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Consistent systems of linear differential and difference equations

Introduction

In [START_REF] Ramis | About the growth of entire functions solutions of linear algebraic qdifference equations[END_REF], J.-P. Ramis showed that if a formal power series f (x) is a solution of a linear differential equation and a linear q-difference equation 2 , |q| = 0, 1, both with polynomial coefficients, then f is the expansion at the origin of a rational function. Rationality has also been shown for a formal power series satisfying • a linear differential equation and a linear σ-difference equation with polynomial coefficients, where σ is the Mahler operator σ(f )(x) = f (x k ), k an integer ≥ 2 [START_REF] Bézivin | Sur une classe d'équations fonctionnelles non linéaires[END_REF],

• a linear q 1 -difference equation and a linear q 2 -difference equation, both with polynomial coefficients and with q 1 and q 2 multiplicatively independent (i.e., no integer power of q 1 is equal to an integer power of q 2 ) [13]3 ,

• a linear σ 1 -difference equation and σ 2 -difference equation with polynomial coefficients and with Mahler operators σ 1 , σ 2 having multiplicatively independent exponents [START_REF] Adamczewski | A problem about Mahler functions[END_REF].

Other results characterizing entire solutions of a linear differential equation and a linear σ-equation with polynomial coefficients where σ is the shift operator σ(x) = x + α and entire solutions of two linear difference equations involving shift operators can be found in [START_REF] Bézivin | Solutions entières d'un système d'équations aux différences[END_REF], [START_REF] Brisebarre | Sur les fonctions entières à double pas récurrent[END_REF].

These results have been proved with a variety of ideas such as the structure of ideals of entire functions, Gevrey-type estimates, p-adic behavior and mod p reductions. In our work we present a unified approach to all these results, reproving and generalizing them to also characterize meromorphic solutions on the plane and certain Riemann surfaces.

Our results spring from two fundamental ideas. The first is that questions concerning the form of solutions of two scalar linear differential/difference equations can be reduced to showing that consistent pairs of first order systems are equivalent to very simple systems. The second is that the hypothesis of consistency allows us to show that the singular points are of a very simple nature, to describe the interaction of local solutions at different singular points and to continue local solutions meromorphically. These conclusions, in turn, allow us to prove that the systems are equivalent to systems of a very simple form.

Our approach is best explained with the example of Ramis's result. Let f (x) be a power series satisfying both a linear differential equation and a linear q-difference equation with coefficients in C(x). Using these equations, one shows that the C(x)-vector space V spanned by {(x d dx ) i f (q j x)} with 0 ≤ i < ∞, -∞ < j < ∞ is finite dimensional (see Corollary 2). This space consists of Laurent series and is invariant under the map σ that sends x to qx and the derivation δ = x d dx . If y 1 (x), . . . , y n (x) is a C(x)-basis of V and y(x) = (y 1 (x), . . . , y n (x)) T , then x dy(x) dx = A(x)y(x), A(x) ∈ gl n (C(x)) y(σ(x)) = B(x)y(x), B(x) ∈ GL n (C(x)).

(1)

B(x) is invertible because σ is an automorphism. Calculating σ(δ(y(x))) = δ(σ(y(x))) in two ways and using that the components of y are linearly independent over C(x), we obtain that A(x) and B(x) satisfy the consistency condition

x dB(x) dx + B(x)A(x) = A(qx)B(x). (2) 
The first principal result of our work (Theorem 1) states in this case that there exists a matrix G(x) ∈ GL n (C(x)) such that the gauge transformation y(x) = G(x)z(x) results in a new simpler system x dz(x) dx = Ãz(x),

z(qx) = Bz(x) (3) 
with à ∈ gl n (C) and B ∈ GL n (C). This implies that there is a new basis z(x) = (z 1 (x), . . . , z n (x)) T of V given by z(x) = G(x) -1 y(x) such that x dz(x) dx = Ãz(x) and z(qx) = Bz(x) with à and B constant matrices. It is not hard to show that the entries of z(x) must be Laurent polynomials and therefore rational. We then conclude that y(x) is also rational and hence also the given f (x).

We now give an idea of the proof of Theorem 1 in the context of the present case. A calculation shows that the consistency condition implies: if Y (x) is a solution of x dY (x) dx = A(x)Y (x) then Z(x) = B(x)Y (x) is a solution of x dZ(x) dx = A(qx)Z(x). Repeating this observation we have that for any m, there is a gauge transformation Y (x) = D m (x)Z(x) taking solutions of x dY (x) dx = A(x)Y (x) to solutions of x dZ(x) dx = A(q m x)Z(x). This gauge transformation only introduces apparent singularities, that is, those at which one has a meromorphic fundamental solution matrix. Since the singular points in C\{0, ∞} of these two equations are disjoint for sufficiently large m, we can conclude that all the singular points, other than 0, ∞, of dY (x) dx = A(x)Y (x) are apparent (see Lemma 7). If Y (x) is a formal fundamental solution of x dY (x) dx = A(x)Y (x), then as seen above Z(x) = B(x)Y (x) is a formal fundamental solution of x dZ(x) dx = A(qx)Z(x). Comparing it with the formal fundamental solution Z(x) = Y (qx) of this equation, it follows that 0 is a regular singular point (see Lemma 8). A similar statement holds for ∞. We then have that if Y (x) is a fundamental solution analytic in a neighborhood of an ordinary point, then Y (x) can be analytically continued to a meromorphic function on the universal cover Ĉ of C\{0}. If Y (xe 2πi ) is the solution matrix obtained by analytically continuing Y (x) once around 0, we have that Y (xe 2πi ) = Y (x)H for some H ∈ GL n (C). Writing H = e 2πi Ã, a calculation shows that G(x) = Y (x)x -Ã is a matrix valued meromorphic function on C\{0}. Using the fact that 0 and ∞ are regular singular points, one deduces that G(x) has moderate growth at these points and so must have rational function entries. Therefore the gauge transformation y(x) = G(x)z(x) transforms x dy(x) dx = A(x)y(x) to x dz(x) dx = Ãz(x). One then shows that the consistency condition implies that this transformation also results in a constant q-difference equation for z(x) and so ( 1) is transformed into (3) (see Lemma 9 for details). The rest of our work is organized as follows. In Section 2 we consider systems (1) where σ(x) = x + 1, qx (q = 0 not a root of unity) or x q , (q an integer ≥ 2) and A(x) ∈ gl n (C(x)), B(x) ∈ GL n (C(x)), C an algebraically closed field of characteristic zero. Assuming a consistency condition analogous to [START_REF] Adams | Linear q-difference equations[END_REF] we show in Theorem 1 that there is a transformation Y (x) = D(x)Z(x) with D(x) ∈ GL n (C(x)) taking system (1) to a much simpler system. When σ(x) = qx or x q , we characterize those y(x) ∈ C[[x]][x -1 ] and those y(x) meromorphic on the Riemann surface of log x (when C = C) that simultaneously satisfy a linear differential equation and a linear σ-difference equation over C(x) ( Corollary 2). When σ(x) = x + 1, we characterize those y(x) ∈ C[[x -1 ]][x] and those y(x) meromorphic on C that simultaneously satisfy a linear differential equation and a linear σ-difference equation over C(x) (Corollary 4). Theorem 1 allows us to also characterize in Corollary 5 when the time-1-operator of a linear differential system has rational entries.

In Section 3 we consider systems of the form

σ j (Y ) = B j Y, j = 1, 2 (4) 
with B j ∈ GL n (C(x)) satisfying a suitable consistency condition and (σ 1 , σ 2 ) defined by (σ 1 (x) = x + 1, σ 2 (x) = x + α), α ∈ C\Q or (σ 1 (x) = q 1 x, σ 2 (x) = q 2 x) or (σ 1 (x) = x q 1 , σ 2 (x) = x q 2 ) with q 1 and q 2 multiplicatively independent. Theorem 12 states that there is a gauge transformation Y (x) = D(x)Z(x), D(x) ∈ GL n (C(x)) in the first two cases and D(x) ∈ GL n (K), K = C({x 1/s | s ∈ N * }) in the last case, transforming such a system into a system with constant coefficients. Once again the proofs depend on showing that the singular points and the connection relations are particularly simple. We again have corollaries characterizing formal solutions and solutions on various domains of two linear σ equations in each of these three cases (Corollaries 13, 14 and 15). We end this introduction with a discussion of two applications of our results. The first concerns properties of automatic sets (See [START_REF] Allouche | Automatic sequences[END_REF] for a general introduction to these sets and [START_REF] Becker | k-regular power series and Mahler-type functional equations[END_REF] and [START_REF] Randé | Équations fonctionnelles de Mahler et applications aux suites prégulières[END_REF] for connections to Mahler equations). A subset N ⊂ N of integers is called kautomatic if there is a finite-state machine that accepts as input the base-k representation of an integer and outputs 1 if the integer is in N and 0 if it is not in N . Many sets can be k-automatic for fixed k (for example the set of powers of 2 is 2-automatic) but only very simple sets can be kand ℓ-automatic for multiplicatively independent integers k and ℓ. This fact is formalized in Cobham's Theorem [START_REF] Cobham | On the base-dependence of sets of numbers recognizable by finite automata[END_REF], [START_REF] Durand | Cobham's theorem for substitutions[END_REF].

Theorem (Cobham).

Let k and ℓ be two multiplicatively independent integers. Then a set N ⊂ N is both kand ℓ-automatic if and only if it is the union of a finite set and a finite number of arithmetic progressions.

Linear difference equations involving the Mahler operator and k-automatic sets are related by the following fact: If N is a k-automatic set then F (x) = n∈N x n satisfies a scalar linear difference equation over Q(x) with respect to the Mahler operator σ(x) = x k , that is, a k-Mahler equation. In ( [START_REF] Adamczewski | A problem about Mahler functions[END_REF], Theorem 1.1), Adamczewski and Bell show: a power series

f (x) ∈ C[[x]][x -1
] satisfies both a kand ℓ-Mahler equation if and only if it is a rational function, proving a conjecture of Loxton and van der Poorten. Their proof relies on Cobham's Theorem. On the other hand, it is known that their Theorem 1.1 implies Cobham's Theorem (see, for example, Section 2, [START_REF] Adamczewski | A problem about Mahler functions[END_REF] or Chapitre 7, [START_REF] Randé | Équations fonctionnelles de Mahler et applications aux suites prégulières[END_REF]). In our work we prove and generalize the Adamczewski-Bell result (Corollary 15) without using Cobham's Theorem, therefore yielding a new proof of this latter result. Our proof of the Adamczewski-Bell result follows the general philosophy of our work. We show that proving that a power series of two such Mahler equations is rational can be reduced to showing that consistent pairs of first order Mahler systems must be of a very simple nature. In fact, although we deduce the Adamczewski-Bell result from Theorem 12 mentioned above, we do not need its full strength and can also prove this result from the weaker statement contained in Proposition 19.

The second application concerns the Galois theory of difference equations. In [START_REF] Hardouin | Differential Galois theory of linear difference equations[END_REF] a differential Galois theory of linear difference equations was developed as a tool to understand the differential properties of solutions of linear difference equations. This theory associates to a system of linear difference equations Y (σ(x)) = B(x)Y (x) a group called the differential Galois group. This is a linear differential algebraic group, that is a group of matrices whose entries are functions satisfying a fixed set of (not necessarily linear) differential equations. Differential properties of solutions of the linear difference equation are measured by group theoretic properties of the associated group. For example, a group theoretic proof is given in [START_REF] Hardouin | Differential Galois theory of linear difference equations[END_REF] of Hölder's Theorem that the Gamma Function satisfies no polynomial differential equation, that is, the Gamma Function is hypertranscendental. In general, one can measure the amount of differential dependence among the entries of a fundamental solution matrix of Y (σ(x)) = B(x)Y (x) by the size of its associated group; the larger the group the fewer differential relations hold among these entries. This theme has been taken up in [START_REF] Dreyfus | Hypertranscendence of solutions of Mahler equations[END_REF] where the authors develop criteria to show that the generating series F (x) = n∈N x n of certain k-automatic sets N are hypertranscendental. As we mentioned above, these generating series satisfy Mahler equations and Dreyfus, Hardouin and Roques in [START_REF] Dreyfus | Hypertranscendence of solutions of Mahler equations[END_REF] develop criteria to insure that a given Mahler equation has SL n or GL n as its associated group. The proofs of the validity of their criteria depend on Bézivin's result [START_REF] Bézivin | Sur une classe d'équations fonctionnelles non linéaires[END_REF] that a power series that simultaneously satisfies a Mahler equation and a linear differential equation must be a rational function. In [START_REF] Dreyfus | Functional relations of solutions of qdifference equations[END_REF], the authors develop similar criteria (using the result of Ramis mentioned in the Introduction) for linear qdifference equations. Both Ramis's result and Bézivin's result appear in Corollary 2 as a consequence of Theorem 1 in the present work. Using Theorem 1 directly, the authors of [START_REF] Arreche | Galois groups for integrable and projectively integrable linear difference equations[END_REF] classify the differential Galois groups that can occur for the equations considered in this latter theorem and, in particular, rule out certain groups from occurring. Using this classification, it is shown in [START_REF] Arreche | Galois groups for integrable and projectively integrable linear difference equations[END_REF] how the criteria of [START_REF] Dreyfus | Hypertranscendence of solutions of Mahler equations[END_REF] and [START_REF] Dreyfus | Functional relations of solutions of qdifference equations[END_REF] can be extended and given simple proofs. The results of [START_REF] Arreche | Galois groups for integrable and projectively integrable linear difference equations[END_REF] can also be used in designing algorithms to compute the differential Galois group of linear difference equations (c.f., [START_REF] Arreche | On the computation of the difference-differential Galois group for a second-order linear difference equation[END_REF]). Using the Galois theory presented in [START_REF] Ovchinnikov | σ-Galois theory of linear difference equations[END_REF], the authors of [START_REF] Dreyfus | Functional relations of solutions of qdifference equations[END_REF] also develop criteria to determine when a solution of a linear q-difference equation satisfies no q ′ -difference relation (even nonlinear) with respect to a multiplicatively independent q ′ . This is done, in a manner analogous to the results of [START_REF] Dreyfus | Hypertranscendence of solutions of Mahler equations[END_REF], by developing criteria to insure that the Galois groups in this context are large. Their result depends on the results of Bézivin and Boutabaa [START_REF] Bézivin | Sur les équations fonctionelles p-adiques aux qdifférences[END_REF]. The results of Section 3 can also be used to sharpen the criteria in [START_REF] Dreyfus | Functional relations of solutions of qdifference equations[END_REF].

Reduction of systems of differential and difference equations

Let C be an algebraically closed field 4 and k = C(x). Let δ be a derivation on k with constants C and σ be a C-algebra endomorphism of k. We suppose that there is a constant µ ∈ C such that δσ = µ σδ.

We consider three cases of couples (δ, σ) below.

case S: The derivation is δ = d/dx and σ is the shift operator defined by σ(x) = x + 1.

Here µ = 1.

case Q: The derivation is δ = x d/dx and σ is the q-dilation operator defined by σ(x) = q x with some q ∈ C, q = 0 and not a root of unity. Note that µ = 1 here as well.

case M: The derivation is δ = x d/dx and σ is the Mahler operator defined by σ(x) = x q with an integer q ≥ 2. Here we have µ = q.

