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SHIFTED CONVOLUTION OF CUSP-FORMS WITH θ-SERIES

GUANGSHI LÜ, JIE WU & WENGUANG ZHAI

Abstract. In this paper we apply simple approachs to improve a recent result
due to Luo, concerning a shifted convolution sum involving the Fourier coefficients
of cusp forms with those of theta series. In order to explore what should be the
best possible bound, a mean square result of this shifted convolution sum is also
established.

1. Introduction

Suppose λ1(n) and λ2(n) are two arithmetic functions, b > 0 is an integer. It is
a classical and important problem in analytic number theory to study the shifted
convolution sum ∑

n6x

λ1(n)λ2(n+ b).

There are a large number of papers in this direction. For example, when λ1(n) =
λ2(n) = τ(n), the Dirichlet divisor function, this problem is the so-called additive
divisor problem [1, 6, 8, 9, 12, 18, 19]. For other interesting cases, see [14, 15, 7].

Recently Luo [16] investigated a mixed shifted convolution sum

(1.1)
∑
n>1

λf (n+ b)r`(n)φ(n),

where λf (n) is the nth normalized Hecke eigenvalue of a holomorphic cusp form of
weight k and level N , b > 0 is a fixed integer,

r`(n) :=
∣∣{(n1, . . . , n`) ∈ Z` : n2

1 + · · ·+ n2
` = n

}∣∣
and φ(t) is a smooth function with support in [x/2, 5x/2], satisfying φ(j)(t) �j

(x/J)−j for all real numbers t ∈ R, all integers j > 0 and 1 6 J 6 xβ with β < 1.
In order to estimate the sum (1.1), he first established a Voronoi formula for r`(n)
and then combined this formula with the upper bound for the Salié sum to derive
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the following result [16, Theorem] : For any ε > 0, the inequality

(1.2)
∑
n>1

λf (n+ b)r`(n)φ(n)�

{
x`/2−(`−1)/4+εJg` if 4 - ` or b 6= 0

x`/2−(`−1)/4+ε(x1/4+ε + Jg`) if 4 | ` and b = 0

holds for all x > 2, where g` is the smallest integer such that g` > (` + 1)/2 † and
the implied constant depends on f , b, ` and ε. With a suitable choice of φ(t) and
J , the inequality (1.2) implies immediately the following result [16, Corollary] : For
` > 2, k > `/2 + 3 and ε > 0, the inequality

(1.3) Sf,b,`(x) :=
∑
n6x

λf (n+ b)r`(n)�f,b,`,ε x
`/2−ϑ`+ε

holds for all x > 2, where ϑ` := (`− 1)/(4g` + 4). In particular

ϑ2 = 1
12
, ϑ3 = 1

6
, ϑ4 = 3

16
, ϑ5 = 1

4
, ϑ6 = 1

4
, ϑ` 6 `−1

2`+6
< 1

2
(` > 7).

The first aim of this paper is to propose a better bound for Sf,b,`(x).

Theorem 1. Let f be a cusp form of weight k and level N and let ` > 2 be an
integer. For any ε > 0, we have

(1.4) Sf,b,`(x) :=
∑
n6x

λf (n+ b)r`(n)�f,`,ε x
`/2−ϑ`+ε

uniformly for x > 2 and 0 6 b 6 x, where

ϑ3 = 1
4
, ϑ4 = 1

2
, ϑ5 = 1

2
, ϑ` = 2

3
(` > 6).

In addition, if we assume N = 1, then (1.4) holds for ` = 2 with ϑ2 = 1
6
.

Remark 1. Theorem 1 improves Luo’s (1.3) in three directions; it enlarges the expo-
nent ϑ`, relaxes the restricted condition k > `/2 + 3 and removes the dependence of
b. Our method is completely different from that of [16]. Our new idea is to explore
the regularity of r`(n) by the circle method in analytic number theory and Siegel’s
mass formula. Thanking to these classic tools of analytic number theory, we can
show that the influence of r`(n) to the bound [22, (1.10) and Theorem 2]

(1.5)
∑
n6x

λf (n)�f x
1/3(log x)2/(

√
πΓ(5/2))−1

is rather little. More precisely by using the circle method we shall give a very simple
proof of ϑ` = 1

2
for ` > 3. Further when ` > 6, with the help of Siegel’s mass formula

we shall prove a better exponent θ` = 2
3
, which means that our bound for Sf,b,`(x)

is of the same quality as (1.5). Finally the case of ` = 2 requires a more delicate
consideration (see the end of Section 3).

