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We extend to multi-dimension the study of a pressureless model of gas system with unilateral constraint. Several difficulties are added with respect to the one-dimensional case. First, the geometry of the dynamics of blocks cannot be conserved and to solve this problem, a splitting with respect to the various directions is done. This leads to approximations of solutions for special initial data. Besides, the stability of the solutions is also quite different from the one-dimensional case. We finaly get the existence and the stability of solutions.

Introduction

Constraints models have been developed these last years in order to impose some bounds in hyperbolic models. In [START_REF] Bouchut | A hierarchy of models for two-phase flows[END_REF], [START_REF] Berthelin | Existence and weak stability for a two-phase model with unilateral constraint[END_REF], the following one-dimensional model was studied.

∂ t ρ + ∂ x (ρu) = 0, ∂ t (ρu) + ∂ x (ρu 2 + π) = 0 (1.1)

with the constraints 0 ≤ ρ ≤ 1, π ≥ 0, (1.2) and the exclusion relation ρπ = π.

(1.3)

In [START_REF] Berthelin | Weak solutions for a hyperbolic system with unilateral constraint and mass loss[END_REF], an approaching model but with other technical difficulties has been studied. See also [START_REF] Berthelin | Numerical flux-splitting for a class of hyperbolic systems with unilateral constraint[END_REF] for a numerical version of this kind of problems. There are a lot of domains in which constraints models take place. For example, this kind of models have allowed to get better models in trafic flows since the paper [START_REF] Berthelin | Model for the formation and evolution of traffic jams[END_REF]. After this paper, some improvements of the model have been done in [START_REF] Berthelin | A traffic-flow model with constraint for the modeling of traffic jams[END_REF] and [START_REF] Berthelin | A model for the evolution of traffic jams in multilane[END_REF]. Other hyperbolic problems with constraints have been studied in [START_REF] Barthélemy | Problème d'obstacle pour une équation quasi-linéaire du premier ordre[END_REF], [START_REF] Gagneux | Une approche analytique d'un modèle black oil des écoulements triphasiques compressibles en ingénierie pétrolière[END_REF], [START_REF] Lévi | Problèmes unilatéraux pour des équations non linéaires de convection-réaction[END_REF], [START_REF] Lévi | Obstacle problems for scalar conservation laws[END_REF]. Notice also that in [START_REF] Masmoudi | On a free boundary barotropic model[END_REF], the same problem but with viscosity was studied. And in that direction, the limit of barotropic compressible Navier-Stokes to constraint Navier-Stokes was done in [START_REF] Bresch | Singular limit of a NavierStokes system leading to a free/congested zones two-phase model[END_REF] for 1D case and in [START_REF] Perrin | Free/congested two-phase model from weak solutions to multi-dimensional compressible Navier-Stokes equations[END_REF] for the multi-D case. Existence and properties of the system of pressureless gas have been studied in [START_REF] Grenier | Existence globale pour le système des gaz sans pression[END_REF], [START_REF] Bouchut | Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness[END_REF], [START_REF] Rykov | Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics[END_REF].

In this paper, we want to extend the existence and stability result of [START_REF] Berthelin | Existence and weak stability for a two-phase model with unilateral constraint[END_REF] in multi-dimension. An important tool for this result is the sticky block dynamics. In dimension one, when two blocks collide, they form a new block and the dynamics of blocks is easy. In multi-dimension, a geometric problem appears since when two rectangular parallelepipeds collide, they do not form a rectangular parallelepiped. An idea of this paper is to make, on same time interval, a splitting with respect to the various directions of space. Thus on each time interval, we do vary only one direction then, on the next interval, another direction and so on to keep the geometry at each collision. Then by letting the time step going to 0 and thereby forcing the splitting to be more rapid, we hope to find the limit of the speed on any directions. The purpose of this paper is to achieve this approach and prove that it works.

Furthermore, it will give only approximations of solutions instead of solutions for block initial data. Then, the stability and existence of solutions will require additionnal steps than in the one-D case to work.

In order to simplify the presentation, we will detail the 2D-case, but the demarch and proof are the same in any dimension. We will consider the following model with constraint in two dimensions which is the natural extension of (1.1)-(1.3):

     ∂ t ρ + ∂ x (ρu) + ∂ y (ρv) = 0, ∂ t (ρu) + ∂ x (ρu 2 + π 1 ) + ∂ y (ρuv) = 0, ∂ t (ρv) + ∂ x (ρuv) + ∂ y (ρv 2 + π 2 ) = 0 (1.4)
with the constraints 0 ≤ ρ ≤ 1, π 1 ≥ 0, π 2 ≥ 0, (1.5) and the exclusion relations

ρπ 1 = π 1 , ρπ 2 = π 2 .
(1.6)

We will also consider initial data ρ(0, x, y)(1, u(0, x, y), v(0, x, y)) = ρ 0 (x, y)(1, u 0 (x, y), v 0 (x, y)).

(

Let us define precisely the weak solutions we shall consider. We look for solutions satisfying

ρ ∈ L ∞ t (]0, ∞[, L ∞ xy (R 2 ) ∩ L 1 xy (R 2 )) ∩ C t ([0, ∞[, L ∞ w * (R 2 )), (1.8) u, v ∈ L ∞ t (]0, ∞[, L ∞ xy (R 2 )), (1.9) 
π 1 , π 2 ∈ M loc ([0, ∞[×R 2 ).
(1.10) Hence, (1.4), (1.7) must be satisfied in the sense of distributions:

for all ϕ ∈ C ∞ c ([0, +∞[×R 2 ), [0,+∞[ R 2 
(ρ∂ t ϕ + ρu∂ x ϕ + ρv∂ y ϕ) dx dy dt

+ R 2
ρ 0 (x, y)ϕ(0, x, y) dx dy = 0, (1.11) [0,+∞[ R 2

(ρu∂ t ϕ + ρu 2 ∂ x ϕ + ρuv∂ y ϕ) dx dy dt

+ [0,+∞[ R 2 ∂ x ϕ π 1 + R 2
(ρ 0 u 0 )(x, y)ϕ(0, x, y) dx dy = 0, (1.12) and

[0,+∞[ R 2 
(ρv∂ t ϕ + ρuv∂ x ϕ + ρv 2 ∂ y ϕ) dx dy dt

+ [0,+∞[ R 2 ∂ y ϕ π 2 + R 2
(ρ 0 v 0 )(x, y)ϕ(0, x, y) dx dy = 0. (1.13)

The constraint (1.6) has also to be understood in a weak sense in the case where the product ρπ is not defined. We will have a discussion about this in section 4 and we will define a subspace in which the product is well defined.

As we say previously, all the new arguments we introduce to solve the 2D-case can be used the same way in multi-D case. Thus, for example, we can adapt easily the study of this paper for example for the system in dimension three:

         ∂ t ρ + ∂ x (ρu) + ∂ y (ρv) + ∂ z (ρw) = 0, ∂ t (ρu) + ∂ x (ρu 2 + π 1 ) + ∂ y (ρuv) + ∂ z (ρuw) = 0, ∂ t (ρv) + ∂ x (ρuv) + ∂ y (ρv 2 + π 2 ) + ∂ z (ρvw) = 0, ∂ t (ρw) + ∂ x (ρuw) + ∂ y (ρvw) + ∂ z (ρw 2 + π 3 ) = 0 (1.14)
with the constraints

0 ≤ ρ ≤ 1, π 1 ≥ 0, π 2 ≥ 0, π 3 ≥ 0, (1.15) 
and the exclusion relations

ρπ 1 = π 1 , ρπ 2 = π 2 , ρπ 3 = π 3 . (1.16) 
The paper is organized as follows. In section 2, we will study particular solutions and approximations of solutions in the class of blocks functions. In section 3, we prove a result of discretization of general initial data by blocks and stability results of solutions and approximate solutions. Finally, in section 4, we study a space in which the constraint can be taken in a classical sense and conclude to the existence result.

Discrete blocks dynamics Definition of blocks

We give here several definitions we are going to use in the following of the paper.

Definition 2.1 We call block initial data a volume fraction ρ 0 (x, y) with a momentum density ρ 0 (x, y)(u 0 (x, y), v 0 (x, y)) of the form

ρ 0 (x, y)(1, u 0 (x, y), v 0 (x, y)) = I i=-I J j=-J ρ ij (1, u ij , v ij )1I (x,y)∈P ij , (2.17) 
where

1I (x,y)∈P ij = 1I a ij ≤x≤b ij 1I c ij ≤y≤d ij , (2.18) 
with I, I , J, J ∈ N and, for -

I ≤ i ≤ I , -J ≤ j ≤ J , ρ ij ∈ {0, 1}, a ij , b ij , c ij , d ij , u ij , v ij ∈ R such that b ij ≤ a i+1,j and d ij ≤ c i,j+1 .
Definition 2.2 We call continuous block a volume fraction ρ(t, x, y) with a momentum density ρ(t, x, y)(u(t, x, y), v(t, x, y)) of the form

ρ(t, x, y)(1, u(t, x, y), v(t, x, y)) = I i=-I J j=-J ρ ij (1, u ij , v ij )1I (x,y)∈P ij (t) , (2.19) where 1I (x,y)∈P ij (t) = 1I a ij (t)≤x≤b ij (t) 1I c ij (t)≤y≤d ij (t) , (2.20) 
with I, I , J, J ∈ N and, for -

I ≤ i ≤ I , -J ≤ j ≤ J , ρ ij ∈ {0, 1}, u ij , v ij ∈ R and a ij , b ij , c ij , d ij : R → R such that b ij ≤ a i+1,j and d ij ≤ c i,j+1 .
Definition 2.3 Let us given ∆t, ∆x, ∆y > 0. We call discrete block a volume fraction ρ(t, x, y) with a momentum density ρ(t, x, y)(u(t, x, y), v(t, x, y)) of the form

ρ(t, x, y)(1, u(t, x, y), v(t, x, y)) = I i=-I J j=-J +∞ l=0 ρ ijl (1, u ijl , v ijl )1I (t,x,y)∈P ijl (t) ,
(2.21) where

1I (t,x,y)∈P ijl = 1I l∆t≤t<(l+1)∆t 1I a ijl +i∆x≤x<a ijl +(i+1)∆x 1I b ijl +j∆y≤y<b ijl +(j+1)∆y , (2.22 
) with I, I , J, J ∈ N and, for -

I ≤ i ≤ I , -J ≤ j ≤ J , l ∈ N, ρ ijl ∈ {0, 1}, a ijl , b ijl , c ijl , d ijl , u ijl , v ijl ∈ R such that a ijl +∆x ≤ a i+1,jl and b ijl +∆y ≤ b i,j+1,l .
Remark 2.1 To simplify the presentation, we can assume that I = J = 0 which is just a translation of indices and I = J by adding zero terms to have the same number of terms. In the following, we may sometimes use this change of notations by setting N -1 = I = J .

