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In this paper we apply simple approachs to improve a recent result due to Luo, concerning a shifted convolution sum involving the Fourier coefficients of cusp forms with those of theta series. In order to explore what should be the best possible bound, a mean square result of this shifted convolution sum is also established.

Introduction

Suppose λ 1 (n) and λ 2 (n) are two arithmetic functions, b 0 is an integer. It is a classical and important problem in analytic number theory to study the shifted convolution sum

n x λ 1 (n)λ 2 (n + b).
There are a large number of papers in this direction. For example, when λ 1 (n) = λ 2 (n) = τ (n), the Dirichlet divisor function, this problem is the so-called additive divisor problem [START_REF] Deshouillers | An additive divisor problem[END_REF][START_REF] Heath-Brown | The twelfth power moment of the Riemann zeta-function[END_REF][START_REF] Ingham | Some asymptotic formulae in the theory of numbers[END_REF][START_REF] Ivić | On some estimates involving the binary additive divisor problem[END_REF][START_REF] Jutila | The additive divisor problem and exponential sums[END_REF][START_REF] Meurman | On the binary additive divisor problem, Number theory[END_REF][START_REF] Motohashi | The binary additive divisor problem[END_REF]. For other interesting cases, see [START_REF] Jutila | The additive divisor problem and its analogs for Fourier coefficients of cusp forms[END_REF][START_REF] Jutila | The additive divisor problem and its analogs for Fourier coefficients of cusp forms[END_REF][START_REF] Holowinsky | A sieve method for shifted convolution sums[END_REF].

Recently Luo [START_REF] Luo | Shifted convolution of cusp-forms with θ-series[END_REF] investigated a mixed shifted convolution sum (1.1)

n 1 λ f (n + b)r (n)φ(n),
where λ f (n) is the nth normalized Hecke eigenvalue of a holomorphic cusp form of weight k and level N , b 0 is a fixed integer, r (n) := (n 1 , . . . , n ) ∈ Z :

n 2 1 + • • • + n 2 = n
and φ(t) is a smooth function with support in [x/2, 5x/2], satisfying φ (j) (t) j (x/J) -j for all real numbers t ∈ R, all integers j 0 and 1 J x β with β < 1. In order to estimate the sum (1.1), he first established a Voronoi formula for r (n) and then combined this formula with the upper bound for the Salié sum to derive the following result [START_REF] Luo | Shifted convolution of cusp-forms with θ-series[END_REF]Theorem] : For any ε > 0, the inequality (1.2)

n 1 λ f (n + b)r (n)φ(n)
x /2-( -1)/4+ε J g if 4 or b = 0

x /2-( -1)/4+ε (x 1/4+ε + J g ) if [START_REF] Harcos | The subconvexity problem for Rankin-Selberg L-functions and equidistribution of Heegner points[END_REF] | and b = 0 holds for all x 2, where g is the smallest integer such that g ( + 1)/2 † and the implied constant depends on f , b, and ε. With a suitable choice of φ(t) and J, the inequality (1.2) implies immediately the following result [START_REF] Luo | Shifted convolution of cusp-forms with θ-series[END_REF]Corollary] : For 2, k /2 + 3 and ε > 0, the inequality

(1.3) S f,b, (x) := n x λ f (n + b)r (n) f,b, ,ε x /2-ϑ +ε
holds for all x 2, where ϑ := ( -1)/(4g + 4). In particular [START_REF] Holowinsky | A sieve method for shifted convolution sums[END_REF].

ϑ 2 = 1 12 , ϑ 3 = 1 6 , ϑ 4 = 3 16 , ϑ 5 = 1 4 , ϑ 6 = 1 4 , ϑ -1 2 +6 < 1 2 ( 
The first aim of this paper is to propose a better bound for S f,b, (x).