†It seems that Luo’s proof only could show that g` is the smallest integer such that g` > (`+1)/2.
This means that ϑ3 = 1

8 and ϑ5 = 1
5 instead of ϑ3 = 1

6 and ϑ5 = 1
4 .
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Remark 2. In fact our method allows us to consider a more general case. Let
` > 2, y := (y1, . . . , y`) ∈ Z` and A = (aij) be an integral matrix such that
aii ≡ 0 (mod 2) for 1 6 i 6 `. The positive definite quadratic form Q(y) is defined
by Q(y) = 1

2
ytAy. For each n > 1, define

r(n,Q) :=
∣∣{y ∈ Z` : Q(y) = n

}∣∣.
Thus r`(n) = r(n,Q0) with Q0 = y2

1 + · · ·+ y2
` . Similar to Sf,b,`(x), we define

(1.6) Sf,b,Q(x) :=
∑
n6x

λf (n+ b)r(n,Q).

Define F to be a class of cusp forms, which consists of holomorphic cusp forms with
respect to any finite volume discrete subgroup (such that ∞ is a singular cusp of
width 1), any positive real weight and any multiplier systems, as well as Maass cusp
forms of any weight and any level [11, 2, 4]. Since the estimate (2.1) below holds
for all f ∈ F ([10, Theorem 5.3] and [11, Theorem 8.1]), our proof of Theorem 1
implies that

Sf,b,Q(x)�f,Q,ε x
`/2−1/2+ε

holds uniformly for 1 6 b 6 x, provided ` > 5.

A natural question is what should be the best bound for Sf,b,`(x). It is well-known
that [3, Theorem 2])∑

n6x

λf (n) = Ω±

(
x1/4 exp

{
D(log log x)1/4

(log log log x)3/4

})
where D > 0 a constant. A slight weaker Ω-result∑

n6x

λf (n) = Ω(x1/4)

is supported by the asymptotic formula (see [21])∫ X

1

∣∣∣∑
n6x

λf (n)
∣∣∣2 dx = CfX

3/2 +O
(
X(logX)2

)
,

for X > 2, where Cf is a positive constant. On the other hand, we have r`(n) �
n`/2−1 (` > 3). From the above facts it seems reasonable to propose the following
conjecture.

Conjecture. Let f be a cusp form of weight k and level N . Let b > 0 and ` > 3 be
two integers. For any ε > 0, we have

(1.7) Sf,b,`(x)�f,b,`,ε x
`/2−3/4+ε

for x→∞.

It seems rather difficult to establish (1.7). However we can prove that the bound
(1.7) is true on average for ` > 5 (see (1.8) and (1.9) below). For this, we shall study
the square mean of Sf,b,`(x). At this time, our method also allows us to deal with
the more general case Sf,b,Q(x).



4 GUANGSHI LÜ, JIE WU & WENGUANG ZHAI

Our second aim is to prove the following asymptotic formula.

Theorem 2. Let f be a cusp form of weight k and level N . Let Q(y) be a positive
definite quadratic form defined as above. If ` > 6, then we have

(1.8)

∫ X

1

|Sf,b,Q(x)|2 dx = Cf,b,Q

∫ X

1

x`−2(x+ b)1/2 dx+Of,Q

(
X`−7/12(logX)1/2

)
=

Cf,b,Q
`− 1/2

X`−1/2 +Of,Q

(
bX`−3/2 +X`−7/12(logX)1/2

)
uniformly for X > 2 and 0 6 b 6 X, where the constant Cf,b,Q is defined by (4.12)
below, and the implied constants depend on f and Q.

Remark 3. In Section 3, we shall prove also that the inequality

(1.9)

∫ X

1

|Sf,b,5(x)|2 dx�f,ε X
`−1/2+ε

holds uniformly for X > 1 and 0 6 b 6 X.

2. Preliminary Lemmas

In order to prove our theorems, we need the following lemmas.

