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Abstract. This paper studies the robust finite-time H∞ control for a class of
nonlinear systems with time-varying delay and disturbances via output feed-

back. Based on the Lyapunov functional method and a generalized Jensen

integral inequality, novel delay-dependent conditions for the existence of out-
put feedback controllers are established in terms of linear matrix inequalities

(LMIs). The proposed conditions allow us to design the output feedback con-

trollers which robustly stabilize the closed-loop system in the finite-time sense.
An application to H∞ control of uncertain linear systems with interval time-

varying delay is also given. A numerical example is given to illustrate the

efficiency of the proposed method.

1. Introduction. The concept of finite-time stability (FTS) (or short-time sta-
bility) introduced by Dorato [5] plays an important role in stability theory of dif-
ferential equations. A system is said to be finite-time stable if its state does not
exceed a certain threshold during a specified time interval. Compared with the
Lyapunov stability, finite-time stability concerns the boundedness of system during
a fixed finite-time interval. It is noted that, a system may be finite-time stable but
not Lyapunov asymptoticaly stable, and vice versa. A lot of interesting results on
finite-time stability and stabilization in the context of linear delay systems have
been obtained (see, e.g. [2, 8, 11, 14] and the references therein).

On the other hand, one of the most important problems is theH∞ control of time-
delay systems via output feedback controllers. The main principle of the output
feedback control is to utilize the measured output to excite the plant. Since the
controller can be easily implemented in practice, the output feedback control has
attracted a lot of attention over the past few decades and has been applied to many
areas for example, in motor engine control, constrained robotics, networked control
systems, communication and biological systems, etc. [1, 3, 6, 9, 15, 18, 21, 22].
So far, however, compared with numerous research results on Lyapunov stability
with H∞ control, few results on finite-time H∞ control have been obtained in the
literature.
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The finite-time H∞ control for switched linear systems with time-varying delay
has been studied in [19, 20], but the results were limited either to discrete-time
systems or to the systems with constant delays. In [12, 16] some delay-dependent
conditions for finite-time H∞ control are extended to linear systems with time-
varying delays, but the delay function is differentiable and the stabilizing control is
designed via state feedback.

In this paper, we propose a new design tool to solve the robust finite-time H∞
control for nonlinear systems with interval time-varying delays via output feedback
controls. The novel features here are that the interval time-varying delay is present
in the observation output, and the output feedback controllers to be designed must
satisfy some robust finite-time stability constraints on the closed-loop poles. Using
new generalized Jensen integral inequality we select a new simpler set of Lyapunov-
Krasovskii functionals to derive delay-dependent sufficient conditions for solving
robust finite-time H∞ control via output feedback controls. The conditions are
obtained in terms of LMIs, which can be determined by utilizing MATLABs LMI
Control Toolbox. The approach allows us to apply to H∞ control of uncertain linear
systems with interval non-differentiable time-varying delay.

The paper is organized as follows. The definition of FTS for nonlinear systems
with interval time-varying delays and the problem statement are given in Section
2. Sufficient conditions for designing output feedback controllers of finite-time H∞
control problem, an application to H∞ control of uncertain linear systems with
interval time-varying delay with numerical examples are given in Section 3.

2. Preliminaries. The following notations will be used throughout this paper,
R+ denotes the set of all nonnegative real numbers; Rn denotes the n− dimensional
space with the scalar product x>y and the vector norm ‖·‖; Rn×r denotes the space
of all matrices of (n × r)− dimension. A> denotes the transpose of A; a matrix
A is symmetric if A = A>; I denotes the identity matrix; λ(A) denotes the set of
all eigenvalues of A; λmax(A) = max{Re(λ) : λ ∈ λ(A)};λmin(A) = min{Re(λ) :
λ ∈ λ(A)};C1([−τ, 0],Rn) denotes the set of all Rn− valued continuously differen-
tiable functions on [−τ, 0];L2([0, T ],Rr) stands for the set of all square-integrable
Rr−valued functions on [0, T ]. The symmetric terms in a matrix are denoted by
∗. Matrix A is positive definite (A > 0) if (Ax, x) > 0 for all x 6= 0. The segment
of the trajectory x(t) is denoted by xt = {x(t + s) : s ∈ [−τ, 0]} with its norm
‖xt‖ = sup

s∈[−τ,0]
‖x(t+ s)‖.