Observe that σ is bijective in cases S and Q, but not in case M. We will consider systems

δ(Y ) = AY σ(Y ) = BY (5) 
with A ∈ gl n (k), B ∈ GL n (k) that are consistent, that is A and B satisfy the consistency condition given by δ

(B) = µ σ(A)B -BA. (6) 
Note that the consistency condition guarantees that δ(σ(Z)) = µσ(δ(Z)) holds for any solution Z of the system in any extension of C(x). It is satisfied if there exists a fundamental solution of δ(Y ) = AY that is also a solution of σ(Y ) = BY in some extension of C(x) or if there exists a solution vector of the system in some extension such that its components are linearly independent over C(x). The consistency condition is satisfied for the systems (5) constructed from the applications to common solutions of pairs of linear scalar equations.

We say that (5) is equivalent (over k) to a system

δ(Z) = ÃZ σ(Z) = BZ (7) 
with

A ∈ gl n (k), B ∈ GL n (k) if for some G ∈ GL n (k), Ã = δ(G)G -1 + GAG -1 B = σ(G)BG -1 (8) 
that is, if [START_REF] Balser | A general theory of invariants for meromorphic differential equations. II. Proper invariants[END_REF] comes from (5) via the gauge transformation Z = GY . Note that the property of consistency is preserved under equivalence.

The main result of this section expresses that the consistency condition is very restrictive.

Theorem 1. The system [START_REF] Arreche | Galois groups for integrable and projectively integrable linear difference equations[END_REF] satisfying the consistency condition [START_REF] Balser | A general theory of invariants for meromorphic differential equations. I. Formal invariants[END_REF] is equivalent over k to a system [START_REF] Balser | A general theory of invariants for meromorphic differential equations. II. Proper invariants[END_REF] with à ∈ gl n (C), B ∈ GL n (k). Moreover: case S: à is diagonal, B ∈ GL n (C) is constant and upper triangular and commutes with Ã.

case Q: If λ 1 , λ 2 are eigenvalues of Ã, then λ 1 -λ 2 ∈ Z \ {0}. B ∈ GL n (C) is constant and commutes with Ã.
case M: The eigenvalues of à are rational and in the interval [0, 1[ and there exists a diagonalisable matrix D with integer eigenvalues commuting with à such that à + D is conjugate to q Ã. We have

B ∈ GL n (C[x, x -1 ]
), such that the exponents m appearing with nonzero coefficient in B are integer differences of the form qλ 1λ 2 of eigenvalues λ 1 , λ 2 of Ã.

Before giving a proof of this result in sections 2.1 and 2.2, we deduce several corollaries concerning common solutions of the linear differential and σ-difference equations

L(f (x)) = δ n (f (x)) + a n-1 (x)δ n-1 (f (x)) + . . . + a 0 (x)f (x) = 0 and S(f (x)) = σ m (f (x)) + b m-1 (x)σ m-1 (f (x)) + . . . + b 0 (x)f (x) = 0, (9) 
with

a i (x), b i (x) ∈ C(x).
Corollary 2. Consider δ, σ as in case Q or M. Let E be the field of meromorphic functions on Ĉ, where Ĉ denotes the Riemann surface of the logarithm over C \ {0}. C(x) is considered as a subfield of E. If f ∈ E satisfies the linear differential and σ-difference equations [START_REF] Becker | k-regular power series and Mahler-type functional equations[END_REF] then

f (x) = t i,j=1 r ij (x)x α i log(x) j
where α i ∈ C and r ij ∈ C(x). In case M, we obtain moreover that the α i are rational. Conversely, any such function satisfies a pair of linear differential and σ-difference equations with coefficients in C(x).

Assume f (x) ∈ C[[x]][x -1 ] with C(x) considered as a subfield of C[[x]][x -1 ]. If f (x)
satisfies the linear differential and σ-difference equations ( 9) then f is rational, i.e. f ∈ C(x).

Remark: 1. The function f (x) above is an elementary function. Algorithms for finding such solutions of linear difference equations are known (eg. [START_REF] Davenport | Elementary and Liouvillian solutions of linear differential equations[END_REF], [START_REF] Van Der Put | Galois theory of linear differential equations[END_REF], Ch. 4) and can be modified to find solutions of this special type. Possible values of α and relevant powers of log x can be calculated using effective procedures to determine canonical forms of such equations at singular points ( [START_REF] Van Der Put | Galois theory of linear differential equations[END_REF], Ch. 3.1). A similar remark applies to the corresponding corollaries in case S and in cases 2S and 2Q of section 3 ([29]).

2. The final assertion of the above corollary corresponds to results of Ramis [START_REF] Ramis | About the growth of entire functions solutions of linear algebraic qdifference equations[END_REF] in case Q and of Bézivin [START_REF] Bézivin | Sur une classe d'équations fonctionnelles non linéaires[END_REF] in case M. Their proofs proceed by examining the asymptotic behavior of solutions of the two scalar linear differential equations rather than our approach.

3. Although we use Theorem 1 to prove the final statement of this corollary, one can prove this directly from Lemmas 7 and 8 below as noted in the remark following Lemma 8.

Proof. We begin by proving the assertion concerning a function f (x) ∈ E. Let W 0 be the C(x)-subspace of E spanned by

{σ j δ i (f (x))}
where 0 ≤ i ≤ n -1 and 0 ≤ j ≤ m -1. Using the fact that δσ = µσδ and the equation L(f (x)) = 0, one sees that W 0 is left invariant under δ. Similarly, using S(f (x)) = 0, one sees that W 0 is invariant under σ. Unfortunately, σ does not preserve linear independence over C(x) in case M -just consider 1 and x 1/q . Therefore we consider now the vector spaces W ℓ generated by the elements of σ ℓ (W 0 ), ℓ = 0, 1, .... These are again invariant under δ and σ. As they form a descending chain of finite dimensional C(x)-vector spaces there must be a first index s such W s = W s+1 . It is easy to see that we then have that W ℓ = W ℓ+1 for all ℓ ≥ s. In the sequel, we consider W s and omit the index s.

Let w 1 , . . . , w t be a C(x)-basis of W and let w = (w 1 , . . . , w t ) T . We have that δ(w) = Aw σ(w) = Bw [START_REF] Bézivin | Sur les équations fonctionnelles aux q-différences[END_REF] for some A ∈ gl n (k), B ∈ GL n (k) because σ(w 1 ), ..., σ(w t ) again generate W . We claim that A and B satisfy [START_REF] Balser | A general theory of invariants for meromorphic differential equations. I. Formal invariants[END_REF]. To see this, note that

0 = µσδ(w) -δσ(w) = (µσ(A)B -BA -δ(B))w.
Since the entries of w are linearly independent over k, we have [START_REF] Balser | A general theory of invariants for meromorphic differential equations. I. Formal invariants[END_REF]. Before we continue with the proof of this corollary, we remark that the above argument does not use special properties of δ and σ and will again be useful later. We note it as Lemma 3. Let C be an algebraically closed field, k = C(x), E a k-algebra, δ a derivation on E annihilating C satisfying δ(x) ∈ k and σ a C-algebra endomorphism on E satisfying σ(k) ⊂ k and δσ = µσδ for some µ ∈ C * . Suppose that there exists an f ∈ E satisfying a system (9) of equations. Then there exist s, t ∈ N5 , a solution vector w = (w 1 , ..., w t ) T ∈ E t of a system [START_REF] Bézivin | Sur les équations fonctionnelles aux q-différences[END_REF] satisfying the consistency condition [START_REF] Balser | A general theory of invariants for meromorphic differential equations. I. Formal invariants[END_REF] and

r i ∈ k, i = 1, .., t, such that σ s f = t i=1 r i w i .
We now apply Theorem 1 to the equations δ(Y ) = AY, σ(Y ) = BY . We conclude that there is a gauge transformation Z = GY that transforms this system to a system δ(Z) = ÃZ, σ(Z) = B(x)Z where à is a constant matrix (with rational eigenvalues in case M). Letting z = (z 1 , . . . , z t ) T = Gw we see that z ∈ E t satisfies δz = Ãz and hence z = x ÃC for some constant matrix C. Therefore the z i are of the desired form. Since the z i are again a C(x)-basis of W , there exists a non-negative integer s such that σ s (f ) is a C(x)-linear combination of the z i . In case Q, it follows immediately that f is also a C(x)-linear combination of terms of the wanted form. In case M, we find that f is a C(x q -s )-linear combination of terms of the desired form, that is, it is itself of that form. Thus we have proved the first statement of the corollary.

To prove the second part of the corollary, first assume that f = x α log(x) j with α ∈ C, j ∈ N. A simple calculation shows that the operator L = (δα) j+1 annihilates f .

In case Q, we obtain that S = (σq α ) j+1 also annihilates f . In case M, it is required that α be rational. As there are only finitely many rationals in [0, 1[ with the same denominator as α, there must exist positive integers m = n such that (q mq n )α =: r ∈ Z. Then σ m (f ) = q j(m-n) x r σ n (f ) and we have found a σ-difference equation for f . The general case follows from the fact that sums and products with rational functions of solutions of differential resp. σ-difference equations again satisfy such equations.

We now turn to the assertion concerning a function f

(x) ∈ C[[x]][x -1 ].
We can again use Lemma 3 and apply Theorem 1. Following the proof of the first part of this corollary we will find the solutions of δz = Ãz in C[[x]][x -1 ] t . Clearly the coefficient z (ℓ) of z in front of x ℓ must satisfy à z (ℓ) = ℓ z (ℓ) . Hence z (ℓ) can only be different from 0 for finitely many ℓ and so z ∈ C[x, x -1 ] t ⊂ C(x) t . Since the entries in the vector z form a C(x)-basis of W , we must have t = 1. Therefore z is a scalar in C(x) and so σ s (f ) is also rational, σ s (f )(x) = g(x) ∈ C(x). In case Q, the proof is finished since we can immediately conclude that f (x) ∈ C(x). In case M, we have that σ s (f ) is in C{x q s }[x -q s ] and hence invariant under the substitutions x → x exp(2πiℓ/q s ), ℓ = 0, ..., q s -1. Therefore we also have that

σ s (f )(x) = q -s q s -1 ℓ=0 g(x exp(2πiℓ/q s )) ∈ C(x q s ). Hence f ∈ C(x).
In the shift case, the corollaries obtained are slightly different as we cannot consider the difference equation on

Ĉ or C[[x]][x -1 ]
. It is possible here to consider the difference equation for meromorphic functions of C and for formal Laurent series in 1/x, that is in

E = C[[x -1 ]][x]. Again C(x)
is considered as a subset of E, where the inclusion is given by series expansion at x = ∞. Corollary 4. Consider δ = d/dx and σ induced by σ(x) = x + 1 . If f (x) is a meromorphic function satisfying the system (9) of a linear differential and difference equations with coefficients in C(x) then

f (x) = t i=1 r i (x)e α i x
where α i ∈ C and r i (x) ∈ C(x). Conversely, any such function satisfies a pair of linear differential and difference equations with rational coefficients.

If f (x) ∈ E satisfies the system (9) of a linear differential and difference equations with coefficients in C(x) then f (x) is rational.

Remark:

In [START_REF] Bézivin | Solutions entières d'un système d'équations aux différences[END_REF], Bézivin and Gramain consider entire solutions of linear differential/difference equations of the type considered in Corollary 4 and show that such solutions must be of the form described. Their proof ultimately depends on an analytic result of Kelleher and Taylor describing the growth properties of a set of entire functions equivalent to the property that they generate an ideal equal to the whole ring of entire functions. A crucial part of their proof also involves reduction to equations with constant coefficients but in a different manner than the proof presented here. They also give conditions on the equations that guarantee that the r i (x) appearing in the expression for f (x) are polynomials. Such a condition can also be given here. Let ℓ(x) be the least common denominator of the coefficients a j (x), j = 0, ..., n -1 of L in (9), r(x) the least common denominator of the coefficients b j (x), j = 0, ..., m -1 of S. By the C(x)-linear independence of e λ i x , i = 1, ..., t, also the individual terms r i (x)e α i x are solutions of the scalar equations [START_REF] Becker | k-regular power series and Mahler-type functional equations[END_REF]. Therefore the poles of some r i (x) must be among the zeroes of ℓ(x). Now let α be a pole of some r i (x) with minimal real part. Then it is a zero of ℓ(x) as seen above, but in view of σ -m S(r i (x)e α i x ) = 0, α must also be a zero of σ -m r. As a consequence, all r i must be polynomials, if ℓ and σ -m r have no common zero.

Proof. Using Lemma 3 and Theorem 1, we obtain that f (x) is a C(x)-linear combination of solutions of δz = Ãz with diagonal constant Ã. This yields the first part of the corollary.

To prove the second part of the corollary, first assume that the r i are polynomials with deg(p i ) = n i . A simple calculation shows that the operators L = t i=1 (δα i ) n i +1 and S = t i=1 (σe α i ) n i +1 annihilate f . In general, let p(x) be a common denominator of the r i and let L and S be the operators annihilating p(x)f . Then clearly

L = 1 p(x) L • M p(x) and S = 1 σ n p(x) S • M p(x) , n = t + n i , M p(x)
the multiplication operator, satisfy the conditions of the theorem.

For the last part of the corollary we use again Lemma 3 and Theorem 1 and obtain again that f (x) is a C(x)-linear combination of solutions of δz = Ãz, with diagonal constant Ã, now in

E = C[[x -1 ]][x] t . Hence z is also constant 6 . As a consequence, f (x) is in C(x).
Another consequence of Theorem 1 in case S concerns the time-1-operator associated to a system dy dx = A(x)y, A ∈ C(x). It is defined by

T A (x) = Y (x + 1, x), where Y (t, x) denotes the solution matrix of d dt Y (t, x) = A(t)Y (t, x) satisfying Y (x, x) = I. It is holomorphic on C \ ∪ L ℓ=1 [x ℓ -1, x ℓ + 1] if x ℓ , ℓ = 1, ..., L are the singularities of A(x)
. By the theorem on the dependence of solutions upon initial conditions, it is readily verified that

W (t, x) = ∂Y ∂x (t, x) satisfies d dt W (t, x) = A(t)W (t, x) and W (x, x) = -A(x) and hence ∂Y ∂x (t, x) = -Y (t, x)A(x). Thus we find that d dx T A (x) = A(x + 1)T A (x) -T A (x)A(x).
The system

d dx y = A(x)y y(x + 1) = T A (x)y(x) (11) 
therefore satisfies the consistency condition [START_REF] Balser | A general theory of invariants for meromorphic differential equations. I. Formal invariants[END_REF]. This implies that T A (x) may be continued analytically to the universal covering of C \ {ξ, ξ + 1 | ξ a singularity of A(x)}. It also allows us to show Corollary 5. The time-1-operator defined for a system of linear differential equations dy dx = A(x)y, A(x) ∈ gl n (C(x)), has rational functions as entries if and only if the system is equivalent over C(x) to a system with a constant diagonal coefficient matrix.

Proof. It suffices to put B(x) = T A (x) and to apply Theorem 1.