Lemma 2.1. Let f be a cusp form of weight k and level N .
(a) The estimate

(2.1)
∑
n6x

λf (n)e(αn)�f x
1/2 log x

holds uniformly for α ∈ R, where e(u) := e2πiu.
(b) For any ε > 0, we have

(2.2)
∑
n6x

n≡a(mod q)

λf (n)�f,ε x
1/2−1/6+ε

uniformly for (q, aN) = 1 and q 6 x2/3.

Proof. See for example, [10, Theorem 5.3] and [20]. �

Lemma 2.2. Let f be a cusp form of weight k and level N , (h, q) = 1 and

(2.3) A(x, h/q) :=
∑′

n6x

λf (n)eq(hn),

where eq(m) := e(m/q) and
∑′

n6x means that if x is an integer, the term n = x
should be halved. Then for any ε > 0 we have

A(x, h/q) =
q1/2x1/4

√
2π

∑
n6M

λf (n)

n3/4
eq(−hn) cos

(
4π
√
nx

q
− π

4

)
+Of,ε

(
qx1/2+ε

M1/2

)
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uniformly for 1 6 q 6 x and 1 6 M � x, where h satisfies hh ≡ 1 (mod q). In
particular for any ε > 0 we have

(2.4) A(x, h/q)�f,ε q
2/3x1/3+ε

uniformly for x > 1 and q > 1. Here the implied constants depend on f and ε only.

Proof. The first assertion is [13, Theorem 1.1]. The bound (2.4) is trivial if q > x.
When 1 6 q 6 x, it follows from the first assertion with M = (q2x)1/3. See also,
[17, (2.7)]. �

Lemma 2.3. Let A(x, h/q) be defined as in (2.3).
(i) We have

(2.5) A1(x, h/q) :=

∫ x

1

A(u, h/q) du�f q
3/2x3/4

uniformly for x > 1 and 1 6 q 6 x1/2.
(ii) For any ε > 0 we have∫ X

1

|A(x, h/q)|2 dx =
1

(4k + 2)π2

∞∑
n=1

|λf (n)|2

n3/2
qX3/2 +Of,ε

(
q3/2X5/4+ε + q2X1+ε

)
uniformly for X > 1 and q > 1.

Proof. They are (1.6.12) and (1.5.23) of [13], respectively. �

Lemma 2.4. Let ` > 2, y := (y1, . . . , y`) ∈ Z` and A = (aij) be an integral matrix
such that aii ≡ 0 (mod 2) for 1 6 i 6 `. The positive definite quadratic form Q(y)
is defined by Q(y) = 1

2
ytAy. For each n > 1, define

r(n,Q) :=
∣∣{y ∈ Z` : Q(y) = n

}∣∣.
Then for ` > 4 we have

(2.6) r(n,Q) = σQn
`/2−1

∞∑
q=1

q∑∗

h=1

S

(
hQ

q

)
eq(−hn)

q`
+O

(
n`/4−δ`+ε

)
,

where

S(Q) :=
∑

06y1,...,y`6q−1

e(Q(y)), σQ :=
(2π)`/2

Γ(`/2)
√
|A|

, δ` :=

{
1
4

if ` is odd,
1
2

if ` is even,

and
∑∗ means the sum is over 1 6 h 6 q with (h, q) = 1. Furthermore we have

(2.7) S(hQ/q)� q`/2 ((h, q) = 1),

Proof. See for example, Theorem 11.2 of [10]. �
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3. Proof of Theorem 1

3.1. Case of ` > 3.

Let

F (α) :=
∑
n6x

λf (n+ b)e(−αn) and S(α) :=
∑

|m|6x1/2
e(αm2).

Then∫ 1

0

F (α)S(α)`dα =
∑
n6x

λf (n+ b)
∑

|m1|6x1/2
· · ·

∑
|m`|6x1/2

∫ 1

0

e
(
(m2

1 + · · ·+m2
` − n)α

)
dα

=
∑
n6x

λf (n+ b)
∑

|m1|6x1/2
· · ·

∑
|m`|6x1/2

m2
1+···+m2

`=n

1

= Sf,b,`(x).