Theorem 1. Let f be a cusp form of weight k and level N and let 2 be an integer. For any ε > 0, we have

(1.4) S f,b, (x) := n x λ f (n + b)r (n) f, ,ε x /2-ϑ +ε
uniformly for x 2 and 0 b x, where

ϑ 3 = 1 4 , ϑ 4 = 1 2 , ϑ 5 = 1 2 , ϑ = 2 3 ( 6).
In addition, if we assume N = 1, then (1.4) holds for = 2 with ϑ 2 = 1 6 . Remark 1. Theorem 1 improves Luo's (1.3) in three directions; it enlarges the exponent ϑ , relaxes the restricted condition k /2 + 3 and removes the dependence of b. Our method is completely different from that of [START_REF] Luo | Shifted convolution of cusp-forms with θ-series[END_REF]. Our new idea is to explore the regularity of r (n) by the circle method in analytic number theory and Siegel's mass formula. Thanking to these classic tools of analytic number theory, we can show that the influence of r (n) to the bound [22, (1.10) and Theorem 2] (1.5)

n x λ f (n) f x 1/3 (log x) 2/( √ πΓ(5/2))-1
is rather little. More precisely by using the circle method we shall give a very simple proof of ϑ = 1 2 for 3. Further when 6, with the help of Siegel's mass formula we shall prove a better exponent θ = 2 3 , which means that our bound for S f,b, (x) is of the same quality as (1.5). Finally the case of = 2 requires a more delicate consideration (see the end of Section 3). † It seems that Luo's proof only could show that g is the smallest integer such that g > ( +1)/2. This means that ϑ 3 = 1 8 and ϑ 5 = 1 5 instead of ϑ 3 = 1 6 and ϑ 5 = 1 4 .

Remark 2. In fact our method allows us to consider a more general case. Let 2, y := (y 1 , . . . , y ) ∈ Z and A = (a ij ) be an integral matrix such that a ii ≡ 0 (mod 2) for 1 i

. The positive definite quadratic form Q(y) is defined by Q(y) = 1 2 y t Ay. For each n 1, define r(n, Q) := y ∈ Z :

Q(y) = n . Thus r (n) = r(n, Q 0 ) with Q 0 = y 2 1 + • • • + y 2 . Similar to S f,b, (x), we define (1.6) S f,b,Q (x) := n x λ f (n + b)r(n, Q).
Define F to be a class of cusp forms, which consists of holomorphic cusp forms with respect to any finite volume discrete subgroup (such that ∞ is a singular cusp of width 1), any positive real weight and any multiplier systems, as well as Maass cusp forms of any weight and any level [START_REF] Iwaniec | Spectral methods of automorphic forms[END_REF][START_REF] Duke | Bilinear forms in the Fourier coefficients of half-integral weight cusp forms and sums over primes[END_REF][START_REF] Harcos | The subconvexity problem for Rankin-Selberg L-functions and equidistribution of Heegner points[END_REF]. Since the estimate (2.1) below holds for all f ∈ F ([10, Theorem 5.3] and [START_REF] Iwaniec | Spectral methods of automorphic forms[END_REF]Theorem 8.1]), our proof of Theorem 1 implies that

S f,b,Q (x) f,Q,ε x /2-1/2+ε
holds uniformly for 1 b x, provided 5.

A natural question is what should be the best bound for S f,b, (x). It is well-known that [3, Theorem 2])

n x λ f (n) = Ω ± x 1/4 exp D(log log x) 1/4
(log log log x) 3/4 where D > 0 a constant. A slight weaker Ω-result

n x λ f (n) = Ω(x 1/4 )
is supported by the asymptotic formula (see [START_REF] Walfisz | Über Gitterpunkte in mehrdimensional Ellipsoiden, VIII[END_REF])

X 1 n x λ f (n) 2 dx = C f X 3/2 + O X(log X) 2 ,
for X 2, where C f is a positive constant. On the other hand, we have r (n) n /2-1 ( 3). From the above facts it seems reasonable to propose the following conjecture.

