these languages: descriptions which are a generalisation of the notion of class, relationships such as inheritance or aggregation and languages themselves. O F L provides a customisation of these three concepts in order to adapt their operational semantics to the programmer's needs.

O F L allows to define and provide software components (for objectoriented programming language) such as: a library of conceptsdescriptions (equivalent to metadescriptions) class generic class interface array basic type ... a library of conceptsrelationships (equivalent to metarelationships) specialisation (and other derivatives of inheritance) generalisation (opposite of the previous, lacking in most of object oriented programming language!) codereuse (importation without polymorphism) aggregation (for attributes, parameters of method, ...) composition (for strengthened attributes, ...) view (like in DBMS) version (for evolution handling) ... O F L allows to compose these conceptsdescriptions and conceptsrelationships into a conceptlanguage (equivalent to a metalanguage) to: modelise an existing objectoriented programming language (such as J a v a [START_REF] Ag | [END_REF]] or E i f f e l [M 1992]) to use the language, to adapt the language to a specific need (to make a more specialised language), to avoid an inopportune feature (for a specific purpose) of the language (by disabling this feature), to test a potential future evolution of the language (for instance, multiple inheritance or genericity in J a v a ), ... build a new objectoriented programming language (with all concepts descriptions and conceptsrelationships the programmer need)

to use this new language, to make a very specific language, to build a prototype of a future new language, ... do metaprogramming experiences...

O F L Concepts

Our goal is to avoid, as far as possible, long and fastidious metaprogramming work. So, we have determined a set of parameters for each concept (concept language, conceptdescription, and conceptrelationship). Each parameter describes a piece of operational semantics. A system of actions (routines which represent operational semantics) is provided. Each action take in account the value of the parameters do realize its task.

For example, to define a relationship like inheritance (and thus, to influence execution of the action l o o k u p which determines dynamic link), we have to set the value of some parameters such as: C a r d i n a l i t y : 1 -1 (single inheritance), C i r c u l a r i t y : f a l s e (no cycle in inheritance graph), P o l y m o r p h i s m _ d i r e c t i o n : u p (inheritance is almost equivalent to specialisation), ... And, to define a description like class, we must assign some others parameters such as: G e n e r a t o r : t r u e (we can define constructors), O v e r l o a d i n g : t r u e (like in J a v a , unlike in E i f f e l ), A t t r i b u t e : a l l o w e d (attributes are allowed), ...

O F L Tools

Several software products, in the process of being implemented, provide graphic assistance to O F L metaprogrammers and programmers.

The first tool called O F L -M e t a is for the metaprogrammer. It allows to graphically create, modify or delete the instances of the concepts. In other words, it allows to describe the operational semantics of a language which will be used when designing an application. These components which it handles can be stored by using various standard formalism such X M L [W3C 2000[W3C , CCCL 2000b] or M O F [OMG 2000a].

The second tool is called O F L -M L in reference to U M L [OMG 2000b]. It is intended for the application designer. It is also a graphic tool which allows to design the structure of the application (classes A and B, inheritance between classes A and B, ...), i. e. instances of the entities described in O F L -M e t a . The programming task is included by a binding: the selected language is J a v a , that is body of all the methods is written in J a v a .

The third tool is called O F L -P a r s e r . It is a translator, interpreter or compiler. Its task is to translate the structure of the application and the body of methods into a target language, J a v a in our case. The last step consist in executing the generated application and thus to use the methods and create the final data.

Conclusion

To sum up, we can say that O F L is a model which allows to describe object oriented programming languages in order to adapt them to the programmer's need. The metaprogrammer's work is mainly to define conceptsdescriptions and conceptsrelationships into conceptslanguages by giving a value to their set of parameters.