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PRESERVATION OF PROX-REGULARITY OF SETS WITH
APPLICATIONS TO CONSTRAINED OPTIMIZATION∗

S. ADLY† , F. NACRY† , AND L. THIBAULT‡

Abstract. In this paper, we first provide counterexamples showing that sublevels of prox-regular
functions and levels of differentiable mappings with Lipschitz derivatives may fail to be prox-regular.
Then, we prove the uniform prox-regularity of such sets under usual verifiable qualification conditions.
The preservation of uniform prox-regularity of intersection and inverse image under usual qualification
conditions is also established. Applications to constrained optimization problems are given.

Key words. prox-regular set, hypomonotonicity, semiconvexity, metric regularity, constrained
optimization, sweeping process

1. Introduction. Nonlinear programming is a well-developed area of research
with applications in many branches of sciences and engineering. Most problems en-
countered in constrained optimization involve inequality/equality constraints. Convex
optimization, a special class of mathematical programming, is an important topic both
theoretically and computationally. The convexity of an extended real-valued function
f : H → R from a Hilbert space H can be characterized via the epigraph of f , that
is, the set epi f = {(x, s) ∈ H × R : f(x) ≤ s} and not by using the sublevels of f ,
i.e., the sets {x ∈ H : f(x) ≤ λ} with λ ∈ R. It is well-known that the sublevels of f
are convex if and only if f is quasi-convex, which is the topic of generalized convexity
analysis [8]. Many numerical algorithms in optimization used the projection operator
over a set. This is the case, for example, of the proximal point algorithm, the gradient
projection algorithm, the alternating projection algorithm (to name just a few). If
the projection operator over a closed subset is single-valued on a suitable neighbor-
hood of the set, then it is convenient for the choice numerically of the next iteration.
The class of nonempty closed convex sets of a Hilbert space provides a good exam-
ple. In order to go beyond the convexity, the class of uniform prox-regular sets was
introduced, which is larger than the class of nonempty closed convex sets and shares
with it many nice properties that are important in applications, in particular when
projections are involved. The concept of a prox-regular set C ⊂ H at a point x̄ ∈ C is
somehow related to the hypomonotonicity of some truncation of the proximal normal
cone mapping N(C; ·) around this point x̄. The class of prox-regular functions was
introduced and studied thoroughly in [23] and such locally Lipschitz functions can
be characterized via the prox-regularity of the epigraph. Many concrete problems in
optimization and control involve intersection of prox-regular sets as well as sublevels
of prox-regular functions (see, e.g., [1, 7, 25, 27]).

In addition to its role in optimization and control, the concept of prox-regular sets
is of great interest also in the theory of Moreau sweeping process, in crowd motion, in
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second order analysis etc. (see, e.g., [15, 27, 25, 20]). Let J be a nonempty interval of
R with 0 ∈ J as its left end point, let C(t)t∈J be a family of nonempty closed subsets
of a Hilbert space H, and let Φ : J × H → H be a mapping Lebesgue measurable
in t and such that Φ(t, ·) is κ(t)-Lipschitzian with κ(·) Lebesgue integrable on J .
The extended Moreau sweeping process, as involved in electrical circuit (see, e.g.,
[1, 7]) and in crowd motion (see, e.g., [20]), can be stated as the (measure) differential
inclusion

(ESP ) du ∈ −N
(
C(t);u(t)

)− Φ(t, u(t)) and u(0) = u0 ∈ C(0),

where N(·; ·) denotes a normal cone. The uniform r-prox-regularity of all the sets
C(t) is known to be the general condition under which (ESP ) admits a (unique)
solution with bounded variation (see, e.g., [1, 7, 15, 17]). Concrete problems are
considered in [1, 7, 27] where the sets C(t) are in the form either C(t) = {x ∈
H : g1(t, x) ≤ 0, . . . , gm(t, x) ≤ 0} with gk(t, ·) prox-regular functions or C(t) =
C1(t)∩C2(t) with C1(t) and C2(t) prox-regular subsets of H. Counterexamples in [5]
show that intersections of prox-regular sets can fail to be prox-regular. In addition,
we provide in this paper various counterexamples where sublevel sets of smooth prox-
regular functions (resp., sets of zeros of smooth mappings) are not prox-regular.

Our goal in this paper is then to establish, under various usual qualification
conditions, the prox-regularity of sublevel sets of prox-regular functions as well as the
preservation of prox-regularity under intersection and inverse image. Taking (ESP )
into account, after some preliminaries in section 2 we work in sections 3 and 4 with
the uniform prox-regularity of families (C(t))t∈I with

C(t) = {x ∈ H : g1(t, x) ≤ 0, . . . , gm(t, x) ≤ 0}

or C(t) = {x ∈ H : g1(t, x) ≤ 0, . . . , gm(t, x) ≤ 0, gm+1(t, x) = 0, . . . , gm+n(t, x) = 0},
where the functions gk(t, ·) are, respectively, smooth and nonsmooth. The uniform
prox-regularity of families (C(t))t∈I in the form (of intersection) C(t) = C1(t) ∩ · · · ∩
Cm(t) is studied in section 5 and those in the form C(t) = G−1

t

(
D(t)

)
are developed in

section 6. In doing so, we provide, besides [29, 13, 28, 1], new significant results with
verifiable conditions for the uniform prox-regularity of families of sets in the above
forms. Applications to optimization problems are given in section 7.

2. Notation and preliminaries. Our notation is quite standard. Throughout
the paper, all vector spaces will be real vector spaces. For any normed space X , we
denote by BX the closed unit ball of X centered at zero, by B(x, r) (resp., B[x, r]) the
open (resp., closed) ball centered at x ∈ X of radius r > 0 and by X� the topological
dual space of X . For a set S ⊂ X (resp., S ⊂ X�), the notation co (S) (resp., co� (S))
stands for the convex hull (resp., the weak-� closed convex hull) of S, and bdryS for
the boundary of S. By dS(·) or d(·, S) we denote the distance function from S, i.e.,

dS(x) := inf
s∈S

‖x− s‖ for all x ∈ X.

For any x ∈ X , the (possibly empty) set of all nearest points of x in S is defined by

ProjS(x) = {y ∈ S : dS(x) = ‖x− y‖} .
When ProjS(x) contains one and only one vector y, we set projS(x) := y.



 

A nonempty subset S of X is said to be closed near x ∈ S whenever, there is
a neighborhood V of x such that S ∩ V is closed in V with respect to the induced
topology on V .

The Bouligand–Peano (resp., Clarke) tangent cone of S at x ∈ S (see, e.g., [2, 22])
will be denoted by TB(S;x) (resp., TC(S;x)); when TB(S;x) = TC(S;x), the set S
is called (Clarke) tangentially regular at x. If there is a neighborhood U of x such
that S is tangentially regular at any point of S ∩ U , the set S is said to be (Clarke)
tangentially regular near x.

Similarly, the proximal (resp., Fréchet, Mordukhovich limiting, Clarke) normal
cone of S at x (see, e.g., [21, 11]) is denoted by NP (S;x) (resp., NF (S;x), NL(S;x),
NC(S;x)). So, denoting by epi f := {(x, r) ∈ X × R : f(x) ≤ r} the epigraph of
an extended real-valued function f : X −→ R ∪ {+∞}, its proximal (resp., Fréchet,
Mordukhovich limiting, Clarke) subdifferential at x ∈ X with f(x) < +∞ is defined
by saying x� ∈ X� belongs to ∂P f(x) (resp., ∂F f(x), ∂Lf(x), ∂Cf(x)) when (x�,−1)
belongs to the corresponding normal cone of epi f at (x, f(x)).

2.1. Prox-regular sets. In this subsection, S is a nonempty closed subset of
a Hilbert space H, and r is an extended real of ]0,+∞]. We will use the classical
convention 1

r = 0 whenever r = +∞ and we denote by Ur(S) the open r-enlargement
of the set S, that is, Ur(S) := {x ∈ H : dS(x) < r}. We start with the definition of
uniformly prox-regular sets.

Definition 2.1. The set S is said to be r-prox-regular (or uniformly prox-regular
with constant r) whenever, for all x ∈ S, for all ζ ∈ NP (S;x) ∩ BH, and for all
t ∈]0, r[, one has x ∈ ProjS(x+ tζ).

Some authors called such sets positively reached (see [16]), weakly convex (see
[29]), p-convex (see [9]), O(2)-convex (see [26]), or proximally smooth (see [12]). We
refer, for example, to [13] for historical comments.

The set S is said to be prox-regular at x ∈ S when the property in the above
definition holds true for x near x, that is, there is a real ε > 0 such that for all x ∈
S ∩B(x, ε), for all ζ ∈ NP (S;x)∩BH, and for all t ∈]0, r[, one has x ∈ ProjS(x+ tζ).

Theorem 2.2 (see [24]). The following assertions are equivalent.
(a) The set S is r-prox-regular.
(b) For all x1, x2 ∈ S, for all ζ ∈ NP (S;x1), one has

〈ζ, x2 − x1〉 ≤ 1

2r
‖ζ‖ ‖x1 − x2‖2 .

(c) For all x1, x2 ∈ S, for all ζ1 ∈ NP (S;x1) ∩ BH, and for all ζ2 ∈ NP (S;x2) ∩
BH, one has

〈ζ1 − ζ2, x1 − x2〉 ≥ −1

r
‖x1 − x2‖2 .

(d) The function d2S is of class C1,1 on Ur(S), that is, it is differentiable on Ur(S)
and its derivative is locally Lipschitz therein.

The features in the next proposition are fundamental (see, e.g., [24]).
Proposition 2.3. The following assertions hold true.
(a) If S is r-prox-regular, then for any x ∈ H,

NP (S;x) = NF (S;x) = NL(S;x) = NC(S;x) and TB(S;x) = TC(S;x).