Conjecture. Let f be a cusp form of weight k and level N . Let b 0 and 3 be two integers. For any ε > 0, we have

(1.7) S f,b, (x) f,b, ,ε x /2-3/4+ε
for x → ∞.

It seems rather difficult to establish (1.7). However we can prove that the bound (1.7) is true on average for 5 (see (1.8) and (1.9) below). For this, we shall study the square mean of S f,b, (x). At this time, our method also allows us to deal with the more general case S f,b,Q (x).

Our second aim is to prove the following asymptotic formula.

Theorem 2. Let f be a cusp form of weight k and level N . Let Q(y) be a positive definite quadratic form defined as above. If

6, then we have

(1.8) X 1 |S f,b,Q (x)| 2 dx = C f,b,Q X 1 x -2 (x + b) 1/2 dx + O f,Q X -7/12 (log X) 1/2 = C f,b,Q -1/2 X -1/2 + O f,Q bX -3/2 + X -7/12 (log X) 1/2
uniformly for X 2 and 0 b X, where the constant C f,b,Q is defined by (4.12) below, and the implied constants depend on f and Q.

Remark 3. In Section 3, we shall prove also that the inequality (1.9)

X 1 |S f,b,5 (x)| 2 dx f,ε X -1/2+ε
holds uniformly for X 1 and 0 b X.

Preliminary Lemmas

In order to prove our theorems, we need the following lemmas. 

(2.2) n x n≡a(mod q) λ f (n) f,ε x 1/2-1/6+ε
uniformly for (q, aN ) = 1 and q x 2/3 . Proof. See for example, [START_REF] Iwaniec | Topics in classical automorphic forms[END_REF]Theorem 5.3] and [START_REF] Smith | Fourier coefficients of modular forms over arithmetic progressions. I, II, With remarks[END_REF].

Lemma 2.2. Let f be a cusp form of weight k and level N , (h, q) = 1 and

(2.3) A(x, h/q) := n x λ f (n)e q (hn),
where e q (m) := e(m/q) and n x means that if x is an integer, the term n = x should be halved. Then for any ε > 0 we have

A(x, h/q) = q 1/2 x 1/4 √ 2π n M λ f (n) n 3/4 e q (-hn) cos 4π √ nx q - π 4 + O f,ε qx 1/2+ε M 1/2
uniformly for 1 q x and 1 M x, where h satisfies hh ≡ 1 (mod q). In particular for any ε > 0 we have

(2.4) A(x, h/q) f,ε q 2/3 x 1/3+ε
uniformly for x 1 and q 1. Here the implied constants depend on f and ε only.

Proof. The first assertion is [13, Theorem 1.1]. The bound (2.4) is trivial if q x. When 1 q x, it follows from the first assertion with M = (q 2 x) 1/3 . See also, [17, (2.7)].

Lemma 2.3. Let A(x, h/q) be defined as in (2.3).

(i) We have

(2.5) A 1 (x, h/q) := x 1 A(u, h/q) du f q 3/2 x 3/4
uniformly for x 1 and 1 q x 1/2 . (ii) For any ε > 0 we have

X 1 |A(x, h/q)| 2 dx = 1 (4k + 2)π 2 ∞ n=1 |λ f (n)| 2 n 3/2 qX 3/2 + O f,ε q 3/2 X 5/4+ε + q 2 X 1+ε
uniformly for X 1 and q 1.

Proof. They are (1.6.12) and (1.5.23) of [START_REF] Jutila | A Method in the Theory of Exponential Sums[END_REF], respectively.