Consider the following nonlinear control systems with time-varying delay and
disturbances 

ẋ(t) = A1x(t) +A2x(t− h(t)) +Bu(t) +Gw(t)

+f(t, x(t), x(t− h(t)), u(t), w(t))

z(t) = C1x(t) + C2x(t− h(t)), t ≥ 0,

x(t) = ϕ(t), t ∈ [−h2, 0],

(1)

where x(t) ∈ Rn, u(t) ∈ Rm, z(t) ∈ Rp are, respectively, the state, the control, the
observation vector, A1, A2 ∈ Rn×n, B ∈ Rn×m, G ∈ Rn×r, C1, C2 ∈ Rp×n are given
constant matrices. The delay function h(t) is continuous and satisfies

0 ≤ h1 ≤ h(t) ≤ h2, ∀t ≥ 0. (2)
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The initial function ϕ ∈ C1 ([−h2, 0],Rn) and the disturbance w(t) is a continuous
function satisfying ∫ T

0

w(t)>w(t)dt ≤ d. (3)

The nonlinear function f(t, x, y, u, w) is globally Lipschitzian in (x, y, u, w) such
that

∃a1, a2, a3, a4 > 0 : ‖f‖2 ≤ a1‖x‖2 + a2‖y‖2 + a3‖u‖2 + a4‖w‖2 (4)

for all x, y ∈ Rn, u ∈ Rm, w ∈ Rr.

Under the above assumptions on h(·), f(·) and the initial function ϕ(t), the sys-
tem (1) has a unique solution x(t, φ) on [0,+∞) (see [10], Theorem 1.2).

To study the robust finite-time H∞ control of the system (1), the following
definitions will be used later.

Definition 2.1 (Robust finite-time stabilization). For given positive numbers T, c1,
c2, c2 > c1, and a positive definite matrix R, the system (1) is said to be robustly
finite-time stabilizable w.r.t. (c1, c2, T,R) if there exists an output feedback con-
troller u(t) = Fz(t) such that the following condition holds for all disturbances
satisfying (3) and ∀t ∈ [0, T ]

max

{
sup

−h2≤s≤0
ϕ(s)>Rϕ(s), sup

−h2≤s≤0
ϕ̇(s)>Rϕ̇(s)

}
≤ c1 ⇒ x(t)>Rx(t) ≤ c2.

Definition 2.2 (Robust finite-time H∞ control). Given γ > 0, the robust finite-
time H∞ control problem for the systems (1) has a solution if

1. The system (1) is robustly finite-time stabilizable w.r.t. (c1, c2, T,R).
2. There is a number c0 > 0 such that

sup

∫ T
0
‖z(t)‖2dt

c0‖ϕ‖2 +
∫ T
0
‖w(t)‖2dt

≤ γ, (5)

where the supremum is taken over all ϕ ∈ C1([−h2, 0],Rn) and non-zero
disturbances w(.) satisfying (3).

We introduce the following technical well-known propositions for the proof of the
main result.

Proposition 1 (Schur complement lemma [4]). Given constant matrices X,Y, Z
with appropriate dimensions satisfying X = X> and Y = Y > > 0. Then X +
Z>Y −1Z < 0 if and only if (

X Z>

Z −Y

)
< 0.

Proposition 2 (Generalized Jensen integral inequality [17]). For a given matrix
R > 0, any differentiable function ϕ : [a, b] → Rn, then the following inequality
holds ∫ b

a

ϕ̇(u)Rϕ̇(u)du ≥ 1

b− a
(ϕ(b)− ϕ(a))>R(ϕ(b)− ϕ(a)) +

12

b− a
Ω>RΩ,

where Ω =
ϕ(b) + ϕ(a)

2
− 1

b− a

∫ b

a

ϕ(u)du.

3



3. Output feedback finite-time H∞ control. Before stating the main result,
the following notations of several matrices variables are defined for simplicity.

P = R1/2PR1/2, U1 = R1/2U1R
1/2, U2 = R1/2U2R

1/2, X1 = R1/2X1R
1/2,

X2 = R1/2X2R
1/2, S = R1/2SR1/2,

α1 = λmin(P ), α2 = λmax(P ) + h1λmax(U1) + h2λmax(U2) + 0.5h31λmax(X1)

+ 0.5h32λmax(X2) + 0.5(h2 − h1)2(h2 + h1)λmax(S),

α3 = λmax(P ) + h1λmax(U1) + h2λmax(U2) + 0.5h31λmax(X1) + 0.5h32λmax(X2)