(b) If S is r-prox-regular, then for any x ∈ Ur(S), the set ProjS(x) is a singleton,
i.e., projS(x) is well-defined.



 

(c) If S is r-prox-regular, the mapping projS : Ur(S) −→ S is well-defined and
locally Lipschitz on Ur(S).

(d) The set S is r-prox-regular if and only if any one of the properties (b)–(c) of
Theorem 2.2 holds true with any one of the normal cones NF (S; ·), NL(S; ·), NC(S; ·)
in place of NP (S; ·).

According to the assertion (a) of the above proposition, whenever S is a uniformly
prox-regular subset of H containing x, we will set

N(S;x) := NP (S;x) = NF (S;x) = NL(S;x) = NC(S;x),

T (S;x) := TB(S;x) = TC(S;x).

The property (c) of Theorem 2.2 means that the multimapping NP (S; ·) ∩ BH
is 1

r -hypomonotone. For the local prox-regularity, we know (see [13]) that S is prox-
regular at x ∈ S if and only if there is a real δ > 0 such that for all x1 ∈ B(x, δ)∩S, for
all x2 ∈ B(x, δ)∩S, and for all ζ ∈ NP (S;x1) (or N

F (S;x1), N
L(S;x1), N

C(S;x1)),

(2.1) 〈ζ, x2 − x1〉 ≤ 1

2r
‖ζ‖ ‖x1 − x2‖2 .

We now state another characterization of uniform prox-regularity which will be
crucial in the development of this paper.

Proposition 2.4. Let s, t be two extended reals in ]0,+∞]. The set S is
min {s, t}-prox-regular whenever for all x, x′ ∈ S with ‖x− x′‖ < 2t and for all

ζ ∈ NP (S;x) ∩ BH, 〈ζ, x′ − x〉 ≤ 1
2s ‖x′ − x‖2.

2.2. Metric regularity. Various results related to the prox-regularity of inter-
section and preimage will involve the concept of metric regularity of multimappings.

Definition 2.5. Let X,Y be two normed spaces and let M : X ⇒ Y be a
multimapping, (x, y) ∈ gph M := {(x, y) ∈ X × Y : y ∈ M(x)}. One says that M
is metrically regular at x for y whenever there are a real γ ≥ 0 and neighborhoods U
and V of x and y, respectively, such that

d(x,M−1(y)) ≤ γd(y,M(x)) for all (x, y) ∈ U × V.

Given two normed spaces, X,Y , a multimapping M : X ⇒ Y and (x, y) ∈ X×Y ,
one defines TBM(x, y) : X ⇒ Y , called the Bouligand–Peano tangential derivative of
M at (x, y), as the multimapping TBM(x, y) : X ⇒ Y which satisfies

gph TBM(x, y) = TB(gphM ; (x, y)).

So, for all (u, v) ∈ X × Y , one has

(2.2) (u, v) ∈ TB(gphM ; (x, y)) ⇐⇒ v ∈ TBM(x, y)(u).

We recall the following result (see, [2, Theorem 5.4.3]), which ensures the metric
regularity of a multimapping, under a tangential condition.

Theorem 2.6 (Aubin tangential condition for metric regularity). Let X,Y be
two Banach spaces, M : X ⇒ Y a multimapping, (x, y) ∈ gph M . Assume the
following:

(i) gphM is closed near (x, y);



 

(ii) there exist a real s > 0 and neighborhoods U and V of x and y such that

sBY ⊂ TBM(x, y)(BX) for all (x, y) ∈ (U × V ) ∩ gphM.

Then, M is metrically regular at x for y.
According to [22, Lemma 6.7], it is not difficult to prove the following result.
Proposition 2.7. Let X, Y be two Asplund spaces and let f : X −→ Y be a

mapping which is strictly Fréchet differentiable at x ∈ f−1(D), where D is a nonempty
subset of Y closed near f(x). Assume that there exist two reals γ, δ > 0 such that

d(x, f−1(D)) ≤ γd(f(x), D) for all x ∈ B(x, δ).

Then, one has

NL(f−1(D);x) ⊂ {
y� ◦Df(x) : y� ∈ NL(D; f(x))

}
.

3. Prox-regularity of set with smooth constraints. In general, the prox-
regularity of sets is unfortunately not perserved under operations without additional
qualification conditions, as shown in the following examples.

Example 1. A first simple example of a smooth (polynomial) function g : R2 → R

whose sublevel (resp., level) set {(x, y) ∈ R
2 : g(x, y) ≤ 0} (resp., {(x, y) ∈ R

2 :
g(x, y) = 0}) is not prox-regular (see Figure 1) is furnished by the polynomial function
defined by g(x, y) = xy for all (x, y) ∈ R

2. Concerning a bounded non-prox-regular
sublevel set of a smooth function (see Figure 2 (resp., Figure 3)), we can consider the
set {(x, y) ∈ R

2 : g(x, y) ≤ 0}, where g : R2 → R is the classical function whose zero
level is Bernouilli’s lemniscate (resp., is the function whose zero sublevel is the union
of the closed balls of R2 of radius 1 centered, respectively, at (−1, 0) and (1, 0)), that
is, for all (x, y) ∈ R

2

g(x, y) = (x2+y2)2−2(x2−y2) (resp., g(x, y) =
(
(x−1)2+y2−1

)(
(x+1)2+y2−1

)
).

Fig. 1. Fig. 2.
Fig. 3.

Example 2. In regard to the stability under intersection, we invoke [5]. Consider
first the closed set of the Euclidean space R

2 defined in [5] in the following way. For
each n ∈ N (where N is the set of positive integers, n = 1, . . .) denote by Dn the
closed ball with radius r = 1/4 (independent of n) in R

2 with the points (1/2n−1, 0)
and (1/2n, 0) on its boundary and whose ordinate of its center is nonpositive. With
R = 1/2 the suitable closed set in [5] is defined as

Q :=
{
(x, y) ∈ R

2 : y ≥ 0,
(
x− 1

2

)2

+ y2 ≤ R2
}
\
⋃
n∈N

intDn,



 

and clearly it is r-prox-regular; see Figure 4. Denoting by E the vector subspace given
by the axis of abscissa, that is, E := R × {0}, as noted in [5] the intersection Q ∩ E
fails to be prox-regular at (0, 0), in particular Q ∩ E is not uniformly prox-regular,
that is, there is no r′ ∈]0,+∞] such that Q ∩ E is r′-prox-regular.

Fig. 4. Intersection of prox-regular sets which fails to be prox-regular.

We also observe, with the linear mapping A : R → R
2 defined by Ax := (x, 0)

for all x ∈ R, that the susbset A−1(Q) is not prox-regular in R. With the above
construction at hand, we can naturally provide (in addition to Example 1) another
example of a sublevel set of a smooth function which is not prox-regular. Indeed,
consider the function g : R2 → R defined by

g(x, y) := d2
(
(x, y), Q

)
+ d2

(
(x, y), E

)
for all (x, y) ∈ R

2.

From Theorem 2.2(d) the function g is of class C1,1 on the open set Ur(Q) of R2, its
derivative is Lipschitz on Ur0(Q) for any 0 < r0 < r, so in particular it is a smooth
prox-regular function on Ur0(C) (see [23, 4]). Nevertheless, the sublevel set

{g ≤ 0} := {(x, y) ∈ R
2 : g(x, y) ≤ 0} = Q ∩ E

is not prox-regular according to the first observation above; see also section 7, for
other examples.

Remark 1. Concerning the Bouligand–Peano and Clarke tangent cones, it is
obvious that

TB(Q ∩ E; (0, 0)) = [0,+∞[×{0} and TC(Q ∩E; (0, 0)) = {(0, 0)},
so the set Q∩E is not even tangentially regular. This says in particular that, without
any qualification condition, the intersection of two subsmooth sets (see [3, 14] for the
definition) may fail to be subsmooth. Similarly, with the above linear mapping A
and the above smooth functions g, the sets A−1(Q) and {g ≤ 0} are not tangentially
regular at 0 and (0, 0), respectively. Consequently, without any qualification condition,
neither the subsmoothness property is preserved under inverse image by (continuous)
linear mapping nor sublevel sets of C1,1 smooth functions are subsmooth.

The above example illustrates that, without qualification condition, the prox-
regularity of sets is not preserved under intersection and inverse image, and sub-
level sets of C1,1 (hence prox-regular) functions may fail to be prox-regular. As
a simple positive case, we recall that a sublevel set of smooth real-valued function
with Lipschitz gradient, nonvanishing at boundary points, is prox-regular (see, e.g.,
[1, 13, 28, 29]). Our aim in this section and the next ones is to show that with ad-
ditional usual constraint qualifications the prox-regularity is preserved. In order to
state and prove results for the stability of local prox-regularity, the approach with



 

the normal cone intersection property and normal cone inverse image property is in-
troduced and developed in [13]. One can see [14] for the use of those concepts in
the study of the preservation of subsmoothness under operations on sets. Given two
normal cones N(·; ·) and N (·; ·), recall that the normal cone intersection property of
N (·; ·) with respect to N(·; ·) for two sets S1, S2 in a normed space X amounts to
requiring some real β > 0 such that

N (S1 ∩ S2;x) ∩ BX∗ ⊂ N(S1;x) ∩ βBX∗ +N(S2;x) ∩ βBX∗ ,

and similarly the normal cone inverse image property for a set S in a normed space
Y and a differentiable mapping g : X → Y means that, for some real β > 0,

N (g−1(S);x) ∩ BX∗ ⊂ Dg(x)�
(
N(S; g(x)) ∩ βBY ∗

)
,

where Dg(x)∗ denotes the adjoint of the continuous linear mapping Dg(x) : X → Y .
In this paper, in view of applications to the theory of Sweeping Process (see, e.g.,
[1, 7]) we provide and develop, for the stability of uniform global prox-regularity, new
verifiable quantitative conditions, and this is done in dealing with families

(
C(t)

)
t∈I

of prox-regular sets as involved in the theory of Sweeping Process.
We start by recalling a result from [1] establishing, through some verifiable quan-

titative conditions, the uniform prox-regularity of constraint sets with finitely many
smooth inequalities. The prox-regularity of sublevel sets of smooth functions is clearly
a particular case.