An analogous corollary can be stated for the "q-multiplication-operator" that can be defined for a system x dy dx y = A(x)y. Details are left to the reader. In case M, the statement of Theorem 1 is not entirely satisfactory, because the matrix B(x) obtained is not constant. This can be repaired by changing the base field. Consider the field [START_REF] Dreyfus | Hypertranscendence of solutions of Mahler equations[END_REF]) containing all fractional powers of x. This field also has the advantage that σ, now defined by mapping x α to x qα for all rational α, is an automorphism 7 . The derivation δ = x log(x) d dx and the automorphism σ mapping x α to x qα , log(x) to q log(x) commute on the base field K(log x) (i.e. µ = 1). Furthermore, as the consistency conditions for the couple (δ, σ) and the couple ( δ, σ) are equivalent we do not consider δ here. Corollary 6. Consider the system ( 5) in case M with A ∈ gl n (K), B ∈ GL n (K) satisfying the consistency condition [START_REF] Balser | A general theory of invariants for meromorphic differential equations. I. Formal invariants[END_REF]. It is equivalent over K to a system [START_REF] Balser | A general theory of invariants for meromorphic differential equations. II. Proper invariants[END_REF] with nilpotent constant à ∈ gl n (C) and constant B ∈ GL n (C) satisfying q à B = B Ã. It is equivalent over K(log(x)) to a system [START_REF] Balser | A general theory of invariants for meromorphic differential equations. II. Proper invariants[END_REF] with à = 0 and constant B ∈ GL n (C).

K = C({x 1/ℓ | ℓ ∈ N}) (see
Proof. Making a change of variables x = t N with a suitable positive integer N, if necessary, we can assume that A, B have entries in C(x). By Theorem 1, there is a gauge transformation changing (5) into δU = ĀU, σU = B(x)U with constant Ā having rational eigenvalues. By a constant transformation, we can assume that Ā is in Jordan canonical form. If D = diag(r 1 , ..., r n ) is the diagonal of Ā, then U = diag(x r 1 , ..., x rn )Z is a gauge transformation in GL n (K) changing the system into [START_REF] Balser | A general theory of invariants for meromorphic differential equations. II. Proper invariants[END_REF] where now à = Ā -D is nilpotent. The matrix B(x) has entries in C[x 1/N , x -1/N ] for some positive integer N and satisfies the consistency condition. Writing B(x

) = t m=-t B m x m/N yields q à B m -B m à = m N B m for any m ∈ {-t, . . . , t}.
Since à is nilpotent, so is the operator mapping X to q à X -X Ã. Hence B m = 0 unless m = 0. This proves the first statement.

In order to prove the second statement it suffices to use the first and to make the gauge transformation V = exp(-log(x) Ã)Z. Observe that the consistency condition for Ã, B is q à B = B à and that is implies exp(q log(x) Ã) B = B exp(log(x) Ã).

We now turn to a proof of Theorem 1. A key observation is that the consistency condition ( 6) can be interpreted as: By the transformation W = B(x)U the equation 7 For this property it would not be necessary to have all fractional powers of x in the field. The field

K 0 = C({x 1/q ℓ | ℓ ∈ N}) would suffice. δ(U) = A(x)U is equivalent to δ(W ) = µσ(A(x))W
. This observation will be used to characterize the singularities of the equation δ(Y ) = A(x)Y . We say that a singular point x 1 of the equation δ(Y ) = A(x)Y is an apparent singular point if there is a fundamental solution matrix whose entries are in C{xx 1 }[(xx 1 ) -1 ]8 . Note that this condition is the same as saying that there is an equivalent system for which x 1 is a regular point. To see this note that truncating the entries of such a fundamental solution matrix at a sufficiently high power, we obtain a matrix G such the gauge transformation Y = GZ leads to an equivalent system for which x 1 is a regular point. In Lemma 7 we show that the finite singular points must be apparent singular points (with the exception of 0 in cases Q and M). In cases Q and M, Lemma 8 shows the effect of our key observation on the structure of local solutions at these points. Finally, monodromy theory is used to show that the differential equation is equivalent to δz = Mz with some constant matrix M and that the spectrum of M has the desired properties. In case S, Lemma 10 states the first consequence for the solutions at infinity. Then we have to work considerably harder to arrive at the wanted reduced form of the differential equation (c.f., Proposition 11.) The rest of the conclusions of Theorem 1 will follow easily.

The entries of A and B have coefficients that lie in a countable algebraically closed field so we may replace C, if necessary, with a countable algebraically closed field, again denoted by C. Furthermore, we may assume that C is a subfield of the complex numbers C. In the rest of the proof it can be verified that all equivalent systems can be chosen to have entries in this C(x). Lemma 7. Consider δ, σ as in cases S,Q or M and a system [START_REF] Arreche | Galois groups for integrable and projectively integrable linear difference equations[END_REF] satisfying the consistency condition [START_REF] Balser | A general theory of invariants for meromorphic differential equations. I. Formal invariants[END_REF]. Then each finite singular point ξ of the differential equation δY = A Y , except maybe 0 in cases Q and M, is an apparent singular point.

Remark:

Using the Lemma, it can be shown (see e.g. [START_REF] Barkatou | Removing Apparent Singularities of Systems of Linear Differential Equations with Rational Function Coefficients[END_REF]) that the system ( 5) is equivalent to a system [START_REF] Balser | A general theory of invariants for meromorphic differential equations. II. Proper invariants[END_REF] where à and B have entries in C[x, x -1 ] in cases Q and M and Ã, B ∈ C[x] in case S. We do not need this statement in our proof.

Proof. Consider the differential equation

δ(Y ) = AY. (12) 
Equation ( 6) implies that δY = AY is equivalent to δW = µσ(A)W via the transformation W = B(x)Y . By induction, ( 12) is equivalent to

δZ = µ N σ N (A)Z. ( 13 
)
for any positive integer

N. Let s(x) = σ(x) ∈ C[x].
Let S be the set of finite singularities of ( 12), except 0 in cases Q and M and let S N be the analogous set for [START_REF] Bézivin | Sur les équations fonctionelles p-adiques aux qdifférences[END_REF]. Note that if x 1 ∈ S N then σ N (x 1 ) = s(s(. . . s(x 1 ) . . .)) is in S. Therefore for large enough N and any finite singularity ξ ∈ S, there exists x 1 ∈ S N not in S satisfying σ N (x 1 ) = ξ. Since ( 12) and ( 13) are equivalent, there exists a basis of solutions of (13

) in C{x-x 1 }[(x-x 1 ) -1 ] n . Applying σ -N yields a basis of solutions of (12) in C{x -ξ}[(x -ξ) -1 ] n in cases S and Q. Substituting the branch x = x 1 1 + t-ξ ξ 1/q N of t 1/q N , we see that δy(t) = A(t)y has a basis of solutions in C{t -ξ}[(t -ξ) -1 ] n in case M as well.
Hence every finite singular point ξ of (12,) except 0 in cases Q and M, is an apparent singular point.

We now consider the behavior of solutions of equations ( 5) at infinity. In general, if one has a linear differential equation δY = A(x)Y with A(x) ∈ gl n (C((x -1 ))), there exists a formal fundamental solution matrix of the form

Y (x) = Φ(x)x L e Q(x) (14) 
where Φ(x) is a formal power series in x -1/r for some integer r, L is a constant matrix and Q(x) = h j=1 Q j x r j where the Q j are diagonal matrices with entries in C and the r j are positive rational numbers with r h > r h-1 > . . . > r 1 > 0 (or Q(x) ≡ 0); furthermore L and Q(x) commute (c.f., [START_REF] Balser | A general theory of invariants for meromorphic differential equations. I. Formal invariants[END_REF]).

In the rest of the proof of Theorem 1, we will treat cases Q and M together and then treat case S.

Proof of Theorem 1: Cases Q and M.

We begin by showing that under our hypotheses Q(x) = 0 in these cases.

Lemma 8. Let Y (x) be a formal fundamental solution matrix of δ(Y ) = AY as in [START_REF] Bézivin | Solutions entières d'un système d'équations aux différences[END_REF]. In cases Q and M we then have that Q(x) = 0, i.e.∞ is a regular singular point.

In the same way, it is shown that 0 also must be a regular singular point in those two cases.

Remark. We note that Lemmas 7 and 8 are sufficient to prove, in cases Q and M, that any 9) must be in C(x). Using the argument of Corollary 2, we may assume that f (x) is a component of a vector y(x) of power series such that y(x) is a solution of a consistent system [START_REF] Bézivin | Sur les équations fonctionnelles aux q-différences[END_REF]. Lemma 8 implies that f (x) converges in a neighborhood of 0 since this point is a regular singular point and Lemma 7 implies that y(x) can be continued analytically to a meromorphic function on C. Finally, y(x) has at most polynomial growth since ∞ is also a regular singular point. Altogether, we obtain that y(x) has rational components and so f (x) is rational.

f (x) ∈ C[[x]][x -1 ] satisfying (
Proof. Let Q(x) = diag(p 1 (x), . . . , p n (x)). We have that B(x)Y (x) is a solution of δ(Y ) = µσ(A(x))Y (x)
and σ(Y (x)) as well. Let p(x) be a nonzero diagonal entry of Q(x). By the uniqueness of the p i (Theorem 2, [START_REF] Balser | A general theory of invariants for meromorphic differential equations. I. Formal invariants[END_REF]), we must have that for some j, σ(p(x)) = p j (x). This implies that the map p(x) → σ(p(x)) permutes the p i . From this we conclude that for some m, that σ m (p(x)) = p(x), a contradiction in cases Q and M. Therefore we have that Q(x) = 0. Lemma 9. In cases Q and M there exists a constant matrix

T ∈ gl n (C) such that λ 1 -λ 2 ∈ Z * for eigenvalues λ 1 , λ 2 of T and a gauge transformation Z = F Y , F ∈ GL n (C(x)), that transforms δY = A(x)Y into δ(Z) = T Z.
Moreover in case M, the matrix T has the following properties:

1. Its eigenvalues λ are rational with smallest denominators prime to q, 0 ≤ λ < 1.

There exists a diagonalisable matrix D with integer eigenvalues commuting with

T such that T + D is conjugate to q T .
Proof. Consider any local fundamental matrix Y (x) of ( 12). Because of Lemma 7 it can be continued analytically to a meromorphic function on Ĉ. Let Y (x e 2πi ) be the fundamental matrix obtained by going once around 0. There exists a constant invertible matrix

H ∈ GL n (C) such that Y (x e 2πi ) = Y (x)H,
the so-called monodromy matrix associated to Y and [START_REF] Bézivin | Sur les systèmes d'équations aux différences[END_REF]. It is well known that there exists a matrix

T ∈ gl n (C) such that H = exp(2πiT ). Consider now G(x) = Y (x)x -T = Y (x) exp(-log(x) T ).
By construction, G(x) is invertible for every x that is not a pole and G(x e 2πi ) = G(x), i.e. G is single valued. By the previous lemma, 0 and ∞ are regular singular points of ( 12) and therefore the growth of G(x) as x → 0 or x → ∞ is at most polynomial (i.e. there exists

K, L > 0 such that |G(x)| ≤ L(|x| + |x| -1 ) K ).
Hence the meromorphic function G on C * must be a rational function,i.e. G ∈ GL n (C(x)). The transformation y = G(x)z changes δy = A(x)y into a system of differential equations having x T as a fundamental solution, i.e. δz = T z. The matrices T and G(x) satisfy

A = δ(G)G -1 + GT G -1 , det(G) = 0.
Therefore the entries of T and the coefficients of the entries of G satisfy a finite number of equations and inequations with coefficients in C.

The Hilbert Nullstellensatz can be applied and yields that there also exists a solution in C. Therefore we may assume that T ∈ GL n (C) and G(x) ∈ GL n (C(x)). A further constant gauge transformation allows us to assume that T is in triangular form. To insure that the eigenvalues of T do not differ by nonzero integers, one can make a gauge transformation by a diagonal matrix S whose diagonal entries are powers of x (c.f., Lemma 3.11, [START_REF] Van Der Put | Galois theory of linear differential equations[END_REF]).

In case M, it also remains to show the stated properties. Observe that B(x)Y (x) and Y (x q ) are both fundamental solutions of δY = q A(x q ) Y -this was used before. Hence there exists a constant invertible matrix D such that

B(x)Y (x) = Y (x q ) D.
For the corresponding monodromy matrices this implies the relation H = D -1 H q D because x q goes q times around 0 when x goes once. Therefore H and H q are conjugate. As a first consequence, the mapping λ → λ q must induce a permutation of the eigenvalues of H. Hence, for every eigenvalue λ of H there exists a positive integer ℓ such that λ q ℓ = λ. The eigenvalues of H are therefore roots of unity and the smallest positive integer m satisfying λ m = 1 must be prime to q. This shows that the matrix T with H = exp(2πiT ) can be chosen having the first property.

We can assume that T is in Jordan canonical form T = diag (T 1 , ..., T r ) with Jordan blocks T i of size n i , say. The mapping λ mod Z → qλ mod Z induces a permutation of the equivalence classes λ mod Z of the eigenvalues λ of T . Hence there is a permutation matrix P such that the diagonal blocks of P -1 qT P have the same size and modulo Z the same eigenvalues as those of T . Therefore there is a diagonal matrix D = diag (d 1 I n 1 , ...d r I nr ) with integer d i such that the blocks of P -1 qT P and T + D have same size and same eigenvalues and thus the two matrices are conjugate. This proves the second property of the matrix T .

We can now complete the proof of Theorem 1 in cases Q and M. From the above lemmas we know that there is a gauge transformation that transforms δ(Y ) = AY into a new equation δ(Y ) = T Y where T has the stated properties. Apply the same gauge transformation to σ(Y ) = BY to yield σ(Y ) = BY . The consistency condition [START_REF] Balser | A general theory of invariants for meromorphic differential equations. I. Formal invariants[END_REF] implies that

δ B(x) = µT B(x) -B(x)T.
Comparing the orders of the poles, we see that B(x) can have no finite poles other than 0 and we have

B(x) ∈ C[x, x -1 ]. Now let B(x) = m 0 m=-m 0 x m B m . In case Q we obtain that T B m -B m T = mB m
for all m = -m 0 , . . . . , m 0 . As the eigenvalues of the operator X → T X -XT are exactly the differences λ 1λ 2 where λ 1 , λ 2 are eigenvalues of T the condition for T shows that B m = 0 unless m = 0. This proves the theorem in case Q.

In case M we then have qT B m -B m T = mB m for all m = -m 0 , ..., m 0 . Hence B m = 0 can only hold for integers m such that there exist eigenvalues λ 1 , λ 2 of T such that qλ 1λ 2 = m. This shows the remaining statement of the theorem in case M.

Proof of Theorem 1: Case S

In the remaining case S, we consider again the formal fundamental solution matrix at infinity of the form [START_REF] Bézivin | Solutions entières d'un système d'équations aux différences[END_REF]. We will first show that under our hypotheses r h ≤ 1 in case S.

Lemma 10. Let Y (x) be a formal fundamental solution matrix of δ(Y ) = AY as in [START_REF] Bézivin | Solutions entières d'un système d'équations aux différences[END_REF]. We then have that r h ≤ 1 in case S.