Continuous dynamics

We start first by studying the free dynamics, we mean when constraints doesn't act. It leads to the study of pressureless dynamics equations in dimension two, which are given by

     ∂ t ρ + ∂ x (ρu) + ∂ y (ρv) = 0, ∂ t (ρu) + ∂ x (ρu 2 ) + ∂ y (ρuv) = 0, ∂ t (ρv) + ∂ x (ρuv) + ∂ y (ρv 2 ) = 0. (2.23)
We prove now that continuous blocks with functions a(t), b(t) adapted with a constant velocity (u, v) are solutions to the free dynamics.

Proposition 2.4 Let u, v, a 0 , b 0 ∈ R and c, d > 0. The functions ρ(1, ũ, ṽ)(t, x, y) = (1, u, v)1I 0≤t 1I a(t)≤x≤a(t)+c 1I b(t)≤y≤b(t)+d , (2.24) 
where a(t) = a 0 + ut and b(t) = b 0 + vt, are solution of (2.23) in the distributional sense with the initial data 

(1, u, v)1I a 0 ≤x≤a 0 +c 1I b 0 ≤y≤b 0 +d . Proof. Let S : R 2 → R be a continuous function. Let ϕ ∈ C ∞ c ([0, +∞[, R 2 ), we want to compute +∞ 0 a(t)+c a(t) b(t)+d b(t) S(ũ, ṽ)(∂ t ϕ + u∂ x ϕ + v∂ y ϕ)(t, x, y) dy dx dt.
= +∞ 0 a(t)+c a(t) ϕ(t, x, b(t) + d) -ϕ(t, x, b(t) + d) dx dt.
Integrating with respect to t the relation (2.25) and using that a (t) = u and b (t) = v, we get that

+∞ 0 a(t)+c a(t) b(t)+d b(t) S(ũ, ṽ)(∂ t ϕ + u∂ x ϕ + v∂ y ϕ)(t, x, y) dy dx dt = - a 0 +c a 0 b 0 +d b 0 ϕ(0, x, y) dy dx.
Applying this to S(u, v) = 1, S(u, v) = u and S(u, v) = v, we get the result.

The previous dynamics concerns the evolution of blocks as long as there is no collision between them. Now we consider the case with a collision in the x direction.

Proposition 2.5 Let t * , µ > 0, x * , u 1 , u 2 , c, d, v ∈ R. The functions ρ(1, û, v)(t, x, y) = 1I 0≤t<t * (1, u 1 , v)1I a 1 (t)-c≤x≤a 1 (t) 1I b(t)≤y≤b(t)+µ +(1, u 2 , v)1I a 2 (t)≤x≤a 2 (t)+d 1I b(t)≤y≤b(t)+µ +(1, u f , v)1I t * ≤t 1I a f (t)-c≤x≤a f (t)+d 1I b(t)≤y≤b(t)+µ ,
and the measures Proof. Let ϕ be a test function and S : R 2 → R be a continuous function. We have 

π 1 (t, x, y) =      δ(t -t * )(u 1 -u f )(x -(z -c)) if z -c ≤ x ≤ z, δ(t -t * )(u f -u 2 )((z + d) -x) if z ≤ x ≤ z + d, 0 otherwise, ( 2 
< ∂ t (ρS(û, v)) + ∂ x (ρS(û, v)û) + ∂ y (ρS(û, v)v), ϕ > = - t * 0 a 1 (t) a 1 (t)-c b(t)+µ b(t) S(u 1 , v)(∂ t ϕ + u 1 ∂ x ϕ + v∂ y ϕ)
+ b(t)+µ b(t) (ϕ(t, a 1 (t), y) -ϕ(t, a 1 (t) -c, y))u 1 dy + a 1 (t) a 1 (t)-c (ϕ(t, x, b(t) + µ) -ϕ(t, x, b(t)))v dx,
then we get

t * 0 a 1 (t) a 1 (t)-c b(t)+µ b(t) S(u 1 , v) ∂ t ϕ(t, x, y) dy dx dt = a 1 (t * ) a 1 (t * )-c b(t * )+µ b(t * ) S(u 1 , v) ϕ(t * , x, y) dy dx - t * 0 b(t)+µ b(t) S(u 1 , v)u 1 (ϕ(t, a 1 (t), y) -ϕ(t, a 1 (t) -c, y)) dy dt - t * 0 a 1 (t) a 1 (t)-c S(u 1 , v)v (ϕ(t, x, b(t) + µ) -ϕ(t, x, b(t))) dx dt = a 1 (t * ) a 1 (t * )-c b(t * )+µ b(t * ) S(u 1 , v) ϕ(t * , x, y) dy dx - t * 0 a 1 (t) a 1 (t)-c b(t)+µ b(t) S(u 1 , v)u 1 ∂ x ϕ(t, x, y) dy dx dt - t * 0 a 1 (t) a 1 (t)-c b(t)+µ b(t) S(u 1 , v)v ∂ y ϕ(t,
x, y) dy dx dt.

We have similar equations for both terms (2.28) and (2.29) and we get

< ∂ t (ρS(û, v)) + ∂ x (ρS(û, v)û) + ∂ y (ρS(û, v)v), ϕ > = - b(t * )+µ b(t * )
x *

x * -c (S(u 1 ) -S(u f ))ϕ(t * , x, y) dx

+ x * +d x * (S(u 2 ) -S(u f ))ϕ(t * , x, y) dx dy. For S(u) = 1, it gives ∂ t ρ + ∂ x (ρû) + ∂ y (ρv) = 0, for S(u, v) = v, it gives ∂ t (ρv) + ∂ x (ρûv) + ∂ y (ρv 2 ) = 0 and for S(u) = u, we get ∂ t (ρû) + ∂ x (ρû 2 + π 1 ) + ∂ y (ρûv) = 0
where π 1 is defined by (2.26). Notice that π 1 ≥ 0 and that the constraints relations are satisfied.

Remark 2.2 If we do the same with a shock in the y direction, it gives a term π 2 = 0.

2 Discrete approximations in the free dynamics case

Let ∆t, ∆x and ∆y be non-negative reals. We prove here that we can approximate the solution of Proposition 2.4 with discrete blocks.

Proposition 2.6 Let u, v, a 0 , b 0 ∈ R and c, d > 0. Then there exists discrete blocks

(ρ N , ρ N u N , ρ N v N ) with initial data 1I a 0 ≤x≤a 0 +c 1I b 0 ≤y≤b 0 +d (1, u, v) such that      ∂ t ρ N + ∂ x (ρ N u N ) + ∂ y (ρ N v N ) → 0, ∂ t (ρ N u N ) + ∂ x (ρ N u 2 N ) + ∂ y (ρ N u N v N ) → 0, ∂ t (ρ N v N ) + ∂ x (ρ N u N v N ) + ∂ y (ρ N v 2 N ) → 0, (2.30)
in the distributional sense.

Definition 2.7 We first define the dynamics of blocks we are going to use in this case. Let u, v, a 0 , b 0 ∈ R and c, d > 0. Let N ∈ N * . We take ∆x = c/N , ∆y = d/N and ∆t = 1/N . The key idea is to perform a splitting in time.

During a time ∆t, we make only act the x direction movement, then during the following ∆t time, we make only act the y direction movement and so on with alternatively a movement on x direction and on y direction.

More precisely, starting from a 0 and b 0 , we construct the sequences (a n ) n and (b n ) n as

a 2k+1 = a 0 + 2(k + 1)u∆t ∆x ∆x, b 2k+1 = b 2k , and 
b 2k+2 = b 0 + 2(k + 1)v∆t ∆y ∆y, a 2k+2 = a 2k+1 .
At time t = (2k +1)∆t, we make a jump for the block in the x direction, and at time t = (2k + 2)∆t, we make a jump for the block in the y direction, staying on the fixed grid at level N and taking an approximation of the movement.

Then we consider the approximation given by the following sum of blocks:

ρ N (1, u N , v N )(t, x, y) = N -1 i,j=0 +∞ l=0 (1, u, v)1I (t,x,y)∈P ijl (2.31)
where

1I (t,x,y)∈P ijl = 1I l∆t≤t<(l+1)∆t 1I a l +i∆x≤x<a l +(i+1)∆x 1I b l +j∆y≤y<b l +(j+1)∆y . (2.32)
We first start by proving the two following technical Lemmas.