Theorem 3.1. Let I be a nonempty set, let H be a Hilbert space, and let m ∈ N

and gk : I ×H → R with k ∈ {1, . . . ,m} be functions such that, for each t ∈ I, the set

C(t) = {x ∈ H : g1(t, x) ≤ 0, . . . , gm(t, x) ≤ 0}

is nonempty. Assume that there exists an extended real ρ ∈]0,+∞] such that
(i) for all t ∈ I, for all k ∈ {1, . . . ,m}, gk(t, ·) is strictly Hadamard differentiable

on Uρ(C(t));
(ii) there exists a real γ ≥ 0 such that for all t ∈ I, for all k ∈ {1, . . . ,m}, and

for all x, y ∈ Uρ(C(t)),

(3.1) 〈∇gk(t, ·)(x) −∇gk(t, ·)(y), x− y〉 ≥ −γ ‖x− y‖2 ,

that is, ∇gk(t, ·) is γ-hypomonotone on Uρ(C(t)).
Assume also that there is a real δ > 0 such that for all (t, x) ∈ I×H with x ∈ bdryC(t),
there exists v ∈ BH satisfying, for all k ∈ {1, . . . ,m},

(3.2) 〈∇gk(t, ·)(x), v〉 ≤ −δ.

Then, for all t ∈ I, the set C(t) is r-prox-regular with r = min
{
ρ, δ

γ

}
.

With functions gk independent of t (so, the set C is independent of t as well),
in Theorem 3.1 note that conditions (i) and (ii) are obviously fulfilled whenever the
functions g1, . . . , gm are differentiable on Uρ(C) and γ-Lipschitz continuous on Uρ(C).
This leads us to provide an example of a real-valued function g of class C1, satisfying
(3.2) in the preceding theorem but not the hypomonotonicity property (3.1) and such
that the set {g ≤ 0} is not uniformly prox-regular.

Example 3. Let us define f : R → R by f(x) = x
3
2 if x ≥ 0 and f(x) = −(−x)

3
2

otherwise. Let us show first that epi f is not prox-regular at (0, 0). Since f is C1 on



 

R with ∇f(0) = 0, it is easily seen that NF (epi f ; (0, 0)) = {0} × ]−∞, 0]. Suppose
that epif is prox-regular at (0, 0). By (2.1) there exist two reals r, δ > 0 such that for
all (x�, r�) ∈ NF (epi f ; (0, 0)) and for all (x, s) ∈ epi f ∩B((0, 0), δ),

〈(x�, r�), (x, s) − (0, 0)〉 ≤ 1

2r
‖(x�, r�)‖ ‖(x, s)‖2 .

Fix any real r� < 0. Choose some real ε > 0 with ε < min
{
1, r2

}
such that

(−ε, f(−ε)) ∈ B((0, 0), δ). Taking (0, r�) ∈ NF
(
epi f ; (0, 0)

)
and (x, s) = (−ε, f(−ε))

in the latter inequality, we obtain

ε2 + ε3

2r
≥ ε

3
2 .

Since ε < 1, we have ε2

r ≥ ε
3
2 , i.e., ε4

r2 ≥ ε3. It follows that ε3( ε
r2 − 1) ≥ 0, thus

ε ≥ r2 and this cannot hold true, according to the choice of ε. As a consequence,
the function (which is obviously C1 on R

2, so strictly Hadamard differentiable on R
2)

g : R× R −→ R defined by

(3.3) (x, s) �−→ g(x, s) := f(x) − s

has its sublevel set C := {g ≤ 0} = epi f not prox-regular at (0, 0). On the other
hand, observing that ∇g(x, s) = (3

2

√|x|,−1) for all (x, s) ∈ R
2, we see with v =

(− 1
2 ,

1
2 ) ∈ BR2 that, for any (x, s) ∈ R

2,

〈∇g(x, s), v〉 = −3

4

√
|x| − 1

2
≤ −1

2
< 0,

hence g satisfies (3.2) in Theorem 3.1. Finally, let us verify that ∇g is hypomonotone
on no open enlargement of C. Suppose that ∇g is hypomonotone on some open
enlargement of C. Since (0, 0) ∈ C, there exist two reals γ, ε > 0 such that

〈∇g(x, s)−∇g(0, 0), (0, 0)− (x, s)〉 ≤ γ‖(x, s)‖2 = γ(x2 + s2) for all x, s ∈]− ε, ε[.

Thus, with s = 0 we get − 3
2x

√|x| ≤ γx2 for all x ∈] − ε, ε[. In particular, we get
3
2 ≤ γ

√|x| for all x ∈]− ε, 0[ and this inequality cannot hold true.
It is readily seen that a differentiable function g, with its gradient Lipschitz con-

tinuous, satisfies assumption (3.1) in Theorem 3.1; that is, g has its gradient hy-
pomonotone. The next example shows that the converse is not true in general.

Example 4. Let f : R → R be the function defined by f(x) = |x| 32 . It is
straightforward that f is C1 and convex on R, thus ∇f is monotone (in particular,
hypomonotone) on R. However, ∇f is not even Lipschitz near zero.

Now, given a subset S of H and x, y ∈ S with ‖x − y‖ < 2ρ, where ρ ∈]0,+∞],
for any real τ ∈ [0, 1] and zτ := x+ τ(y − x), we have

d(zτ , S) ≤ ‖zτ − x‖ = τ‖x − y‖ and d(zτ , S) ≤ ‖zτ − y‖ = (1− τ)‖x− y‖,
hence d(zτ , S) ≤ min{τ, 1− τ}‖x− y‖ ≤ 1

2‖x− y‖ < ρ. We have then established the
following lemma.

Lemma 3.2. Let S be a subset of a Hilbert space H and x, y ∈ S with ‖x−y‖ < 2ρ,
where ρ ∈]0,+∞]. Then, for any τ ∈ [0, 1] one has

x+ τ(y − x) ∈ Uρ(S).



 

The next result concerns the uniform prox-regularity of constraint sets with in-
finitely many equalities.

Theorem 3.3. Let I be a nonempty set, let H be a Hilbert space, and let G :
I×H → Y be a mapping from I×H into a Banach space Y such that, for each t ∈ I,
the set

C(t) := {x ∈ H : G(t, x) = 0}

is nonempty. Assume that, there exists an extended real ρ ∈]0,+∞] such that
(i) for each t ∈ I, the mapping G(t, ·) is differentiable on Uρ(C(t));
(ii) there is a real γ ≥ 0 such that for every t ∈ I the mapping x �→ DG(t, ·)(x) is

γ-Lipschitz on Uρ(C(t)), i.e., for all x1, x2 ∈ Uρ(C(t)),

‖DG(t, ·)(x1)−DG(t, ·)(x2)‖ ≤ γ‖x1 − x2‖.

Assume also that there is some real δ > 0 such that

(3.4) δBY ⊂ DG(t, ·)(x)(BH
)

for all t ∈ I, x ∈ bdry C(t).

Then for every t ∈ I, the set C(t) is r-prox-regular with r := min
{
ρ, δ

γ

}
.

Proof. Fix any t ∈ I and fix also any x ∈ bdryC(t) and u ∈ C(t) with ‖u−x‖ < 2ρ,
so by the above lemma x + s(u− x) ∈ Uρ(C(t)) for all s ∈ [0, 1]. First, we note that
the set C(t) is closed since the mapping G(t, ·) is continuous on the open set Uρ(C(t)).
Further, the C1 property of the mapping G(t, ·) near x along with the surjectivity of
DG(t, ·)(x) according to (3.4) implies (see, e.g., [21, Theorem 1.14]) that

NC(C(t);x) = {y∗ ◦A : y∗ ∈ Y ∗}, where A := DG(t, ·)(x).

Take any x∗ ∈ NC(C(t);x) and choose by the latter equality some y∗ ∈ Y ∗ such that
x∗ = y∗ ◦ A. Let y ∈ BY . Using the inclusion (3.4), there exists v ∈ BH such that
δy = A(v). Thus, δ ‖y∗(y)‖ = ‖A∗(y∗)(v)‖ ≤ ‖A∗(y∗)‖ = ‖x∗‖ and this implies

(3.5) δ ‖y∗‖ ≤ ‖A∗(y∗)‖ = ‖x∗‖ .

Consequently, we have

0 = 〈y∗, G(t, u)−G(t, x)〉

=

∫ 1

0

〈y∗ ◦DG(t, ·)(x + s(u− x)), u − x〉 ds

= 〈y∗ ◦A, u− x〉 +
∫ 1

0

〈y∗ ◦DG(t, ·)(x + s(u− x))− y∗ ◦A, u − x〉 ds,

hence

〈x∗, u− x〉 =
∫ 1

0

〈y∗ ◦DG(t, ·)(x) − y∗ ◦DG(t, ·)(x + s(u − x)), u − x〉 ds

≤ γ‖y∗‖ ‖u− x‖2
∫ 1

0

s ds

=
γ

2
‖y∗‖ ‖u− x‖2.



 

Using (3.5), we deduce that

〈x∗, u− x〉 ≤ γ

2δ
‖x∗‖ ‖u− x‖2.