Proof. Let Q(x) = diag(q 1 (x), . . . , q n (x)). Let q(x) = a h x r h + a h-1 x r h-1 + . . . + a 1 x r 1 be one of the q i and assume r h > 1. Note that for any integer m we have q(x + m) = q(x) + mr h x r h -1 + other terms of order less than r h -1. We have that B(x)Y (x) is a solution of δ(Y ) = A(x + 1)Y (x). Therefore, by the uniqueness of the q i (Theorem 2, [START_REF] Balser | A general theory of invariants for meromorphic differential equations. I. Formal invariants[END_REF]), we must have that for some j, q(x + 1) = q j (x) modulo terms of order ≤ 0. This implies that the map q(x) → q(x + 1) permutes the q i modulo non-positive terms. From this we conclude that for some m, that q(x + m) = q(x) modulo terms of order less than r h -1, a contradiction. Therefore we have that r h ≤ 1.

The following proposition concerns only linear differential equations whose formal solutions satisfy the conclusions of the Lemmas 10 and 7, with no mention of difference equations.

Proposition 11. Let Y (x) be a formal fundamental solution matrix as in [START_REF] Bézivin | Solutions entières d'un système d'équations aux différences[END_REF] 

of the dif- ferential equation δ(Y ) = AY, A ∈ gl n (C(x)) with r h ≤ 1.
Assume that all singular points of the differential equation are apparent in the sense of Lemma 7. Then there exists a diagonal matrix à with constant entries and a gauge transformation Z = F Y such that Z satisfies δ(Z) = ÃZ.

Proof.

For almost all directions θ there exist 1. sectors S and T of openings greater than π bisected by θ and θ + π respectively, 2. a number R > 0 and functions Φ S (x) and Φ T (x) analytic for |x| > R in S and T respectively such that (a) Φ S (x) and Φ T (x) are asymptotic to Φ(x) as x → ∞ in their respective sectors, and

(b) Y S (x) = Φ S (x)x L e Q(x) and Y T (x) = Φ T (x)x L e Q(x) are solutions of δY = AY .
This can be proved using multisummation (c.f., Section7.8, [START_REF] Van Der Put | Galois theory of linear differential equations[END_REF]) but can also be obtained independently (c.f., the proposition of [START_REF] Jurkat | Meromorphe Differentialgleichungen[END_REF], p.85). We write Q(x) = diag(q 1 (X)I 1 , . . . , q s (x)I s ) with distinct q i (x) and I j identity matrices of an appropriate size. We can furthermore order the q i (x) so that in the direction arg(x) = ψ = θ + π/2 we have Re(q j (x)) < Re(q k (x)) for large |x| if j < k. Let us first assume that there are no monomials of the form x α , 0 < α < 1 in any of the q i (we shall show below that this is indeed the case). We may then write Q(x) = Λx where Λ = diag(λ 1 I 1 , . . . , λ s I s ) with Re(λ j x) < Re(λ k x) for j < k and arg(x) = ψ. Let C + be the Stokes matrix defined by Y S (x) = Y T (x)C + in the component of the intersection of S and T that contains the line arg(x) = ψ. Because of the ordering of the λ i we have that C + is upper triangular with 1 on the diagonal ( §3, [START_REF] Balser | A general theory of invariants for meromorphic differential equations. II. Proper invariants[END_REF]; c.f., Theorem 8.13, [START_REF] Van Der Put | Galois theory of linear differential equations[END_REF]).

We include a short proof of this fact for the convenience of the reader. Write

Y S = (Y S 1 |...|Y S s ) and Y T = (Y T 1 |...|Y T s
) in block columns according to the subdivision of Q and do the analogous subdivision for Φ. Split L = diag(L 1 , ..., L s ) and write C + = (C + i,j ) i,j=1,...,s in corresponding blocks. First suppose that there is a non-vanishing block C + ij ,i > j, below the diagonal. Fix one such j. Then

Y S j (x) = m i=1 Y T i C + ij ( 15 
)
where m ≤ s is chosen as the last index i such that C + i,j = 0. By assumption we have m > j. Hence Y S j exp(-q m (x)) has a non-vanishing asymptotic expansion Φ m (x)x Lm C + mj as x → ∞ on the line arg x = ψ contradicting the fact that it also has an expansion Φ j (x)x L j exp(q j (x)q m (x)) and hence vanishes faster than any power of x as x → ∞ on this line because of m > j. Therefore there is no non-vanishing block C + ij below the diagonal. In the same way one shows that the diagonal blocks C jj must equal I j . This completes the proof that C + is upper triangular with 1 on the diagonal.

Similarly to C + , let C -be the Stokes matrix defined by Y S (x) = Y T (x)C -in the component of the intersection of S and T that contains the line arg(x) = ψπ. Note that Re(λ j x) > Re(λ k x) on the line arg(x) = ψπ if j < k. We therefore have that C -is lower triangular with 1 on the diagonal. As all singular points are apparent, both Y S (x) and Y T (x) can be extended as meromorphic functions on C with finitely many poles. We therefore have C + = C -= I. The matrix

F (x) = Y S (x)e -Λx = Y T (x)e -Λx
has entries that are meromorphic with finitely many poles and of polynomial growth at infinity, that is, rational entries. Therefore the transformation Z = F -1 (x)Y yields the system δ(Y ) = ΛY .

We now show that monomials of the form x α , 0 < α < 1 cannot appear in any of the q i . Assuming that this is not the case we will argue to a contradiction. We write each q i (x) as q i (x) = λ i x + terms involving x α with 0 < α < 1.

To fix notation, we assume that the same branches of log x are used to define Y S (x) and Y T (x) on the component of S ∩ T containing ψ but that on the other component we use arg x near ψπ in S and arg x near ψ + π in T .

We define the Stokes matrix C + as above. Again we have that C + is upper triangular with 1 on the diagonal. We divide this matrix again C + = (C + ij ) according to the diagonal blocks of Q. We do not claim that C + is the identity matrix because different determinations of the powers are used in the definitions of Y S (x) and Y T (x) in the components of the intersection of S and T that contain the lines arg(x) = ψ ±π. Nevertheless Y S (x) and Y T (x) are meromorphic on C with finitely many poles by the assumption of the Proposition so Y S (x) = Y T (s)C + also holds in this component. This implies that C + ij = 0 if i < j and λ i = λ j because otherwise Re(λ i x) > Re(λ j x) on the line arg(x) = ψ + π, thus Re(q i (x)) > Re(q j (xe -2πi )) for large x on this line and therefore by [START_REF] Braaksma | Multisummability for some classes of difference equations[END_REF] the right hand side would grow faster as |x| → ∞ on that line than the left hand side if C + ij = 0, a contradiction.

To complete the argument that no x α , 0 < α < 1 appear in the q i (x), note the following:

If some q i (x) appears in Q(x) we must have, for all integers m, that the conjugate q i (xe 2mπi ) also appears ([6], §1).

Continuing, we assume that some q i (x) contains a monomial x α , 0 < α < 1, and let j be the smallest index for which this is true. We claim that λ i = λ j for i < j. If not then, for some i, q i (x) = λx and q j (x) = λx + cx α + lower order terms. Among the conjugates q j (e 2mπi x), m integer, we can find one such that Re(ce 2mπiα x α ) tends to -∞ as x approaches infinity along the line arg(x) = ψ. By the minimality of j, this is also the case for m = 0. We then have Re(q i (x)) > Re(q j (x))) eventually along this line as well, contradicting i < j. Hence the blocks C + ij do not only vanish if i > j, but as seen above also if i < j (since λ i = λ j in this case).

Therefore Y S j = Y T j for the block column corresponding to q j (x). This is impossible since near arg x = ψ + π, Y T j (x) is asymptotic to something times e q j (x) while Y S j (x) is asymptotic to something times e q j (xe -2πi ) . This contradiction allows us to conclude that no fractional powers appear in the q i (x) and so completes the proof.

We can now complete the proof of Theorem 1 in case S. From Proposition 11 we know that there is a gauge transformation that transforms δ(Y ) = AY into a new equation δ(Y ) = ÃY where à is the diagonal matrix diag(a 1 , . . . , a n ) with constant entries. Apply the same gauge transformation to σ(Y ) = BY to yield σ(Y ) = BY , B = (b i,j ). Since the a i are constant, the consistency condition (6) implies

δ(b i,j ) = (a i -a j )b i,j (16) 
If a i = a j then b i,j = 0 since ( 16) then has no nonzero solution in C(x). If a i = a j , then δ(b i,j ) = 0. Therefore B has constant entries. Equation ( 6) now implies that à and B commute. This implies that there is a matrix D ∈ GL n (C) which commutes with à such that D BD -1 is upper diagonal.

Reduction of systems of difference equations

Here we present results analogous to Section 2 for systems of two difference equations with shifts having irrational quotient, for systems of two q-difference equations with "independent" q and for systems of two Mahler equations with independent q. We consider two commuting C-algebra endomorphisms σ 1 , σ 2 on k extending the trivial automorphism on C, more specifically, the three cases of couples (σ 1 , σ 2 ) below. case 2S: Two shift operators σ j defined by σ 1 (x) = x+1 and σ 2 (x) = x+α where α ∈ C\Q.

case 2Q: Two q-dilation operators σ j , j = 1, 2, defined by σ j (x) = q j x with multiplicatively independent9 q j ∈ C, |q j | = 0, q j not a root of unity. We also assume that at least one of the q j does not have modulus 1, without loss of generality |q 1 | = 1. When considering σ j on the Riemann surface Ĉ of the logarithm, we fix logarithms of q j used to determine q j x in Ĉ for given x ∈ Ĉ.

case 2M: Two Mahler operators σ j , j = 1, 2, defined by σ j (x) = x q j with some multiplicatively independent positive integers q j .

More precisely, we will consider systems

σ j (Y ) = B j Y, j = 1, 2 (17) 
with B j ∈ GL n (k) that are consistent, that is B 1 and B 2 satisfy the consistency condition given by

σ 1 (B 2 )B 1 = σ 2 (B 1 )B 2 . ( 18 
)
Note that, as (6) did in Section 2, the consistency condition guarantees that σ 1 (σ 2 (Z)) = σ 2 (σ 1 (Z)) holds for any solution Z of the system [START_REF] Carmichael | The General Theory of Linear q-Difference Equations[END_REF] in any extension of C(x). The other remarks following (6) apply analogously. We say that ( 17) is equivalent (over k) to a system

σ j (Z) = Bj Z, j = 1, 2 (19) 
with

Bj ∈ GL n (k) if for some G ∈ GL n (k), Bj = σ j (G)B j G -1 , j = 1, 2 (20) 
that is, if [START_REF] Davenport | Elementary and Liouvillian solutions of linear differential equations[END_REF] comes from [START_REF] Carmichael | The General Theory of Linear q-Difference Equations[END_REF] via the gauge transformation Z = GY . Note that the property of consistency is preserved under equivalence. In the present context we can prove Theorem 12. In cases 2S and 2Q, the system [START_REF] Carmichael | The General Theory of Linear q-Difference Equations[END_REF] satisfying the consistency condition [START_REF] Cobham | On the base-dependence of sets of numbers recognizable by finite automata[END_REF] is equivalent over k to a system [START_REF] Davenport | Elementary and Liouvillian solutions of linear differential equations[END_REF] with constant invertible commuting Bj , j = 1, 2, that is Bj ∈ GL n (C), j = 1, 2, and B2 B1 = B1 B2 .

In case 2M, the system [START_REF] Carmichael | The General Theory of Linear q-Difference Equations[END_REF] satisfying the consistency condition ( 18) is equivalent over [START_REF] Davenport | Elementary and Liouvillian solutions of linear differential equations[END_REF] with constant invertible commuting B1 , B2 .

K = C({x 1/s | s ∈ N * }) to a system
Remark: 1. When n = 1 in case 2S, the result of this theorem is a reformulation of Lemma 3.1 in [START_REF] Brisebarre | Sur les fonctions entières à double pas récurrent[END_REF] where the authors give a purely algebraic proof of this special case.

2. In case 2S, one of the equations can be made diagonal by a (polynomial) transformation Z = HU, H = exp(Nx) with a certain nilpotent matrix N commuting with its coefficient matrix.

3. In case 2M, the statement of the theorem also holds for B j ∈ GL n (K), j = 1, 2, because fractional powers of x can be removed by some change of variables x = t N with a suitable positive integer N.

The proof of this theorem will be given for each of the cases separately in Sections 3.1, 3.2 and 3.3. As in Section 2, we present a few consequences of the theorem before presenting these proofs. These concern a system

S j (f (x)) = σ m j j (f (x)) + b j,m j -1 (x)σ m j -1 j (f (x)) + . . . + b j,0 (x)f (x) = 0, j = 1, 2 (21) with b j,i (x) ∈ C(x).
In view of the simplest nontrivial system of this form, y(x + 1) = y(x), y(x + α) = y(x), in case 2S with non-real α, it is necessary to consider elliptic functions if we are interested in solving (21) using meromorphic functions. We recall the functions needed here (see [START_REF] Olver | NIST handbook of mathematical functions[END_REF], section 23.2). The Weierstrass ℘-function is the unique 1-and α-periodic meromorphic function that has exactly one double pole in the basic parallelogram with vertices ±1/2 ± α/2 and satisfies ℘(x) = 1

x 2 + O(x) as x → 0. All elliptic (i.e. meromorphic 1-and α-periodic) functions can be expressed as rational functions of ℘ and ℘ ′ . The Weierstrass ζ-function is the odd antiderivative of ℘.

It satisfies ζ(x + 1) = ζ(x) + 2η 1 , ζ(x + α) = ζ(x) + 2η 2 for
all x, where η j are certain constants such that the vectors (η 1 , η 2 ) and (1, α) are linearly independent. The Weierstrass σ-function is the solution of σ ′ /σ = -ζ with σ ′ (0) = 1. It is an entire function vanishing at the origin and satisfies σ(x + 1) = e 2η 1 x+η 1 σ(x), σ(x + α) = e 2η 2 x+η 2 α σ(x) for x ∈ C. We introduce an additional function ρ by ρ(δ, x) = σ(x + δ)/σ(x). It is a meromorphic function with a simple pole at the origin that satisfies ρ(δ, x + 1) = e 2η 1 δ ρ(δ, x) and ρ(δ, x + α) = e 2η 2 δ ρ(δ, x).

Corollary 13. Consider σ 1 and σ 2 as in case 2S.

If f (x) is a meromorphic function in C that solves a system [START_REF] Dreyfus | Functional relations of solutions of qdifference equations[END_REF] and α is nonreal, then

f (x) = I i=1 K k=0 r i,k (x)g i,k (x)ζ(x) k e α i x ρ(δ i , x) (22) 
where α i , δ i ∈ C, r i,k (x) ∈ C(x) and g i,k (x) are elliptic functions. Conversely, any such function satisfies a pair of linear difference equations with rational coefficients. If f (x) is a meromorphic function in C that solves a system [START_REF] Dreyfus | Functional relations of solutions of qdifference equations[END_REF] and α is real or f (x) has only finitely many poles, then

f (x) = I i=1 r i (x)e α i x ( 23 
)
where

α i ∈ C and r i (x) ∈ C(x). If f (x) ∈ C[[x -1 ]][x] satisfies a system (21) then f (x) is rational.
Remark: 1. In the case of real irrational α, a slight extensions of the proof shows that the statement also holds if f (x) is a function on the real line continuous in all but finitely many points solving a system [START_REF] Dreyfus | Functional relations of solutions of qdifference equations[END_REF]. Indeed, it suffices to use the vector space E of all functions on the real line continuous in all but finitely many points and to apply Fejér's Theorem instead of the simple Fourier series. This also implies that the given f (x) is analytic at the points of continuity and can be continued analytically to a meromorphic function with finitely many poles on the whole complex plane. Similar extensions can be obtained in the second part of the subsequent corollary and in Corollary 15. A similar reasoning is also crucial in the proof of the Theorem in case 2M.