Firstly Lemma 2.1 allows us to deduce

F (α) = e(αb)
∑

b<n6x+b

λf (n)e(−αn)� x1/2 log x

uniformly for x > 2 and 0 6 b 6 x. On the other hand, it is easy to see that∫ 1

0

|S(α)|2dα =
∑

|m|6x1/2

∑
|n|6x1/2

m2=n2

1� x1/2,

∫ 1

0

|S(α)|2ddα =
∑

|m1|6x1/2,...,|md|6x1/2

∑
|n1|6x1/2,...,|nd|6x1/2

m2
1+···+m2

d=n2
1+···+n2

d

1 6
∑
n6dx

rd(n)2 � xd−1

for d > 2. From the above estimates and the Cauchy inequality we get

Sf,b,3(x)� x1/2(log x)

(∫ 1

0

|S(α)|2dα

∫ 1

0

|S(α)|4dα

)1/2

� x3/2−1/4 log x

and for ` > 4

Sf,b,`(x)� x1/2(log x)

(∫ 1

0

|S(α)|4dα

∫ 1

0

|S(α)|2(`−2)dα

)1/2

� x`/2−1/2 log x,

namely we can take ϑ3 = 1
4

and ϑ` = 1
2

for ` > 4.

3.2. Case of ` > 6.

When ` > 6, we can apply Lemmas 2.2 and 2.4 to improve the exponent ϑ` = 1
2
.

From Lemma 2.4 with Q0(y) = y2
1 + · · ·+ y2

` we get

(3.1) r`(n) = σQ0n
`/2−1

∞∑
q=1

q∑∗

h=1

S

(
hQ0

q

)
eq(−hn)

q`
+Oε

(
n`/4−δ`+ε

)
.
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In view of (2.4) in Lemma 2.2 and the bound (2.7) we easily deduce, via a simple
integration by parts, that

Sf,b,`(x)�
∑
q>1

1

q`/2

∑
16h6q
(h,q)=1

∣∣∣∣ ∑
1+b6n6x+b

n`/2−1λf (n)eq(−hn)

∣∣∣∣+ x`/4−δ`+1+ε

�f,ε x
`/2−2/3+ε

∑
q>1

1

q`/2−5/3
+ x`/4−δ`+1+ε

�f,ε x
`/2−2/3+ε (recall ` > 6).

3.3. Case of ` = 2.

We need the following Lemmas.

Lemma 3.1. Let m > 2 be a positive integer. There is an arithmetic function hm(n)
such that

hm(n) = 0 if ∃ p such that p | n and p - m,(3.2)

|hm(n)| 6 τ(m)τ4(n) if n | m∞,(3.3)

λf (mn) =
∑
d|n

hm(d)λf (n/d),(3.4)

where τk(n) denotes the number of solutions of n = n1 · · ·nk with positive numbers
n1, . . . , nk, and τ(n) := τ2(n).

Proof. As usual, we denote by vp(n) the p-adic valuation of n. By using the formula

λf (mn) =
∏
p|d

λf (p
vp(n)+vp(m))

∏
p-d

λf (p
vp(n)),

we can write, for <e s > 1,

∞∑
n=1

λf (mn)

ns
=
∏
p|m

∞∑
ν=0

λf (p
ν+vp(m))

pνs

∏
p-m

∞∑
ν=0

λf (p
ν)

pνs

= L(s, f)
∏
p|m

( ∞∑
ν=0

λf (p
ν+vp(m))

pνs

)( ∞∑
ν=0

λf (p
ν)

pνs

)−1

.

This implies that there is an arithmetic function hm(n) such that (3.2) and (3.4)
hold.

Next we prove (3.3). If p | m, it is easy to see that

hm(pν) =


λf (p

vp(m)) if ν = 0,

λf (p
vp(m)+1)− λf (pvp(m))λf (p) if ν = 1,

λf (p
vp(m)+ν)− λf (pvp(m)+ν−1)λf (p) + λf (p

vp(m)+ν−2) if ν > 2.



8 GUANGSHI LÜ, JIE WU & WENGUANG ZHAI

In view of Degline’s bound |λf (n)| 6 τ(n), for any n | m∞ we have

|hm(n)| =
∏
pν‖n

|hm(pν)| 6
∏
pν‖n

4(vp(m) + ν)

6
∏
pν‖n

(vp(m) + 1)

(
ν + 3

3

)
6 τ(m)τ4(n).

This completes the proof. �

Lemma 3.2. Let f be a cusp form of weight k and level 1. Then the estimate

(3.5) Sf (x; a, q) :=
∑
n6x

n≡a(mod q)

λf (n)�f x
1/3+ε

holds uniformly for x > 1 and q > a > 1.

