. Thus the required asymptotical formulas (1.18) and
(1.19) follow from Lemma 2.1.

It is easy to verify that functions |λsymmf (n)| and |λf (nm)| satisfy the conditions
of Theorem 1 of Shiu [16] on short sums of multiplicative functions. Thus we have

(2.5)
∑

x<n6x+y

|λsymmf (n)|,
∑

x<n6x+y

|λf (nm)| � y

log x
exp

(∑
p6x

|λsymmf (p)|
p

)
uniformly for x > 3 and xε 6 y 6 x. Now (1.20) is an immediate consequence of
this and (2.3). This completes the proof of Theorem 3. �

3. Proof of Theorem 4

3.1. Proof of (1.21) and (1.22).
Firstly, we introduce Corollary 3 of Nair & Tenenbaum [14] which gave a sharp

bound for short sums of nonnegative arithmetic functions. Their result is very
general. We only need a very special case , i.e., [14, estimation (2)], for our purpose.
As usual denote by Ω(m) the total number of prime factors of m counted with
multiplicity. For A > 0, B > 0 and ε > 0, we define M (A,B, ε) the class of
non-negative arithmetic functions F (n) such that

(3.1) F (mn) 6 min
{
AΩ(m),mε

}
F (n) for (m,n) = 1.



FOURIER COEFFICIENTS OF SYMMETRIC POWER L-FUNCTIONS 7

Let Q ∈ Z[X] be an irreducible polynomial of degree g, having no fixed prime divisor.
Denote by ρQ(n) the number of roots of Q in Z/mZ and by ‖Q‖ the maximal value
of absolute values of its coefficients.

Taking k = 1 in Corollary 3 of [14], we obtain the following result.

Lemma 3.1. Under the previous notation, for any A > 1, B > 1, 0 < ε < (8g2)−1,
0 < δ 6 1 and F ∈M (A,B, εδ/3), we have∑

x<n6x+y

F (Q(n))� y
∏
p6x

(
1− ρQ(p)

p

)∑
n6x

F (n)ρQ(n)

n

uniformly for x > c0‖Q‖δ and x4g2ε 6 y 6 x, where the implied constant and the
constant c0 depend at most A,B, δ, ε and g.

Now we apply this result to

F (n) = |λf (n)|, Q(x) = xm, δ = 1.

Clearly Q(n) has no fixed prime divisor and we have g = m, ‖Q‖ = 1 and

ρQ(p) = 1 (for all primes p), ρQ(n) 6 m (for all integers n > 1).

Since we assume the Ramanujan conjecture (1.4), then we have |λf (n)| 6 d(n) for
all n > 1. Thus the function |λf (n)| ∈ M (2, Bε, ε) for any ε ∈ (0, (8m2)−1) and
some suitable constant Bε depending on ε. Hence, we have

(3.2)
∑

x<n6x+y

|λf (nm)| �f,m,ε y
∏
p6x

(
1− 1

p

)∑
n6x

|λf (n)|
n

uniformly for x > 3 and xε 6 y 6 x.
Under the Ramanujan conjecture (1.4) for f ∈M∗(Γ), Theorem 1 of Wu [20] gives

(3.3)
∑
n6x

|λf (n)| � x(log x)−θ1

for all x > 3, where θ1 is given as in (1.9). (Wu & Xu [21, Theorem 1] proved that this
inequality also holds unconditionally with a weaker exponent 3

2
−
√

2 = 0.0857 . . . .)
Now the required result (1.21) follows immediately from (3.2) and (3.3).
For any x > 10, inequality (1.21) with x = y = x/2k gives us

(3.4)

∑
n6x

|λf (nm)| =
∑

16k6(log x)/ log 2

∑
x/2k<n6x/2k−1

|λf (nm)|

�f,m

∑
16k6(log x)/ log 2

x

2k
log−θ1

(
x

2k

)
�f,m x(log x)−θ1 .

This proves (1.22).
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3.2. Proof of (1.23) and (1.24).
Firstly we prove two preliminary lemmas.

Lemma 3.2. Let f ∈ M∗(Γ) and m > 1 be an integer. Assuming the Ramanujan
conjecture (1.4) and that L(s, symjf) is automorphic for 1 6 j 6 2m, then we have∑

p6x

λf (p
m)2

p
= log2 x+O(1).(3.5)

∑
p6x

λf (p
m)4

p
= (m+ 1) log2 x+O(1).(3.6)

Proof. As usual denote by Un(x) the nth Chebyshev polynomial of the second kind.
Put Tn(x) := Un(x/2). In view of the identity (see [10, page 198])

Tm(x)2 =
m∑
n=0

T2n(x),

we have

Tm(x)4 =
m∑
n=0

m∑
n′=0

T2n(x)T2n′(x).