+ 0.5(h2 − h1)2(h2 + h1)λmax(S2), Ψ1 = (Ψ1
ij)11×11, Ψ2 = (Ψ2

ij)6×11,

Ψ3 = diag

(
−0.5N,−0.5N,− 1

a3
N +

1

2a3
I,− 1

a3
N +

1

2a3
I,−0.5N,−0.5N

)
,

Ψ1
11 = PA1 +A>1 P + U1 + U2 + a1I + ηC>1 C1 − 4X1 − 4X2 +BKC1

+ C>1 K
>B> − 0.5BNB>, Ψ1

22 = −U1 − 4X1 − 4S,

Ψ1
33 = −U2 − 4X2 − 4S,Ψ1

44 = −8S + a2I + ηC>2 C2,

Ψ1
55 = h21X1 + h22X2 + (h2 − h1)2S − 2Q,Ψ1

66 = a4I − γηI,Ψ1
77 = −I,

Ψ1
88 = −12X1,Ψ

1
99 = −12X2,Ψ

1
10,10 = Ψ1

11,11 = −12S,Ψ1
12 = −2X1,

Ψ1
13 = −2X2,Ψ

1
14 = PA2 + ηC>1 C2,Ψ

1
15 = A>1 Q,Ψ

1
16 = PG,Ψ1

17 = P

Ψ1
18 = Ψ1

28 = 6X1,Ψ
1
19 = Ψ1

39 = 6X2,Ψ
1
24 = Ψ1

34 = −2S,Ψ1
45 = A>2 Q,Ψ

1
56 = QG,

Ψ1
2,11 = Ψ1

3,10 = Ψ1
4,10 = Ψ1

4,11 = 6S,Ψ1
57 = Q, and Ψ1

ij = 0 for the others,

Ψ2
11 = PB, Ψ2

12 = C>1 K
> − 0.5BN, Ψ2

13 = C>1 K
>, Ψ2

44 = Ψ2
45 = C>2 K

>,

Ψ2
56 = QB, Ψ2

ij = 0 for the others.

The following theorem gives a sufficient condition for robust finite-time H∞ control
via output feedback of the system (1).

Theorem 3.1. For given positive constants T, c1, c2, γ and a positive definite matrix
R, the robust finite-time H∞ control of the system (1) has a solution if there exist
a positive scalar η, symmetric positive definite matrices P,U1, U2, X1, X2, S,N and
matrices Q,K such that the following conditions hold

Ψ =

[
Ψ1 Ψ2

∗ Ψ3

]
< 0, (6)

α2c1 + γηd ≤ α1c2e
−ηT . (7)

The output feedback controller is given by u(t) = N−1Kz(t), t ≥ 0.

Proof. Consider the following Lyapunov-Krasovskii functional associated to the sys-

tem (1): V (t, xt) =
4∑
i=1

Vi(t, xt), where

V1(t, xt) =eηtx(t)>Px(t), V2(t, xt) =
2∑
i=1

eηt
∫ t

t−hi

x(s)>Uix(s)ds,

V3(t, xt) =
2∑
i=1

hie
ηt

∫ 0

−hi

∫ t

t+s

ẋ(τ)>Xiẋ(τ)dτds,
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V4(t, xt) =(h2 − h1)eηt
∫ −h1

−h2

∫ t

t+s

ẋ(τ)>Sẋ(τ)dτds.

It is not difficult to verify that

α1x(t)>Rx(t) ≤ V (t, xt), ∀t : 0 ≤ t ≤ T, (8)

V (0, x0) ≤ α2 sup
−h2≤s≤0

{
x(s)>Rx(s), ẋ(s)>Rẋ(s)

}
≤ α2c1, (9)

V (0, x0) ≤ α3‖ϕ‖2. (10)

Taking the derivative of Vi(t, x), i = 1, . . . , 4, along the solution of the system, we
get the following estimations

V̇1(t, xt) ≤ηV1 + eηt
(
x(t)>

(
PA1 +A>1 P + 2PBN−1B>P + C>1 F

>NFC1

)
x(t)

+ 2x(t)>PGw(t) + x(t− h(t))>C>2 F
>NFC2x(t− h(t))

+ 2x(t)>PA2x(t− h(t)) + 2x(t)>Pf(t, x, xh, u, w)
)
,

V̇2(t, xt) =ηV2 + eηt
(
x(t)>(U1 + U2)x(t)− x(t− h1)>U1x(t− h1)

− x(t− h2)>U2x(t− h2)
)
,

V̇3(t, xt) =ηV3 + eηt
(
ẋ(t)>(h21X1 + h22X2)ẋ(t)−

2∑
i=1

hi

∫ t

t−hi

ẋ(s)>Xiẋ(s)ds
)
.