Proof. Note that (2.2) and (3.5) is trivial for q > x2/3. Now suppose q 6 x2/3.
Writting m := (a, q), a = ma1 and q = mq1 such that (a1, q1) = 1 and using (3.4) of
Lemma 3.1, we have

Sf (x; a, q) =
∑
n6x/m

n≡a1(mod q1)

λf (mn)

=
∑

n1n26x/m
n1n2≡a1(mod q1)

hm(n1)λf (n2)

=
∑

n16x/m

hm(n1)
∑

n26x/mn1

n2≡a1n1(mod q1)

λf (n2),

where n1n1 ≡ 1 (mod q1). Noting that (a1n1, q1) = 1, we can apply (2.2) with N = 1
and (3.2)-(3.3) of Lemma 3.1 to write

(3.6)

Sf (x; a, q)� τ(m)

(
x

m

)1/3+ε ∑
n1|m∞

τ4(n1)

n
1/3+ε
1

� τ(m)

(
x

m

)1/3+ε∏
p|m

(
1− 1

p1/3

)−4

� x1/3+ε.

This completes the proof. �

Now we prove Theorem 1 for ` = 2. By the classical expression

r2(n) = 4
∑
d|n

χ(d)

(χ(n) is the non trivial Dirichlet character modulo 4), we can write

(3.7) Sf,b,2(x) = 4S1 + 4S2 − 4S3,
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where

S1 :=
∑
d6
√
x

∑
dm6x

χ(d)λf (dm+ b),

S2 :=
∑
m6
√
x

∑
dm6x

χ(d)λf (dm+ b),

S3 :=
∑
d6
√
x

∑
m6
√
x

χ(d)λf (dm+ b).

By Lemma 3.2, we have

(3.8)

S1 =
∑
d6
√
x

χ(d)
∑
n6x+b

n≡b(mod d)

λf (n)

�
∑
d6
√
x

(x+ b)1/3+ε � x5/6+ε.

Note that χ(d) = 1 if d ≡ 1 (mod 4), χ(d) = −1 if d ≡ 3 (mod 4) and χ(d) = 0 if
2 | d, we have by Lemma 3.2 that

(3.9)

S2 =
∑
m6
√
x

( ∑
(4d+1)m6x

λf ((4d+ 1)m+ b)−
∑

(4d+3)m6x

λf ((4d+ 3)m+ b)
)

=
∑
m6
√
x

( ∑
n6x+b

n≡m+b(mod 4m)

λf (n)−
∑
n6x+b

n≡3m+b(mod 4m)

λf (n)
)

�
∑
m6
√
x

(x+ b)1/3+ε � x5/6+ε.

For S3 we have by Lemma 3.2 again that

(3.10)

S3 =
∑
d6
√
x

χ(d)
∑

n6d
√
x+b

n≡b(mod d)

λf (n)

�
∑
d6
√
x

(d
√
x+ b)1/3+ε � x5/6+ε.

Now Theorem 1 for the case ` = 2 follows from (3.7)-(3.10).

4. Proof of Theorem 2 and (1.9)

Suppose Q(y) is the quadratic form defined in Lemma 2.4 for ` > 6, and Q(y) =
y2

1 + · · · + y2
5 for ` = 5. By Deligne’s inequality |λf (n)| 6 τ(n) and the bound

r(n,Q)� n`/2−1, we have, with the notation L := log(2X),

(4.1)

∫ √X
1

|Sf,b,Q(x)|2 dx�
∫ √X

1

x`(log x)2 dx� X(`+1)/2L2 � X`−2.
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It suffices for us to evaluate
∫ X√

X
|Sf,b,Q(x)|2 dx. For any x ∈ [X1/2, X]rZ, Lemma

2.4 and [5, p. 256, (2.25), p. 270] allow us to write

(4.2) Sf,b,Q(x) = σQ

∞∑
q=1

q∑∗

h=1

S

(
hQ

q

)
eq(bh)

q`
A`,b(x,−h/q) +O

(
δQx

`/4−δ`+1+ε
)
,

where

A`,b(x,−h/q) :=
∑

1+b6n6x+b

(n− b)`/2−1λf (n)eq(−hn),

δQ :=

{
1 if ` > 6,

0 if ` = 5 and Q(y) = y2
1 + · · ·+ y2

5.