Lemma 2.8 We use the discrete blocks constructed in Definition 2.7 and the associated notations. We set

a ∆ (t) = +∞ l=0 a l 1I l∆t≤t<(l+1)∆t .
Then we have

|a(t) -a ∆ (t)| ≤ |u|∆t + ∆x, and 
|b(t) -b ∆ (t)| ≤ |v|∆t + ∆y. (2.33) Proof. Using that 2(k + 1)u∆t -∆x < 2(k+1)u∆t ∆x ∆x ≤ 2(k + 1)u∆t, for t ∈ [(2k + 1)∆t, (2k + 3)∆t[, we have |a(t) -a ∆ (t)| = |a 2k+1 -a 0 -ut| = 2(k + 1)u∆t ∆x ∆x -ut ≤ |u||2(k + 1)∆t -t| + ∆x ≤ |u|∆t + ∆x.
Then, for any t ≥ 0, we get

|a(t) -a ∆ (t)| ≤ |u|∆t + ∆x.
Similarly 

∈ C ∞ c ([0, +∞[, R 2 ), A(ϕ) = +∞ l=0 (l+1)∆t l∆t a(t)+c a(t) b(t)+d b(t) ϕ(t, x, y) dy dx dt (2.34)
and 

A N (ϕ) = N -1 i,j=0 +∞ l=0 ( 
A(ϕ) = N -1 i,j=0 +∞ l=0 (l+1)∆t l∆t a(t)+(i+1)∆x a(t)+i∆x b(t)+(j+1)∆y b(t)+j∆y ϕ(t, x, y) dy dx dt. (2.36)
Let us denote by T a real such that the support in time of ϕ is in [0, T ]. Denote by L N an integer such that L N ∆t ≥ T . We have

A N (ϕ) -A(ϕ) = N -1 i,j=0 +∞ l=0 (l+1)∆t l∆t a l +(i+1)∆x a l +i∆x b l +(j+1)∆y b l +j∆y ϕ(t, x, y) dy dx - a(t)+(i+1)∆x a(t)+i∆x b(t)+(j+1)∆y b(t)+j∆y ϕ(t, x, y) dy dx dt = N -1 i,j=0 L N l=0 (l+1)∆t l∆t a l +(i+1)∆x a l +i∆x b l +(j+1)∆y b l +j∆y ϕ(t, x, y) -ϕ(t, x + a(t) -a l , y + b(t) -b l ) dy dx dt.
Let ε > 0. Since ϕ is continuous and has a compact support, there exists η > 0 such that for any (t, x 1 , y 1 ) and (t,

x 2 , y 2 ) in the support of ϕ, if |x 1 -x 2 | ≤ η and |y 1 -y 2 | ≤ η, then |ϕ(t, x 1 , y 1 ) -ϕ(t, x 2 , y 2 )| ≤ ε. Let N 0 ∈ N * be such that N 0 is greater than (|u| + c)/η and (|v| + d)/η. Let N ∈ N * be greater than N 0 . Now |a(t) -a ∆ (t)| ≤ |u|∆t + ∆x = |u| 1 N + c N ≤ η and |b(t) -b ∆ (t)| ≤ |v| 1 N + d N ≤ η, therefore |A N (ϕ) -A(ϕ)| ≤ N -1 i,j=0 L N l=0 (l+1)∆t l∆t a l +(i+1)∆x a l +i∆x b l +(j+1)∆y b l +j∆y ε dy dx dt ≤ N -1 i,j=0 L N l=0 (l+1)∆t l∆t ∆x∆y ε dt ≤ N ∆xN ∆yL N ∆ ε ≤ cdT ε. (2.37) It gives that A N (ϕ) → A(ϕ) when N → +∞.
We can now conclude to the proof of Proposition 2.6.

Proof of Proposition 2.6. Let ϕ ∈ C ∞ c ([0, +∞[, R 2 ). The solution (ρ, ρũ, ρũ) satisfies 0 = +∞ 0 R 2 (ρ∂ t ϕ + ρũ∂ x ϕ + ρṽ∂ y ϕ) dy dx dt = +∞ l=0 (l+1)∆t l∆t a(t)+∆x a(t) b(t)+∆y b(t) (∂ t ϕ + u∂ x ϕ + v∂ y ϕ) dy dx dt = A(∂ t ϕ) + uA(∂ x ϕ) + vA(∂ y ϕ).
We also have

+∞ 0 R 2 (ρ N ∂ t ϕ + ρ N u N ∂ x ϕ + ρ N v N ∂ y ϕ) dy dx dt = N -1 i,j=0 +∞ l=0 (l+1)∆t l∆t a l +(i+1)∆x a l +i∆x b l +(j+1)∆y b l +j∆y (∂ t ϕ + u∂ x ϕ + v∂ y ϕ) dy dx dt = A N (∂ t ϕ) + uA N (∂ x ϕ) + vA N (∂ y ϕ). Since A(∂ t ϕ) + uA(∂ x ϕ) + vA(∂ y ϕ) = 0, then we get that A N (∂ t ϕ) + uA N (∂ x ϕ) + vA N (∂ y ϕ) → N →+∞ 0
applying the Lemma 2.9 to ∂ t ϕ, ∂ x ϕ and ∂ y ϕ. That is to say

+∞ 0 R 2 (ρ N ∂ t ϕ + ρ N u N ∂ x ϕ + ρ N v N ∂ y ϕ) dy dx dt → N t→+∞ 0 for any test function ϕ.
Since the speeds u and v are constants, they can be put in factor on every terms and then we get also that

+∞ 0 R 2 ρ N u N ∂ t ϕ + ρ N u 2 N ∂ x ϕ + ρ N v N u N ∂ y ϕ dy dx dt → N →+∞ 0 and +∞ 0 R 2 ρ N v N ∂ t ϕ + ρ N u N v N ∂ x ϕ + ρ N v 2 N ∂ y ϕ dy dx dt → N →+∞ 0
for any test function ϕ.

Discrete approximations in the constraint case

We define now the dynamics to approximate the solution of Proposition 2.5 by discrete blocks.

Definition 2.10 First consider that the shock happens during the x direction movement in the splitting. We still take, for N ∈ N * , ∆x = c/N , ∆y = d/N and ∆t = 1/N . We start at t = 0 from a situation where two distincts blocks, the first one with a length c = P ∆x and a velocity u 1 located between α 1 -P ∆x and α 1 and the second one with a length d = Q∆x and a velocity u 2 located between α 2 and α 2 +Q∆x.

If 0 < α 2 -α 1 u 1 -u 2 ≤ ∆t, then a collision has to happen in time t * = α 2 -α 1 u 1 -u 2 .
In order to have the conservation of the mass and a good approximation of the conservation of the momentum, at time ∆t, we replace this by the following situation: a block with a length (P + Q)∆x and a velocity u f = P u 1 + Qu 2 P + Q located between α f -P ∆x and α f + Q∆x where

α f = u 1 t * + α 1 + u f (∆t -t * ) ∆x ∆x.
We have similar formulas for a shock in the y direction remplacing ∆x by ∆y and u by v.

If the shock is not between 0 and ∆t, but let say between L∆t and (L + 1)∆t, we just have to make a translation of these formulas.

We prove now to that the discrete blocks defined previously are approximations of the solution of Proposition 2.5.

Proposition 2.11

We denote by (ρ N , ρN ûN , ρN vN ) the discrete blocks constructed in Definition 2.10 (see formula (2.38) for the part of this function which is located at the collision). Then the functions (ρ N , ρN ûN , ρN vN ) have the continuous block functions (ρ, ρû, ρv) for limit in the distributional sense when N → +∞.

Proof. We consider the case of a shock in the x direction with the previous notations. Denote by L (which changes with ∆t, that is to say with N ) the integer such that t * ∈ [L∆t, (L + 1)∆t[, and we notice that the part of the functions located near the collision can be written as

ρN (1, ûN , vN )(t, x, y) = (1, u f , v)1I L∆t≤t<t * 1I (x,y)∈P (2.38) where 1I (x,y)∈P = 1I α f -P ∆x≤x<α f +Q∆x 1I b l ≤y<b l +µ . (2.39)
Notice that before L∆t and after (L + 1)∆t, the movement is free and we have studied it already. Notice also that after the shock, the positions a f l of the blocks move as in the free case starting with the new defined positions.

We consider a test function

ϕ ∈ C ∞ c ([0, +∞[, R 2 ). We have +∞ 0 R 2 (ρ N ∂ t ϕ + ρN ûN ∂ x ϕ + ρN vN ∂ y ϕ) dy dx dt = (L+1)∆t L∆t α f +Q∆x α f -P ∆x b l +µ b l (∂ t ϕ + u∂ x ϕ + v∂ y ϕ) dy dx dt +R N (ϕ),
where R N (ϕ) → 0 corresponding to the part of ρN which follows a free movement and has yet been studied. We will consider the difference with the corresponding terms for (ρ, ρû, v). We have then to consider the difference

B N (ϕ) = t * L∆t α f α f -c b l +µ b l ϕ(t, x, y) -ϕ(t, x -α f + a 1 (t), y) dy dx dt + t * L∆t α f +d α f b l +µ b l ϕ(t, x, y) -ϕ(t, x -α f + a 2 (t), y) dy dx dt + (L+1)∆t t * α f +d α f -c b l +µ b l ϕ(t, x, y) -ϕ(t, x -α f + a f (t), y) dy dx dt.
We have a

1 (t) = α 1 + u 1 (t -L∆), a 2 (t) = α 2 + u 2 (t -L∆t) and x * = α 1 + u 1 (t * -L∆t), then for t ∈ [L∆t, (L + 1)∆t[, |α f -a f (t)| ≤ |u f (t -L∆t)| + ∆x ≤ |u f |∆t + ∆x, |α f -a 1 (t)| ≤ |(u 1 -u f )(t * -L∆t)|+|u f (∆t-t)|+∆x ≤ (|u 1 -u f |+|u f |)∆t+∆x,
and

|α f -a 2 (t)| ≤ |(u 2 -u f )(t * -L∆t)|+|u f (∆t-t)|+∆x ≤ (|u 2 -u f |+|u f |)∆t+∆x.
Then we do as in the free case (for the terms A N (ϕ)) to get that B N (ϕ) → 0 when N → +∞.