Lemma 2.4. Let 2, y := (y 1 , . . . , y ) ∈ Z and A = (a ij ) be an integral matrix such that a ii ≡ 0 (mod 2) for 1 i

. The positive definite quadratic form Q(y) is defined by Q(y) = 1 2 y t Ay. For each n 1, define

r(n, Q) := y ∈ Z : Q(y) = n .
Then for 4 we have

(2.6) r(n, Q) = σ Q n /2-1 ∞ q=1 q * h=1 S hQ q e q (-hn) q + O n /4-δ +ε ,
where

S(Q) := 0 y 1 ,...,y q-1 e(Q(y)), σ Q := (2π) /2 Γ( /2) |A| , δ := 1 4
if is odd,

1 2
if is even, and * means the sum is over 1 h q with (h, q) = 1. Furthermore we have (2.7) S(hQ/q) q /2 ((h, q) = 1), Proof. See for example, Theorem 11.2 of [START_REF] Iwaniec | Topics in classical automorphic forms[END_REF]. e(αm 2 ).

Then

1 0 F (α)S(α) dα = n x λ f (n + b) |m 1 | x 1/2 • • • |m | x 1/2 1 0 e (m 2 1 + • • • + m 2 -n)α dα = n x λ f (n + b) |m 1 | x 1/2 • • • |m | x 1/2 m 2 1 +•••+m 2 =n 1 = S f,b, (x).
Firstly Lemma 2.1 allows us to deduce

F (α) = e(αb) b<n x+b λ f (n)e(-αn) x 1/2 log x
uniformly for x 2 and 0 b x. On the other hand, it is easy to see that

1 0 |S(α)| 2 dα = |m| x 1/2 |n| x 1/2 m 2 =n 2 1 x 1/2 , 1 0 |S(α)| 2d dα = |m 1 | x 1/2 ,...,|m d | x 1/2 |n 1 | x 1/2 ,...,|n d | x 1/2 m 2 1 +•••+m 2 d =n 2 1 +•••+n 2 d 1 n dx r d (n) 2 x d-1
for d 2. From the above estimates and the Cauchy inequality we get

S f,b,3 (x) x 1/2 (log x) 1 0 |S(α)| 2 dα 1 0 |S(α)| 4 dα 1/2
x 3/2-1/4 log x and for 4

S f,b, (x) x 1/2 (log x) 1 0 |S(α)| 4 dα 1 0 |S(α)| 2( -2) dα 1/2 x /2-1/2 log x,
namely we can take ϑ 3 = 1 4 and ϑ = 

(y) = y 2 1 + • • • + y 2 we get (3.1) r (n) = σ Q 0 n /2-1 ∞ q=1 q * h=1 S hQ 0 q e q (-hn) q + O ε n /4-δ +ε .
In view of (2.4) in Lemma 2.2 and the bound (2.7) we easily deduce, via a simple integration by parts, that S f,b, (x)

q 1 1 q /2 1 h q (h,q)=1 1+b n x+b n /2-1 λ f (n)e q (-hn) + x /4-δ +1+ε f,ε x /2-2/3+ε q 1 1 q /2-5/3 + x /4-δ +1+ε f,ε x /2-2/3+ε (recall 6). 3.3. Case of = 2.
We need the following Lemmas.

Lemma 3.1. Let m 2 be a positive integer. There is an arithmetic function h m (n) such that

h m (n) = 0 if ∃ p such that p | n and p m, (3.2) |h m (n)| τ (m)τ 4 (n) if n | m ∞ , (3.3) λ f (mn) = d|n h m (d)λ f (n/d), (3.4) 
where τ k (n) denotes the number of solutions of n = n 1 • • • n k with positive numbers n 1 , . . . , n k , and τ (n) := τ 2 (n).

Proof. As usual, we denote by v p (n) the p-adic valuation of n. By using the formula

λ f (mn) = p|d λ f (p vp(n)+vp(m) ) p d λ f (p vp(n) ),
we can write, for e s > 1,

∞ n=1 λ f (mn) n s = p|m ∞ ν=0 λ f (p ν+vp(m) ) p νs p m ∞ ν=0 λ f (p ν ) p νs = L(s, f ) p|m ∞ ν=0 λ f (p ν+vp(m) ) p νs ∞ ν=0 λ f (p ν ) p νs -1
.

