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This paper studies the robust finite-time H∞ control for a class of nonlinear systems with time-varying delay and disturbances via output feedback. Based on the Lyapunov functional method and a generalized Jensen integral inequality, novel delay-dependent conditions for the existence of output feedback controllers are established in terms of linear matrix inequalities (LMIs). The proposed conditions allow us to design the output feedback controllers which robustly stabilize the closed-loop system in the finite-time sense. An application to H∞ control of uncertain linear systems with interval timevarying delay is also given. A numerical example is given to illustrate the efficiency of the proposed method.

1. Introduction. The concept of finite-time stability (FTS) (or short-time stability) introduced by Dorato [START_REF] Dorato | Short time stability in linear time-varying systems[END_REF] plays an important role in stability theory of differential equations. A system is said to be finite-time stable if its state does not exceed a certain threshold during a specified time interval. Compared with the Lyapunov stability, finite-time stability concerns the boundedness of system during a fixed finite-time interval. It is noted that, a system may be finite-time stable but not Lyapunov asymptoticaly stable, and vice versa. A lot of interesting results on finite-time stability and stabilization in the context of linear delay systems have been obtained (see, e.g. [START_REF] Amato | Necessary and sufficient conditions for finite-time stability of impulsive dynamical linear systems[END_REF][START_REF] Garcia | Finite-time stabilization of linear time-varying continuous systems[END_REF][START_REF] Kwon | Exponential stability for uncertain dynamic systems with time-varying delays: LMI optimization approach[END_REF][START_REF] Moulay | Finite-time stability and stabilization of time-delay systems[END_REF] and the references therein).

On the other hand, one of the most important problems is the H ∞ control of timedelay systems via output feedback controllers. The main principle of the output feedback control is to utilize the measured output to excite the plant. Since the controller can be easily implemented in practice, the output feedback control has attracted a lot of attention over the past few decades and has been applied to many areas for example, in motor engine control, constrained robotics, networked control systems, communication and biological systems, etc. [START_REF] Amato | Finite-time stabilization via dynamic output feedback[END_REF][START_REF] Boukas | Static output feedback control for stochastic hybrid systems: LMI approach[END_REF][START_REF] Fridman | Delay-dependent stability and H∞control: constant and timevarying delays[END_REF][START_REF] Gollmann | Theory and applications of optimal control problems with multiple time-delays[END_REF][START_REF] Senthilkumar | Delay-dependent robust stabilization and H∞ control for nonlinear stochastic systems with Markovian jump parameters and interval timevarying delays[END_REF][START_REF] Wu | Robust H∞ dynamic output feedback control for 2D linear parameter-varying systems[END_REF][START_REF] Xu | H∞ optimal stabilization of a class of uncertain impulsive systems: An LMI approach[END_REF][START_REF] Zhang | Robust finite-time H -∞ control of singular stochastic systems via static output feedback[END_REF]. So far, however, compared with numerous research results on Lyapunov stability with H ∞ control, few results on finite-time H ∞ control have been obtained in the literature.

The finite-time H ∞ control for switched linear systems with time-varying delay has been studied in [START_REF] Xiang | Robust finite-time H∞ control for a class of uncertain switched neutral systems[END_REF][START_REF] Xiang | H∞ finite-time control for nonlinear switched discrete-time systems with norm-bounded disturbance[END_REF], but the results were limited either to discrete-time systems or to the systems with constant delays. In [START_REF] Liu | Delay-dependent observer-based H∞ finite-time control for switched systems with time-varying delay[END_REF][START_REF] Senthilkumar | Delay-dependent robust stabilization and H∞ control for nonlinear stochastic systems with Markovian jump parameters and interval timevarying delays[END_REF] some delay-dependent conditions for finite-time H ∞ control are extended to linear systems with timevarying delays, but the delay function is differentiable and the stabilizing control is designed via state feedback.