Discrete block approximations and BV estimates

Starting from an initial block data,

ρ 0 (x, y)(1, u 0 (x, y), v 0 (x, y)) = I i=-I J j=-J (1, u ij , v ij )1I a ij ≤x≤b ij 1I c ij ≤y≤d ij (2.40)
which is a linear sum of terms as the ones considered in previous sections, we obtain the following properties. As long as there is no collision, Proposition 2.6 gives an approximation of the solution by discrete blocks and when there is a collision in direction x (it is similar in the y direction), Proposition 2.11 gives an approximation of the solution by discrete blocks. Finally, we get the following merging result.

Proposition 2.12 For any initial data as (2.40), there exists (ρ l , ρ l u l , ρ l v l ) discrete blocks and

(π 1 ) l , (π 2 ) l ∈ M loc ([0, ∞[×R 2 ) such that      ∂ t ρ l + ∂ x (ρ l u l ) + ∂ y (ρ l v l ) = R l 0, ∂ t (ρ l u l ) + ∂ x (ρ l u 2 l + (π 1 ) l ) + ∂ y (ρ l u l v l ) = S l 0, ∂ t (ρ l v l ) + ∂ x (ρ l u l v l ) + ∂ y (ρ l v 2 l + (π 2 ) l ) = T l 0, (2.41)
in the distribution sense.

Remark 2.3 If we take initial data such that b i+1,j < a ij and d i,j+1 < c ij for any i, j, (2.42)

then collision doesn't appear at time t = 0 and then we have π 1 (0, x, y) = 0 and π 2 (0, x, y) = 0.

We turn now to the proof of L ∞ and BV estimates for these functions.

Remark 2.4 Notice that a function T (z) of the form given by Figure 1 Figure 1.

T E z 1 z 2 z 3 u 1 u 2 u 3 T (z)
has for derivate a measure in the distributional sense given by

T (z) = (u 2 -u 1 )δ z 1 (z) + u 3 -u 2 x 3 -x 2 1I ]x 2 ,x 3 [ (z) and R |T (z)| = |u 2 -u 1 | + |u 3 -u 2 |. Proposition 2.13 For 0 ≤ ρ 0 ≤ 1, u 0 , v 0 ∈ L ∞ (R 2 ) ∩ BV (R 2
), the blocks of the previous proposition satisfy, for any t ≥ 0,

0 ≤ ρ l ≤ 1, (2.43) essinf u 0 ≤ u l ≤ esssup u 0 , essinf v 0 ≤ v l ≤ esssup v 0 , (2.44) R 2 |∂ x u l (t, x, y)| ≤ R 2 |∂ x u 0 (x, y)|, R 2 |∂ y u l (t, x, y)| ≤ R 2 |∂ y u 0 (x, y)|, (2.45) and R 2 |∂ x v l (t, x, y)| ≤ R 2 |∂ x v 0 (x, y)|, R 2 |∂ y v l (t, x, y)| ≤ R 2 |∂ y v 0 (x, y)|. (2.46)
Furthermore, the sequences of measures ((π 1 ) l ) l≥1 and ((π

2 ) l ) l≥1 are bounded in M loc ([0, ∞[×R 2 ).
Proof. The L ∞ bounds are obvious from construction. For an initial sticky block, using Remark 2.4, we have a relation of the form

R 2 |∂ x u 0 (x, y)| = n 0 i=2 |u 0 i -u 0 i-1 |.
We handle the case of a collision in the x direction. Other cases are similar. When a collision happens, for exemple at time t * between blocks k and k + 1 to simplify the presentation, we have after the collision a speed of the form

u * = u 0 k c/(c + d) + u 0 k+1 d/(c + d) due to Proposition 2.5. Since R 2 |∂ x u(t * , x, y)| = k-1 i=2 |u 0 i -u 0 i-1 | + |u * -u 0 k-1 | + |u 0 k+2 -u * | + n 0 i=k+3 |u 0 i -u 0 i-1 |,
and in order to obtain

R 2 |∂ x u(t * , x, y)| ≤ R 2 |∂ x u 0 (x, y)|, we have to prove that |u * -u 0 k-1 | + |u 0 k+2 -u * | ≤ |u 0 k -u 0 k-1 | + |u 0 k+1 -u 0 k | + |u 0 k+2 -u 0 k+1 |. (2.47)
First, we have

|u 0 k+2 -u * | ≤ |u 0 k+2 -u 0 k+1 | + |u 0 k+1 -u * | ≤ |u 0 k+2 -u 0 k+1 | + u 0 k+1 c + d c + d -u 0 k c c + d -u 0 k+1 d c + d ≤ |u 0 k+2 -u 0 k+1 | + c c + d |u 0 k+1 -u 0 k |. Similarly, we get |u * -u 0 k-1 | ≤ |u 0 k -u 0 k-1 | + d c+d |u 0 k+1 -u 0 k |,
and by adding these two last inequalities, we get the desired inequality (2.47). Finally, collision after collision, we get the nonincreasing of the quantities of (2.45)-(2.46). We turn now to the bounds of the measures. Since (ρ l ) l , (u l ) l and (v l ) l are L ∞ bounded and S l , T l 0, we get that ((π 1 ) l ) l and ((π 2 ) l ) l are bounded in the distributional sense. Since they are nonnegative measures, we conclude.

We have now to discretize initial data and to get a stability theorem in order to get solution for the system with constraint for a large class of initial data.

Discretization and stability Discretization with blocks

We will improve here a result of [START_REF] Berthelin | Existence and weak stability for a two-phase model with unilateral constraint[END_REF] and [START_REF] Berthelin | A traffic-flow model with constraint for the modeling of traffic jams[END_REF] in order to get the following approximation lemma of initial data. The difficulty is here to deal with multi-variables functions instead of real-variable functions.

Remark 3.1 The velocities u and v are assumed to be extended linearly in the vacuum (ρ = 0) between two successive blocks. Moreover we assume that u and v are constant at ±∞.

Lemma 3.1 Let ρ 0 ∈ L 1 (R 2 ), u 0 , v 0 ∈ L ∞ (R 2 )∩BV (R 2 ) such that 0 ≤ ρ 0 ≤ 1.
Then, there exists a sequence of block initial data

(ρ 0 k , u 0 k , v 0 k ) k≥1 such that, for any k ∈ N * , ρ 0 k ∈ L 1 (R 2 ), u 0 k , v 0 k ∈ L ∞ (R 2 ) ∩ BV (R 2 ) (3.48) with the bounds 0 ≤ ρ 0 k ≤ 1, R 2 ρ 0 k (x, y) dx dy ≤ R 2 ρ 0 (x, y) dx dy, (3.49) essinf u 0 ≤ u 0 k ≤ esssup u 0 , essinf v 0 ≤ v 0 k ≤ esssup v 0 , (3.50) 
R 2 ∂ x u 0 k (x, y) ≤ R 2 ∂ x u 0 (x, y) , R 2 ∂ y u 0 k (x, y) ≤ R 2 ∂ y u 0 (x, y) , (3.51) R 2 ∂ x v 0 k (x, y) ≤ R 2 ∂ x v 0 (x, y) , R 2 ∂ y v 0 k (x, y) ≤ R 2
∂ y v 0 (x, y) , (3.52)

and for which the convergences ρ 0

k ρ 0 , ρ 0 k u 0 k ρ 0 u 0 and ρ 0 k v 0 k ρ 0 v 0 hold in the distributional sense. Proof. Let k ∈ N * and set for any i, j ∈ Z m ijk = i+1 k -1 k 2 i k j+1 k -1 k 2 j k ρ 0 (x, y) dx dy.
If m ijk = 0, we set

u 0 ijk = k 2 i+1 k i k j+1 k j k u 0 (x, y) dx dy, v 0 ijk = k 2 i+1 k i k j+1 k j k v 0 (x, y) dx dy.
We finally set, for any (x, y) ∈ R 2 ,

ρ 0 k (x, y) = k 2 i,j=-k 2 1I ] i k , i k + √ m ijk [ (x)1I ] j k , j k + √ m ijk [ (y), (3.53) ρ 0 k (x, y)u 0 k (x, y) = k 2 i,j=-k 2 u 0 ijk 1I ] i k , i k + √ m ijk [ (x)1I ] j k , j k + √ m ijk [ (y). (3.54) ρ 0 k (x, y)v 0 k (x, y) = k 2 i,j=-k 2 v 0 ijk 1I ] i k , i k + √ m ijk [ (x)1I ] j k , j k + √ m ijk [ (y). (3.55) Notice that √ m ijk ≤ 1 k - 1 k 2 < 1 k
. We have (3.49), in particular since

R 2 ρ 0 k (x, y) dx dy = k 2 i,j=-k 2 m ijk = k 2 i,j=-k 2 i+1 k -1 k 2 i k j+1 k -1 k 2 j k ρ 0 (x, y) dx dy ≤ R 2 ρ 0 (x, y) dx dy.
We extend the definition of u 0 k and v 0 k in the vacuum as in Remark 3.1. We have clearly (3.50). We are considering functions of the form like in Remark 2.4 and then we get that

Rx ∂ x u 0 k (x, y) = k 2 i,j=-k 2 |u 0 ijk -u 0 i-1,jk |1I ] j k , j k + √ m ijk [ (y)
and