Putting r := min
{
ρ, δ

γ

}
, it results that for all x ∈ bdry C(t) and u ∈ C(t) with

‖u−x‖ < 2r and all x∗ ∈ NC(C(t);x), 〈x∗, u−x〉 ≤ 1
2r‖x∗‖ ‖u−x‖2, which translates

the r-prox-regularity of C(t), according to Proposition 2.4.
Remark 2. As in Theorem 3.1, the result fails with a mapping G of class C1 with

DG not Lipschitz continuous. Indeed, let us consider again the function G := g in
(3.3) and define C = {G = 0}. Applying [25, Theorem 6.14], we get NC(C; (0, 0)) =
{0} × R. Arguing as in Example 3, one can show that the set {g = 0} is not prox-
regular at (0, 0). However, condition (3.4) is fulfilled. Indeed, fix any x ∈ C. Take
any b′ ∈ [−1, 1] and put b = (0,−b′) ∈ BR2 . Since DG(x)(b) = 〈∇G(x), b〉 = b′, we
see that

[−1, 1] ⊂ DG(x)(BR2 ).

This says that G satisfies condition (3.4) of Theorem 3.3 as claimed above.
Before stating the next result, let us recall (see, e.g., [6, Corollary 2.91 and

(2.191)]) the description, under the Mangasarian–Fromovitz condition, of the Clarke
normal cone of a constraint set with finitely many inequality and equality constraints.

Theorem 3.4. Let X be a Banach space, m,n ∈ N, and

S := {x ∈ X : g1(x) ≤ 0, . . . , gm(x) ≤ 0, gm+1(x) = 0, . . . , gm+n(x) = 0},

where g1, . . . , gm+n : X → R are functions of class C1 near a point x̄ ∈ S. Assume
that the Mangasarian–Fromovitz qualification condition is satisfied at x̄, that is:

The vectors Dgm+1(x̄), . . . , Dgm+n(x̄) are linearly independent and there is a vec-
tor v̄ ∈ X such that 〈Dgm+1(x̄), v̄〉 = 0, . . . , 〈Dgm+n(x̄), v̄〉 = 0 and

〈Dgk(x̄), v̄〉 < 0 for all k ∈ K≤(x̄),

where K≤(x̄) := {k ∈ K≤ : gk(x̄) = 0} and K≤ := {1, . . . ,m}. Then the Clarke and
Fréchet normal cones of S at x̄ coincide and, with K= := {m+ 1, . . . ,m+ n},

NC(S; x̄) =

{m+n∑
k=1

λkDgk(x̄) : λk ∈ R for all k ∈ K=,

λ k ≥ 0, λkgk(x̄) = 0 for all k ∈ K≤
}
.

The next theorem deals with the prox-regularity of sets defined by finitely many
smooth inequality and equality constraints.

Theorem 3.5. Let I be a nonempty set, let H be a Hilbert space, m,n ∈ N, and
let gk : I ×H → R with k ∈ {1, . . . ,m+ n} (resp., k = {1, . . . ,m}) be functions such
that, for each t ∈ I, the set

C(t) := {x ∈ H : g1(t, x) ≤ 0, . . . , gm(t, x) ≤ 0, gm+1(t, x) = 0, . . . , gm+n(t, x) = 0}

(resp.,C(t) := {x ∈ H : g1(t, x) ≤ 0, . . . , gm(t, x) ≤ 0})



 

is nonempty. Assume that there is an extended real ρ ∈]0,+∞] such that

(i) for each t ∈ I, for all k ∈ {1, . . . ,m+n} (resp., k ∈ {1, . . . ,m}) the functions
gk(t, ·) are C1 on Uρ(C(t));

(ii) there exists a real γ ≥ 0 such that for all t ∈ I and for all x, y ∈ Uρ(C(t)),

(3.6) 〈∇gk(t, ·)(x) −∇gk(t, ·)(y), x − y〉 ≥ −γ ‖x− y‖2 for all k ∈ {1, . . . ,m}

and

‖∇gk(t, ·)(x) −∇gk(t, ·)(y)‖ ≤ γ‖x− y‖ for all k ∈ {m+ 1, . . . ,m+ n}

(resp., (3.6) holds). Assume also that there exists a real δ > 0 such that for all
x ∈ bdry C(t)

(3.7) [−δ, δ]pt,x × [−δ, δ]n ⊂ At,x(BH) + R
pt,x

+ × {0Rn}

(resp., [−δ, δ]pt,x ⊂ At,x(BH) + R
pt,x

+ ),

where pt,x = Card {k ∈ {1, . . . ,m} : gk(t, x) = 0},

At,x :=
(
Dgi1(t, ·)(x), . . . , Dgipt,x (t, ·)(x), Dgm+1(t, ·)(x), . . . , Dgm+n(t, ·)(x)

)

(resp.,At,x :=
(
Dgi1(t, ·)(x), . . . , Dgipt,x (t, ·)(x)

)
)

and
{
i1, . . . , ipt,x

}
= {k ∈ {1, . . . ,m} : gk(t, x) = 0}. Then for every t ∈ I, the set

C(t) is r-prox-regular with r := min{ρ, δ
γ }.

Proof. Clearly, it suffices to prove the result with n ≥ 1. All the sets C(t) are
obviously closed according to the continuity of the functions gk(t, ·) over Uρ(C(t)).
Fix any t ∈ I, x, y ∈ C(t) with ‖x− y‖ < 2ρ and x ∈ bdryC(t). Let λm+1, . . . , λm+n

be reals such that

(3.8)

n∑
i=1

λi∇gm+i(t, ·)(x) = 0.

Fix any real αm+1 ∈ [−δ, δ] \ {0}. According to (3.7), there is u ∈ BH such that

(αm+1, 0, . . . , 0) = (Dgm+1(t, ·)(x)(u), . . . , Dgm+n(t, ·)(x)(u)).

Using (3.8) and the latter equality, we obtain

λm+1 〈∇gm+1(t, ·)(x), u〉 = λm+1αm+1 = 0.

Since αm+1 �= 0, we get λm+1 = 0. In the same way, we obtain λm+2 = · · · = λm+n =
0. Thus, we see that the first part of the Mangasarian–Fromovitz qualification con-
dition is satisfied at x, i.e., the vectors ∇gm+1(t, ·)(x), . . . ,∇gm+n(t, ·)(x) are linearly
independent. From inclusion (3.7) and from

(−δ, . . . ,−δ, 0, . . . , 0) ∈ [−δ, δ]pt,x × [−δ, δ]n



 

it is easily seen as above that the second part of the Mangasarian–Fromovitz qualifi-
cation condition is satisfied at x. Consequently, we have

N =

{ ∑
k∈K

λk∇gk(t, ·)(x)

+

m+n∑
k=m+1

λk∇gk(t, ·)(x) : λk ≥ 0 for k ∈ K,λk ∈ R for k = m+ 1, . . . ,m+ n

}
,

where N := NC(C(t);x) and K := {k ∈ {1, . . . ,m} : gk(t, x) = 0}. Take any
ζ ∈ NC(C(t);x) \ {0} (if NC(C(t);x) = {0}, it is straightforward). We can write

(3.9) ζ =
∑
k∈K

λk∇gk(t, ·)(x) +
m+n∑

k=m+1

λk∇gk(t, ·)(x)

with some reals λk ≥ 0 for k ∈ K and λk ∈ R for k = m + 1, . . . ,m + n. Fix for a
moment k ∈ K ∪ {m+ 1, . . . ,m+ n}. By Lemma 3.2, we know that for all s ∈ [0, 1],
x+ s(y − x) ∈ Uρ(C(t)). Using assumption (ii), one has for all s ∈ [0, 1],

〈∇gk(t, ·)(x + s(y − x)) −∇gk(t, ·)(x), y − x〉 ≥ −γs ‖y − x‖2 .
One observes that

0 ≥ gk(t, y)− gk(t, x)

=

∫ 1

0

〈∇gk(t, ·)(x + s(y − x)), y − x〉 ds

= 〈∇gk(t, ·)(x), y − x〉 +
∫ 1

0

〈∇gk(t, ·)(x+ s(y − x))−∇gk(t, ·)(x), y − x〉 ds

≥ 〈∇gk(t, ·)(x), y − x〉 − γ ‖y − x‖2
∫ 1

0

s ds,

and hence one has

(3.10) 〈∇gk(t, ·)(x), y − x〉 ≤ γ

2
‖y − x‖2 .

Fix now any k ∈ {m+ 1, . . . ,m+ n}. Again, using assumption (ii), one has

0 = gk(t, x)− gk(t, y)

=

∫ 1

0

〈∇gk(t, ·)(y + s(x− y)), x− y〉ds

= 〈∇gk(t, ·)(x), x − y〉+
∫ 1

0

〈∇gk(t, ·)(y + s(x− y))−∇gk(t, ·)(x), x − y〉 ds.

It follows that

〈∇gk(t, ·)(x), x − y〉 =
∫ 1

0

〈∇gk(t, ·)(x) −∇gk(t, ·)(y + s(x− y)), x− y〉 ds,

and then we have

〈∇gk(t, ·)(x), x − y〉 ≤ γ

2
‖x− y‖2 .



 

Thanks to (3.10), we get

|〈∇gk(t, ·)(x), y − x〉| ≤ γ

2
‖y − x‖2 .

It ensues that

〈ζ, y − x〉 =
∑
k∈K

λk 〈∇gk(t, ·)(x), y − x〉+
m+n∑

k=m+1

λk 〈∇gk(t, ·)(x), y − x〉

≤
( ∑

k∈K

λk

)
γ

2
‖y − x‖2 +

( m+n∑
k=m+1

|λk|
)
γ

2
‖y − x‖2 ,

or equivalently

(3.11) 〈ζ, y − x〉 ≤
( ∑

k∈K

|λk|+
m+n∑
m+1

|λk|
)
γ

2
‖y − x‖2.