Applying Proposition 2, we have

−hi
∫ t

t−hi

ẋ(s)>Xiẋ(s)ds ≤ −4x(t)>Xix(t)− 4x(t− hi)>Xix(t− hi)

− 4x(t)>Xix(t− hi)s+
12

hi
x(t− hi)>Xi

∫ t

t−hi

x(s)ds

+
12

hi
x(t)>Xi

∫ t

t−hi

x(s)d− 12

h2i

∫ t

t−hi

x(s)>dsXi

∫ t

t−hi

x(s)ds.

Hence,

V̇3(t,xt) ≤ ηV3 + eηt
(
ẋ(t)>(h21X1 + h22X2)ẋ(t) + x(t)>(−4X1 − 4X2)x(t)

− 4x(t− h1)>X1x(t− h1)− 4x(t− h2)>X2x(t− h2)− 4x(t)>X1x(t− h1)

− 4x(t)>X2x(t− h2) +
2∑
i=1

12

hi
x(t)>Xi

∫ t

t−hi

x(s)ds

+
2∑
i=1

12

hi
x(t− hi)>Xi

∫ t

t−hi

x(s)ds−
2∑
i=1

12

h2i

∫ t

t−hi

x(s)>dsXi

∫ t

t−hi

x(s)ds
)
.

Using the same calculation as in V̇3(t, xt), we get

V̇4(t, xt) =ηV4 + eηt
(

(h2 − h1)2ẋ(t)>Sẋ(t)− (h2 − h1)

∫ t−h(t)

t−h2

ẋ(s)>Sẋ(s)ds

− (h2 − h1)

∫ t−h1

t−h(t)
ẋ(s)>Sẋ(s)ds

)
≤ηV4 + eηt

(
(h2 − h1)2ẋ(t)>Sẋ(t)− 8x(t− h(t))>Sx(t− h(t))
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− 4x(t− h2)>Sx(t− h2)− 4x(t− h1)>Sx(t− h1)− 4x(t− h(t))>Sx(t− h2)

− 4x(t− h(t))>Sx(t− h1)− 12

(h2 − h(t))2

∫ t−h(t)

t−h2

x(s)>dsS

∫ t−h(t)

t−h2

x(s)ds

− 12

(h(t)− h1)2

∫ t−h1

t−h(t)
x(s)>dsS

∫ t−h1

t−h(t)
x(s)ds

+
12

h2 − h(t)
x(t− h(t))>S

∫ t−h(t)

t−h2

x(s)ds+
12

h2 − h(t)
x(t− h2)>S

∫ t−h(t)

t−h2

x(s)ds

+
12

h(t)− h1
x(t− h1)>S

∫ t−h1

t−h(t)
x(s)ds+

12

h(t)− h1
x(t− h(t))>S

∫ t−h1

t−h(t)
x(s)ds

)
.

Multiplying both sides of (1) by eηt2ẋ(t)>Q from the right, we obtain

eηt
(
− 2ẋ(t)>Qẋ(t)+2ẋ(t)>Q(A1 +BFC1)x(t) + 2ẋ(t)>Q(A2 +BFC2)x(t− h(t))

+ 2ẋ(t)>QGw(t) + 2ẋ(t)>Qf(t, x, xh, u, w)
)

= 0.

Consequently,

0 ≤ eηt
(
ẋ(t)>(−2Q+ 2QBN−1B>Q)ẋ(t) + x(t)>C>1 F

>NFC1x(t)

+ 2ẋ(t)>QA1x(t) + x(t− h(t))>C>2 F
>NFC2x(t− h(t))

+ 2ẋ(t)>QA2x(t− h(t)) + 2ẋ(t)>QGx(t) + 2ẋ(t)>Qf(t, x, xh, u, w)
)
. (11)

Adding the inequality (11) and the zero term

eηt
(
f(t, x, xh, u, w)>f(t, x, xh, u, w)− f(t, x, xh, u, w)>f(t, x, xh, u, w)

+ γηw(t)>w(t)− γηw(t)>w(t) + ηz(t)>z(t)− ηz(t)>z(t)
)

= 0

to V̇ (t, xt), and using the estimation (4) for f(t, x, xh, u, w), and noting that

f(t, x, xh, u, w)>f(t, x, xh, u, w) ≤ x(t)>
(
a1I + 2a3C

>
1 F
>FC1

)
x(t) + a3w(t)>w(t)

+ x(t− h(t))>
(
a2I + 2a3C

>
2 F
>FC2

)
x(t− h(t)),

ηz(t)>z(t) =ηx(t)>C>1 C1x(t) + 2ηx(t)>C>1 C2x(t− h(t))