In this paper, we propose a new design tool to solve the robust finite-time H ∞ control for nonlinear systems with interval time-varying delays via output feedback controls. The novel features here are that the interval time-varying delay is present in the observation output, and the output feedback controllers to be designed must satisfy some robust finite-time stability constraints on the closed-loop poles. Using new generalized Jensen integral inequality we select a new simpler set of Lyapunov-Krasovskii functionals to derive delay-dependent sufficient conditions for solving robust finite-time H ∞ control via output feedback controls. The conditions are obtained in terms of LMIs, which can be determined by utilizing MATLABs LMI Control Toolbox. The approach allows us to apply to H ∞ control of uncertain linear systems with interval non-differentiable time-varying delay.

The paper is organized as follows. The definition of FTS for nonlinear systems with interval time-varying delays and the problem statement are given in Section 2. Sufficient conditions for designing output feedback controllers of finite-time H ∞ control problem, an application to H ∞ control of uncertain linear systems with interval time-varying delay with numerical examples are given in Section 3.

Preliminaries.

The following notations will be used throughout this paper, R + denotes the set of all nonnegative real numbers; R n denotes the n-dimensional space with the scalar product x y and the vector norm • ; R n×r denotes the space of all matrices of (n × r)-dimension. A denotes the transpose of A; a matrix A is symmetric if A = A ; I denotes the identity matrix; λ(A) denotes the set of all eigenvalues of A; λ max (A) = max{Re(λ) : λ ∈ λ(A)}; λ min (A) = min{Re(λ) : λ ∈ λ(A)}; C 1 ([-τ, 0], R n ) denotes the set of all R n -valued continuously differentiable functions on [-τ, 0]; L 2 ([0, T ], R r ) stands for the set of all square-integrable R r -valued functions on [0, T ]. The symmetric terms in a matrix are denoted by * . Matrix A is positive definite (A > 0) if (Ax, x) > 0 for all x = 0. The segment of the trajectory x(t) is denoted by

x t = {x(t + s) : s ∈ [-τ, 0]} with its norm x t = sup s∈[-τ,0] x(t + s) .
Consider the following nonlinear control systems with time-varying delay and disturbances

         ẋ(t) = A 1 x(t) + A 2 x(t -h(t)) + Bu(t) + Gw(t) +f (t, x(t), x(t -h(t)), u(t), w(t)) z(t) = C 1 x(t) + C 2 x(t -h(t)), t ≥ 0, x(t) = ϕ(t), t ∈ [-h 2 , 0], (1) 
where x(t) ∈ R n , u(t) ∈ R m , z(t) ∈ R p are, respectively, the state, the control, the observation vector,

A 1 , A 2 ∈ R n×n , B ∈ R n×m , G ∈ R n×r , C 1 , C 2 ∈ R p×n are given constant matrices. The delay function h(t) is continuous and satisfies 0 ≤ h 1 ≤ h(t) ≤ h 2 , ∀t ≥ 0. ( 2 
)
The initial function ϕ ∈ C 1 ([-h 2 , 0], R n ) and the disturbance w(t) is a continuous function satisfying

T 0 w(t) w(t)dt ≤ d. (3) 
The nonlinear function f (t, x, y, u, w) is globally Lipschitzian in (x, y, u, w) such that ∃a 1 , a 2 , a 3 , a 4 > 0 :

f 2 ≤ a 1 x 2 + a 2 y 2 + a 3 u 2 + a 4 w 2 (4) for all x, y ∈ R n , u ∈ R m , w ∈ R r .
Under the above assumptions on h(•), f (•) and the initial function ϕ(t), the system (1) has a unique solution x(t, φ) on [0, +∞) (see [START_REF] Kharitonov | Time-Delay Systems: Lyapunov Functionals and Matrices, Control Engineering[END_REF], Theorem 1.2).

To study the robust finite-time H ∞ control of the system (1), the following definitions will be used later. Definition 2.1 (Robust finite-time stabilization). For given positive numbers T, c 1 , c 2 , c 2 > c 1 , and a positive definite matrix R, the system (1) is said to be robustly finite-time stabilizable w.r.t. (c 1 , c 2 , T, R) if there exists an output feedback controller u(t) = F z(t) such that the following condition holds for all disturbances satisfying (3) and ∀t ∈ [0, T ] max sup

-h2≤s≤0 ϕ(s) Rϕ(s), sup -h2≤s≤0 φ(s) R φ(s) ≤ c 1 ⇒ x(t) Rx(t) ≤ c 2 .
Definition 2.2 (Robust finite-time H ∞ control). Given γ > 0, the robust finitetime H ∞ control problem for the systems (1) has a solution if 1. The system (1) is robustly finite-time stabilizable w.r.t. (c 1 , c 2 , T, R).