With K = {i1, . . . , ip} (so, p := CardK = pt,x) consider the continuous linear
mapping A : H −→ R

p × R
n given for all h ∈ H by

Ah :=
(
Dgi1(t, ·)(x)h, . . . , Dgip(t, ·)(x)h,Dgm+1(t, ·)(x)h, . . . , Dgm+n(t, ·)(x)h),

and note that (keeping in mind (3.9)) 〈ζ, ·〉 = (y∗ ◦A)(·), where the linear functional
y∗ is defined on R

p × R
n by

〈y∗, v〉 =
∑
k∈K

λkvk +
m+n∑

k=m+1

λkvk for all v = (v1, . . . , vp, vm+1, . . . , vm+n) ∈ R
p ×R

n.

Setting v̄ :=
(
δ, . . . , δ, sign(λm+1)δ, . . . , sign(λm+n)δ

)
and noting that −v̄ ∈ [−δ, δ]p ×

[−δ, δ]n, the inclusion (3.7) yields some b ∈ BH and q = (qi1 , . . . , qip , qm+1, . . . , qm+n),
with qi1 ≥ 0, . . . , qip ≥ 0 and qm+1 = · · · = qm+n = 0, such that −v̄ = A(−b)+q, that
is, v̄ = A(b) − q. This and the definition of y∗ and q combined with the inequalities
λk ≥ 0, for all k ∈ K, give

(3.12) 〈y∗, v̄〉 = (y∗ ◦A)(b) −
∑
k∈K

λkqk ≤ (y∗ ◦A)(b) ≤ ‖y∗ ◦A‖.

On the other hand, we have from the definitions of y∗ and v

〈y∗, v̄〉 = δ

( ∑
k∈K

|λk|+
m+n∑

k=m+1

|λk|
)
,

thus (thanks to (3.12))

δ

( ∑
k∈K

|λk|+
m+n∑
m+1

|λk|
)

≤ ‖y∗ ◦A‖ = ‖ζ‖.

This combined with (3.11) guarantees that

〈ζ, y − x〉 ≤ γ

2δ
‖ζ‖ ‖y − x‖2.

Consequently, for all x, y ∈ C(t) with x ∈ bdry C(t) and ‖y − x‖ < 2r and for all
ζ ∈ NC(C(t);x), we obtain 〈ζ, y − x〉 ≤ 1

2r‖ζ‖ ‖y − x‖2, which justifies the r-prox-
regularity of the set C(t), according to Proposition 2.4.



 

4. Prox-regularity of nonsmooth sublevel sets. In Theorem 3.1, we recalled
a result related to the uniform prox-regularity of sublevel sets of smooth functions.
This section is concerned with the situation of sublevel sets of finitely/infinitely many
nonsmooth functions. Its first theorem says in particular that, under a generalized
Slater qualification condition, sublevel sets of locally Lipschitz prox-regular functions
are prox-regular sets.

Theorem 4.1. Let I be a nonempty set and let H be a Hilbert space, m ∈ N,
g1, . . . , gm : I ×H −→ R such that, for each t ∈ I, the set

C(t) = {x ∈ H : g1(t, x) ≤ 0, . . . , gm(t, x) ≤ 0}
is nonempty. Assume that there is an extended real ρ ∈]0,+∞] such that

(i) for each t ∈ I and for all k ∈ {1, . . . ,m}, gk(t, ·) is locally Lipschitz continuous
on Uρ(C(t));

(ii) there is a real γ ≥ 0 such that for all t ∈ I and k ∈ {1, . . . ,m}, for all
x1, x2 ∈ Uρ(C(t)), and for all v1 ∈ ∂Cgk(t, ·)(x1) and all v2 ∈ ∂Cgk(t, ·)(x2),

(4.1) 〈v1 − v2, x1 − x2〉 ≥ −γ ‖x1 − x2‖2 .
Assume also that there is a real δ > 0 such that for all (t, x) ∈ I × H with x ∈
bdryC(t), there exists v ∈ BH satisfying for all k ∈ {1, . . . ,m} and for all ξ ∈
∂Cgk(t, ·)(x),

〈ξ, v〉 ≤ −δ.

Then, for all t ∈ I, C(t) is r-prox-regular with r = min
{
ρ, δ

γ

}
.

Proof. Set K = {1, . . . ,m} and fix any t ∈ I. The set C(t) is closed in H, thanks
to the continuity of each gk(t, ·) on Uρ(C(t)) with k ∈ K. For each x ∈ H put

g(t, x) = max
k∈K

gk(t, x) and K(t, x) = {k ∈ K : gk(t, x) = g(t, x)} .

Obviously, one observes that C(t) = {x ∈ H : g(t, x) ≤ 0}. Using [11, Proposition
2.3.12] and our assumption (i), one has

(4.2) ∂Cg(t, ·)(x) ⊂ co

( ⋃
k∈K(t,x)

∂Cgk(t, ·)(x)
)

for all x ∈ C(t).

It is readily seen that the latter inclusion and the existence of v in (iii) give us

0 /∈ ∂Cg(t, ·)(x) for all x ∈ bdryC(t).

According to Corollary 1 of [11, Theorem 2.4.7], one has

NC(C(t);x) ⊂ R+∂Cg(t, ·)(x) for all x ∈ bdryC(t).

Fix now any x, y ∈ C(t) with x ∈ bdryC(t) and ‖x− y‖ < 2ρ. For all s ∈ [0, 1],
one has by Lemma 3.2, x + s(y − x) ∈ Uρ(C(t)). Further, for ζ ∈ ∂Cg(t, ·)(x) and
ξ ∈ ∂Cg(t, ·)(y), from (4.2) there are ζk ∈ ∂Cgk(t, ·)(x) and ξk ∈ ∂Cgk(t, ·)(y), and
λk, μk ≥ 0 with

∑
k∈K λk =

∑
k∈K μk = 1 such that ζ =

∑
k∈K λkζk and ξ =∑

k∈K μkξk. It ensues that

〈ζ − ξ, x− y〉 =
∑
j∈K

∑
k∈K

μjλk〈ζk − ξj , x− y〉 ≥ −γ‖x− y‖2.



 

Define the function ϕ : R −→ R with

ϕ(τ) := g(t, x+ τ(y − x))

and observe that it is Lipschitz continuous on [0, 1]. As a consequence, there exists a
Lebesgue negligible subset N of [0, 1] such that ϕ is derivable on [0, 1] \N and

0 ≥ g(t, y)− g(t, x) =

∫ 1

0

ϕ′(τ)dτ.

Fix for a moment any s ∈ [0, 1] \N and define the affine mapping G : R −→ H with

G(τ) := x+ τ(y − x).

By assumption (i), the mapping g(t, ·) is locally Lipschitz continuous on Uρ(C(t)), in
particular it is Lipschitz continuous near G(s). Since ϕ is differentiable at s, one has

ϕ′(s) ∈ ∂C(g(t, ·) ◦G)(s).

Using the chain rule in [11, Theorem 2.3.10], we obtain some ζs ∈ ∂Cg(t, ·)(xs) such
that ϕ′(s) = 〈ζs, y − x〉, where xs := x+ s(y − x). Consequently, we have

0 ≥
∫ 1

0

ϕ′(s)ds =

∫ 1

0

〈ζs, y − x〉 ds

=

∫ 1

0

〈ζs − ζ, y − x〉 ds+ 〈ζ, y − x〉

=

∫ 1

0

1

s
〈ζs − ζ, xs − x〉 ds+ 〈ζ, y − x〉

≥ −
∫ 1

0

1

s
γ‖xs − x‖2 ds+ 〈ζ, y − x〉

= −γ‖y − x‖2
∫ 1

0

s ds+ 〈ζ, y − x〉 = −γ

2
‖y − x‖2 + 〈ζ, y − x〉.

From this we deduce 〈ζ, y − x〉 ≤ γ
2‖y − x‖2. It is straightforward that the inclusion

v ∈ BH and the inequality 〈ζ, v̄〉 > −δ give us ‖ζ‖ ≥ δ > 0. Then, we can write

〈ζ, y − x〉 ≤ γ

2δ
‖ζ‖ ‖y − x‖2 .

Proposition 2.4 ensures that for all t ∈ I, C(t) is r-prox-regular with r = min
{
ρ, δ

γ

}
.

Remark 3. The latter result obviously encompasses Theorem 3.1. Nevertheless,
due to the lack of differentiability of the constraints functions gk, the proof of Theorem
4.1 is quite different from those of [1, Theorem 9.1].

Remark 4. Let U be a nonempty open subset of a normed space X . It can be
verified that a locally Lipschitz (resp., lower semicontinuous) function g from U into
R (resp., into R∪ {+∞}), which has its Clarke subdifferential γ-hypomonotone on U
(that is, g satisfies (ii) of the above theorem) for some real γ ≥ 0, is γ-semiconvex on
U in the sense ([10])

g(tx+ (1− t)y) ≤ tg(x) + (1− t)g(y) +
1

2
γt(1− t) ‖x− y‖2



 

for all x, y ∈ U and all t ∈]0, 1[. It is worth pointing out that the γ-hypomonotonicity
of the Clarke subdifferential of a lower semicontinuous function f is shown in [18]
to be equivalent to the γ-paraconvexity of f whenever γ > 1 (see [18] for more
details). Semiconvex functions are also called weakly convex in [29]. Further, if X
is a Hilbert space, the local semiconvexity of a locally Lipschitz function g (i.e., the
semiconvexity on a neighborhood of each point) means that g is prox-regular on U
(see, e.g., [23, 4]). Such functions have been proved to be Clarke tangentially regular
(Clarke subdifferentially regular) in [18].