According to the Rankin-Selberg theory, it is known that∑
p6x

λsymnf×symn′f (p)

p
=

{
log2 x+O(1) if n = n′,

O(1) if n 6= n′.

In view of λsymnf×symn′f (p) = λsymnf (p)λsymn′f (p) = λf (p
n)λf (p

n′), the required
asymptotic formulas follow. �

The next lemma is a generalization of Wu-Xu’s inequality [21, page 452, line 18].

Lemma 3.3. Let m > 1 be an integer, κm := m2 + 3m+ 2 = (m+ 2)(m+ 1) and

a0(m) :=
(κm − 3)

√
κm + 2

2(κm − 1)2
> 0,

a1(m) :=
(κ2

m + 3)
√
κm − 4κm

2(κm − 1)2
> 0,

a2(m) := −
(κ2

m + κm)
√
κm − 2κ2

m

2(κm − 1)2
< 0.

Then we have

(3.7) t1/2 6 a0(m) + a1(m)t+ a2(m)t2 (0 6 t 6 1).

Proof. Consider the function

h(t) := t1/2 − a1(m)t− a2(m)t2 (0 6 t 6 1).

It is easy to check that h(κ−1
m ) = h(1), h′(κ−1

m ) = 0, h′′(κ−1
m ) = − (1+3κm)(1−κm)

4κ3m(κm+1)2
< 0

and lim
t→∞

h(t) = −∞. Thus h′(t) = 1
2
t−1/2

(
1 − 2a1(m)t1/2 − 4a2(m)t3/2

)
has three

zeros κ−1
m , tm, t

′
m on (0,∞) such that 0 < κm < tm < 1 < t′m <∞. So h(t) takes the

maximum at κ−1
m and 1 on [0, 1]. The result follows. �
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Now we are ready to prove (1.23) and (1.24).
Under the Ramanujan conjecture (1.4), we can apply inequality (3.7) with t =

(|λf (pm)|/(m+ 1))2 to write

|λf (pm)| 6 a0(m)(m+ 1) +
a1(m)

m+ 1
|λf (pm)|2 +

a2(m)

(m+ 1)3
|λf (pm)|4

for all primes p. By using this and Lemma 3.2, it follows that

(3.8)

∑
p6x

|λf (pm)|
p

6

(
a0(m)(m+ 1) +

a1(m)

m+ 1
+

a2(m)

(m+ 1)2

)
log2 x+O(1)

= (1− ηm) log2 x+O(1).

A simple calculation shows that

2(m+ 1)(κm − 1)2ηm = 2(m+ 1)(κm − 1)2 − 2(m+ 1)2 + 4κm − 2(m+ 2)κm

+ [(m+ 2)(κm + 1)− (m+ 1)2(κm − 3)− κ2
m − 3]

√
κm

= 2(κm − 1)[m(m+ 1)(m+ 3)−m(m+ 2)
√
κm],

which implies the expression (1.17) of ηm.
Under the Ramanujan conjecture (1.4), the function |λsymmf (n)| satisfies the con-

ditions of Theorem 1 of Shiu [16]. Thus (1.23) follows from (2.5) and (3.8).
In view of (1.1) and the Ramanujan conjecture (1.4), it is easy to show that

(3.9) L(s, symmf) = Gm(s)
∑
n>1

λf (n
m)n−s

for <e s > 1, where Gm(s) is a Dirichlet series absolutely convergent for <e s > 1
2

and G2(s) = ζ(2s). Thus with the the help of (1.22), a simple convolution argument
allows us to deduce (1.24).

4. Proof of Theorems 1 and 2

4.1. A theorem of Chandrasekharan and Narasimhan.
First we prove a lemma, which is a variant of Theorem 4.1 of [2] in the case of

the symmetric power L-functions.

Lemma 4.1. Let f ∈ H∗k(Γ) ∪M∗(Γ) and m > 1. Suppose that L(s, symmf) are
automorphic. Then for any 1 6 y 6 xm/(m+1), we have

(4.1)

∑
n6x

λsymmf (n)�f,m xm/2(m+1)
∑

n6xm/ym+1

|λsymmf (n)|n−1/2−1/2(m+1)

+ xm+m/2(m+1)y−(m+1)
∑

n>xm/ym+1

|λsymmf (n)|n−3/2−1/2(m+1)

+
∑

x<n6x+(m+1)y

|λsymmf (n)|+O(1).