2. In [START_REF] Bézivin | Solutions entières d'un système d'équations aux différences[END_REF], Bézivin and Gramain consider entire solutions of (21) for case 2S under the assumption that α ∈ C\R. They show that such solutions must be of the form given in [START_REF] Dreyfus | Functional relations of solutions of qdifference equations[END_REF]. They generalize this result to entire functions of s variables satisfying 2s difference equations with respect to suitably independent multi-shifts. The techniques are similar to those mentioned in the Remark following Corollary 4. In [START_REF] Brisebarre | Sur les fonctions entières à double pas récurrent[END_REF], Brisebarre and Habsieger replace the condition that α ∈ C\R with α ∈ C\Q but need several other nontrivial technical conditions on the coefficients of (21) to show that entire solutions are of the form given in [START_REF] Gantmacher | The theory of matrices[END_REF]. The techniques are essentially algebraic, reducing this problem to a similar problem for equations with constant coefficients in a manner different from our approach.

In [START_REF] Bézivin | Sur les systèmes d'équations aux différences[END_REF], Bézivin shows essentially the statement in remark 1, i.e. that for α ∈ R\Q, a solution f (x), continuous on R, of ( 21) is of the form given in [START_REF] Gantmacher | The theory of matrices[END_REF]. Using properties of skew polynomial rings, Bézivin reduces the problem to the case of constant coefficient equations.

Corollary 14. Consider σ 1 and σ 2 as in case 2Q. If α := log(q 2 )/ log(q 1 ) is nonreal and f (x) is a meromorphic function on the Riemann surface Ĉ of the logarithm and if f (x) is a solution of a system [START_REF] Dreyfus | Functional relations of solutions of qdifference equations[END_REF] then

f (x) = I i=1 J j=0 K k=0 r i,j,k (x) log(x) j x α i g i,k (t)ζ(t) k ρ(δ i , t), t = log(x)/ log(q 1 ), ( 24 
)
where α i , δ i ∈ C, r i,j,k (x) ∈ C(x) and g i,k (t) are elliptic functions. The latter and the functions ζ and ρ are taken with respect to the periods 1 and α. Conversely, any such function satisfies a pair of linear q-difference equations with rational coefficients. If f (x) is a meromorphic function on Ĉ solving a system [START_REF] Dreyfus | Functional relations of solutions of qdifference equations[END_REF] and α is real or f (x) has only finitely many poles then

f (x) = I i,j=0 r ij (x)x α i log(x) j ( 25 
)
where

α i ∈ C and r ij ∈ C(x). If f (x) ∈ C[[x]][x -1 ] satisfies a system (21) then f (x) is rational. Remark: In [13] Bézivin and Boutabaa use p-adic techniques to show that if f (x) ∈ F [[x]][x -1 ],
where F is the field of algebraic numbers, satisfies a system (21) for case 2Q with q 1 , q 2 ∈ K multiplicatively independent, then f (x) is rational. They prove a similar result for F any characteristic 0 field assuming q 1 and q 2 are algebraically independent over Q. In [START_REF] Bézivin | Sur les équations fonctionnelles aux q-différences[END_REF], Bézivin shows that for q 1 , q 2 multiplicatively independent positive real numbers, a solution of ( 21) that is continuous on the ]0, ∞[ is of the form [START_REF] Immink | Asymptotics of analytic difference equations[END_REF]. The proof again uses properties of skew polynomial rings and constant coefficient equations. In case 2M, equations like log(log(x q )) = log(log(x)) + log(q) yield interesting solutions. This suggests to consider the Riemann surface Č of log(log(x)). It is obtained by deleting the point 1e i0 , i.e. the point with logarithm 0, from the Riemann surface Ĉ of the logarithm and taking the universal covering of the remaining manifold. It is biholomorphically mapped to Ĉ by t = log(x), biholomorphically to C by s = log(log(x)) .

Corollary 15.

Consider σ 1 and σ 2 as in case 2M.

If f (x) is a meromorphic function on the universal cover of the open punctured unit disk D(0, 1) \ {0} (or on the universal cover of the annulus {x ∈ C | |x| > 1}) solving a system [START_REF] Dreyfus | Functional relations of solutions of qdifference equations[END_REF], then f (x) can be continued analytically to a meromorphic function on Č and

f (x) = I i,j=0 r ij (x)(log(x)) α i log(log(x)) j ( 26 
)
where α i ∈ C and r ij ∈ C({x 1/r | r ∈ N * }). Conversely, any such function satisfies a pair of linear Mahler equations with rational coefficients.

If f (x) is a meromorphic function on Ĉ solving a system [START_REF] Dreyfus | Functional relations of solutions of qdifference equations[END_REF] then

f (x) = I j=-I r j (x)(log(x)) j (27)
where [START_REF] Dreyfus | Functional relations of solutions of qdifference equations[END_REF] then f (x) is rational.

r j ∈ C({x 1/r | r ∈ N * }). If f (x) ∈ C[[x]][x -1 ] satisfies a system
Remark: As noted in the Introduction, the last statement of the above corollary was recently proved by Adamczewski and Bell in [START_REF] Adamczewski | A problem about Mahler functions[END_REF]. Their tools include a local-global principle to reduce the problem to a similar problem over finite fields, Chebotarev's Density Theorem, Cobham's Theorem and some asymptotics -all very different from the techniques used in the present work.

If one is only interested in proving the last statement, the application of Theorem 12 in the proof of this corollary can be replaced with the weaker Proposition 19. This is discussed in the remarks following Proposition 19.

We now turn to the proof of the three corollaries.

Proof. We will prove these three corollaries in parallel, diverging from this plan only when the cases force us to. We can assume without loss in generality that b j,0 (x) = 0, j = 1, 2. Otherwise in cases 2S and 2Q, we can simply apply the inverses of σ 1 or σ 2 . In case 2M, we rewrite the system as a system for a new function f (x) = σ a 1 σ b 2 (f (x)) with suitable positive integers a, b, applying some powers of σ 1 or σ 2 to the equations. We then first obtain that f (x) is as stated in Corollary 15. In the first two cases, it follows immediately that f (x) also has the wanted form. In the last case, we obtain a series f

(x) ∈ C[[x]][x -1 ] such that σ a 1 σ b 2 (f (x)) = f (x q a 1 q b 2 ) ∈ C(x)
. As shown at the end of the proof of Corollary 2, this implies that f (x) ∈ C(x).

We proceed as for the corollaries concerning differential and difference equations. The first part is the same for all the cases. Let E be the vector space of all meromorphic functions f on C for the first two cases of Corollary 13, the vector space of all meromorphic functions g on Ĉ for the first two cases of Corollary 14 and the second case of Corollary 15, and the vector space of all meromorphic functions on D(0, 1) \ {1} in the first case of Corollary 15.

Let E = C[[x -1 ]][x] respectively E = C[[x]][x -1 ] and E = ∪ s∈N * C[[x 1/s ]][x -1/
s ] in the remaining cases concerning formal power series. Let L = C(x) for Corollaries 13, 14 and L = K= C({x 1/r | r ∈ N * }) for Corollary 15. In all cases, σ j , j = 1, 2, are extended in the canonical way to automorphisms of E and the extensions commute.

Consider the L-subspace W of E generated by σ m 1 σ n 2 (f ), m = 0, ..., m 1 -1, n = 0, ...m 2 -1. By [START_REF] Dreyfus | Functional relations of solutions of qdifference equations[END_REF], W is invariant under σ j and σ -1 j ; here the facts that σ j commute and that b j,0 (x) = 0 are used.

Let w 1 , ..., w s be an L-basis of W and let w = (w 1 , ..., w s ) T . Then we have that

σ j (w) = B j (x)w, j = 1, 2 (28) 
with B j ∈ GL s (L) because the components of σ j (w) are again a basis of W . The coefficient matrices of ( 28) satisfy the consistency condition [START_REF] Cobham | On the base-dependence of sets of numbers recognizable by finite automata[END_REF]. Indeed,

0 = σ 1 (σ 2 (w)) -σ 2 (σ 1 (w)) = (σ 1 (B 2 )B 1 -σ 2 (B 1 )B 2 )w
and as the components of w form a basis we obtain [START_REF] Ovchinnikov | σ-Galois theory of linear difference equations[END_REF]. Now we apply Theorem 12 to the system σ j (Y ) = B j (x)Y, j = 1, 2. It yields a gauge transformation Z = GY , G ∈ GL n (L), that transforms the system to σ j (Z) = Bj Z, j = 1, 2 where Bj are constant commuting matrices. The vector z = Gw ∈ W s satisfies σ j (z) = Bj z, j = 1, 2. Once we have proved that its components z 1 , ..., z s have the form desired in each of the cases of the corollaries, the same will be true for f (x) because the z i again form a basis of W -only for the last part of Corollary 15 this has to be modified somewhat.

It remains to solve the system

σ j (z) = Bj z, j = 1, 2 (29) 
with constant invertible commuting Bj in each of the spaces E.

We now proceed as follows. The three corollaries contain nine cases in total. In each of these cases we will consider functions meromorphic on a given domain or formal Laurent series and show that they are of the desired form. Once we have finished this we will prove the converse statements.

We first consider case 2S on the space of meromorphic functions on C. If α is nonreal, then (29) can be solved using the function ρ and exponential functions. Consider two commuting logarithms of Bj , i.e. commuting matrices L j such that Bj = exp(L j ), j = 1, 2. Then there are uniquely determined (commuting) matrices ∆ and C such that

2η 1 ∆ + C = L 1 2η 2 ∆ + αC = L 2
where (η 1 , η 2 ) are as in the above definition of the ζ-function. The matrix-valued function10 Z(x) = e Cx ρ(∆, x) = 1 σ(x) e Cx σ(x + ∆) has meromorphic entries and satisfies that Z(x + 1) = e C e 2η 1 ∆ Z(x) = B1 Z(x) and similarly Z(x + α) = B2 Z(x). If z is a vectorial solution of ( 29), then c(x) = Z(x) -1 z(x) is 1-and α-periodic and meromorphic. Hence its components are elliptic functions.

In order to express σ(x + ∆) using scalar functions we proceed as it is well known for the exponential. Let T be invertible such that J = T -1 ∆T is in Jordan canonical form and let J = D + N with diagonal D and nilpotent N, D = diag(d 1 , ..., d s ). Then

σ(x + ∆) = T σ(x + D) I + s-1 k=1 1 k! σ(x + D) -1 σ (k) (x + D)N k T -1 ;
here σ(x+D) = diag(σ(x+d 1 ), ..., σ(x+d s )) and similarly σ(x+D) -1 σ (k) (x+D) is the diagonal matrix of the quotients

σ (k) (x+d j )
σ(x+d j ) which in turn can be expressed using powers of ζ(x + d j ) and elliptic functions. Finally as ζ(x + d j )ζ(x) are elliptic, 1 σ(x) σ(x + ∆) can be expressed using the functions ρ(d j , x), powers of ζ(x) and elliptic functions.

If α is real and irrational or the number of poles of f is finite, then we consider again commuting logarithms L j of the coefficient matrices Bj . Put c = exp(-L 1 x)z. Then c satisfies σ 1 (c) = c and σ 2 (c) = Bc, B = B2 e -αL 1 . Then c cannot have a pole at all, because otherwise by the two equations all points of the lattice {k + mα|k, m ∈ Z} would be poles and hence the set of poles would be dense for real irrational α or infinite otherwise.

As c is 1-periodic and entire, it can be expanded in a Fourier series on C. On some horizontal strip S of finite width, we have the uniformly convergent series

c(x) = ∞ k=-∞ c k e 2πikx , x ∈ S.
The second equation satisfied by c, i.e.

c(x + α) = Bc(x) for x ∈ S implies that Bc k = exp(2πikα)c k for k ∈ Z. If c k = 0 for some k then exp(2πikα) is an eigenvalue of B.
As there are only finitely many such eigenvalues, the above Fourier series can contain only a finite number of terms. This proves that c(x) = k 0 k=-k 0 c k e 2πikx , x ∈ C with some positive integer k 0 . As a consequence z = exp(L 1 x)c is of the desired form.

On

E = C[[x -1 ]][x],
we can assume that B1 is diagonal according to a remark following the theorem. Hence it suffices to show that the solution of σ 1 (z(x)) = d z(x) in E is a constant for every complex number d. Write such a solution as z(x) = ∞ k=k 0 c k x -k with some k 0 ∈ Z and c k ∈ C, k ≥ k 0 . Unless z = 0, we can assume that c k 0 = 0. Comparing the coefficients of x -k 0 , we find that d c k 0 = c k 0 . Hence d = 1. Comparing the coefficients of x -k 0 -1 we find that c k 0 +1 = c k 0 +1c k 0 k 0 . Hence k 0 = 0. The new series z(x) = z(x)c 0 is again a solution of σ 1 (z(x)) = z(x) but unless z(x) = 0, the corresponding series z(x) = ∞ k=k 1 c k x -k has a positive k 1 which is impossible as seen above. Hence z(x) = 0 and z is a constant.

In case 2Q and in the space of meromorphic functions on Ĉ, we simply put t = log(x)/ log(q 1 ) and consider z as a vectorial function of t now. The system σ j (z) = Bj z, j = 1, 2 is then transformed into a system z(t + 1) = B1 z(t), z(t + α) = B2 z(t), for a function z meromorphic on C. The above considerations then prove that the entries of z have the desired form in the cases of nonreal and real α. The only difference is that in the expansion of x C = e C log(q 1 )t using scalar functions, logarithms of x may occur.

In case 2Q,

E = C[[x]][x -1 ], we write a solution of σ j (z(x)) = Bj z(x), j = 1, 2, as a series z(x) = ∞ k=k 0 c k x k with some k 0 ∈ Z and c k ∈ C s , k ≥ k 0 . We obtain that each c k satisfies Bj c k = q k j c k , j = 1, 2.
Therefore unless c k = 0 for some k, the numbers q k j must be eigenvalues of Bj for j = 1, 2. As there are only finitely many eigenvalues we obtain that z(x)

∈ (C[x, x -1 ]) s ⊂ (C(x)) s .
In case 2M and in the space of meromorphic functions on D(0, 1) \ {1}, we put s = log(log(x)) log(q 1 ) and consider z as a function of s now. Proceeding as above 11 with the resulting system of difference equations with irrational α = log(q 2 ) log(q 1 ) , the result follows readily. The result concerning meromorphic functions on the annulus {x ∈ C | |x| > 1} is reduced to the one on the punctured unit disk by the change of variables x → 1/x. Observe that in this case, the reduction to a constant system uses a gauge transformation with coefficients in C({x 1/r | r ∈ N * }).