R 2 ∂ x u 0 k (x, y) = k 2 i,j=-k 2 |u 0 ijk -u 0 i-1,jk | √ m ijk ≤ k 2 i,j=-k 2 |u 0 ijk -u 0 i-1,jk | 1 k . Now |u 0 ijk -u 0 i-1,jk | = k 2 i+1 k i k j+1 k j k u 0 (x, y) dx dy - i k i-1 k j+1 k j k u 0 (x, y) dx dy = k 2 i+1 k i k j+1 k j k u 0 (x, y) -u 0 (x - 1 k , y) dx dy ≤ k 2 i+1 k i k j+1 k j k u 0 (x, y) -u 0 (x - 1 k , y) dx dy, therefore R 2 ∂ x u 0 k (x, y) ≤ k 2 i,j=-k 2 k i+1 k i k j+1 k j k u 0 (x, y) -u 0 (x - 1 k , y) dx dy ≤ R 2 u 0 (x, y) -u 0 (x -1 k , y) 1/k dx dy ≤ R 2 ∂ x u 0 (x, y) .
Similarly, we get the other inequalities of (3.51)-

(3.52). Let ϕ ∈ C ∞ c (R 2 ) and let k 0 ∈ N such that supp ϕ ⊂ [-k 0 , k 0 ] 2 . Using Taylor formula, there exists (x ijk , y ijk ) ∈ i k , i k + √ m ijk × j k , j k + √ m ijk such that i k + √ m ijk i k j k + √ m ijk j k ϕ(x, y) dx dy = ϕ i k , j k m ijk + 1 6 y ijk j/k ∂ 2 xx ϕ(x ijk , v) dv m 3/2 ijk + 1 2 ∂ x ϕ(x ijk , y ijk )m 3/2 ijk + 1 2 ∂ y ϕ(x ijk , y ijk )m 3/2 ijk + 1 6 x ijk i/k ∂ 2 yy ϕ(u, y ijk ) du m 3/2 ijk . Now R 2 ρ 0 k (x, y)ϕ(x, y) dx dy = k 2 i,j=-k 2 i k + √ m ijk i k j k + √ m ijk j k ϕ(x, y) dx dy, and 
ϕ i k , j k m ijk = i+1 k -1 k 2 i k j+1 k -1 k 2 j k ρ 0 (x, y)ϕ i k , j k dx dy, therefore, for k > k 0 , we have R 2 ρ 0 k (x, y)ϕ(x, y) dx dy - R 2 ρ 0 (x, y)ϕ(x, y) dx dy ≤ kk 0 -1 i,j=-kk 0 i+1 k -1 k 2 i k j+1 k -1 k 2 j k ρ 0 ∞ ϕ i k , j k -ϕ(x, y) dx dy + kk 0 -1 i,j=-kk 0 i+1 k i+1 k -1 k 2 j+1 k j k ρ 0 ∞ |ϕ(x, y)| dx dy + i+1 k -1 k 2 i k j+1 k j+1 k -1 k 2 ρ 0 ∞ |ϕ(x, y)| dx dy + 1 6 kk 0 -1 i,j=-kk 0 ∂ 2 xx ϕ ∞ (y ijk - j k ) + 3 ∂ x ϕ ∞ +3 ∂ y ϕ ∞ + ∂ 2 yy ϕ ∞ (x ijk - i k ) m 3/2 ijk ≤ kk 0 -1 i,j=-kk 0 i+1 k -1 k 2 i k j+1 k -1 k 2 j k ∂ x ϕ ∞ x - i k + ∂ x ϕ ∞ y - j k dx dy + ϕ ∞ kk 0 -1 i=-kk 0 i+1 k i+1 k -1 k 2 j+1 k j k dx dy + i+1 k -1 k 2 i k j+1 k j+1 k -1 k 2 dx dy + 1 6 kk 0 -1 i,j=-kk 0 ( ∂ 2 xx ϕ ∞ + ∂ 2 yy ϕ ∞ ) √ m ijk + 3( ∂ x ϕ ∞ + ∂ y ϕ ∞ ) × i+1 k -1 k 2 i k j+1 k -1 k 2 j k dx dy 3/2 ≤ kk 0 -1 i,j=-kk 0 i+1 k -1 k 2 i k j+1 k -1 k 2 j k dx dy ( ∂ x ϕ ∞ + ∂ x ϕ ∞ ) 1 k + ϕ ∞ kk 0 -1 i,j=-kk 0 1 k 3 + 1 k 4 + 1 6 ∂ 2 xx ϕ ∞ + ∂ 2 yy ϕ ∞ + 3 ∂ x ϕ ∞ + 3 ∂ y ϕ ∞ kk 0 -1 i,j=-kk 0 1 k 2 3/2 ≤ 4k 2 k 2 0 1 k 2 ( ∂ x ϕ ∞ + ∂ x ϕ ∞ ) 1 k + ϕ ∞ 4k 2 k 2 0 1 k 3 + 1 k 4 + 1 6 ∂ 2 xx ϕ ∞ + ∂ 2 yy ϕ ∞ + 3( ∂ x ϕ ∞ + ∂ y ϕ ∞ 4k 2 k 2 0 1 k 3 ≤ C ϕ 1 k
and then ρ 0 k ρ 0 holds in the distributional sense. We turn now to the convergence of ρ 0 k u 0 k . For k > k 0 , we have

R 2 ρ 0 k (x, y)u 0 k (x, y)ϕ(x, y) dx dy - R 2
ρ 0 (x, y)u(x, y)ϕ(x, y) dx dy

≤ kk 0 -1 i,j=-kk 0 i+1 k -1 k 2 i k j+1 k -1 k 2 j k ρ 0 ∞ u 0 ijk ϕ i k , j k -u 0 (x, y)ϕ(x, y) dx dy + kk 0 -1 i,j=-kk 0 i+1 k i+1 k -1 k 2 j+1 k j k ρ 0 ∞ u 0 ∞ |ϕ(x, y)| dx dy + i+1 k -1 k 2 i k j+1 k j+1 k -1 k 2 ρ 0 ∞ u 0 ∞ |ϕ(x, y)| dx dy + 1 6 u 0 ijk kk 0 -1 i,j=-kk 0 ∂ 2 xx ϕ ∞ (y ijk - j k ) + 3 ∂ x ϕ ∞ +3 ∂ y ϕ ∞ + ∂ 2 yy ϕ ∞ (x ijk - i k ) m 3/2 ijk
and the main difference with to regard to the first convergence is the first term. We write

kk 0 -1 i,j=-kk 0 i+1 k -1 k 2 i k j+1 k -1 k 2 j k ρ 0 ∞ u 0 ijk ϕ i k , j k -u 0 (x, y)ϕ(x, y) dx dy ≤ kk 0 -1 i,j=-kk 0 i+1 k -1 k 2 i k j+1 k -1 k 2 j k ρ 0 ∞ u 0 (x, y) ϕ i k , j k -ϕ(x, y) dx dy + kk 0 -1 i,j=-kk 0 i+1 k -1 k 2 i k j+1 k -1 k 2 j k ρ 0 ∞ u 0 ijk -u 0 (x, y) ϕ i k , j k dx dy
and the main new term is in fact the last one. We control it the following way:

kk 0 -1 i,j=-kk 0 i+1 k -1 k 2 i k j+1 k -1 k 2 j k ρ 0 ∞ u 0 ijk -u 0 (x, y) ϕ i k , j k dx dy ≤ kk 0 -1 i,j=-kk 0 i+1 k -1 k 2 i k j+1 k -1 k 2 j k ρ 0 ∞ ∆ u 0 ijk (x, y) ϕ ∞ dx dy,
where

∆ u 0 ijk (x, y) = k 2 i+1 k i k j+1 k j k (u 0 (x, ỹ) -u 0 (x, y)) dx dỹ. Now u 0 ∈ BV (R 2 )
, then u 0 is continuous and then uniformly continuous on compacts. Let ε > 0, there exists η > 0 such that for any (x, y),

(x, ỹ) ∈ [-k 0 , k 0 ] 2 , if |x -x| ≤ η, |y -ỹ| ≤ η, then |u 0 (x, ỹ) -u 0 (x, y)| ≤ ε. Now for i, j ∈ Z ∩ [-kk 0 , kk 0 -1] and x, x ∈ [ i k , i + 1 k ], y, ỹ ∈ [ j k , j + 1 k ], then (x, y), (x, ỹ) ∈ [-k 0 , k 0 ] 2 . Thus for 1 k < η, we have kk 0 -1 i,j=-kk 0 i+1 k -1 k 2 i k j+1 k -1 k 2 j k ρ 0 ∞ u 0 ijk -u 0 (x, y) ϕ i k , j k dx dy ≤ kk 0 -1 i,j=-kk 0 i+1 k -1 k 2 i k j+1 k -1 k 2 j k ρ 0 ∞ k 2 i+1 k i k j+1 k j k ε dx dỹ ϕ ∞ dx dy ≤ ε kk 0 -1 i,j=-kk 0 1 k 2 = 4k 2 0 ε.
It gives the limit of the new term and we get that ρ 0 k u 0 k ρ 0 u 0 holds in the distributional sense. Similarly we obtain the convergence of ρ 0 k v 0 k .

Remark 3.2 Notice that we have

√ m ijk ≤ 1 k - 1 k 2 <
1 k and then we are in the situation of (2.42) in Remark 3.53 and thus this discretization by blocks will lead to solutions with no initial measure.