+ ηx(t− h(t))>C>2 C2x(t− h(t)),

we have

V̇ (t, xt) ≤ ηV (t, xt) + eηt
(
x(t)>(PA1 +A>1 P + U1 + U2 + a1I + ηC>1 C1

− 4X1 − 4X2 + 2PBN−1B>P + 2C>1 F
>NFC1 + 2a3C

>
1 F
>FC1B

)
x(t)

+ w(t)>(a4I − γηI)w(t) + x(t− h1)>(−U1 − 4X1 − 4S)x(t− h1)

+ x(t− h2)>(−U2 − 4X2 − 4S)x(t− h2) + x(t− h(t))>
(
− 8S + a2I + ηC>2 C2

+ 2C>2 F
>NFC2 + 2a3C

>
2 F
>FC2

)
x(t− h(t))

+ ẋ(t)>
(
h21X1 + h22X2 + (h2 − h1)2S − 2Q+ 2QBN−1B>Q

)
ẋ(t)

− f(.)>f(.) + 2x(t)>(PA2 + ηC>1 C2)x(t− h(t)) + 2x(t)>PGw(t) + 2x(t)>Pf(.)

6



− 4x(t)>X1x(t− h1)− 4x(t)>X2x(t− h2)− 4x(t− h(t))>Sx(t− h2)

+ 2ẋ(t)>QGw(t) + 2ẋ(t)>Qf(.)−
2∑
i=1

12

h2i

∫ t

t−hi

x(s)>dsXi

∫ t

t−hi

x(s)ds

+
2∑
i=1

12

hi
x(t)>Xi

∫ t

t−hi

x(s)ds+
2∑
i=1

12

hi
x(t− hi)>Xi

∫ t

t−hi

x(s)dsr

− 12

(h2 − h(t))2

∫ t−h(t)

t−h2

x(s)>dsS

∫ t−h(t)

t−h2

x(s)ds− 4x(t− h(t))>Sx(t− h1)

− 12

(h(t)− h1)2

∫ t−h1

t−h(t)
x(s)>dsS

∫ t−h1

t−h(t)
x(s)ds+ 2ẋ(t)>QA1x(t)

+
12

h2 − h(t)
x(t− h(t))>S

∫ t−h(t)

t−h2

x(s)ds+ 2ẋ(t)>QA2x(t− h(t))

+
12

h2 − h(t)
x(t− h2)>S

∫ t−h(t)

t−h2

x(s)ds+
12

h(t)− h1
x(t− h1)>S

∫ t−h1

t−h(t)
x(s)ds

+
12

h(t)− h1
x(t− h(t))>S

∫ t−h1

t−h(t)
x(s)ds

)
+ eηtγηw(t)>w(t)− eηtηz(t)>z(t).

We obtain

V̇ (t, xt)− ηV (t, xt) ≤ eηtξ(t)>Wξ(t) + eηtγηw(t)>w(t)− eηtηz(t)>z(t), (12)

where

ξ(t)> =
[
x(t)>, x(t− h1)>, x(t− h2)>, x(t− h(t))>, ẋ(t)>, w(t)>, f(.)>,

1

h1

∫ t

t−h1

x(s)>ds,
1

h2

∫ t

t−h2

x(s)>ds,
1

h2 − h(t)

∫ t−h(t)

t−h2

x(s)>ds,

1

h(t)− h1

∫ t−h1

t−h(t)
x(s)>ds

]
,

W = (Wij)11×11,

W11 = PA1 +A>1 P + U1 + U2 + a1I + ηC>1 C1 − 4X1 − 4X2

+ 2PBN−1B>P + 2C>1 F
>NFC1 + 2a3C

>
1 F
>FC1,

W22 = −U1 − 4X1 − 4S,W33 = −U2 − 4X2 − 4S,

W44 = −8S + a2I + ηC>2 C2 + 2C>2 F
>NFC2 + 2a3C

>
2 F
>FC2,

W55 = h21X1 + h22X2 + (h2 − h1)2S − 2Q+ 2QBN−1B>Q,W66 = a4I − γηI,
W77 = −I,W88 = −12X1,W99 = −12X2,W10,10 = W11,11 = −12S,

W12 = −2X1,W13 = −2X2,W14 = PA2 + ηC>1 C2,W15 = A>1 Q,W16 = PG,

W17 = P ,W18 = W28 = 6X1,W19 = W39 = 6X2,W24 = W34 = −2S,

W45 = A>2 Q,W56 = QG,W2,11 = W3,10 = W4,10 = W4,11 = 6S,

W57 = Q, and Wij = 0 for the others.