This implies that there is an arithmetic function h m (n) such that (3.2) and (3.4) hold.

Next we prove (3.3). If p | m, it is easy to see that

h m (p ν ) =        λ f (p vp(m) ) if ν = 0, λ f (p vp(m)+1 ) -λ f (p vp(m) )λ f (p) if ν = 1, λ f (p vp(m)+ν ) -λ f (p vp(m)+ν-1 )λ f (p) + λ f (p vp(m)+ν-2 ) if ν 2.
In view of Degline's bound

|λ f (n)| τ (n), for any n | m ∞ we have |h m (n)| = p ν n |h m (p ν )| p ν n 4(v p (m) + ν) p ν n (v p (m) + 1) ν + 3 3 τ (m)τ 4 (n).
This completes the proof.

Lemma 3.2. Let f be a cusp form of weight k and level 1. Then the estimate

(3.5) S f (x; a, q) := n x n≡a(mod q) λ f (n) f x 1/3+ε
holds uniformly for x 1 and q a 1.

Proof. Note that (2.2) and (3.5) is trivial for q > x 2/3 . Now suppose q x 2/3 . Writting m := (a, q), a = ma 1 and q = mq 1 such that (a 1 , q 1 ) = 1 and using (3.4) of Lemma 3.1, we have

S f (x; a, q) = n x/m n≡a 1 (mod q 1 ) λ f (mn) = n 1 n 2 x/m n 1 n 2 ≡a 1 (mod q 1 ) h m (n 1 )λ f (n 2 ) = n 1 x/m h m (n 1 ) n 2 x/mn 1 n 2 ≡a 1 n 1 (mod q 1 ) λ f (n 2 ),
where n 1 n 1 ≡ 1 (mod q 1 ). Noting that (a 1 n 1 , q 1 ) = 1, we can apply (2.2) with N = 1 and (3.2)-(3.3) of Lemma 3.1 to write (3.6)

S f (x; a, q) τ (m) x m 1/3+ε n 1 |m ∞ τ 4 (n 1 ) n 1/3+ε 1 τ (m) x m 1/3+ε p|m 1 - 1 p 1/3 -4 x 1/3+ε .
This completes the proof. Now we prove Theorem 1 for = 2. By the classical expression

r 2 (n) = 4 d|n χ(d)
(χ(n) is the non trivial Dirichlet character modulo 4), we can write

(3.7) S f,b,2 (x) = 4S 1 + 4S 2 -4S 3 ,
where

S 1 := d √ x dm x χ(d)λ f (dm + b), S 2 := m √ x dm x χ(d)λ f (dm + b), S 3 := d √ x m √ x χ(d)λ f (dm + b).
By Lemma 3.2, we have

(3.8) S 1 = d √ x χ(d) n x+b n≡b(mod d) λ f (n) d √ x (x + b) 1/3+ε x 5/6+ε . Note that χ(d) = 1 if d ≡ 1 (mod 4), χ(d) = -1 if d ≡ 3 (mod 4) and χ(d) = 0 if 2 | d, we have by Lemma 3.2 that (3.9) S 2 = m √ x (4d+1)m x λ f ((4d + 1)m + b) - (4d+3)m x λ f ((4d + 3)m + b) = m √ x n x+b n≡m+b(mod 4m) λ f (n) - n x+b n≡3m+b(mod 4m) λ f (n) m √ x (x + b) 1/3+ε
x 5/6+ε .

For S 3 we have by Lemma 3.2 again that (3.10)

S 3 = d √ x χ(d) n d √ x+b n≡b(mod d) λ f (n) d √ x (d √ x + b) 1/3+ε
x 5/6+ε . 