The study of sets structured by infinitely many nonsmooth inequalities is a con-
sequence of the latter theorem.

Corollary 4.2. Let I be a nonempty set, let (W,O) be a Hausdorff topological
space, let H be a Hilbert space. For each w ∈ W , let gw : I ×H −→ R be a function
such that for each t ∈ I, the set

C(t) =

{
x ∈ H : sup

w∈W
gw(t, x) ≤ 0

}

is nonempty. Let ρ be an extended real of ]0,+∞], and for each t ∈ I and each
x ∈ Uρ(C(t)), let

Mt(x) :=

{
w ∈ W : gw(t, x) = sup

w′∈W
gw′(t, x)

}
.

Assume that there is an extended real ρ ∈]0,+∞] such that for each t ∈ I,
(i) the functions gw(t, ·), w ∈ W , are locally equi-Lipschitz on Uρ(C(t));
(ii) for each x ∈ Uρ(C(t)), the function w �→ gw(t, x) is upper semicontinuous on

W ;
(iii) for each t ∈ I and for each x ∈ Uρ(C(t)), there exist a neighborhood U ⊂

Uρ(C(t)) of x and a compact set Kt,x ⊂ W such that⋃
x∈Uρ(C(t))

Mt(x) ⊂ Kt,x;

and Mt(x) �= ∅ for all x ∈ U ;
(iv) the multimapping (w, x) �→ ∂Cgw(t, x) from W × Uρ(C(t)) into H has its

graph which is O × ‖·‖ × w-closed;
Assume also that

(v) there is a real γ ≥ 0 such that for all t ∈ I, for all x1, x2 ∈ Uρ(C(t)), for all
v1 ∈ ⋃

w∈Mt(x1)
∂Cgw(t, ·)(x1), and for all v2 ∈ ⋃

w∈Mt(x2)
∂Cgw(t, ·)(x2)

〈v1 − v2, x1 − x2〉 ≥ −γ ‖x1 − x2‖2 ;
(vi) there is a real δ > 0 satisfying for all (t, x) ∈ I ×H with x ∈ bdryC(t), there

is v ∈ BH satisfying for all ξ ∈ ⋃
w∈Mt(x)

∂Cgw(t, ·)(x),
〈ξ, v〉 ≤ −δ.

Then, for all t ∈ I, the set C(t) is r-prox-regular with r = min{ρ, δ
γ }.

Proof. Fix any t ∈ I and note that C(t) = {x ∈ H : f(t, x) ≤ 0}, where
f(t, x) := sup

w∈W
gw(t, x) for all x ∈ H.



 

From (i)–(iv) and following the arguments in the proof of [11, Theorem 2.8.2], one
obtains that the function f(t, ·) is locally Lipschitz continuous on Uρ(C(t)) and that
the inclusion

∂Cf(t, ·)(x) ⊂ cow

⎛
⎝ ⋃

w∈Mt(x)

∂Cgw(t, ·)(x)
⎞
⎠

holds true for all x ∈ Uρ(C(t)). From the latter inclusion and the assumption (vi), it
is easily seen that, for every x ∈ bdry C(t),

〈x�, v〉 ≤ −δ for all x� ∈ ∂Cf(t, ·)(x).

Further, from (v) it is also easily seen that for all x1, x2 ∈ Uρ(C(t)), for all v1 ∈
∂Cf(t, ·)(x1), and for all v2 ∈ ∂Cf(t, ·)(x2),

〈v1 − v2, x1 − x2〉 ≥ −γ ‖x1 − x2‖2 .

Applying Theorem 4.1, the set C(t) is r-prox-regular with r = min{ρ, δ
γ }.

5. Intersection of prox-regular subsets. Given two prox-regular subsets S1

and S2 of a Hilbert space X , one natural question would be to check for the prox-
regularity of the intersection S1 ∩ S2. In order to study the prox-regularity of the
intersection of sets, given two subsets S1, S2 of a normed space X , let us consider the
multimapping M(·) = (S1 − ·)× (S2 − ·) : X ⇒ X ×X defined by

(5.1) x �−→ (S1 − x)× (S2 − x).

The following lemma describes the Bouligand–Peano tangent cone of the graph of
M(·) = (S1 − ·)× (S2− ·). Its proof is omitted; it follows directly from the definitions
of Bouligand–Peano and Clarke tangent cones.

Lemma 5.1. Let X be a normed space and let S1, S2 be two subsets of X, M(·) =
(S1 − ·)× (S2 − ·), (x, y, z) ∈ X3 with x+ y ∈ S1 and x+ z ∈ S2. Then, one has

TB(gphM ; (x, y, z))

⊂ {
(u, v, w) ∈ X3 : u+ v ∈ TB(S1;x+ y), u+ w ∈ TB(S2;x+ z)

}
.

If, in addition, either S1 is Clarke tangentially regular at x + y or S2 is Clarke tan-
gentially regular at x+ z, then the inclusion is an equality.

The next result is crucial in the development of this section.
Proposition 5.2. Let X be a normed space and let S1, S2 be two nonempty

subsets of X, x ∈ X, M(·) = (S1 − ·)× (S2 − ·). Consider the following assertions.

(
AS1,S2(s)

)
: There exist a real s > 0 and a neighborhood U of x such that for all

x1 ∈ U ∩ S1 and for all x2 ∈ U ∩ S2,

sBX ⊂ TB(S1;x1) ∩ BX − TB(S2;x2) ∩ BX .(
AM (s)

)
: There exist a real s > 0, a neighborhood U of x and a neighborhood V

of 0 such that, for all (x, y, z) ∈ gphM ∩ U × V × V,

s(BX × BX) ⊂ TBM(x, y, z)(BX).



 

Then, the implication
(
AM (s)

) ⇒ (
AS1,S2(

2s
s+1 )

)
holds true. If, in addition, either S1

or S2 is Clarke tangentially regular near x, then
(
AS1,S2(s)

) ⇒ (
AM ( s

s+2 )
)
.

Proof.
(
AM (s)

) ⇒ (
AS1,S2(

2s
s+1 )

)
. Fix any real η > 0 such that B[0, η] ⊂ V . Let

ζ ∈ sBX , so (ζ,−ζ) ∈ s(BX × BX). For each i ∈ {1, 2}, let xi ∈ B[x, η] ∩ Si. In
particular, we have xi −x ∈ Si−x. Then, (x, x1 −x, x2 −x) ∈ gphM and xi −x ∈ V
for each i ∈ {1, 2}. The inclusion given by (AM (s)) entails that

(ζ,−ζ) ∈ TBM(x, x1 − x, x2 − x)(BX),

which gives some u ∈ BX such that

(ζ,−ζ) ∈ TBM(x, x1 − x, x2 − x)(u),

that is (thanks to (2.2))

(u, ζ,−ζ) ∈ TB(gphM ; (x, x1 − x, x2 − x)).

Then, we can apply Lemma 5.1 to get

u+ ζ ∈ TB(S1;x+ x1 − x) = TB(S1;x1)

and

u− ζ ∈ TB(S2;x+ x2 − x) = TB(S2;x2).

Further, we have

max {‖u+ ζ‖ , ‖u− ζ‖} ≤ ‖u‖+ ‖ζ‖ ≤ 1 + s.

Since ζ = 1
2 (u+ ζ)− 1

2 (u − ζ), we see that

ζ ∈ TB(S1;x1) ∩ 1 + s

2
BX − TB(S2;x2) ∩ 1 + s

2
BX .

Hence (keeping in mind that ζ ∈ sBX)

2s

s+ 1
BX ⊂ TB(S1;x1) ∩ BX − TB(S2;x2) ∩ BX .

(
AS1,S2(s)

) ⇒ (
AM ( s

s+2 )
)
. Assume that S1 or S2 is Clarke tangentially regular

near x. Without loss of generality, we may suppose that S1 is tangentially regular
at any points of S1 ∩ U . Choose any real η > 0 such that B[x, η] ⊂ U . Fix any
(x, y, z) ∈ gphM with x ∈ x + η

2BX , y ∈ η
2BX , z ∈ η

2BX . Let (v, w) ∈ s
2 (BX × BX),

so w − v ∈ sBX . We have x+ y ∈ S1 and x+ z ∈ S2. On the other hand

‖x+ y − x‖ ≤ η and ‖x+ z − x‖ ≤ η.

Hence, by
(
AS1,S2(s)

)
, there are b1 ∈ TB(S1;x+y)∩BX and b2 ∈ TB(S2;x+z)∩BX

such that v − w = b1 − b2. Putting u := b1 − v, we have

(5.2) u+ v ∈ TB(S1;x+ y).

The equality u+ w = b2 gives us

(5.3) u+ w ∈ TB(S2;x+ z).



 

Combining (5.2), (5.3), and Lemma 5.1 (thanks to the fact that S1 is tangentially
regular at x + y), we have (u, v, w) ∈ TB(gphM ; (x, y, z)). It is readily seen that
‖u‖ ≤ 1 + s

2 = 2+s
2 . Since TB(gphM ; (x, y, z)) is a cone, we get from the latter

inclusion

2

2 + s
(u, v, w) ∈ TB(gphM ; (x, y, z)),

i.e., 2
2+s (v, w) ∈ TBM(x, y, z)( 2

2+su). As a consequence, we have

s

s+ 2
(BX × BX) ⊂ TBM(x, y, z)(BX).

Now, given two subsets S1 and S2 of an Asplund space with S1 ∩S2 � x, our aim
is to prove that we have the following inclusion:

NL(S1 ∩ S2;x) ⊂ NL(S1;x) +NL(S2;x)

under an openness assumption on the Bouligand–Peano tangent cones of S1 and S2.
Note that the set gphM (where M is the multimapping defined as in (5.1)) is closed
near (x, 0, 0) whenever S1 and S2 are closed near x.