Therefore, from (12) it follows that

d

dt

(
e−ηtV (t, xt)

)
≤ ξ(t)>Wξ(t) + γηw(t)>w(t)− ηz(t)>z(t). (13)
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We prove that the matrix inequality W < 0 holds if the LMI (6) holds. By using
Proposition 1 for each nonlinear items W11,W44,W55, then the condition W < 0
holds if and only if

Ω =

[
Ω1 Ω2

∗ Ω3

]
< 0,

where

Ω1 = (Ω1
ij)11×11, Ω2 = (Ω2

ij)6×11,

Ω3 = diag

(
−0.5N,−0.5N−1,− 1

2a3
I,− 1

2a3
I,−0.5N−1,−0.5N

)
,

Ω1
11 = PA1 +A>1 P + U1 + U2 + a1I + ηC>1 C1 − 4X1 − 4X2,

Ω1
44 = −8S + a2I + ηC>2 C2,Ω

1
55 = h21X1 + h22X2 + (h2 − h1)2S − 2Q,

and Ω1
ij = Wij for the others,Ω2

11 = PB, Ω2
12 = Ω2

13 = C>1 F
>,

Ω2
44 = Ω2

45 = C>2 F
>,Ω2

56 = QB,Ω2
ij = 0 for the others.

Define the matrix ∆ as follows

∆ =



In 0 BN 0 0 0 0
0 I9n+m+r 0 0 0 0 0
0 0 N 0 0 0 0
0 0 0 N 0 0 0
0 0 0 N 0 0
0 0 0 0 0 N 0
0 0 0 0 0 0 Im


.

Since the matrix ∆ is regular (full column), we have Λ = ∆Ω∆> < 0 where

Λ =

[
Λ1 Λ2

∗ Λ3

]
< 0,

where

Λ1 = (Λ1
ij)11×11, Λ2 = (Λ2

ij)6×11,

Λ3 = diag

(
−0.5N,−0.5N,− 1

2a3
N2,− 1

2a3
N2,−0.5N,−0.5N

)
,

Λ1
11 = PA1 +A>1 P + U1 + U2 + a1I + ηC>1 C1 − 4X1 − 4X2

+BNFC1 + C>1 F
>NB> − 0.5BNB>, and Λ1

ij = Ωij for the others,

Λ2
11 = PB, Λ2

12 = C>1 F
>N − 0.5BN, Λ2

13 = C>1 F
>N, Λ2

44 = λ245 = C>2 F
>N,

Λ2
56 = QB, Λ2

ij = 0 for the others.

Let F>N = K>, then F = N−1K. Since −(N−I)2 ≤ 0, we have −N2 ≤ −2N+I.
Then

− 1

2a3
N2 ≤ − 1

a3
N +

1

2a3
I.

Then the condition Λ < 0 holds if Ψ < 0, therefore W < 0 and hence from the
inequality (13) we obtain

d

dt

(
e−ηtV (t, xt)

)
< γηw(t)>w(t). (14)
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Integrating (14) from 0 to t, with t ∈ [0, T ], we get

V (t, xt) ≤ eηt
(
V (0, x0) + γη

∫ t

0

w(s)>w(s)ds

)
≤ eηT (α2c1 + γηd).

Therefore,

α1x(t)>Rx(t) ≤ V (t, xt) ≤ eηT (α2c1 + γηd),

or equivalently,

x(t)>Rx(t) ≤ eηT (α2c1 + γηd)

α1
≤ c2, ∀t ∈ [0, T ],

which implies that the system of (1) is robustly finite-time stabilizable w.r.t. (c1, c2,
T,R). To complete the proof of the theorem, it remains to show the γ−optimal
level condition (5). For this, we consider the following relation∫ T

0

[
η‖z(t)‖2 − γη‖w(t)‖2

]
dt =

∫ T

0

[
η‖z(t)‖2 − γη‖w(t)‖2 +

d

dt

(
e−ηtV (t, xt)

)]
dt

−
∫ T

0

d

dt

(
e−ηtV (t, xt)

)
dt.

Since V (t, xt) ≥ 0, we have

−
∫ T

0

d

dt

(
e−ηtV (t, xt)

)
dt = −e−ηTV (T, xT ) + V (0, x0) ≤ α3‖ϕ‖2.

On the other hand, from (13) we have

η‖z(t)‖2 − γη‖w(t)‖2 +
d

dt

(
e−ηtV (t, xt)

)
< 0,

therefore ∫ T

0

[
η‖z(t)‖2 − γη‖w(t)‖2

]
dt ≤ α3‖ϕ‖2.

Setting c0 =
α3

γη
> 0, the above inequality yields

sup

∫ T
0
‖z(t)‖2dt

c0‖ϕ‖2 +
∫ T
0
‖w(t)‖2dt

≤ γ.