Now

√ X 1 |S f,b,Q (x)| 2 dx √ X 1 x (log x) 2 dx X ( +1)/2 L 2 X -2 . (4.1) 
It suffices for us to evaluate 

X √ X |S f,b,Q (x)| 2 dx. For any x ∈ [X 1/2 , X] Z, Lemma 2.
4.2) S f,b,Q (x) = σ Q ∞ q=1 q * h=1 S hQ q e q (bh) q A ,b (x, -h/q) + O δ Q x /4-δ +1+ε ,
where

A ,b (x, -h/q) := 1+b n x+b (n -b) /2-1 λ f (n)e q (-hn), δ Q := 1 if 6, 0 if = 5 and Q(y) = y 2 1 + • • • + y 2 5
. By partial summation, we can deduce, with the notation (2.3),

(4.3) A ,b (x, -h/q) = x /2-1 A(x + b, -h/q) -( /2 -1)I with (4.4) I := x+b b (u -b) /2-2 A(u, -h/q) du.
It is easy to see that Lemma 2.1 implies that

A ,b (x, -h/q) X /2-1/2 L
uniformly for 1 x X, 0 b X and (h, n) = 1. By this and (2.7), we have

q>X 1/2 1 q q * h=1 S hQ q A ,b (x, -h/q) X /4+1/2 L.
Thus we can write (4.2) as, for

x ∈ [X 1/2 , X] Z, (4.5) 
S f,b,Q (x) = σ Q q X 1/2 q * h=1 S hQ q e q (bh) q A ,b (x, -h/q) + O X /4+1/2 L + δ Q X /4-δ +1+ε .
Suppose now 1 q X 1/2 and we estimate the integral I defined as in (4.4). If q 2 b, by partial integration and Lemma 2.3 we have, with the notation (2.5), (4.6)

I = x /2-2 A 1 (x + b, -h/q) - -4 2 x+b b (u -b) /2-3 A 1 (u, -h/q) du q 3/2 X /2-5/4 .
If q 2 > b, we can write (4.7)

I = q 2 b A(u, -h/q)(u -b) /2-2 du + x+b q 2
A(u, -h/q)(u -b) /2-2 du q -1 log(2q) + q 3/2 X /2-5/4 q 3/2 X /2-5/4 L, where we estimated the first integral by Lemma 2.1 and the second as in (4.6). In view of (4.6), (4.7) and (2.7), the contribution of I to the last sum in (4.5) is

X /2-5/4 L q X 1/2 q -( -5)/2 R (X) := X /2-1+ε if 6, X /2-3/4+ε if = 5.
Since /4 -δ + 1 /2 -1 ( 6), thus we can write (4.5) as, for x ∈ [X 1/2 , X] Z,

(4.8) S f,b,Q (x) = σ Q x /2-1 q X 1/2
q * h=1 S hQ q e q (bh) q A(x + b, -h/q) + O(R (X)).

Now we split the sum over q X 1/2 into two parts according to q X 1/6 or X 1/6 < q X 1/2 . In view of X 1/2 x, we can apply Lemma 2.2 to the sum q X 1/6 by taking M = x + b. It is easy to see that the contribution of the error term to S f,b,Q (x) is O(X /2-1+ε ) if 6 and O(X 19/12 ) if = 5. Thus the formula (4.8) becomes (4.9)

S f,b,Q (x) = S 1 (x) + S 2 (x) + O(R (X)),
where

S 1 (x) := σ Q √ 2π x /2-1 (x + b) 1/4 q X 1/6
q * h=1 n x+b ψ(h, n, q) cos(g n,q (x)),

S 2 (x) := σ Q x /2-1 X 1/6 <q X 1/2
q * h=1 S hQ q e q (bh) q A(x + b, -h/q), and

ψ(h, n, q) := λ f (n)e q (bh -hn) n 3/4 q -1/2 S hQ q , g n,q (x) := 4π n(x + b) q - π 4 •
We first evaluate the integral where h j h j ≡ 1 (mod q j ) for j = 1, 2, and