Stability Theorem

The results we prove in this section have two specific purposes. First, we prove stability of solutions. Secondly, we prove the existence of more solutions than those obtained in previous sections by passing to the limit in some particular solutions. But let's start with a few technical results. The first one is to help us passing to the limit in the products. It is an extension in dimension two of a similar Lemma in dimension one proved in [START_REF] Berthelin | Existence and weak stability for a two-phase model with unilateral constraint[END_REF].

Lemma 3.2 Consider for any

k ∈ N, some functions γ k ∈ L ∞ (]0, T [×R 2 ), ω k ∈ L ∞ (]0, T [, BV (R 2 )) and γ ∈ L ∞ (]0, T [×R 2 ), ω ∈ L ∞ (]0, T [, BV (R 2 )) . Let us assume that (γ k ) k∈N is a bounded sequence in L ∞ (]0, T [×R 2 ) that tends to γ in L ∞ w * (]0, T [×R 2
), and satisfies, for any

Γ ∈ C ∞ c (R 2 ), R 2 (γ k -γ)(t, x, y)Γ(x, y) dx dy → k→+∞ 0, (3.56) either i) a.e. t ∈]0, T [ or ii) in L 1 t (]0, T [). Let us also assume that (ω k ) k∈N is a bounded sequence in L ∞ (]0, T [×R 2 ) that tends to ω in L ∞ w * (]0, T [×R 2
), and such that, for any t ∈ [0, T ],

R 2 |∂ x ω k (t, x, y)| ≤ C, R 2 |∂ y ω k (t, x, y)| ≤ C, (3.57) R 2 |∂ x ω(t, x, y)| ≤ C, R 2 |∂ y ω(t, x, y)| ≤ C, (3.58)
with C being a constant. Then

γ k ω k γω in L ∞ w * (]0, T [×R 2
), as k → +∞. Proof. We detail case i), the proof being very similar for case ii). Let ζ ε be a sequence of mollifiers in R 2 . We shall use the notation

z ε = z * xy ζ ε . Let us write the decomposition γ k ω k -γω = γ k (ω k -ω ε k ) + (γ k -γ)ω ε k + γ(ω ε k -ω ε ) + γ(ω ε -ω).
(3.59) We are first going to control the first and fourth terms of this decomposition for ε small enough and uniformly in k. Then, fixing ε, we shall pass to the limit, when k tends towards infinity, in the second and third terms.

Let ϕ ∈ C ∞ c (]0, T [×R 2 ). -Let η > 0. The term T 0 R 2 γ(ω ε -ω)ϕ dx dy dt is controlled in the following way. Since ω ∈ L ∞ (]0, T [, BV (R 2 )), we have R 2 |ω(t, x -x, y -ỹ) -ω(t, x, y)| dx dy ≤ |x| R 2 |∂ x ω(t, ., .)| + |ỹ| R 2 |∂ y ω(t, ., .)| , hence for ε < 1, ω ε (t, ., .) -ω(t, ., .) L 1 (R 2 ) = R 2 R 2 (ω(t, x -x, y -ỹ) -ω(t, x, y))ζ ε (y) dx dỹ dx dy ≤ C B(0,ε) (|x| + |ỹ|)ζ ε (x, ỹ) dx dỹ ≤ ε C,
where C is a constant independent of ε and t. Thus we get

| T 0 R 2 γ(ω ε -ω)ϕ dx dy dt| ≤ ε C ϕ ∞ γ ∞ .
This is less than η if ε is small enough. We have the same bound uniformly in k for (γ k ) k≥0 and (ω k ) k≥0 , thus for such ε,

| T 0 R 2 γ(ω ε -ω)ϕ dx dy dt| ≤ η and | T 0 R 2 γ k (ω ε k -ω k )ϕ dx dy dt| ≤ η, ∀k ∈ N.
-Let now ε be fixed as above. For the third term of the decomposition (3.59), obviously

ω ε k -ω ε 0 in L ∞ w * (]0, T [×R 2 ), thus γ(ω ε k -ω ε ) 0. It remains to establish the convergence (γ k -γ)ω ε k 0 in L ∞ w * (]0, T [×R 2
). In order to do this, we only need to consider a test function

ϕ ∈ C ∞ c (]0, T [×R 2 ), ϕ(t, x, y) = ϕ 1 (t)ϕ 2 (x, y), ϕ 1 ∈ C ∞ c (]0, T [), ϕ 2 ∈ C ∞ c (R 2 ).
In order to prove that

T 0 R 2 (γ k -γ)(t, x, y)ω ε k (t, x, y)ϕ(t, x, y) dx dy dt → 0, k → ∞,
we write this integral as

T 0 R 2 I k (t, x, ỹ) dx dỹ dt where I k (t, x, ỹ) = ω k (t, x, ỹ)   R 2 (γ k -γ)(t, x, y)ζ ε (x -x, y -ỹ)ϕ(t, x, y) dx dy   .
We are going to prove the convergence of this integral using Lebesgue's theorem. Since, at (x, ỹ) being fixed, (x, y)

→ ζ ε (x -x, y -ỹ)ϕ 2 (x, y) ∈ C ∞ c (R 2
) and together with the fact that (ω k ) k≥0 is bounded in L ∞ (]0, T [×R 2 ), we deduce from the property of γ, that for a.e. t, x, y, I k (t, x, y) → 0 as k → ∞. We also have the following estimate,

|I k (t, x, ỹ)| ≤ sup k ω k L ∞ (sup k γ k L ∞ + γ L ∞ )J(t, x, ỹ), where J : (t, x, ỹ) → R 2 ζ ε (x-x, y-ỹ)|ϕ(t, x, y)| dx dy ∈ L 1 (]0, T [×R 2
). Therefore, by dominated convergence, we have that I k (t, x, y) → 0 in L 1 (]0, T [×R 2 ), which gives the desired convergence.

-Finally, we can conclude that

γ n ω n -γω 0 in L ∞ w * (]0, T [×R). Remark 3.
3 This is a result of compensated compactness, which uses the compactness in (x, y) for (ω k ) k given by (3.57) and the weak compactness in t for (γ k ) k given by (3.56) to pass to the weak limit in the product γ k ω k .

The second result gives some continuity in time. The proof is an easy adaptation in dimension two of Lemma 4.4 of [START_REF] Berthelin | A model for the evolution of traffic jams in multilane[END_REF]. The main idea is to use a countable dense set in C ∞ c (R 2 ) for the L 1 -norm and Ascoli's Theorem. Since there is no new difficulty, we skip the proof.

Lemma 3.3 Let (n k ) k∈N * be a bounded sequence in L ∞ (]0, T [×R 2 ) which sat- isfies: for all ϕ ∈ C ∞ c (R 2 ), the sequence ( R n k (t, x, y)ϕ(x, y) dx dy) k is uniformly Lip- schitz continuous on [0, T ], i.e. ∃C ϕ > 0, ∀k ∈ N * , ∀s, t ∈ [0, T ], R 2 (n k (t, x, y) -n k (s, x, y))ϕ(x, y) dx dy ≤ C ϕ |t -s|. Then, up to a subsequence, it exists n ∈ L ∞ (]0, T [×R 2 ) such that n k → n in C([0, T ], L ∞ w * (R 2 )), i.e. ∀Γ ∈ L 1 (R 2 ), sup t∈[0,T ] R 2 (n k (t, x, y) -n(t, x, y))Γ(x, y) dx dy → k→+∞ 0.
We prove now the stability result. ) and initial data (ρ 0 k , u 0 k , v 0 k ). We assume the following bounds for initial data:

(ρ 0 k ) k≥1 is bounded in L ∞ (R 2 ) and in L 1 (R 2 ), (3.60) 
(u 0 k ) k≥1 , (v 0 k ) k≥1 are bounded in L ∞ (R 2 ) and in BV (R 2 ).
(3.61) The solutions are supposed to satisfy

0 ≤ ρ k ≤ 1, R 2 ρ k (t, x, y) dx dy ≤ R 2 ρ 0 k (x, y) dx dy, (3.62) 
essinf u 0 k ≤ u k ≤ esssup u 0 k , essinf v 0 k ≤ v k ≤ esssup v 0 k , (3.63) 
R 2 |∂ x u k (t, x, y)| ≤ R 2 ∂ x u 0 k (x, y) , R 2 |∂ y u k (t, x, y)| ≤ R 2 ∂ y u 0 k (x, y) , (3.64) 
R 2 |∂ x v k (t, x, y)| ≤ R 2 ∂ x v 0 k (x, y) , R 2 |∂ y v k (t, x, y)| ≤ R 2 ∂ y v 0 k (x, y) , (3.65 
) and finally we assume that

((π 1 ) k ) k≥1 and ((π 2 ) k ) k≥1 are bounded in M loc ([0, ∞[×R 2 ).
(3.66)

Then, extracting a subsequence if necessary, as k → ∞, we have in the distributional sense

(ρ k , u k , v k , (π 1 ) k , (π 2 ) k ) (ρ, u, v, π 1 , π 2 )
, where (ρ, u, v, π 1 , π 2 ), with regularities (1.8)-(1.10), are solution of (1.4) with the constraints (1.5) and satisfy the bounds

0 ≤ ρ ≤ 1, R 2 ρ(t, x, y) dx dy ≤ R 2
ρ 0 (x, y) dx dy, (3.67)

essinf u 0 ≤ u ≤ esssup u 0 , essinf v 0 ≤ v ≤ esssup v 0 , (3.68) R 2 |∂ x u(t, x, y)| ≤ R 2 ∂ x u 0 (x, y) , R 2 |∂ y u(t, x, y)| ≤ R 2
∂ y u 0 (x, y) ,

(3.69) R 2 |∂ x v(t, x, y)| ≤ R 2 ∂ x v 0 (x, y) , R 2 |∂ y v(t, x, y)| ≤ R 2
∂ y v 0 (x, y) . (3.70)

Furthermore we get the existence of measures π1 and π2

∈ M loc ([0, ∞[×R 2 ) such that π 1 = π1 , π 2 = π2 , (3.71) 
which is a weak formulation for (1.6).