Proof. Under our hypothesis, L(s, symmf) satisfies all conditions of Theorem 4.1 of
[2] with the parameters µn = λn = n, an = bn = λsymmf (n) and

A = 1
2
(m+ 1), ρ = m+ 1, δ = 1, q = −1

2
+ ε.
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Thus (4.14) of [2] becomes

(4.2)
∑
n6x

λsymmf (n) = y−(m+1)∆m+1
y Wm+1(x) +O

( ∑
x<n6x+(m+1)y

|λsymmf (n)|
)
,

where we have removed the term Q0(x) ≡ 0 (since L(s, symmf) is an entire function
under our hypothesis) and the term O(yxq−1(log x)r−1) = O(1).

By (4.6) and the formula below (4.18) of [2], we have

∆m+1
y Wm+1(x)� ym+1xm/2(m+1)

∑
n6xm/ym+1

|λsymmf (n)|n−1/2−1/2(m+1)

+ xm+m/2(m+1)
∑

n>xm/ym+1

|λsymmf (n)|n−3/2−1/2(m+1).

Inserting it into (4.2), we obtain (4.1). �

4.2. Proof of Theorem 1.
Now we are ready to complete the proof of Theorem 1.
With the help of (1.18), a simple partial integration gives

∑
n6xm/ym+1

|λsymmf (n)|n−1/2−1/2(m+1) � (xm/ym+1)1/2−1/2(m+1)(log x)−δm ,

∑
n>xm/ym+1

|λsymmf (n)|n−3/2−1/2(m+1) � (xm/ym+1)−1/2−1/2(m+1)(log x)−δm .

Inserting these and (1.20) into (4.1) of Lemmas 4.1, it follows that

∑
n6x

λsymmf (n)� xm/2y−m/2(log x)−δm + y(log x)−δm .

for all x > 3 and xε 6 y 6 xm/(m+1). Thus (1.12) follows from the choice of
y = xm/(m+2).

In view of (3.9), bound (1.13) is an immediate consequence of (1.12) by a simple
convolution argument. This porves the assertion (i).

Next we treat the assertion (iii). Consider the function

g(t) :=
t

1− t2
cot
(π

2
t
)

(t ∈ (0, 1
2
]).
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We have

g′(t) =
πt(1 + t2)

2(1− t2)2

(
sin(πt)

πt
− 1− t2

1 + t2

)
=
πt(1 + t2)

2(1− t2)2

∑
k>1

(−1)k−1

(
2− π2k

(2k + 1)!

)
t2k

=
πt(1 + t2)

2(1− t2)2

∑
n>1

{(
2− π4n−2

(4n− 1)!

)
−
(

2− π4n

(4n+ 1)!

)
t2
}
t4n−2

>
πt(1 + t2)

2(1− t2)2

∑
n>1

{(
2− π4n−2

(4n− 1)!

)
− 1

4

(
2− π4n

(4n+ 1)!

)}
t4n−2

> 0 (t ∈ (0, 1
2
]),

since each term of the last series is positive. Thus g(t) is increasing on (0, 1
2
]. Noticing

that δm = 1− 4
π
g
(

1
m+1

)
, the sequence {δm}m>1 is increasing.

4.3. Proof of Theorem 2.
With the help of (1.24), a simple partial integration gives∑

n6xm/ym+1

|λsymmf (n)|n−1/2−1/2(m+1) � (xm/ym+1)1/2−1/2(m+1)(log x)−θ1 ,

∑
n>xm/ym+1

|λsymmf (n)|n−3/2−1/2(m+1) � (xm/ym+1)−1/2−1/2(m+1)(log x)−θ1 .

Inserting these and (1.23) into (4.1) of Lemmas 4.1, it follows that∑
n6x

λsymmf (n)� xm/2y−m/2(log x)−θ1 + y(log x)−ηm

for all x > 3 and xε 6 y 6 xm/(m+1). Thus (1.15) follows from the choice of
y = xm/(m+2)(log x)−2(θ1−ηm)/(m+2).

Bound (1.16) is an immediate consequence of (1.15) by a simple convolution
argument as before. This finishes the proof of Theorem 2.
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[12] G. S. Lü, On an open problem of Sankaranarayanan, Sci. China Math., 39 (2009), 1023–1028.
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[16] P. Shiu, A Brun-Titchmarsh theorem for multiplicative functions, J. Reine Angew. Math.,

313 (1980), 161–170.
[17] G. Tenenbaum, Remarques sur les valeurs moyennes de fonctions multiplicatives, Enseigne-
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