S 11 (x) := σ Q 2π 2 x -2 (x + b) 1/2 q 1 X 1/6 q 1 * h 1 =1 n 1 x+b q 2 X 1/6 q 2 * h 2 =1 n 2 x+b √ n 1 /q 1 = √ n 2 /q 2 × ψ(h 1 , n 1 , q 1 )ψ(h 2 , n 2 , q 2 ), S 12 (x) := σ Q 2π 2 x -2 (x + b) 1/2 q 1 X 1/6 q 1 * h 1 =1 n 1 x+b q 2 X 1/6 q 2 * h 2 =1 n 2 x+b √ n 1 /q 1 = √ n 2 /q 2 × ψ(h 1 , n 1 , q 1 )ψ(h 2 , n 2 , q 2 ) cos(g n 1 ,q 1 (x) -g n 2 ,q 2 (x)), S 13 (x) := σ Q 2π 2 x -2 (x + b) 1/2 q 1 X 1/6 q 1 * h 1 =1 n 1 x+b q 2 X 1/6 q 2 * h 2 =1 n 2 x+b × ψ(h 1 , n 1 , q 1 )ψ(h 2 , n 2 , q 2 ) cos(g n 1 ,q 1 (x) + g n 2 ,q 2 (x)).
The relation √ n 1 /q 1 = √ n 2 /q 2 implies that n 1 and n 2 have the same square-free factor. We write n j = d 2 j m with µ(m) = 0 for j = 1, 2. Recalling (2.7), Deligne's well-known bound |λ f (n)| τ (n) and the trivial inequality τ (uv) τ (u)τ (v), we have (4.11)

ψ(h 1 , n 1 , q 1 )ψ(h 2 , n 2 , q 2 ) τ (d 2 1 m)τ (d 2 2 m) (d 1 d 2 m) 3/2 (q 1 q 2 ) /2-1/2 τ (d 1 ) 2 τ (d 2 ) 2 τ (m) 2 (d 1 d 2 m) 3/2 (q 1 q 2 ) /2-1/2 •
The above estimate (4.11) implies that the infinite series

(4.12) C f,b,Q := σ Q 2π 2 q 1 1 * 1 h 1 q 1 n 1 1 q 2 1 * 1 h 2 q 2 n 2 1 √ n 1 /q 1 = √ n 2 /q 2 ψ(h 1 , n 1 , q 1 )ψ(h 2 , n 2 , q 2 )
converges absolutely provided 4 and

(4.13) C f,b,Q f,Q 1 (∀ b). If a quadruple (q 1 , q 2 , n 1 , n 2 ) satisfies √ n 1 /q 1 = √ n 2 /q 2 but is not included in S 11 (x),
then we must have that q 1 > X 1/6 , or q 2 > X 1/6 , or we can derive, for all x ∈ [X 1/2 , X] Z, (4.15) S 11 (x) x -2 (x + b) 1/2 -C f,b,Q n 1 ,n 2 ,q 1 ,q 2 n 2 q 2 1 =n 1 q 2 2 >X 1/3 τ (n 1 )τ (n 2 ) (n 1 q 2 2 n 2 q 2 1 ) 3/4 (q 1 q 2 ) /2-3 m>X 1/3 t (m) 2 m 3/2

n 1 > x + b X 1/2 , or n 2 > x + b X 1/2 . Thus n 1 q 2 2 = n 2 q 2 1 > X 1/3
m>X 1/3 t (m) 2 m 3/2 X -1/6 L 8 if 6,
X -1/12 L 8 if = 5.

On the other hand, we have, in view of (4.13),

C f,b,Q X √ X x -2 (x + b) 1/2 dx = C f,b,Q X 1 x -2 (x + b) 1/2 dx + O(X /2 )
uniformly for X 1 and 0 b X. And hence we obtain (4.16)

X √ X S 11 (x) dx = C f,b,Q X 1 x -2 (x + b) 1/2 dx + O(X -2/3 L 8 ) if 6,
O(X -7/12 L 8 ) if = 5.