Proof. Since (ρ k , u k , v k ) k≥1 are bounded in L ∞ (]0, +∞[×R 2 ), then there exists a subsequence such that

ρ k ρ, u k u, v k v in L ∞ w * (]0, +∞[×R 2 ). (3.72)
From (3.66), there exists a subsequence such that

(π 1 ) k π 1 , (π 2 ) k π 2 in M loc ([0, ∞[×R 2 ). (3.73) 
From the first equation of (1.4), the sequence (ρ k ) k≥1 satifies the estimate:

∀T > 0, ∀ϕ ∈ C ∞ c (R 2 ), ∀t, s ∈ [0, T ], ∀k ∈ N * , R 2 
(ρ k (t, x, y) -ρ k (s, x, y))ϕ(x, y) dx dy ≤ C ϕ |t -s|,

with

C ϕ = sup k≥1 u 0 k L ∞   R 2 |∂ x ϕ| dx dy   + sup k≥1 v 0 k L ∞   R 2 |∂ y ϕ| dx dy   .
Then, applying Lemma 3.3,

ρ k → ρ in C([0, T ], L ∞ w * (R 2 )). Furthermore (u k ) k≥1 is bounded in BV (R 2
) uniformly in time thanks to (3.61) and (3.64). We can then apply Lemma 3.2 and we get that

ρ k u k ρu in L ∞ w * (]0, T [×R 2 ). Similarly, we have ρ k v k ρv in L ∞ w * (]0, T [×R 2
). Now the second equation of (1.4) gives that

d dt R 2 (ρ k u k )(t, x, y)ϕ(x, y) dx dy = R 2 (ρ k u 2 k )(t, x, y)∂ x ϕ(x, y) dx dy + R 2 (ρ k u k v k )(t, x, y)∂ y ϕ(x, y) dx dy + R 2 ∂ x ϕ(x, y)(π 1 ) k (t, x, y), thus the sequence R 2
(ρ k u k )(t, x, y)ϕ(x, y) dx dy is bounded in BV t . Therefore, in the same spirit than the proof of Lemma 3.3 (see also [START_REF] Berthelin | A model for the evolution of traffic jams in multilane[END_REF]), we can extract a subsequence such that

R 2 (ρ k u k )(t, x, y)ϕ(x, y) dx dy → R 2
(ρu)(t, x, y)ϕ(x, y) dx dy in L 1 (]0, T [), for all ϕ ∈ C ∞ c (R 2 ). We can then apply Lemma 3.2 with γ k = ρ k u k this time and ω k = u k (and also with v k ) and we get that

ρ k u 2 k ρu 2 and ρ k u k v k ρuv in L ∞ w * (]0, T [×R 2
). Similarly, we also have

ρ k v 2 k ρv 2 in L ∞ w * (]0, T [×R 2
). We can now pass to the limit in the weak formulation to get (1.11)-(1.13) with the initial data (ρ 0 , u 0 , v 0 ). Finally, since (ρ k (π 1 ) k ) k and (ρ k (π 2 ) k ) k are bounded in the measure, up to a subsequence, we have the existence of π1 , π2 ∈ M loc ([0, ∞[×R 2 ) such that

ρ k (π 1 ) k π1 , ρ k (π 2 ) k π2 in M loc ([0, ∞[×R 2 ).
(3.75)

Since ρ k (π 1 ) k = (π 1 ) k and ρ k (π 2 ) k = (π 2 ) k , at the limit, we get (3.71).

Remark 3.4 The relation (3.71) is a weak formulation of (1.6). We will come back in the last section to more relations between both formulations.

Remark 3.5 We have the same stability result assuming (3.71) instead of (1.6) in the assumptions of the theorem.

Limit of approximate solutions

In dimension one, we directly obtained explicite solutions for any block initial data. In the present dimension-two case, at this step, we only have approximation of solution for general block initial data. We need to improve the previous stability result in the case where we only have

     ∂ t ρ l + ∂ x (ρ l u l ) + ∂ y (ρ l v l ) = R l 0, ∂ t (ρ l u l ) + ∂ x (ρ l u 2 l + (π 1 ) l ) + ∂ y (ρ l u l v l ) = S l 0, ∂ t (ρ l v l ) + ∂ x (ρ l u l v l ) + ∂ y (ρ l v 2 l + (π 2 ) l ) = T l 0 (3.76)
instead of having R l = S l = T l = 0. We prove now that in this situation, we can extract a subsequence whose limit is a solution.

Theorem 3.5 (Limit of approximations) Let us consider a sequence (ρ l , u l , v l , (π 1 ) l , (π 2 ) l ) l≥1 , with regularities (1.8)-(1.10), satisfying (3.76) with the constraints (1.5)-(1.6) and initial data (ρ 0 l , u 0 l , v 0 l ). We assume the following bounds for initial data:

(ρ 0 l ) l≥1 is bounded in L ∞ (R 2 ) and in L 1 (R 2 ), (3.77) (u 0 l ) l≥1 , (v 0 l ) l≥1 are bounded in L ∞ (R 2
) and in BV (R 2 ).

(3.78)

The functions are supposed to satisfy the bounds

0 ≤ ρ l ≤ 1, R 2 ρ l (t, x, y) dx dy ≤ R 2 ρ 0 l (x, y) dx dy, (3.79) essinf u 0 l ≤ u l ≤ esssup u 0 l , essinf v 0 l ≤ v l ≤ esssup v 0 l , (3.80) R 2 |∂ x u l (t, x, y)| ≤ R 2 ∂ x u 0 l (x, y) , R 2 |∂ y u l (t, x, y)| ≤ R 2 ∂ y u 0 l (x, y) , (3.81) R 2 |∂ x v l (t, x, y)| ≤ R 2 ∂ x v 0 l (x, y) , R 2 |∂ y v l (t, x, y)| ≤ R 2 ∂ y v 0 l (x, y) , (3.82 
) and finally we assume that

((π 1 ) l ) l≥1 and ((π 2 ) l ) l≥1 are bounded in M loc ([0, ∞[×R 2 ). (3.83)
Then, extracting a subsequence if necessary, as l → ∞, we have in the distributional sense (ρ l , u l , v l , (π 1 ) l , (π 2 ) l ) (ρ, u, v, π 1 , π 2 ), where (ρ, u, v, π 1 , π 2 ) have regularities (1.8)-(1.10), are solution of (1.4) with the constraints (1.5) and satisfy the bounds

0 ≤ ρ ≤ 1, R 2 ρ(t, x, y) dx dy ≤ R 2 ρ 0 (x, y) dx dy, (3.84) 
essinf u 0 ≤ u ≤ esssup u 0 , essinf v 0 ≤ v ≤ esssup v 0 , (3.85) 
R 2 |∂ x u(t, x, y)| ≤ R 2 ∂ x u 0 (x, y) , R 2 |∂ y u(t, x, y)| ≤ R 2 ∂ y u 0 (x, y) , (3.86) R 2 |∂ x v(t, x, y)| ≤ R 2 ∂ x v 0 (x, y) , R 2 |∂ y v(t, x, y)| ≤ R 2 ∂ y v 0 (x, y) . (3.87)
Furthermore we get the existence of measures π1 and π2

∈ M loc ([0, ∞[×R 2 ) such that π 1 = π1 , π 2 = π2 , (3.88 
) which is a weak formulation for (1.6). Proof. The proof is very similar to the one of Thereom 3.4 except an important difference, which is the relation (3.74). Here we get a relation of the form

R 2 (ρ k (t, x, y) -ρ k (s, x, y))ϕ(x, y) dx dy ≤ C ϕ |t -s| + t s R 2 R k ϕ . (3.89)
Adapting the proof of (2.37) but on a time space of length |t -s| instead of T , we similarly get a bound of the form |t -s|εC instead of T εC. Then we get again a majoration of the form

R 2 (ρ k (t, x, y) -ρ k (s, x, y))ϕ(x, y) dx dy ≤ Cϕ |t -s|, (3.90) 
and we have again

ρ l → ρ in C([0, T ], L ∞ w * (R 2 )
) and the rest of the proof is quite similar.

The first consequence of this result is that we will obtain solutions for any block initial data (not explicite in every cases here contrary to the onedimensional case). Then by approximation of any initial data by initial blocks and the stability result, we will get existence of solutions for any initial data.

Existence result

Prior to get the existence result, let's start by discussing the constraint relation (1.6) which leads to the difficulty of defining the product ρπ with π a measure and ρ not necessarily continuous. Indeed in the stability result, we just have a weak formulation (3.71). We expose how it is possible to define this term in a special class of solutions. To do this, we adapt the analysis done in [START_REF] Berthelin | Existence and weak stability for a two-phase model with unilateral constraint[END_REF]. Then, we will prove the existence result for any initial data in a weak sense and then for functions with enough regularity, we prove that we get the product ρπ = π in a more classical sense.