In case 2M and in the space of meromorphic functions on Ĉ, we have to find solutions of the system σ j (z(x)) = Bj z(x), j = 1, 2, that are meromorphic in Ĉ. Letting t = log x we can reduce this problem to the search for solutions, meromorphic in C, of a system with constant coefficients in case 2Q. One then considers the series expansion at the origin of such solutions and concludes, as in case 2Q, that these vectors have entries in C[t, t -1 ]. Therefore the entries of z(x) involve powers of log x.

In case 2M,

f (x) ∈ C[[x]][x -1 ], we have to solve σ j (z(x)) = Bj z(x), j = 1, 2, in E = ∪ s∈N * C[[x 1/s ]][x -1/s ].
Expanding a solution in a series immediately proves that z(x) is constant. Therefore f (x) is an element of K. We write f (x) = g(x 1/s ) with some rational function g ∈ C(x) and some positive integer s. As in the proof of Corollary 2, this yields f (t s ) = g(t) and therefore also f (t s ) = g(ξt) for any s-th root of unity ξ. Hence f (t s ) = 1 s ξ s =1 g(ξt) ∈ C(t s ). This yields that f (x) is rational. For the converse concerning the shift operators, consider first f (x) = g(x)ζ(x) j e βx ρ(δ, x) where β, δ ∈ C, j is some positive integer and g is an elliptic function. By the properties of ρ and the exponential, we obtain with a 1 = e β+2η 1 δ that (σ 1a 1 ) j+1 (f (x)) = 0. Again products of solutions of σ 1 -difference equations with rational functions also satisfy σ 1 -difference equations and sums of solutions of σ 1 -difference equations also satisfy some σ 1 -difference equation. Therefore f (x) given by ( 22) also does. We obtain the σ 2difference equation for f (x) in the same way.

For the proof of the converse concerning two q-difference equations, we proceed analogously. A slight change is that we have to consider f (x) = log(x) i x β g(t)ζ(t) j ρ(δ, t), t = log(x)/ log(q 1 ).

Here (σ 1a 1 ) i+j+1 (f (x)) = 0 for a 1 = q β 1 e 2η 1 δ and (σ 2a 2 ) i+j+1 (f (x)) = 0 for a 2 = q β 2 e 2η 2 δ . For the proof of the converse concerning two Mahler systems, consider

f (x) = x r (log(x)) α (log(log(x))) j with r ∈ Q, α ∈ C and j ∈ N. There are k ∈ N * , m ∈ N such that (q k 1 -1)q m 1 r =: ℓ is an integer. Then (q -kα 1 x -ℓ σ k 1 -id) j+1 σ m 1 (f (x)) = 0.
It follows as before that f (x) given by ( 26) satisfies a σ 1 -Mahler equation. For the second equation concerning σ 2 , we proceed analogously.

We now turn to the proof of Theorem 12. The consistency condition ( 18) can be interpreted as follows: The gauge transformation

Z = B 2 Y transforms σ 1 (Y ) = B 1 Y (30) 
into the equivalent system σ 1 (Z) = σ 2 (B 1 ) Z. Iterating this procedure, we find that the system (30) is equivalent to the systems

σ 1 (U) = σ N 2 (B 1 ) U (31) 
for any positive integer N by the gauge transformation

Z = G N Y , G N = σ N -1 2 (B 2 )...σ 2 (B 2 )B 2 .
The rest of the proof of Theorem 12 will be given separately for the three cases.

Proof of Theorem 12: Case 2S

In a first step, we consider analytic continuation of solutions of (30) under the hypotheses of the Theorem.

Lemma 16. In case 2S, consider a strip

S = {x ∈ C|a 1 < Im x < a 2 }, -∞ ≤ a 1 < a 2 ≤ +∞. If g(x)
is a holomorphic solution of [START_REF] Van Der Put | Galois theory of linear differential equations[END_REF] for x ∈ S with sufficiently large positive real part (resp. with sufficiently large negative real part) then g(x) can be continued analytically to a meromorphic function in S with finitely many poles.

Proof. Let M denote the set of x 1 ∈ C such that B 1 (x) or B 1 (x) -1 has a pole at x = x 1 . Consider a solution g holomorphic for x ∈ S with large positive real part. By the difference equation [START_REF] Van Der Put | Galois theory of linear differential equations[END_REF], it can be continued analytically to S except for possible poles in (M -N) ∩ S. For N ∈ N, the function g N = G N g is a solution of σ 1 (U) = σ N 2 (B 1 )U holomorphic for x ∈ S with large real part. By its difference equation, it can be continued analytically to S except for possible poles in

(σ -N 2 (M) -N) ∩ S = (M -N -Nα) ∩ S, because x 1 is a pole of σ N 2 (B ±1 1 ) if and only if σ N 2 (x 1 ) is a pole of B ±1 1 . This implies that g = G -1
N g N can also be analytically continued to S except possible poles in (σ -N 2 (M) -N) ∩ S and in N ∩ S, where N is the (finite) set of poles of G -1 N . Therefore g can be continued analytically to S with the exception of (M -N -Nα) ∩ (M -N) ∩ S and N ∩ S.

We claim that the former intersection is empty for appropriate N. The set {dc + Z|c, d ∈ M} is finite since M is finite. As α is irrational, the set {Nα + Z|N ∈ N} is infinite. Hence there exists N ∈ N such that for all c, d ∈ M, the difference dc ≡ Nα mod Z. If the first intersection is nonempty, there exists h ∈ S such that h = d -Nαm and h = c-n, where c, d ∈ M and m, n ∈ N. This implies that d-c-Nα = m-n ∈ Z, a contradiction. Thus the intersection is indeed empty. This means that g can be continued analytically to S \ N , where N is finite.

The proof in the case of g analytic for x ∈ S with large negative real part is analogous.

Concerning the behavior at infinity, it is known that σ

1 (Y ) = B 1 Y has a formal fundamental solution Y (x) = Φ(x)x L e Q(x) x Dx , (32) 
where Φ(x) is a formal power series in x -1/r for some integer r, L is a constant matrix with eigenvalues γ j satisfying 0 ≤ Re(γ j ) < 1 r , Q(x) = h j=1 Q j x r j where the Q j are diagonal matrices with entries in C and the r j are positive rational numbers with 1 = r h > r h-1 > . . . > r 1 > 0 (or Q(x) ≡ 0) and D is diagonal with entries in 1 r Z; furthermore L, Q(x) and D commute (c.f., [START_REF] Immink | Asymptotics of analytic difference equations[END_REF], chapter I, and [START_REF] Van Der Put | Galois theory of difference equations[END_REF], section 6.1). The leading term Q h of Q(x) is chosen such that the imaginary parts of its entries are between 0 and 2π12 , 2π excluded. We can write D = diag(d ℓ I ℓ , ℓ = 1, ..., m) and Q(x) = diag(q ℓ (x)I ℓ , ℓ = 1, ..., m) with identity matrices of appropriate size and distinct couples (d ℓ , q ℓ (x)), ℓ = 1, ..., m. Then also L = diag(L 1 , ..., L m ) with diagonal blocks of corresponding size. The formal fundamental solution is essentially unique, i.e. except for a permutation of the diagonal blocks and passage from some L ℓ to a conjugate matrix.

The observation of the beginning of the proof shows that B 2 (x)Y (x) and σ 2 (Y (x)) = Y (x + α) are both formal fundamental solutions of σ 1 (Z) = σ 2 (B 1 ) Z. Re-expanding we find that Y (x + α) = Φ(x)x Le Q(x) x Dx , where L ≡ L + αD mod 1 r Z. Also writing L = diag( Lℓ , ℓ = 1, ..., m) we obtain from the essential uniqueness of the formal fundamental solution that for each ℓ, the matrices Lℓ ≡ L ℓ + αd ℓ mod 1 r Z and L ℓ are conjugate. Now if a k + 1 r Z, k = 1, ..., r ℓ are the equivalence classes of the eigenvalues of L ℓ modulo 1 r Z, then a k + αd ℓ + 1 r Z are those of Lℓ . Hence the mapping x + 1 r Z → x + αd ℓ + 1 r Z induces a permutation of the equivalence classes of the eigenvalues of L ℓ . Applying it several times, if necessary, to some eigenvalue a k , we obtain the existence of some positive integer N such that a k + 1 r Z = a k + Nαd ℓ + 1 r Z. Since α is not rational, but d ℓ is, this is impossible unless d ℓ = 0 and we obtain that D = 0. The difference equation [START_REF] Van Der Put | Galois theory of linear differential equations[END_REF] and by symmetry also σ 2 Y = B 2 Y are hence mild in the sense of [START_REF] Van Der Put | Galois theory of difference equations[END_REF], section 7.1.

Next we show the statement analogous to Proposition 11.

Lemma 17.

In the present context, there exists a diagonal matrix B1 with constant entries and a gauge transformation

Z = F Y such that Z satisfies σ 1 (Z) = B1 Z.
Proof. This is an adaptation of the proof of Proposition 11. For θ = 0 sufficiently close to 0, there exist 1. sectors S and T of openings greater than π bisected by θ and θ + π respectively, 2. a number R > 0 and functions Φ S (x) and Φ T (x) analytic for |x| > R in S and T respectively such that (a) Φ S (x) and Φ T (x) are asymptotic to Φ(x) as x → ∞ in their respective sectors, and

(b) Y S (x) = Φ S (x)x L e Q(x) and Y T (x) = Φ T (x)x L e Q(x) are solutions of σ 1 Y = AY .
This can be proved using multisummation (c.f., [START_REF] Braaksma | Multisummability for some classes of difference equations[END_REF], [START_REF] Van Der Put | Galois theory of difference equations[END_REF], section 9.1). We write Q(x) = diag(q 1 (X)I 1 , . . . , q s (x)I s ) with distinct q j (x) and I j identity matrices of an appropriate size. We split

q i (x) = λ i x + terms involving x α with 0 < α < 1.
As 0 ≤ Im λ i < 2π, we may assume that θ is so close to 0 that

max j,k (Re(λ j x) -Re(λ k x)) < -Re(2πix) if arg(x) = ψ = θ + π/2. ( 33 
)
According to Lemma 16 both Y S (x) and Y T (x) can be continued analytically to meromorphic functions on C with finitely many poles. We call these extensions again Y S (x), Y T (x). Because of ( 33) we obtain that D We can now complete the proof of Theorem 12 in case 2S. Apply the gauge transformation Z = F Y of Lemma 17 to σ 2 Y = B 2 Y to yield σ 2 Z = B2 Z, B2 = (b i,j ). Since B1 = diag(a 1 , ..., a n ) is constant diagonal, the consistency condition [START_REF] Cobham | On the base-dependence of sets of numbers recognizable by finite automata[END_REF] implies that

σ 1 (b i,j ) = a i a j b i,j .
If a i = a j we obtain that b i,j = 0 since the above equation has no nonzero solution in C(x) then. If a i = a j we have σ 1 (b i,j ) = b i,j and hence b i,j is a constant. Therefore B2 is also constant. This completes the proof in case 2S.

Proof of Theorem 12: Case 2Q

In case 2Q, we omit the index 1 of q 1 and assume |q| > 1 for simplicity. Fix a logarithm 2πiτ of q. Concerning analytic continuation we prove here Lemma 18. In case 2Q, consider a spiraling strip S = {e 2πiτ t ∈ Ĉ|a 1 < Im t < a 2 }, -∞ ≤ a 1 < a 2 ≤ +∞. If g(x) is a holomorphic solution of [START_REF] Van Der Put | Galois theory of linear differential equations[END_REF] for x ∈ S with sufficiently large modulus (resp. with sufficiently small modulus) then g(x) can be continued analytically to a meromorphic function in S such that the projections of its poles to C * form a finite set.

convergent Laurent series

G 0 (x) -1 = ∞ m=-∞ G m x m
with some constant matrices G m and therefore also

G ∞ (x)G 0 (x) -1 = ∞ m=-∞ P m x m
with constant matrices P m . Now by construction, G ∞ (x)G 0 (x) -1 x L 0 is a solution of the equation σ(V ) = A ∞ V . Using q L 0 = A 0 , this implies the equations

P m q m A 0 = A ∞ P m , m ∈ Z.
Now if m = 0, then q m A 0 and A ∞ cannot have a common eigenvalue as those of A 0 , A ∞ have a modulus in [1, |q|[. Hence P m = 0 for m = 0 and there is a constant invertible matrix P 0 such that G ∞ (x) = P 0 G 0 (x) for |x| > K. In particular, the above Laurent series of G 0 (x) -1 has only finitely many terms corresponding to positive powers of x since this is the case for G ∞ (x) -1 . This means that ∞ is only a pole of the G 0 (x) -1 , a meromorphic function on C with finitely many poles. We obtain that G 0 (x) -1 and hence also G 0 (x) have entries that are rational functions.

Thus we have shown that [START_REF] Van Der Put | Galois theory of linear differential equations[END_REF] is equivalent over C(x) to σ(Z) = A 0 Z with some constant invertible matrix A 0 . To complete the proof of Theorem 12 for case 2Q, apply the same gauge transformation to σ 2 (Y ) = B 2 (x)Y to obtain σ 2 (Z) = B2 (x)Z. The consistency condition implies here that σ 1 ( B2 (x))A 0 = A 0 B2 (x).

Expanding B2 (x) in a convergent Laurent series in a punctured disk centered at the origin

B2 (x) = ∞ m=-M C m x m
we find that the coefficients satisfy the equations C m q m A 0 = A 0 C m , m = -M, .... Again q m A 0 and A 0 have no common eigenvalue and hence C m = 0 if m = 0. Thus B2 (x) is also a constant and the theorem is proved in case 2Q as well.

Proof of Theorem 12: Case 2M

In case 2M, it is more convenient to use different notation. We consider y(x p ) = A(x)y(x), y(x q ) = B(x)y(x) (34)

with multiplicatively independent positive integers p and q and A(x), B(x) ∈ GL n (C(x)) satisfying the consistency condition

A(x q )B(x) = B(x p )A(x). (35) 
We want to show that there exist G(x) ∈ GL n (K) and commuting A 0 , B 0 ∈ GL n (C) such that the gauge transformation y = G(x)z reduces (34) to

z(x p ) = A 0 z(x), z(x q ) = B 0 z(x). ( 36 
)
The proof is more involved than in cases 2S and 2Q because there are three fixed points of the mapping x → x p , namely 0, 1, ∞, because solutions holomorphic in some neighborhood of the origin (resp. ∞) can only be extended using (34) to the unit disk (resp. the annulus |x| > 1) and because the behavior of the solutions of Mahler systems near 0 and ∞ is not well understood. The consistency condition (35) is crucial and will be used many times. The plan is as follows. In a first step we prove that any formal vectorial solution of a system (34) satisfying ( 35) is rational and deduce the statement of the theorem under the additional hypothesis that x = 0 is a regular singular point of y(x p ) = A(x)y(x), i.e. there is a formal series G 0 (x) ∈ GL n ( K), K = r∈N * C[[x 1/r ]][x -1/r ], such that the gauge transformation y = G 0 (x)z reduces the equation to one with a constant coefficient matrix. In a second step, we prove that x = 0 is always regular singular for a consistent system (34), (35) thus completing the proof. Proposition 19. In case 2M, consider the system (34) satisfying the consistency condition (35) and suppose that g(x)

∈ (C[[x]][x -1 ]) n is a formal vectorial solution. Then g(x) ∈ C(x) n .
Corollary 20. In case 2M, consider the system (34) satisfying the consistency condition (35) and suppose that the point x = 0 for the first equation of ( 34) is regular singular. Then (34) is equivalent over K = C({x 1/s | s ∈ N * }) to a system (36) with constant invertible commuting A 0 and B 0 .