By partial summation, we can deduce, with the notation (2.3),

(4.3) A`,b(x,−h/q) = x`/2−1A(x+ b,−h/q)− (`/2− 1)I

with

(4.4) I :=

∫ x+b

b

(u− b)`/2−2A(u,−h/q) du.

It is easy to see that Lemma 2.1 implies that

A`,b(x,−h/q)� X`/2−1/2L

uniformly for 1 6 x 6 X, 0 6 b 6 X and (h, n) = 1. By this and (2.7), we have∑
q>X1/2

1

q`

q∑∗

h=1

∣∣∣∣S(hQq
)
A`,b(x,−h/q)

∣∣∣∣� X`/4+1/2L.

Thus we can write (4.2) as, for x ∈ [X1/2, X]rZ,

(4.5)
Sf,b,Q(x) = σQ

∑
q6X1/2

q∑∗

h=1

S

(
hQ

q

)
eq(bh)

q`
A`,b(x,−h/q)

+O
(
X`/4+1/2L+ δQX

`/4−δ`+1+ε
)
.

Suppose now 1 6 q 6 X1/2 and we estimate the integral I defined as in (4.4). If
q2 6 b, by partial integration and Lemma 2.3 we have, with the notation (2.5),

(4.6)
I = x`/2−2A1(x+ b,−h/q)− `− 4

2

∫ x+b

b

(u− b)`/2−3A1(u,−h/q) du

� q3/2X`/2−5/4.

If q2 > b, we can write

(4.7)
I =

∫ q2

b

A(u,−h/q)(u− b)`/2−2 du+

∫ x+b

q2
A(u,−h/q)(u− b)`/2−2 du

� q`−1 log(2q) + q3/2X`/2−5/4 � q3/2X`/2−5/4L,
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where we estimated the first integral by Lemma 2.1 and the second as in (4.6). In
view of (4.6), (4.7) and (2.7), the contribution of I to the last sum in (4.5) is

� X`/2−5/4L
∑

q6X1/2

q−(`−5)/2

� R`(X) :=

{
X`/2−1+ε if ` > 6,

X`/2−3/4+ε if ` = 5.

Since `/4−δ`+1 6 `/2−1 (` > 6), thus we can write (4.5) as, for x ∈ [X1/2, X]rZ,

(4.8) Sf,b,Q(x) = σQx
`/2−1

∑
q6X1/2

q∑∗

h=1

S

(
hQ

q

)
eq(bh)

q`
A(x+ b,−h/q) +O(R`(X)).

Now we split the sum over q 6 X1/2 into two parts according to q 6 X1/6 or
X1/6 < q 6 X1/2. In view of X1/2 6 x, we can apply Lemma 2.2 to the sum∑

q6X1/6 by taking M = x + b. It is easy to see that the contribution of the error

term to Sf,b,Q(x) is O(X`/2−1+ε) if ` > 6 and O(X19/12) if ` = 5. Thus the formula
(4.8) becomes

(4.9) Sf,b,Q(x) = S1(x) + S2(x) +O(R`(X)),

where

S1(x) :=
σQ√
2π
x`/2−1(x+ b)1/4

∑
q6X1/6

q∑∗

h=1

∑
n6x+b

ψ(h, n, q) cos(gn,q(x)),

S2(x) := σQx
`/2−1

∑
X1/6<q6X1/2

q∑∗

h=1

S

(
hQ

q

)
eq(bh)

q`
A(x+ b,−h/q),

and

ψ(h, n, q) :=
λf (n)eq(bh− hn)

n3/4q`−1/2
S

(
hQ

q

)
, gn,q(x) :=

4π
√
n(x+ b)

q
− π

4
·

We first evaluate the integral
∫ X√

X
|S1(x)|2 dx. By the elementary formula

cosu cos v =
cos (u− v) + cos (u+ v)

2
,

we can write

(4.10) |S1(x)|2 = S11(x) + S12(x) + S13(x),
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where hjhj ≡ 1 (mod qj) for j = 1, 2, and