By the first derivative test, (4.11) and (2.7), we have (note 5) (4.17)

X X 1/2
|S 13 (x)| dx X -1 n 1 ,n 2 x+b q 1 ,q 2 X 1/6 τ (n 1 )τ (n 2 ) (n 1 n 2 ) 3/4 (q 1 q 2 ) /2-3/2 1 √ n 1 /q 1 + √ n 2 /q 2 X -1 n 1 ,n 2 x+b q 1 ,q 2 X 1/6 τ (n 1 )τ (n 2 ) n 1 n 2 (q 1 q 2 ) /2-2 X -5/6 L 6 , where we used the inequality u + v 2 √ uv for u, v > 0. Similarly by the first derivative test again (4.18)

X X 1/2 |S 12 (x)| dx X -1 Σ 11 + Σ 12 ,
where Σ 11 := n 1 ,n 2 x+b, q 1 ,q 2 X 1/6 | √ n 1 /q 1 -√ n 2 /q 2 | 1 10 ( √ n 1 n 2 /q 1 q 2 ) 1/2 τ (n 1 )τ (n 2 ) (n 1 n 2 ) 3/4 (q 1 q 2 ) /2-3/2 1 | √ n 1 /q 1 -√ n 2 /q 2 | , Σ 12 := n 1 ,n 2 x+b, q 1 ,q 2 X 1/6 0<| √ n 1 /q 1 -√ n 2 /q 2 |< 1 10 ( √ n 1 n 2 /q 1 q 2 ) 1/2 τ (n 1 )τ (n 2 ) (n 1 n 2 ) 3/4 (q 1 q 2 ) /2-3/2

1 | √ n 1 /q 1 - √ n 2 /q 2 | •

Lemma 2 . 1 .

 21 Let f be a cusp form of weight k and level N . (a) The estimate (2.1) n x λ f (n)e(αn) f x 1/2 log x holds uniformly for α ∈ R, where e(u) := e 2πiu .(b) For any ε > 0, we have

3. Proof of Theorem 1 3. 1 .

 11 Case of 3. Let F (α) := n x λ f (n + b)e(-αn) and S(α) := |m| x 1/2

4 . 1 +

 41 Theorem 1 for the case = 2 follows from (3.7)-(3.10). Proof of Theorem 2 and (1.9) Suppose Q(y) is the quadratic form defined in Lemma 2.4 for 6, and Q(y) = y 2 • • • + y 2 5 for = 5. By Deligne's inequality |λ f (n)| τ (n) and the bound r(n, Q) n /2-1 , we have, with the notation L := log(2X),

  4 and [5, p. 256, (2.25), p. 270] allow us to write

(

  

X 2 ,

 2 |S 1 (x)| 2 dx. By the elementary formula cos u cos v = cos (u -v) + cos (u + v) we can write (4.10) |S 1 (x)| 2 = S 11 (x) + S 12 (x) + S 13 (x),
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As in the argument of (4.17) we get easily that (recall 5) (4.19) Σ 11 n 1 ,n 2 x+b, q 1 ,q 2 X 1/6 τ (n 1 )τ (n 2 ) n 1 n 2 (q 1 q 2 ) /2-2 X 1/6 L 6 .

So in view of these facts, by a similar argument as in (4.15) we have, for 6,

By applying the Cauchy inequality to the sum over m and (4.14), we can deduce

When = 5, the similar estimate with X 1/2 in place of X 

Finally we estimate

. By (2.7) and Cauchy's inequality, it follows

From this and Lemma 2.3(ii), we deduce (recall 5 and 0 b X)

On the other hand, (4.22) implies immediately

In view of this and (4.23), a simple application of Cauchy's inequality yields (4.24)

Now the first assertion of Theorem 2 and (1.9) follow from (4.1), (4.9), (4.22), (4.23) and (4.24). The second is an immediate consequence by noticing that (x + b) 1/2 = x 1/2 + O(bx -1/2 ) valid uniformly for x 1 and b 1.