Proposition 5.3. Let X be an Asplund space and let S1, S2 be two nonempty
subsets closed near x ∈ S1 ∩ S2. Assume the following:

(i) either S1 or S2 is Clarke tangentially regular near x;
(ii) there exist a real s > 0 and a neighborhood U of x such that for all x1 ∈ U∩S1

and for all x2 ∈ U ∩ S2,

sBX ⊂ TB(S1;x1) ∩ BX − TB(S2;x2) ∩ BX .

Then, one has

NL(S1 ∩ S2;x) ⊂ NL(S1;x) +NL(S2;x).

Proof. Set M(·) = (S1 − ·) × (S2 − ·). Combining (i), (ii), and Proposition 5.2,
there exist two reals s′, η > 0 such that for all (x, y, z) ∈ gphM with x ∈ x + ηBX ,
y ∈ ηBX , z ∈ ηBX ,

s′(BX × BX) ⊂ TBM(x, y, z)(BX).

According to Theorem 2.6, M is metrically regular at x for (0, 0), whereX2 is endowed
with the norm defined by ‖(u, v)‖ = ‖u‖ + ‖v‖ for all (u, v) ∈ X2. The metric
regularity gives a real γ ≥ 0, an open neighborhood V of x in X , such that

d(x,M−1(0, 0)) ≤ γd((0, 0),M(x)) for all x ∈ V.

As a consequence, we have

d(x, S1 ∩ S2) ≤ γ
(
d(x, S1) + d(x, S2)

)
for all x ∈ V.

Using [22, Theorem 6.44], we get

NL(S1 ∩ S2;x) ⊂ NL(S1;x) +NL(S2;x).

This completes the proof.
Remark 5. As pointed out by one of the referees, the conclusion of the latter

proposition could be seen as a consequence of [19, Corollary 3.4] (whose proof is still



 

valid in Asplund space), which is slightly more general than Proposition 5.3. For the
reader’s convenience, we prefer to give a direct proof (which is short).

Now, we can state and prove the main result of this section.
Theorem 5.4. Let I be a nonempty set, let H be a Hilbert space, and for each

t ∈ I, let C1(t), C2(t) be two r-prox-regular subsets of H with r ∈]0,+∞[ such that
C1(t) ∩C2(t) �= ∅ for all t ∈ I.

Assume that there is a real s > 0 such that for every t ∈ I and for every x ∈
bdry (C1(t) ∩ C2(t)), there is a neighborhood Ut of x in H such that for all x1 ∈
Ut ∩ C1(t) and for all x2 ∈ Ut ∩ C2(t),

(5.4) sBH ⊂ T (C1(t);x1) ∩ BH − T (C2(t);x2) ∩ BH.

Then, for all t ∈ I, C1(t) ∩ C2(t) is
rs
2 -prox-regular.

Proof. Fix any t ∈ I and x, x′ ∈ C1(t) ∩ C2(t) with x ∈ bdry (C1(t) ∩ C2(t)) and
fix any ζ ∈ NL(C1(t) ∩ C2(t);x). Applying Proposition 5.3 (thanks to the fact that
C1(t) and C2(t) are Clarke tangentially regular near x), we have

NL(C1(t) ∩ C2(t);x) ⊂ NL(C1(t);x) +NL(C2(t);x).

Let us choose ζi ∈ NL(Ci(t);x) for each i ∈ {1, 2} such that, ζ = ζ1 + ζ2. Fix any
v ∈ BH. Using assumption (5.4), for each i ∈ {1, 2}, there exists vi ∈ T (Ci(t);x)∩BH
satisfying sv = v1 − v2. We then have

s 〈ζ1, v〉 = 〈ζ1, v1〉 − 〈ζ1, v2〉
≤ − 〈ζ1, v2〉 = −〈ζ, v2〉+ 〈ζ2, v2〉
≤ 〈ζ,−v2〉 ≤ ‖ζ‖ ,

where the first (resp., second) inequality is due to the fact that 〈ζ1, v1〉 ≤ 0 (resp.,
〈ζ2, v2〉 ≤ 0). It follows that s ‖ζ1‖ ≤ ‖ζ‖. In a similar way, we get s ‖ζ2‖ ≤ ‖ζ‖.
Since C1(t) and C2(t) are r-prox-regular sets, we have

〈ζ, x′ − x〉 = 〈ζ1, x′ − x〉+ 〈ζ2, x′ − x〉
≤ 1

2r
(‖ζ1‖+ ‖ζ2‖) ‖x′ − x‖2

≤ 1

rs
‖ζ‖ ‖x′ − x‖2 =

1

2(12rs)
‖ζ‖ ‖x′ − x‖2 ,

and this combined with Theorem 2.2(b) ensures that the set C1(t)∩C2(t) is
1
2rs-prox-

regular.

6. Preimage of prox-regular sets. This section is concerned with general
verifiable conditions ensuring the uniform prox-regularity of the preimage of a prox-
regular set. For the direct image, that is, the problem of finding sufficient conditions
to ensure the uniform prox-regularity of g(D) where g : H −→ H′ is a mapping
between two Hilbert spaces and D is a uniformly prox-regular set of H, we refer to
[13, Proposition 37].

Let X,Y be two normed spaces. For a subset D of Y and a mapping f : X −→ Y ,
one denotes by M(·) = f(·)−D : X ⇒ Y the multimapping defined by

(6.1) x �−→ f(x)−D.



 

We need to describe the Bouligand–Peano tangent cone of the graph of M(·) =
f(·)−D. The following lemma is in this sense, its proof is easy and will be omitted.

Lemma 6.1. Let X, Y be two normed spaces, let f : X −→ Y be a mapping, let
D be a nonempty subset of Y , and let M(·) = f(·)−D, (x, y) ∈ gphM . Assume that
f is Gâteaux differentiable at x. Then, one has{

(u, v) ∈ X × Y : v ∈ Df(x)(u)− TB(D; f(x)− y)
} ⊂ TB(gphM ; (x, y)).

If f is Hadamard differentiable at x, then the latter inclusion is an equality.
The next result is a consequence of Lemma 6.1 and will be useful.
Lemma 6.2. Let f : X −→ Y be a mapping between two normed spaces X and

Y , let D be a nonempty subset of Y , and let M(·) := f(·) − D. Assume that f is
Gâteaux differentiable at x ∈ f−1(D) and that there exist two reals s, η > 0 such that
for all (x, y) ∈ (x + ηBX)× ηBY ∩ gphM,

(6.2) sBY ⊂ Df(x)(BX )− TB(D; f(x)− y).

Then, for all (x, y) ∈ (x + ηBX)× ηBY ∩ gphM,

sBY ⊂ TBM(x, y)(BX).

Proof. Fix any (x, y) ∈ gphM with x ∈ (x + ηBX) and y ∈ ηBY . Let v ∈ BY .
According to the assumption (6.2), there are u ∈ BX , w ∈ TB(D; f(x) − y) such
that sv = Df(x)(u) − w. Using Lemma 6.1, we get (u, sv) ∈ TB(gphM ; (x, y)), i.e.,
sv ∈ TBM(x, y)(u). As a consequence, we have sBY ⊂ TBM(x, y)(BX).

Before stating the next proposition, observe that the graph of the multimapping
M in (6.1) is closed near (x, 0) ∈ gphM with x ∈ f−1(D), whenever D is closed near
f(x) and f is continuous near x.

Proposition 6.3. Let X, Y be two Asplund spaces, let D be a nonempty subset of
Y , let f : X −→ Y be a mapping which is strictly Fréchet differentiable at x ∈ f−1(D),
and let M(·) = f(·)−D. Assume that D is closed near f(x). Assume also that there
are two reals s, η > 0 such that for all (x, y) ∈ (x+ ηBX)× ηBY ∩ gphM,

sBY ⊂ Df(x)(BX )− TB(D; f(x)− y).

Then, one has

NL(f−1(D);x) ⊂ {
y� ◦Df(x) : y� ∈ NL(D; f(x))

}
.

Proof. According to Lemma 6.2 and Theorem 2.6, the multimapping M(·) =
f(·) −D is metrically regular at x for 0. By the metric regularity there are γ, δ > 0
two reals such that

d(x,M−1(y)) ≤ γd(y,M(x)) for all x ∈ B(x, δ), y ∈ B(0, δ).

This entails

d(x, f−1(D + y)) ≤ γd(f(x)− y,D) for all x ∈ B(x, δ), y ∈ B(0, δ).

In particular, we have d(x, f−1(D)) ≤ γd(f(x), D) for all x ∈ B(x, δ). By Proposition
2.7, we get

NL(f−1(D);x) ⊂ {
y� ◦Df(x) : y� ∈ NL(D; f(x))

}
.



 

Remark 6. Remark 5 is valid for Proposition 6.3.

With the above results at hand, we can state and prove the theorem on uniform
prox-regularity of preimage set.

Theorem 6.4. Let I be a nonempty set and let H, H′ be Hilbert spaces, and
for each t ∈ I, let D(t) be an r-prox-regular subset of H′

with r ∈]0,+∞] and let
Gt : H → H′ be a mapping such that C(t) := G−1

t (D(t)) �= ∅ for each t ∈ I. Assume
that there is an extended real ρ ∈]0,+∞] such that

(i) for all t ∈ I, Gt is differentiable on Uρ(C(t));

(ii) there is a real K > 0 such that for all t ∈ I and for all x, y ∈ C(t) with
‖x− y‖ < 2ρ,

‖Gt(x)−Gt(y)‖ ≤ K ‖x− y‖ ;

(iii) there is a real γ ≥ 0 such that for all t ∈ I and for all x, y ∈ Uρ(C(t)),

‖DGt(x) −DGt(y)‖ ≤ γ ‖x− y‖ ;

(iv) there is a real s > 0 for which, for all t ∈ I and for all x ∈ bdry C(t), there
is a real η > 0 such that for all (x, y) ∈ (x + ηBH)× ηBH′ with Gt(x)− y ∈ D(t),

sBH′ ⊂ DGt(x)(BH)− T (D(t);Gt(x) − y).