4 Definition of ρπ for π in the class ML

We say that π is in ML if π lies in M loc ([0, ∞[×R 2 ) and if there exists C such that [0,∞[ R R φ(t, x, y)π(t, x, y) ≤ C φ L ∞ t (]0,∞[,L 1 xy (R 2 )) , ∀φ ∈ C c ([0, ∞[×R 2 ). (4.91) If π is in ML, then thanks to the density of C c ([0, ∞[×R 2 ) in C c ([0, ∞[, L 1 (R 2 )) for . L ∞ t (]0,∞[,L 1 xy (R 2 )) , we can define < π, φ > for φ ∈ C c ([0, ∞[, L 1 (R 2 )
) by classical arguments. We obtain besides that

| < π, φ > | ≤ C φ L ∞ t (]0,∞[,L 1 xy (R 2 )) , ∀φ ∈ C c ([0, ∞[, L 1 (R 2 )). Definition 4.1 Let ρ ∈ C t ([0, ∞[, L 1 loc (R 2 
)) and π ∈ ML. Then the product ρπ is defined as a measure by < ρπ, φ >=< π, ρφ > for φ

∈ C c ([0, ∞[×R 2 ). We notice that if π ∈ M loc ([0, ∞[×R 2 ) satisfies [0,∞[ R R |φ(t, x, y)π(t, x, y)| ≤ C φ L ∞ t (]0,∞[,L 1 xy (R 2 )) , ∀φ ∈ C c ([0, ∞[, L 1 (R 2 )), (4.92) then π ∈ ML and < π, φ >= [0,∞[ R R φ(t, x, y)π(t, x, y), ∀φ ∈ C c ([0, ∞[, L 1 (R 2 )).
As in [START_REF] Berthelin | Existence and weak stability for a two-phase model with unilateral constraint[END_REF], we have easily the following proposition which proves that the blocks of Section 2 have this regularity and then satisfy the constraint in a classical sense. Proposition 4.2 For the sticky blocks of Section 2, the pressures π 1 and π 2 satisfy (4.92). For these blocks, we also have ρ 

∈ C([0, ∞[, L 1 (R 2 )) and then ρπ = π in M loc ([0, ∞[×R 2 ).
k → ρ ∈ C t ([0, ∞[, L 1 xy (R 2 
)) and if we assume that π 1 , π 2 ∈ ML, then the exclusion relations ρπ 1 = π 1 and ρπ 2 = π 2 hold in the sense of Definition 4.1.

Proof. We prove it for π 1 , the proof being similar for π 2 . We consider a sequence (ρ k , u k , v k , (π 1 ) k , (π 2 ) k ) k≥1 of blocks which approximate (ρ, u, v, π 1 , π 2 ) in weak sense as in (3.72)-(3.73). Let ϕ ∈ C ∞ c ([0, +∞[×R 2 ). We can write, since π 1 ∈ ML and ρ ∈ C([0, ∞[, L 1 loc (R 2 )), < (π 1 ) k , ρ k ϕ > -< π 1 , ρϕ >=< (π 1 ) k , (ρ k -ρ)ϕ > + < (π 1 ) k -π, ρϕ > .

On one hand, ρϕ ∈ C c ([0, ∞[, L 1 (R 2 )) hence < (π 1 ) k -π 1 , ρϕ > → k→+∞ 0. On the other hand, since (π 1 ) k ∈ ML,

| < (π 1 ) k , (ρ k -ρ)ϕ > | ≤ C k sup t R |(ρ k -ρ)ϕ| dx ≤ C k ϕ L ∞ t,x,y ρ k -ρ L ∞ t (L 1
loc,x,y ) . We can take for the constant C k the smallest one, that is to say

C k = sup ϕ∈L ∞ t (L 1 xy ),ϕ =0 | T 0 R 2 ϕ(π 1 ) k | ϕ L ∞ t (L 1 xy )
.

We consider the linear continuous applications f k defined, for any ϕ ∈ L ∞ t (L 

Existence of solutions

We are now able to prove the following existence theorem.

Theorem 4.4 (Existence of solutions) Let us consider initial data (ρ 0 , u 0 , v 0 ) with regularities ρ 0 ∈ L ∞ (R 2 ) ∩ L 1 (R 2 ), u 0 , v 0 ∈ L ∞ (R 2 ) ∩ BV (R 2 ). Then there exists (ρ, u, v, π 1 , π 2 ), with regularities (1.8)-(1.10), which are solution of (1.4) with the constraints (1.5) and satisfy the bounds Proof. Let ρ 0 k , u 0 k , v 0 k (k ∈ N * ) be the block initial data associated respectively to ρ 0 , u 0 , v 0 provided by Lemma 3.1. Proposition 2.12 gives (ρ kl , u kl , v kl , (π 1 ) kl , (π 2 ) kl ) such that 

0 ≤ ρ ≤ 1,
         ∂ t ρ kl + ∂ x (ρ kl u kl ) + ∂ y (ρ kl v kl ) = R
ρ k → ρ ∈ C t ([0, ∞[, L 1 xy (R 2 
)) and π 1 , π 2 ∈ ML, then the exclusion relations ρπ 1 = π 1 and ρπ 2 = π 2 hold in the sense of Definition 4.1. Then, we get the strong constraint in the case of blocks and for the limit of this approximation when the limit is in C t ([0, ∞[, L 1 xy (R 2 )). In the most general case, we only have a convergence in C t ([0, ∞[, L ∞ w * (R 2 )).

  l+1)∆t l∆t a l +(i+1)∆x a l +i∆x b l +(j+1)∆y b l +j∆y ϕ(t, x, y) dy dx dt. (2.35) Then we have A N (ϕ) → A(ϕ) when N → +∞. Proof. Since c = N ∆x and d = N ∆y, notice that

Theorem 3 . 4 (

 34 Stability of solutions) Let us consider a sequence of solutions (ρ k , u k , v k , (π 1 ) k , (π 2 ) k ) k≥1 , with regularities (1.8)-(1.10), satisfying (1.4) with the constraints (1.5)-(1.6
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 43 The exclusion relation ρπ = π for solutions with π in the class ML Proposition If we assume that the limit (ρ, u, v, π 1 , π 2 ) of Theorem 3.4 satisfies furthermore that ρ

2 ϕ(π 1 )R 2 ϕπ

 212 k . For any ϕ ∈ L ∞ t (L 1 xy ), we have f k (ϕ) → T 0 and then (f k (ϕ)) k is bounded. We apply the Banach-Steinhaus Theorem to this family of applications and get that supk C k < +∞.Therefore we get limk→+∞ < (π 1 ) k , ρ k ϕ >=< ρ, π 1 ϕ >=< ρπ 1 , ϕ > . Now (π 1 ) k = ρ k (π 1) k → π1 and then π1 = ρπ 1 and the constraint π1 = π 1 becomes ρπ 1 = π 1 .

R 2 ρ 2 ρ 0 2 |∂ 2 ∂ 2 |∂ 2 ∂ 2 |∂ 2 ∂ 2 |∂ 2 ∂

 22022222222 (t, x, y) dx dy ≤ R (x, y) dx dy, (4.93)essinf u 0 ≤ u ≤ esssup u 0 , essinf v 0 ≤ v ≤ esssup v 0 , x u(t, x, y)| ≤ R x u 0 (x, y) , R y u(t, x, y)| ≤ R y u 0 (x, y) , x v(t, x, y)| ≤ R x v 0 (x, y) , R y v(t, x, y)| ≤ R y v 0 (x,y) . (4.96) Furthermore, there exists π1 , π2 ∈ M loc ([0, ∞[×R 2 ) such that the constraint (1.6) is satisfied in the weak sense (3.71).

  kl l→+∞ 0, ∂ t (ρ kl u kl ) + ∂ x (ρu2 kl + (π 1 ) kl ) + ∂ y (ρ kl u kl v kl ) = S kl l→+∞ 0,∂ t (ρ kl v kl ) + ∂ x (ρu kl v kl ) + ∂ y (ρ kl v 2 kl + (π 2 ) kl ) = T kl l→+∞ 0in the distributional sense. At k fixed, these functions satisfy the bounds of Theorem 3.5 and we can apply it to get that, up to subsequence, and making a diagonal Cantor process, the convergence in the distributional sense(ρ kl , u kl , v kl , (π 1 ) kl , (π 2 ) kl ) l→+∞ (ρ k , u k , v k , (π 1 ) k , (π 2 ) k ), where the obtained limit(ρ k , u k , v k , (π 1 ) k , (π 2 ) k ),with regularities (1.8)-(1.10), is solution of (1.4) with the constraints (1.5), (3.71), with (π 1 ) k , (π 2 ) k ∈ M loc ([0, ∞[×R 2 ), and satisfies the bounds (3.67)-(3.70). Furthermore 0 ≤ (π 1 ) k ≤ (π 1 ) k and 0 ≤ (π 2 ) k ≤ (π 2 ) k and these measures are bounded in M loc ([0, ∞[×R 2). We can now apply the Theorem 3.4 to these sequences, and get, up to a subsequence whenk → ∞, (ρ k , u k , v k , (π 1 ) k , (π 2 ) k ) (ρ, u, v, π 1 , π 2 ), where (ρ, u, v, π 1 , π 2 ), with regularities (1.8)-(1.10), are solution of (1.4) with the constraints (1.5) and satisfy the bounds (4.93)-(4.96). Up to a subsequence, we extract (π 1 ) k π1 and (π 2 ) k π2 . Since (π 1 ) k = (π 1 ) k , we get π1 = π 1 . We operate similarly for π2 and get(3.71).By Proposition 4.3, we finally have the additionnal property.

Remark 4 . 1

 41 Furthermore, if 

  .26) and π 2 = 0, where a1 (t) = x * +u 1 (t-t * ), a 2 (t) = x * +u 2 (t-t * ) and a f (t) = x * + u f (t -t * ) (the point x * being the point of collision) with cu 1 + du 2 = (c + d)u

	f ,
	are solution of (1.4), (1.5) and (1.6) in the distributional sense.

  We use the discrete blocks constructed and the associated notations of Definition 2.7 and Lemma 2.8. Setting, for any test function ϕ

, we have |b(t) -b ∆ (t)| ≤ |v|∆t + ∆y.

Lemma 2.9