Remark: The Proposition could be deduced from the last part of Corollary 15, i.e. from Theorem 1.1 of [START_REF] Adamczewski | A problem about Mahler functions[END_REF]. Indeed, consider the C(x)-subspace space of C[[x]][x -1 ] generated by the components of g(x). By (34), it is invariant under σ 1 , σ 2 and it follows as usual that each component of g(x) satisfies a system of two scalar linear pand q-Mahler equations and hence is rational by the Theorem 1.1 of [START_REF] Adamczewski | A problem about Mahler functions[END_REF].

Conversely, Theorem 1.1 of [START_REF] Adamczewski | A problem about Mahler functions[END_REF] can be deduced from Proposition 19: Given a formal solution f (x) of a system [START_REF] Dreyfus | Functional relations of solutions of qdifference equations[END_REF], the first part of the proof of Corollary 15 constructs a system (34) satisfying the consistency condition (35) having a solution vector in (C[[x]][x -1 ]) n . As this solution vector is actually a basis of some vector space containing f (x), we can assume that one of its components is f (x). Proposition 19 then yields that f (x) is rational.

Observe that Theorem 12 in case 2M (and hence also the first part of Corollary 15) is not an immediate consequence of the result of [START_REF] Adamczewski | A problem about Mahler functions[END_REF] because it is not clear a priori that the point 0 is regular singular under the hypotheses of the theorem. This statement is the contents of Proposition 23.

Proof of Corollary 20. We consider a formal series G 0 (x) ∈ GL n ( K) reducing y(x p ) = A(x)y(x) to z(x p ) = A 0 z(x) with a constant invertible matrix A 0 . This means

G 0 (x p ) = A(x)G 0 (x)A -1 0 . ( 37 
)
By a change of variables x = t r , if necessary, we can assume that G 0 (x)

∈ GL n ( k), k = C[[x]][x -1 ] (we do not use that A(x), B(x)) are in C(x r ) then).
Applying the gauge transformation y = G 0 (x)z to the second equation y(x q ) = B(x)y(x), we obtain z(x q ) = B(x)z(x) with some B(x) ∈ GL n ( K) satisfying the consistency condition A 0 B(x) = B(x p )A 0 . Using the series expansion of B(x), it is readily shown that B(x) must be constant and commutes with A 0 . We write B(x) =: B 0 . Thus G 0 (x) also satisfies

G 0 (x q ) = B(x)G 0 (x)B -1 0 . (38) 
The system (37), (38) can be considered as a vectorial system

Y (x p ) = Ā(x)Y (x), Y (x q ) = B(x)Y (x),
where Y (x) has coefficients in gl n (C) ∼ C n 2 and Ā(x), B(x) are the matrices of the linear operators mapping Z to A(x)ZA -1 0 respectively B(x)ZB -1 0 . This system satisfies the consistency condition, because A(x) and B(x) do and A 0 , B 0 commute. Now Proposition 19 can be applied to its formal solution G 0 (x) and we obtain that G 0 (x) has rational entries.

Proof of Proposition 19. We first show that g(x) is actually convergent. This could be deduced from [START_REF] Randé | Équations fonctionnelles de Mahler et applications aux suites prégulières[END_REF], section 4. For the convenience of the reader, we provide a short proof.

To do that, we truncate g(x) at a sufficiently high power of x to obtain h(x) ∈ gl n (C[x][x -1 ]) and introduce r(x) = h(x) -A(x) -1 h(x p ) and g(x) = g(x)h(x). Then we have g

(x) = A(x) -1 g(x p ) -r(x). (39) 
We denote the valuation of A(x) -1 at the origin by s ∈ Z and introduce Ã(x) = x -s A(x) -1 which is holomorphic at the origin. First choose M ∈ N such that pM + s > M and h(x) such that g(x)h(x) has at least valuation M. Then by (39), r(x) also has at least valuation M. Now consider R > 0 such that Ã(x) is holomorphic and bounded on D(0, R). Then consider for positive ρ < min(R, 1) the vector space E ρ of all series F (x) = ∞ m=M F m x m such that ∞ m=M |F m |ρ m converges and define the norm |F (x)| ρ as this sum. Then E ρ equipped with | | ρ is a Banach space and the existence of a unique solution of (39) in E ρ for sufficiently small ρ > 0 follows from the Banach fixed-point theorem using that

|x s F (x p )| ρ ≤ ρ M p+s-M |F (x)| ρ for F (x) ∈ E ρ .
This proves the convergence of g(x) and hence of g(x).

By (37), rewritten g(x) = A(x) -1 g(x p )A 0 , the function g can only be extended analytically to a meromorphic function on the unit disk. As we want to extend it beyond the unit disk, we use the change of variables x = e t , u(t) = y(e t ) and obtain a system of q-difference equations

u(pt) = Ā(t)u(t), u(qt) = B(t)u(t) (40) 
with Ā(t) = A(e t ), B(t) = B(e t ). It satisfies the consistency condition

Ā(qt) B(t) = B(pt) Ā(t). (41) 
We are not in case 2Q, however, because Ā(t), B(t) are not rational in t, but rational in e t .

Nevertheless, the local theory at the origin used in the proof of Lemma 18 applies to the present consistent system. In particular, we know that the origin is a regular singular point in case 2Q. We therefore obtain a matrix A 1 with eigenvalues λ in the annulus

1 ≤ |λ| < p and G 1 (t) ∈ GL n (C{t}[t -1 ]) such that u = G 1 (t)v reduces the first equation of (40) to v(pt) = A 1 v(t). This means G 1 (pt) = Ā(t)G 1 (t)A -1 1 for small t. (42) 
Applying the same gauge transformation to the second equation of (40) yields an equation v(qt) = B(t)v(t) with some B(t) ∈ GL n (C{t}[t -1 ]). It satisfies the consistency condition A 1 B(t) = B(pt)A 1 . As at the end of the proof in case 2Q, we expand

B(t) = ∞ m=m 0 C m t m . The coefficients satisfy A 1 C m = C m (p m A 1 ), m ≥ m 0 .
As A 1 and p m A 1 have no common eigenvalue unless m = 0, we obtain that B(t) =: B 1 is constant and commutes with A 1 . We note the second equation satisfied by

G 1 G 1 (qt) = B(t)G 1 (t)B -1 1 for small t. ( 43 
)
Lemma 21. The functions G 1 (t) ±1 can be continued analytically to meromorphic functions on C and there exists δ > 0 such that both can be continued analytically to the sectors {t ∈ C * | δ < arg(±t) < 2δ}.

Proof of the lemma. Let M be the set of poles of Ā(t) ±1 , i.e. the set of t such that e t is a pole of A(x) or A(x) -1 . Note that M is 2πi-periodic, has no finite accumulation point and is contained in some vertical strip {t ∈ C | -D < Re t < D}. By (42), G 1 (t) ±1 can be continued analytically to C * \ (M • p N ) and thus to meromorphic functions on C which we denote by the same name. By construction, G 1 (t) ±1 are also analytic in some punctured neighborhood of the origin. By the properties of M, the infimum of the | Re t 1 | on the set of all t 1 ∈ M having nonzero real part is a positive number. As M is contained in some vertical strip there exist sectors {t ∈ C * | δ < arg(±t) < 2δ} disjoint to M and hence to M • p N . Therefore G 1 (t) ±1 can be analytically continued to these sectors and the lemma is proved.

Consider now the function d(t) = G 1 (t) -1 g(e t ). By Lemma 21 and because g(x) is holomorphic in some punctured neighborhood of x = 0, d(t) is defined and holomorphic for some sector S = {t ∈ C | |t| > K, π + δ < arg t < π + 2δ}. By (34), (42), and (43) it satisfies

d(pt) = A 1 d(t), d(qt) = B 1 d(t) for t ∈ S. (44) 
To solve (44), consider a matrix L 1 commuting with B 1 such that p

L 1 = A 1 . Put F (t) = t -L 1 d(t). Then F (pt) = F (t), F (qt) = B1 F (t) for t ∈ S (45) 
where B1 = B 1 q -L 1 . Thus H(s) = F (e s ) is log(p)-periodic on the half-strip B = {s ∈ C | Re s > log(K), π + δ < Im s < π + 2δ} and can be expanded in a Fourier series. This implies that

F (t) = ∞ ℓ=-∞ F ℓ t 2πi log(p) ℓ for t ∈ S. (46) 
The second equation of (45) yields conditions on the Fourier coefficients

F ℓ exp 2πi log(q) log(p) ℓ = B1 F ℓ for ℓ ∈ Z.
Therefore F ℓ = 0 unless exp 2πi log(q) log(p) ℓ is an eigenvalue of B1 . Since p and q are multiplicatively independent, the quotient log(q) log(p) is irrational and hence exp 2πi log(q) log(p) is not a root of unity. Therefore all the numbers exp 2πi log(q) log(p) ℓ , ℓ ∈ Z are different and only finitely many of them can be eigenvalues of B1 . This shows that the Fourier series (46) has finitely many terms and thus F (t) can be analytically continued to the whole Riemann surface Ĉ of log(t). The same holds for d(t) = t L 1 F (t).

We conclude using Lemma 21 that g(e t ) = G 1 (t)d(t) can be analytically continued to a meromorphic function on Ĉ. As g(e t ) is 2πi-periodic, this implies that g(e t ) can be continued analytically to a meromorphic function on C. The formula and Lemma 21 also imply that g(e t ) is analytic in the sector S = {t ∈ C * | δ < arg t < 2δ}. As this sector contains some half strip {t ∈ C | Re t > L, µ Re t < Im t < µ Re t + 3π} for some positive L, µ which has vertical width larger than 2π and g(e t ) is 2πi-periodic, its poles are contained in some vertical strip {t ∈ C | -L < Re t < L}. For the function g(x) this means that it can be continued analytically to a meromorphic function on C with finitely many poles. We denote the extension by the same name.

The proposition is proved once we have shown that g(x) has polynomial growth as |x| → ∞. This is done as in the proof of Theorem 4.2 in [START_REF] Randé | Équations fonctionnelles de Mahler et applications aux suites prégulières[END_REF]. Consider r 0 > 1 such that g(x) and A(x) are holomorphic on the annulus |x| > r 0 /2. There are positive numbers K, M such that |A(x)| ≤ K|x| M for |x| ≥ r 0 . Consider now the annuli For later use, we note another corollary of Proposition 19.

A j = {x ∈ C | r p j 0 ≤ |x| < r p j+1 0 }, j = 0, 1, ...
Corollary 22. Consider multiplicatively independent positive integers p, q. Let A(x) and B(x) be two matrices with polynomial entries and constant determinant such that the consistency condition (35) holds. Then there exists a matrix G(x) with polynomial entries and constant determinant such that G(0) = I and

A(x) = G(x p ) A(0) G(x) -1 , B(x) = G(x q ) B(0) G(x) -1 .
As an application, consider two polynomials a(x), b(x) without constant term satisfying with some polynomial g(x) without constant term. We obtain

a(x q ) -a(x) = b(x p ) -b(x).
a(x) = g(x p ) -g(x), b(x) = g(x q ) -g(x).
In the case of p, q without common divisor, the existence of such a polynomial g(x) can be proved directly. Under the present hypothesis that p and q are multiplicatively independent, this seems not elementary. A similar reasoning will appear in the proof of Corollary 23.

Proof of Corollary 22. Putting G(x) = I + H(x), the first equation of the statement is equivalent to H(x) = A(x) -1 A(0) -I + A(x) -1 H(x p )A(0).

Using the fixed point principle in M = gl n (x C[[x]]) equipped with the x-adic norm, it follows that the latter equation has a unique solution in M. This also follows from Proposition 34 of [START_REF] Roques | On the algebraic relations between Mahler functions[END_REF]. Hence there is a unique formal series G(x) = I + ... such that A(x) = G(x p ) A(0) G(x) -1 . Now put B(x) = G(x q ) -1 B(x)G(x). As A(x), B(x) satisfy the consistency condition, so do A 0 and B(x). Again a series expansion yields that B(x) =: B 0 is constant.

As in the proof of Corollary 20, the formal solution G(x) ∈ I + M of the system G(x p ) = A(x)G(x)A -1 0 , G(x p ) = B(x)G(x)B -1 0 can be considered as a formal (matricial) solution of a consistent system (34) and thus must have rational entries by Proposition 19.

Unfortunately not every Mahler system is regular singular.

Example. The system y(x p ) = A(x)y(x), A(x) = 1 0

x -1 2 is not regular singular at the origin. Otherwise, there exist an invertible matrix T (x) ∈ GL If T 12 (x) = 0, we obtain b = 1 and thus a = 2. This means that C has the distinct eigenvalues 1, 2 and hence with an additional transformation, we can replace it by diag(1, 2) and as a consequence, T (x) is replaced by some lower triangular matrix. If T 12 (x) = 0, we immediately obtain that a = 1, b = 2 and hence we can replace C by diag(1, 2) also in this case.

Thus we can assume in both cases that C = diag(1, 2) and that T (x) is lower triangular and hence its diagonal elements are constants. Now put T (x) = c 0 u(x) d

. Then u(x) ∈ E satisfies cx -1 +2u(x) = u(x p ). We now consider the vector space F of all formal Laurent series ∞ j=-∞ a j x -j/r . Then u(x) ∈ F and also v(x) := -c ∞ k=0 2 -k-1 x -p k ∈ F . As v(x) satisfies cx -1 + 2v(x) = v(x p ), the difference d(x) = u(x)v(x) ∈ F satisfies 2d(x) = d(x p ). In view of the series expansions, this means that d(x) =: d is a constant. We obtain that u(x) = v(x) + d in contradiction to u(x) ∈ E. 

As gauge transformations preserve the consistency condition, it also holds for Ã(x) and B(x).

We now prove the Proposition by induction. In case n = 1, it has been shown in Proposition 23 of [START_REF] Roques | On the algebraic relations between Mahler functions[END_REF] that y(x p ) = A(x)y(x) is always regular singular. Indeed, if A(x) = ax s b(x), where a ∈ C * , s ∈ Q and b(x) ∈ C[[x]] with b(0) = 1, then there is a formal series c(x) ∈ C[[x]] with c(0) = 1 satisfying c(x p ) = b(x)c(x) as a power series expansion readily shows. Thus y(x p ) = A(x)y(x) is equivalent to z(x p ) = ax s z(x) and by z = x s p-1 v, this is equivalent to v(x p ) = a v(x). So suppose that the statement has been proved for all dimensions smaller than n. Given A(x), B(x) as in the hypothesis, we now invoke Lemma 24. When Ã(x) = dI, there is nothing to do. Otherwise, we observe that the couples A 11 (x), B 11 (x) respectively A 22 (x), B 22 (x) also satisfy the consistency condition and therefore by the induction hypothesis, x = 0 is a regular singular point of u(x p ) = A jj (x)u(x), j = 1, 2. Thus there exists gauge transformations u = F jj (x)v that transform the systems to constant ones v(x p ) = Ãjj v(x), j = 1, 2. Performing the same gauge transformations on the systems u(x q ) = B jj (x)u(x), j = 1, 2 yields systems v(x q ) = Bjj (x)v(x) with Bjj (x) having coefficients in K. As we still have the consistency condition, we have Ãjj Bjj (x) = Bjj (x p ) Ãjj , j = 1, 2.