Then, for all t ∈ I, the set C(t) is r′-prox-regular with

r′ := min

{
ρ, s

(
K2

r
+ γ

)−1
}
.

Proof. Fix any t ∈ I, x, x′ ∈ C(t) with x ∈ bdry C(t) and ‖x− x′‖ < 2ρ. For
all τ ∈ [0, 1], by Lemma 3.2, we have x + τ(x′ − x) ∈ Uρ(C(t)). Note that, by (i)
and (iii), Gt is of class C1,1 on Uρ(C(t)). Thus, in particular, Gt is strictly Fréchet
differentiable at x. Using Proposition 6.3, we get

NL(C(t);x) ⊂ {
y� ◦DGt(x) : y

� ∈ NL(D(t);Gt(x))
}
.

Take any ζ ∈ NL(C(t);x) and choose ξ ∈ NL(D(t);Gt(x)) = NC(D(t);Gt(x)) satis-
fying ζ = ξ ◦DGt(x). By the r-prox-regularity of D(t), we obtain

〈ζ, x′ − x〉 = 〈ξ,DGt(x)(x
′ − x)〉

=

〈
ξ,Gt(x

′)−Gt(x)−
∫ 1

0

(
DGt(x+ τ(x′ − x)) −DGt(x)

)
(x′ − x) dτ

〉
= 〈ξ,Gt(x

′)−Gt(x)〉

−
〈
ξ,

∫ 1

0

(
DGt(x + τ(x′ − x))−DGt(x)

)
(x′ − x) dτ

〉

≤ ‖ξ‖
2r

‖Gt(x
′)−Gt(x)‖2

+ ‖ξ‖
∫ 1

0

∥∥(DGt(x+ τ(x′ − x))−DGt(x)
)
(x′ − x)

∥∥ dτ,



 

hence using (ii) and (iii) it results that

〈ζ, x′ − x〉 ≤ ‖ξ‖
2r

K2 ‖x′ − x‖2

+ ‖ξ‖ ‖x′ − x‖
∫ 1

0

∥∥(DGt(x+ τ(x′ − x))−DGt(x)
)∥∥ dτ

≤ ‖ξ‖
2r

K2 ‖x′ − x‖2 + γ ‖ξ‖ ‖x′ − x‖2
∫ 1

0

τ dτ

≤ ‖ξ‖
(
K2

2r
+

γ

2

)
‖x′ − x‖2 .(6.3)

Consider any v ∈ BH′ . The assumption (iv) gives some v′ ∈ TC(D(t);Gt(x)) and
some u ∈ BH, such that sv = v′ −DGt(x)(u). Since 〈ξ, v′〉 ≤ 0, it follows that

s 〈ξ, v〉 = 〈ξ, v′〉 − 〈ξ ◦DGt(x), u〉 ≤ 〈ζ,−u〉 ≤ ‖ζ‖ ,
thus s ‖ξ‖ ≤ ‖ζ‖. Combining this with (6.3), we get

〈ζ, x′ − x〉 ≤ ‖ζ‖
s

(K2

2r
+

γ

2

)
‖x′ − x‖2 .

In conclusion, Proposition 2.4 tells us that the set C(t) is r′-prox-regular with r′ :=
min

{
ρ, s(K

2

r + γ)−1
}
.

Remark 7. Since a nonempty closed subset of a Hilbert space is convex if and
only if it is ∞-prox-regular, the preceding result gives that G−1

t (D(t)) is min
{
ρ, s

γ

}
-

prox-regular whenever D(t) is a nonempty closed convex set for each t ∈ I.
Remark 8. Theorem 6.4 holds true with (i’) instead of (i) and (iv’) instead of

(iv), where
(i’) Gt is differentiable on Uρ(C(t)) and DGt(x) : X −→ Y is surjective for all

x ∈ bdry C(t).
(iv’) there is a real s > 0 such that for all t ∈ I and for all x ∈ bdry C(t),

sBH′ ⊂ DGt(x)(BH)− T (D(t);Gt(x)).

Indeed, according to [21, Theorem 1.17], for all x ∈ bdry C(t), we have

NL(C(t);x) = {y� ◦DGt(x) : y
� ∈ NL(D(t);Gt(x))}.

We conclude as in the proof of Theorem 6.4.
From this remark, we derive the following result. Given a continuous linear map-

ping A : H → H′, whose range is closed, let A0 : H −→ A(H) with A0(x) = A(x) for
all x ∈ H. Let s > 0 be the Banach constant of A0, i.e.,

s := sup{s′ > 0 : s′BH′ ∩A(H) ⊂ A(BH)}.
Then, if D(t) ⊂ A(H) is r-prox-regular for each t ∈ I, the above theorem entails that
A−1(D(t)) is ‖A‖−2rs′-prox-regular for each s′ ∈]0, s[, t ∈ I. It results that A−1(D(t))
is ‖A‖−2rs-prox-regular for each t ∈ I. Otherwise stated, we have established the
following corollary which is in the line of [27, Lemma 2.7].

Corollary 6.5. Let H, H′ be two Hilbert spaces, let A : H −→ H′ be a continu-
ous linear mapping whose range is closed, and let s > 0 be the Banach constant of the
induced linear mapping from H onto A(H). Let (D(t))t∈I be a family of r-prox-regular
subsets of H′ with r ∈]0,+∞] and satisfying D(t) ⊂ A(H) for all t ∈ I. Then, for
every t ∈ I, the set A−1(D(t)) is r′-prox-regular with r′ = rs

‖A‖2 .



 

7. Prox-regularity in semiconvex constrained optimization. In this sec-
tion, we give an application of Theorem 3.5 to constrained optimization. First, con-
sider the C2 function f : R → R defined by f(x) := x6(1 − cos(1/x)) if x �= 0 and
f(0) = 0. With f0 := f , the constrained optimization problem

Minimize f0(x) subject to − x ≤ 0

admits as a set of solutions S := {0} ∪ {1/(2kπ) : k ∈ N} which fails to be r-prox-
regular for any extended real r ∈]0,+∞]. On the other hand, in addition to Example 2,
with g := f , the set C := {x ∈ R : g(x) ≤ 0} = {0}∪{1/(2kπ) : k ∈ Z\{0} } is neither
prox-regular. Conditions are then needed for the uniform prox-regularity of feasible
sets and solution sets of optimization problems with even C2-smooth functions.

Let f0, . . . , fm : H −→ R be real-valued functions on a Hilbert space H. The
constrained optimization problem is defined by

(P)

{
Minimize f0(x),

subject to : f1(x) ≤ 0, . . . , fm(x) ≤ 0.

Set C := {x ∈ H : f1(x) ≤ 0, . . . , fm(x) ≤ 0}, μ := infC f0, K = {1, . . . ,m}. Assume
that μ ∈ R and that the set of global solutions S := ArgminC f0 is nonempty. For reals
δ > 0, γ ≥ 0, and for an extended real ρ ∈]0,+∞], consider the following conditions:

(i) f1, . . . , fm are of class C1 on Uρ(C); (i’) f0, . . . , fm are of class C1 on Uρ(S);

(ii) f1, . . . , fm are γ-semiconvex on Uρ(C); (ii’) f0, f1, . . . , fm are γ-semiconvex
on Uρ(S);

(iii) for all x ∈ bdryC,

[−δ, δ]px ⊂ Ax(BH) + R
px

+ ,

where px = Card {k ∈ K : fk(x) = 0}, Ax = (Dfi1(x), . . . , Dfipx (x)), and {i1, . . . , ipx}
= {k ∈ K : fk(x) = 0};

(iii’) for all x ∈ bdryS,

[−δ, δ]px+1 ⊂ Λx(BH) + R
px+1
+ ,

where px is as above and Λx = (Dfi1(x), . . . , Dfipx (x), Df0(x)).

Proposition 7.1. Let r := min
{
ρ, δ

γ

}
. The following hold:

(a) Under (i), (ii), and (iii) the feasible set C of (P) is r-prox-regular.

(b) Under (i’), (ii’), and (iii’) the set of global solutions S of (P) is r-prox-regular.

Proof. The set C fulfills the assumptions of the part of Theorem 3.5 involving
only inequalities with g1 := f1, . . . , gm := fm, hence C is r-prox-regular as stated in
the assertion (a). Concerning (b), observe that

S = Argmin
C

f0 = {x ∈ H : f1(x) ≤ 0, . . . , fm(x) ≤ 0, f0(x) − μ ≤ 0} .

Put g1 := f1, . . . , gm := fm and g0 := f0 − μ, and note that g0(x) = 0 at each point
x ∈ bdryS (since this holds at each x ∈ S). Then, applying again the part of Theorem
3.5 related to inequalities yields the r-prox-regularity of the solution set S.



 

8. Concluding remarks. On the one hand, we provided examples illustrating
that sublevel sets of (smooth) prox-regular functions may fail to be prox-regular and
that the prox-regularity of sets is not preserved under usual operations as intersection,
preimage, etc. On the other hand, in the context of Hilbert spaces we showed that the
desired above uniform prox-regularity properties are guaranteed whenever additional
usual verifiable qualification conditions are required. The study of the preservation of
the prox-regularity under other operations like the Minkowski sum or the projection
operator will be the subject of future work.
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