This estimation holds for all non-zero w ∈ L2([0, T ],Rr), ϕ ∈ C1([−h2, 0],Rn), and
hence the condition (5) is derived. This completes the proof of the theorem.

Remark 1. We note that the condition (7) is not an LMI with respect to η, since
η appears in a nonlinear item. However, the condition (6) is an LMI, so we can find
the scalar η from the condition (6), and check the condition (7). If the problem
is feasible, the output feedback controller F = N−1K solves the robust finite-time
H∞ control problem.

In the sequel, we apply the result of Theorem 3.1 to study the robust finite-time
H∞ control problem for uncertain linear systems with interval time-varying delay
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[13, 19, 20, 21]. Consider the following uncertain linear system with time-varying
delay: 

ẋ(t) = [A1 + ∆A1(t)]x(t) + [A2 + ∆A2(t)]x(t− h(t))

+[B + ∆B(t)]u(t) + [G+ ∆G(t)]w(t), t ≥ 0,

z(t) = C1x(t) + C2x(t− h(t)),

x(t) = ϕ(t), t ∈ [−h2, 0],

(15)

where the delay function h(t) satisfies the condition (2), the uncertainties ∆A1(t),
∆A2(t),∆B(t),∆G(t) are given as

[∆A1(t) ∆A2(t) ∆B(t) ∆G(t)] = DE(t)[Ma1 Ma2 Mb Mg],

where D,Ma1 ,Ma2 ,Mb,Mg are known real constant matrices of appropriate dimen-
sions and E(t) is an unknown uncertain matrix satisfying

E(t)>E(t) ≤ I, ∀t ≥ 0.

To apply Theorem 3.1, we denote

f(t, x, xh, u, ω) = ∆A1(t)x(t) + ∆A2(t)x(t− h(t)) + ∆B(t)u(t) + ∆G(t)ω(t),

λd = λmax(D>D), λm1
= λmax(M>a1Ma1), λm2

= λmax(M>a2Ma2),

λmb
= λmax(M>b Mb), λmg = λmax(M>g Mg).

We have

‖f‖2 ≤ 4‖∆A1x‖2 + 4‖∆A2xh‖2 + 4‖∆Bu‖2 + 4‖∆Gω‖2

≤ 4λdλm1
‖x‖2 + 4λdλm2

‖xh‖2 + 4λdλmb
‖u‖2 + 4λdλmg

‖ω‖2

By the same notations used in Theorem 3.1

a1 = 4λdλm1 , a2 = 4λdλm2 , a3 = 4λdλmb
, a4 = 4λdλmg ,

we have

Corollary 1. The robust finite-time H∞ control of the system (15) has a solution
if there exist a positive scalar η, symmetric positive definite matrices P,U1, U2, X1,
X2, S,N and matrices Q,K such that the following conditions hold

Ψ =

[
Ψ1 Ψ2

∗ Ψ3

]
< 0, (16)

α2c1 + γηd ≤ α1c2e
−ηT . (17)

The output feedback controller is given by u(t) = N−1Kz(t), ∀t ≥ 0.

Remark 2. The proposed output feedback controller can ensure robustly finite-
time stability of the closed-loop system while also guaranteeing an adequate level of
system performance which is expressed in terms of LMIs. The result in this paper
advances recent findings H∞ controller reported in [6, 12, 16, 19, 20], where the time
delays considered are interval time-varying as opposed to constant delays. Moreover,
we construct Lyapunov-like functionals different from the ones in [12, 16, 19, 20]
and estimate the derivative of V (·) by the generalized integral inequality, which
leads to a less conservative LMI condition and reduced numerical complexity, and
also as shown in the numerical example below, the proposed LMI condition in this
paper can be solved with less free weighting matrix unknowns comparatively.
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Example 1. Consider the system (1) where

A1 =

[
0.8 0.05
0 −1.1

]
, A2 =

[
−1 0
0.02 0.9

]
, B =

[
−6 1
2 4

]
,

G =

[
0.01 0
0.5 0.2

]
, C1 =

[
0.01 −0.2

]
, C2 =

[
−0.02 0.1

]
,

f(.) = 0.1

√sin(t)x21(t) + x21(t− h(t)) + cos(t)u22(t) + ω2
2(t)√

sin(t)x22(t) + x22(t− h(t)) + cos(t)u21(t) + ω2
1(t)


and a1 = a2 = a3 = a4 = 0.01,

h(t) =

0.1 + 0.3 cos(t), t ∈ I =
(

0,
π

2

) ⋃
k∈N+

(−π
2

+ 2kπ,
π

2
+ 2kπ)

0.1, t ∈ R+ \ I.
ϕ(t) = [2, 2.4], t ∈ [−0.4, 0].