S11(x) :=
(σQ

2π

)2

x`−2(x+ b)1/2
∑

q16X1/6

q1∑∗

h1=1

∑
n16x+b

∑
q26X1/6

q2∑∗

h2=1

∑
n26x+b

√
n1/q1=

√
n2/q2

× ψ(h1, n1, q1)ψ(h2, n2, q2),

S12(x) :=
(σQ

2π

)2

x`−2(x+ b)1/2
∑

q16X1/6

q1∑∗

h1=1

∑
n16x+b

∑
q26X1/6

q2∑∗

h2=1

∑
n26x+b

√
n1/q1 6=

√
n2/q2

× ψ(h1, n1, q1)ψ(h2, n2, q2) cos(gn1,q1(x)− gn2,q2(x)),

S13(x) :=
(σQ

2π

)2

x`−2(x+ b)1/2
∑

q16X1/6

q1∑∗

h1=1

∑
n16x+b

∑
q26X1/6

q2∑∗

h2=1

∑
n26x+b

× ψ(h1, n1, q1)ψ(h2, n2, q2) cos(gn1,q1(x) + gn2,q2(x)).

The relation
√
n1/q1 =

√
n2/q2 implies that n1 and n2 have the same square-free

factor. We write nj = d2
jm with µ(m) 6= 0 for j = 1, 2. Recalling (2.7), Deligne’s

well-known bound |λf (n)| 6 τ(n) and the trivial inequality τ(uv) 6 τ(u)τ(v), we
have

(4.11)

ψ(h1, n1, q1)ψ(h2, n2, q2)� τ(d2
1m)τ(d2

2m)

(d1d2m)3/2(q1q2)`/2−1/2

� τ(d1)2τ(d2)2τ(m)2

(d1d2m)3/2(q1q2)`/2−1/2
·

The above estimate (4.11) implies that the infinite series

(4.12) Cf,b,Q :=
(σQ

2π

)2 ∑
q1>1

∑∗

16h16q1

∑
n1>1

∑
q2>1

∑∗

16h26q2

∑
n2>1

√
n1/q1=

√
n2/q2

ψ(h1, n1, q1)ψ(h2, n2, q2)

converges absolutely provided ` > 4 and

(4.13) Cf,b,Q �f,Q 1 (∀ b).

If a quadruple (q1, q2, n1, n2) satisfies
√
n1/q1 =

√
n2/q2 but is not included in S11(x),

then we must have that q1 > X1/6, or q2 > X1/6, or n1 > x + b > X1/2, or
n2 > x + b > X1/2. Thus n1q

2
2 = n2q

2
1 > X1/3. In view of the following elementary

estimates

t`(m) :=
∑
m=nq2

τ(n)q−`/2+3 6 t̃`(m) :=

{
τ3(m) if ` > 6,

m1/4τ3(m) if ` = 5,∑
n6u

τ3(n)2 � u(log u)8 (u > 2),(4.14)
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we can derive, for all x ∈ [X1/2, X]rZ,

(4.15)

∣∣∣∣ S11(x)

x`−2(x+ b)1/2
− Cf,b,Q

∣∣∣∣� ∑
n1,n2,q1,q2

n2q21=n1q22>X
1/3

τ(n1)τ(n2)

(n1q2
2n2q2

1)3/4(q1q2)`/2−3

�
∑

m>X1/3

t`(m)2

m3/2
6

∑
m>X1/3

t̃`(m)2

m3/2

�

{
X−1/6L8 if ` > 6,

X−1/12L8 if ` = 5.

On the other hand, we have, in view of (4.13),

Cf,b,Q

∫ X

√
X

x`−2(x+ b)1/2 dx = Cf,b,Q

∫ X

1

x`−2(x+ b)1/2 dx+O(X`/2)

uniformly for X > 1 and 0 6 b 6 X. And hence we obtain

(4.16)

∫ X

√
X

S11(x) dx = Cf,b,Q

∫ X

1

x`−2(x+ b)1/2 dx+

{
O(X`−2/3L8) if ` > 6,

O(X`−7/12L8) if ` = 5.

By the first derivative test, (4.11) and (2.7), we have (note ` > 5)

(4.17)

∫ X

X1/2

|S13(x)| dx� X`−1
∑

n1,n26x+b
q1,q26X1/6

τ(n1)τ(n2)

(n1n2)3/4(q1q2)`/2−3/2

1
√
n1/q1 +

√
n2/q2

� X`−1
∑

n1,n26x+b
q1,q26X1/6

τ(n1)τ(n2)

n1n2(q1q2)`/2−2

� X`−5/6L6,

where we used the inequality u+ v > 2
√
uv for u, v > 0.