As used before, this implies that the Bjj (x) are also constant and commute with Ãjj . Hence using the block diagonal matrix F (x) = diag(F 11 (x), F 22 (x)), the system (47) is reduced to one, where additionally A jj , B jj are constant and commute.

It remains to show that for a system (47), (48) with constant commuting A jj , B jj satisfying the consistency condition, the point x = 0 is a regular singular point of the first equation of (47). Observe that the consistency condition reduces to an equation for the lower left block 

We are interested in the polar parts that have to be removed. They are polynomial in x -1/r for some positive integer r. So we replace x = ξ -r and consider the matrices multiplication B(x)S(x) adds multiples of columns r+1, ..., n to the r-th column of B(x) -this is not really interesting. The left multiplication by S(x q ) -1 substracts 1 d b jℓ (x) times row r from row j of the resulting matrix for j = r + 1, ..., n. This means in particular that the ℓ-th column of B (2) (x) is a multiple of the r-th unit vector.

We consider now the entries p

(2) jℓ (x), j = r + 1, ..., n, of the product P (2) (x) = A (2) (x q )B (2) (x) = B (2) (x p )A (2) (x). As the ℓ-th columns of B (2) (x) and A (2) (x) are multiples of unit vectors, we find that p jr (x) = 0 for j = r + 1, ..., n. Thus the r-th column of A (2) (x) equals the r-th unit vector.

If r < nm then we can exchange the r-th and (r + 1)-th rows and columns of A (2) (x) and B (2) (x) and obtain A (3) (x), B (3) (x) which still satisfy the consistency condition, A (3) (x) is lower triangular with constant diagonal and lower right block I m , but now the additional column that is a unit vector is the (r + 1)-th column. If r + 1 < nm then we repeat the modification. In this way, we obtain a system v(x p ) = A (4) (x)v(x), v(x q ) = B (4) (x)v(x) equivalent to (34) over K, where A (4) (x) is still lower triangular with constant diagonal but now has a lower right block I m+1 , i.e. its size has increased. Thus we can start all over and, after a finite number of steps, we either reach a situation (47), (48) proving the lemma or we stop with Ã(x) = I n . This proves the Lemma and completes the proof of Theorem 12 in case 2M.

The work of the second author was supported by a grant from the Simons Foundation (#349357, Michael Singer).

  Let D(x) be the connection matrix defined by Y S (x) = Y T (x)D(x). It is meromorphic on C with finitely many poles and 1-periodic. Hence it is entire. Moreover, as Y S (x), Y T (x) and (Y T ) -1 (x), it has at most exponential growth as |Im x| → ∞ in the intersections of S and T . Hence the Fourier series of D(x) has at most finitely many terms. Let us write D(x) = k 0 k=-k 0 D (k) e 2πikx . The blocks of D(x) corresponding to the subdivision of Q(x) are denoted by D i,j (x), those of D (k) by D (k) i,j . Write Y S = (Y S 1 |...|Y S s ) and Y T = (Y T 1 |...|Y T s ) in corresponding block columns. We claim that D(x) is constant. To show this, fix some j. Then

  = 0 if k < 0. Otherwise the right hand side would grow more rapidly as |x| → ∞, arg(x) = ψ than the left hand side. For the line arg(x) = ψ + π, the exponentials e 2πikx are ordered inversely with respect to growth as |x| → ∞.Here we find that D (k) m,j = 0 if k > 0. Altogether we obtain that D(x) is constant. The rest of the proof is identical to the one of Proposition 11; the matrix C + = D(x).

  covering the annulus |x| ≥ r 0 . Any x ∈ A j can be written x = ξ p j with some ξ ∈ A 0 . Then we estimate using (34) and the inequality for|A(x)| |g(x)| = |g(ξ p j )| ≤ K j |ξ| p j-1 • • • |ξ| p |ξ| M max r 0 ≤|ξ|≤r p 0 |g(ξ)|.Hence there is a positive constant L such that |g(x)| ≤ L K j |x| M p-1 for x ∈ A j . Assuming log(r 0 ) ≥ 1 without loss in generality, we find that j ≤ log(log(|x|))/ log(p) for x ∈ A j . Hence there exists d > 0 such that|g(x)| ≤ L (log(|x|)) d |x| M p-1 for |x| > r 0and the proof of Proposition 19 is complete.

1 .

 1 This is the consistency condition for the matrices A(x) The above Corollary yields the existence of a polynomial matrix G(x) with the stated properties. The conditions encoded in A(x)G(x) = G(x p ) and G(0) = I imply that G(x) = 1 0 g(x) 1

  2 (E), E = C[[x 1/r ]][x -1/r ] for some positive integer r and some constant triangular matrix C = a 0 c b with nonzero a, b such that A(x)T (x) = T (x p )C. For the determinants this means that 2 det(T (x)) = ab det(T (x p )); hence det(T (x)) is a constant and ab = 2. Considering the upper right elements of both sides implies T 12 (x) = T 12 (x p )b.

  Fortunately, our matrices A(x) are very special. The proof of Theorem 12 in case 2M is complete, once we have shownProposition 23. Consider A(x), B(x) ∈ GL n ( K), K = r∈N * C[[x 1/r ]][x -1/r ] satisfying the consistency condition (35). Then x = 0 is a regular singular point of y(x p ) = A(x)y(x).Proof. We will show later Lemma 24. Under the hypotheses of Proposition 23, there exists a gauge transformation y = H(x)z, H(x) ∈ GL n ( K), that changes (34) intoz(x p ) = Ã(x)z(x), z(x q ) = B(x)z(x), (47)where Ã(x) = d I with some d ∈ C or Ã(x), B(x) are both lower block triangular with blocks of the same size, i.e. there exist m ∈ {1, ..., n-1} and A 11 (x), B 11 (x) ∈ GL m ( K),A 22 (x), B 22 (x) ∈ GL n-m ( K), A 21 (x), B 21 (x) ∈ Kn-m,m such that Ã(x) = A 11 (x) 0 A 21 (x) A 22 (x) , B(x) = B 11 (x) 0 B 21 (x) A 22 (x).

A 21 (

 21 x q )B 11 + A 22 B 21 (x) = B 21 (x p )A 11 + B 22 A 21 (x). (49) This suggests splitting A 21 (x), B 21 (x) into their polar parts A - 21 (x), B - 21 (x) and their regular parts A + 21 (x), B + 21 (x) containing the terms with negative respectively non-negative exponents. Then (49) splits into two equations A ± 21 (x q )B 11 + A 22 B ± 21 (x) = B ± 21 (x p )A 11 + B 22 A ± 21 (x).

  polynomial in ξ, have constant determinant and satisfy the consistency condition because of (50). Here Corollary 22 applies and yields a polynomial matrix G(ξ) with constant determinant and G(0) = I such that A -(ξ)G(ξ) = G(ξ p )A -(0).Writing down the blocks ofG(ξ) shows that G(ξ) = I m 0 G 21 (ξ) I n-m and A - 21 (ξ -r ) + A 22 G 21 (ξ) = G 21 (ξ p )A 11 . Then the transformation z = G(x -1/r )w changes z(x p ) = Ã(x)z(x) into w(x p ) = Ǎ(x)w(x), where G(x -p/r ) Ǎ(x) = Ã(x)G(x -1/r ).Using the block structure of Ã(x) and G(ξ), this implies that Ǎ(x) = A 11 0 Ǎ21 (x) A 22 where Ǎ21 (x) = A 21 (x) + A 22 G 21 (x -1/r ) -G 21 (x -p/r )A 11 = A 21 (x) -A - 21 (x) = A + 21 (x).

( 2 )

 2 jr (x q )d = b

( 2 )

 2 jℓ (x p )a ℓℓ = 0 and hence a

The result of[START_REF] Bézivin | Sur les équations fonctionelles p-adiques aux qdifférences[END_REF] needs some restrictions, see below Corollary 14.

All fields considered in this work are of characteristic zero.

N denotes the set of non-negative integers in the present text.

By the way, as the entries of z form a C(x)-basis of the space W of the proof of Lemma 3, we have t = 1.

Although some authors use this term to mean that the equation has a fundamental solution matrix holomorphic at x 1 , we will use the above extended meaning throughout this work.

i.e. there are no nonzero integers n j such that q n2 2 = q n11 .

See[START_REF] Gantmacher | The theory of matrices[END_REF], chapter V, for the extension of entire functions to matrices.

The restriction of the domain causes no additional problem.

Recall that solutions of σ 1 -difference equations remain solutions when multiplied by 1-periodic functions.

Proof. The proof is analogous to that of Lemma 16. Only the sets of possible poles are now (M • q -N ) ∩ S respectively (M • q -N 2 • q -N ) ∩ S and their intersection is empty for convenient N because of the condition imposed on q and q 2 in case 2Q. We leave it to the reader to fill in the details.

Concerning the behavior at 0 (and similarly at ∞), it is known that there exists a formal gauge transformation Z = G Y , G ∈ GL n (C[[x 1/s ]][x -1/s ]), s ∈ N * , that reduces [START_REF] Van Der Put | Galois theory of linear differential equations[END_REF] to a system σ(Z) = x D A 0 Z, where D is a diagonal matrix with entries in 1 s Z and A 0 ∈ GL n (C) such that any eigenvalue λ of A 0 satisfies 1 ≤ |λ| < |q| 1/s , moreover D and A 0 commute. If we write D = diag(d 1 I 1 , ..., d r I r ) with distinct d j and I j identity matrices of an appropriate size, then A 0 = diag(A 1 0 , ..., A r 0 ) with diagonal blocks A j 0 of corresponding size. D and A 0 are essentially unique, i.e. except for a permutation of the diagonal blocks and passage from some A j 0 to a conjugate matrix. If D happens to be 0, then s can be chosen to be 1 and G is convergent (see [START_REF] Van Der Put | Galois theory of difference equations[END_REF], ch. 12, [START_REF] Adams | Linear q-difference equations[END_REF], [START_REF] Carmichael | The General Theory of Linear q-Difference Equations[END_REF]).

As explained in the paragraph following the proof of Corollary 15, our system [START_REF] Van Der Put | Galois theory of linear differential equations[END_REF] 

2 A 0 and there is a diagonal matrix F with entries in 1 s Z commuting with D and A 0 such that the gauge transformation W = x F V reduces the latter system to σ(V ) = x D Ã0 V , where Ã0 = q -F q D 2 A 0 has again eigenvalues with modulus in [1, |q| 1/s [. Now we write Ã0 = diag( Ã1 0 , ..., Ãr 0 ) and fix some j ∈ {1, ..., r}. If a j 1 , ..., a j r j are the eigenvalues of A j 0 then q -f j q d j 2 a j ℓ , ℓ = 1, ..., r j , are those of Ãj 0 . By the uniqueness of the reduced form, the mapping x → q -f j q d j 2 x induces a permutation of the eigenvalues of A j 0 . If we apply it several times, if necessary, we obtain the existence of some ℓ ∈ {1, ..., r j } and of some positive integer k such that q -kf j q kd j 2 a j ℓ = a j ℓ . Due to our condition on q and q 2 this is only possible if d j = 0. Thus we have proved that D = 0.

Hence 0 and ∞ are regular singular points of [START_REF] Van Der Put | Galois theory of linear differential equations[END_REF]. There is a gauge transformation [START_REF] Van Der Put | Galois theory of linear differential equations[END_REF] in some neighborhood of 0 in Ĉ. By Lemma 18, this solution can be continued analytically to a meromorphic function on Ĉ such that the projections of its poles to C * form a finite set. This implies that G 0 (x) -1 can be continued to a meromorphic function on C with finitely many poles. We use the same name for this extension. In some annulus K < |x| < ∞, K sufficiently large, it can be expanded in a Thus we have shown that y(x p ) = A(x)y(x) is equivalent over K to w(x p ) = Ǎ(x)w(x) where all entries of the coefficient matrix Ǎ(x) have positive valuation. As shown in the beginning of the proof of Corollary 22 and stated in Proposition 34 of [START_REF] Roques | On the algebraic relations between Mahler functions[END_REF], this implies that x = 0 is a regular singular point of the latter system and hence also of the given system y(x p ) = A(x)y(x). This completes the proof of Proposition 23.

Proof of Lemma 24. By Theorem 24 of [START_REF] Roques | On the algebraic relations between Mahler functions[END_REF], there exists a gauge transformation y = T (x)z, T (x) ∈ GL n ( K) that changes y(x p ) = A(x)y(x) into z(x p ) = A (1) (x)z(x) where A (1) (x) ∈ GL n ( K) is lower triangular and has constant diagonal entries. Performing the same gauge transformation on the second equation y(x q ) = B(x)y(x), we can assume without loss of generality that the given matrix A(x) additionally has this property. In the sequel, we denote the entries of A(x) by a jk (x), those of B(x) by b jk (x), j, k = 1, ..., n, and, without mentioning it again, do the same for other matrices. We omit the argument "(x)" if an entry is constant.

If the diagonal entries a jj , j = 1, ..., n, were distinct, it could be shown from the consistency condition that B(x) is also lower triangular thus proving the Lemma -in fact, this would first be done for b 1n (x) as the consistency condition implies that a 11 b 1n (x) = b 1n (x p )a nn and thus b 1n (x) = 0 if a 11 = a nn ; then the same follows successively for the other entries of B(x) above the diagonal in a similar way. Unfortunately, we have no information about these diagonal entry.

Dividing A(x) by a nn , we can assume that a nn = 1. Let m ≥ 1 be the maximal length of a block I m in the lower right corner of A(x), i.e. we start with

If all entries b jk (x) vanish for j = 1, ...nm, k = nm + 1, ..., n, then B(x) is lower block triangular with blocks of the same size as A(x) and the lemma is proved. Otherwise there is an entry b rℓ (x) = 0 with 1 ≤ r ≤ nm, nm < ℓ ≤ n. By going over to the uppermost nonzero entry in the ℓ-th column of B(x), we can assume that b jℓ (x) = 0 for j = 1, ..., r -1 if r > 1.

We express the element p rℓ (x) of P (x) = A(x q )B(x) = B(x p )A(x) in two ways and find p rℓ (x) = a rr b rℓ (x) = b rℓ (x p )a ℓℓ . This yields that b rℓ (x) is constant and a rr = a ℓℓ = 1. We denote d = b rℓ (x).

Consider now the following matrix S(x): Its r-th column is 1 d B ℓ (x 1/q ), where B ℓ (x) denotes the ℓ-th column of B(x); the other columns of S(x) are the unit vectors e 1 , ..., e r-1 respectively e r+1 , ..., e n . Observe that S(x) is lower triangular. We now perform the gauge transformation y = S(x)z on our system and obtain A (2) (x) = S(x p ) -1 A(x)S(x) and B (2) (x) = S(x q ) -1 B(x)S(x) which still satisfy the consistency condition. A (2) (x) is still lower triangular and has unchanged diagonal entries and lower right block. The right