Note that the functions h(t) are non-differentiable, therefore, the methods proposed
in [12, 16, 19, 20] are not applicable to this system. For given h1 = 0.1, h2 = 0.4, T =
5, d = 1, γ = 4, c1 = 1, c2 = 37, R = 0.1I, by using the LMI Toolbox in Matlab (see
[7]), the LMI in Theorem 3.1 is satisfied with η = 0.4138 and

P =

[
1.5584 −0.2630
−0.2630 1.6955

]
, U1 =

[
0.9896 −0.9271
−0.9271 1.6102

]
, U2 =

[
0.5054 −0.6833
−0.6833 1.2911

]
X1 =

[
194.7508 24.4056
24.4056 135.9976

]
, X2 =

[
8.7212 1.9574
1.9574 5.4938

]
, S =

[
49.2089 −6.5256
−6.5256 52.7801

]
,

N = 104
[
1.3599 0.3567
0.3567 0.9026

]
, Q =

[
0.8179 0.0048
0.0048 0.7321

]
, K =

[
0.0105
−0.0335

]
.

By Theorem 3.1, the robust finite-time H∞ control problem for the systems (1) has
a solution, and the output feedback control u(t) = N−1Kz(t) is defined as

u(t) = 10−6
[

0.0195 −0.3901
−0.0448 0.8962

]
x(t) + 10−6

[
−0.0390 0.1950
0.0896 −0.4481

]
x(t− h(t)).

Moreover, the solution x(t, ϕ) satisfies

x(t)>Rx(t) ≤ 37, ∀t ∈ [0, 5].

Example 2. Consider the uncertain linear systems (15) where

A1 =

[
1.3 0.01
0.2 −2

]
, A2 =

[
−1.5 0
0.02 1.8

]
, B =

[
−12 5

2 8

]
,

G =

[
0.01 0
0.5 0.02

]
, C1 =

[
0.001 −0.05

]
, C2 =

[
−0.04 0.01

]
,

D =

[
0.001 0

0 0.025

]
, Ma1 =

[
0.01 0

0 0.01

]
, Ma2 = Mb = Mg =

[
0.1 0
0 0.1

]
,

ϕ(t) = [3, 3.8] and with the delay h(t) is given as in Example 1. We also note that the
function h(t) is non-differentiable, therefore, the methods proposed in [13, 19, 20]
are not applicable to this system. By using the LMI Toolbox in Matlab, the LMI in
Corollary 1 is satisfied with T = 8, d = 2, γ = 1, c1 = 1, c2 = 74, R = 0.04I, η = 0.4
and

P =

[
3.3747 −0.7143
−0.7143 1.3600

]
, U1 =

[
2.3774 −0.1270
−0.1270 2.1229

]
, U2 =

[
0.7881 0.2115
0.2115 1.2668

]
,
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X1 =

[
323.1831 −12.8844
−12.8844 121.4385

]
, X2 =

[
13.8824 −0.6318
−0.6318 5.1041

]
,

S =

[
84.9282 −1.2178
−1.2178 34.5612

]
, N = 103

[
6.3315 0.4824
0.4824 4.6013

]
,

Q =

[
0.5451 −0.0093
−0.0093 0.2147

]
, K =

[
0.0591
0.0496

]
.

The robust finite-time H∞ control problem for the systems (15) has a solution,
and the output feedback control u(t) = N−1Kz(t) is defined by

u(t) = 10−6
[
0.0086 −0.4288
0.0099 −0.4942

]
x(t) + 10−6

[
−0.3430 0.0858
−0.3953 0.0988

]
x(t− h(t)).

Moreover, the solution x(t, ϕ) satisfies

x(t)>Rx(t) ≤ 74, ∀t ∈ [0, 8].

4. Conclusions. This paper has investigated the robust finite-time H∞ control
problem via the output feedback controls for nonlinear systems with the interval
and non-differentiable time-varying delays. Based on constructing the improved
Lyapunov functionals and by utilizing a new generalized integral inequality, new
LMI-based sufficient conditions for designing output feedback controller are derived
for the considered system. An application to H∞ control of uncertain linear systems
with the interval time-varying delays is given. Numerical examples have been given
to illustrate the effectiveness of the proposed results. The foregoing results have the
potential to be useful for the study of finite-time H∞ control via output feedback
for nonlinear non-autonomous systems with time-varying delay and disturbances.
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