Similarly by the first derivative test again

(4.18)

∫ X

X1/2

|S12(x)| dx� X`−1
(
Σ11 + Σ12

)
,

where

Σ11 :=
∑

n1,n26x+b, q1,q26X1/6

|√n1/q1−
√
n2/q2|> 1

10
(
√
n1n2/q1q2)1/2

τ(n1)τ(n2)

(n1n2)3/4(q1q2)`/2−3/2

1

|√n1/q1 −
√
n2/q2|

,

Σ12 :=
∑

n1,n26x+b, q1,q26X1/6

0<|√n1/q1−
√
n2/q2|< 1

10
(
√
n1n2/q1q2)1/2

τ(n1)τ(n2)

(n1n2)3/4(q1q2)`/2−3/2

1

|√n1/q1 −
√
n2/q2|

·
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As in the argument of (4.17) we get easily that (recall ` > 5)

(4.19) Σ11 �
∑

n1,n26x+b, q1,q26X1/6

τ(n1)τ(n2)

n1n2(q1q2)`/2−2
� X1/6L6.

If |√n1/q1 −
√
n2/q2| < 1

10
(
√
n1n2/q1q2)1/2 holds, then it follows that

√
n1q2 �

√
n2q1 and

√
n1q2 +

√
n2q1 � (n1n2)1/4(q1q2)1/2.

So in view of these facts, by a similar argument as in (4.15) we have, for ` > 6,

Σ12 �
∑

q1,q26X1/6; n1,n26x+b
n1q22−n2q21 6=0

d(n1)d(n2)

(n1n2q2
1q

2
2)1/2(q1q2)`/2−4|n1q2

2 − n2q2
1|

� X1/3
∑

m1,m26X1/6(X+b)
m1 6=m2

d3(m1)d3(m2)

(m1m2)1/2|m1 −m2|

� X1/3
∑

16h6X1/6(X+b)

1

h

∑
m6X1/6(X+b)

d3(m)d3(m+ h)

(m(m+ h))1/2
·

By applying the Cauchy inequality to the sum over m and (4.14), we can deduce

(4.20) Σ12 � X1/3L9 (` > 6).

When ` = 5, the similar estimate with X1/2 in place of X1/3 holds. Inserting (4.19)
and (4.20) into (4.18), we find that

(4.21)

∫ X

√
X

|S12(x)| dx� R∗` (X) :=

{
X`−2/3L9 if ` > 6,

X`−1/2L9 if ` = 5.

Combining (4.16), (4.21) and (4.17) with (4.10) yields

(4.22)

∫ X

√
X

|S1(x)|2 dx = Cf,b,Q

∫ X

1

x`−2(x+ b)1/2 dx+O
(
R∗` (X)

)
.

Finally we estimate
∫ X√

X
|S2(x)|2 dx. By (2.7) and Cauchy’s inequality, it follows

|S2(x)|2 � x`−2
( ∑
X1/6<q6X1/2

q−`/2+1|A(x+ b,−h/q)|
)2

� X`−2L
∑

X1/6<q6X1/2

q−`+3|A(x+ b,−h/q)|2.

From this and Lemma 2.3(ii), we deduce (recall ` > 5 and 0 6 b 6 X)

(4.23)

∫ X

√
X

|S2(x)|2 dx� X`−2L
∑

X1/6<q6X1/2

q−`+3
(
qX3/2 + q3/2X5/4+ε + q2X1+ε

)
�

{
X`−2/3L if ` > 6,

X`−1/2+ε if ` = 5.
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On the other hand, (4.22) implies immediately∫ X

√
X

|S1(x)|2 dx� X`−1/2.

In view of this and (4.23), a simple application of Cauchy’s inequality yields

(4.24)

∫ X

√
X

|S1(x)S2(x)| dx�

{
X`−7/12L1/2 if ` > 6,

X`−1/2+ε if ` = 5.

Now the first assertion of Theorem 2 and (1.9) follow from (4.1), (4.9), (4.22),
(4.23) and (4.24). The second is an immediate consequence by noticing that

(x+ b)1/2 = x1/2 +O(bx−1/2)

valid uniformly for x > 1 and b > 1.

∑
p1+p2+p3=N

τ(p1) =
∑

p1+p2+p3=N

τ(N − p2 − p3)

� N15/2 exp
{
− C

√
logN

}
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