2. There is a number c 0 > 0 such that sup

T 0 z(t) 2 dt c 0 ϕ 2 + T 0 w(t) 2 dt ≤ γ, (5) 
where the supremum is taken over all ϕ ∈ C 1 ([-h 2 , 0], R n ) and non-zero disturbances w(.) satisfying (3).

We introduce the following technical well-known propositions for the proof of the main result.

Proposition 1 (Schur complement lemma [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF]). Given constant matrices X, Y, Z with appropriate dimensions satisfying X = X and

Y = Y > 0. Then X + Z Y -1 Z < 0 if and only if X Z Z -Y < 0.
Proposition 2 (Generalized Jensen integral inequality [START_REF] Seuret | Wirtinger-based integral inequality: Application to time-delay systems[END_REF]). For a given matrix

R > 0, any differentiable function ϕ : [a, b] → R n , then the following inequality holds b a φ(u)R φ(u)du ≥ 1 b -a (ϕ(b) -ϕ(a)) R(ϕ(b) -ϕ(a)) + 12 b -a Ω RΩ,
where

Ω = ϕ(b) + ϕ(a) 2 - 1 b -a b a ϕ(u)du.
3. Output feedback finite-time H ∞ control. Before stating the main result, the following notations of several matrices variables are defined for simplicity.

P = R 1/2 P R 1/2 , U 1 = R 1/2 U 1 R 1/2 , U 2 = R 1/2 U 2 R 1/2 , X 1 = R 1/2 X 1 R 1/2 , X 2 = R 1/2 X 2 R 1/2 , S = R 1/2 SR 1/2 , α 1 = λ min (P ), α 2 = λ max (P ) + h 1 λ max (U 1 ) + h 2 λ max (U 2 ) + 0.5h 3 1 λ max (X 1 ) + 0.5h 3 2 λ max (X 2 ) + 0.5(h 2 -h 1 ) 2 (h 2 + h 1 )λ max (S), α 3 = λ max (P ) + h 1 λ max (U 1 ) + h 2 λ max (U 2 ) + 0.5h 3 1 λ max (X 1 ) + 0.5h 3 2 λ max (X 2 ) + 0.5(h 2 -h 1 ) 2 (h 2 + h 1 )λ max (S 2 ), Ψ 1 = (Ψ 1 ij ) 11×11 , Ψ 2 = (Ψ 2 ij ) 6×11 , Ψ 3 = diag -0.5N, -0.5N, - 1 
a 3 N + 1 2a 3 I, - 1 a 3 N + 1 2a 3 I, -0.5N, -0.5N , Ψ 1 11 = P A 1 + A 1 P + U 1 + U 2 + a 1 I + ηC 1 C 1 -4X 1 -4X 2 + BKC 1 + C 1 K B -0.5BN B , Ψ 1 22 = -U 1 -4X 1 -4S, Ψ 1 33 = -U 2 -4X 2 -4S, Ψ 1 44 = -8S + a 2 I + ηC 2 C 2 , Ψ 1 55 = h 2 1 X 1 + h 2 2 X 2 + (h 2 -h 1 ) 2 S -2Q, Ψ 1 66 = a 4 I -γηI, Ψ 1 77 = -I, Ψ 1 88 = -12X 1 , Ψ 1 99 = -12X 2 , Ψ 1 10,10 = Ψ 1 11,11 = -12S, Ψ 1 12 = -2X 1 , Ψ 1 13 = -2X 2 , Ψ 1 14 = P A 2 + ηC 1 C 2 , Ψ 1 15 = A 1 Q, Ψ 1 16 = P G, Ψ 1 17 = P Ψ 1 18 = Ψ 1 28 = 6X 1 , Ψ 1 19 = Ψ 1 39 = 6X 2 , Ψ 1 24 = Ψ 1 34 = -2S, Ψ 1 45 = A 2 Q, Ψ 1 56 = QG, Ψ 1 2,11 = Ψ 1 3,10 = Ψ 1 4,10 = Ψ 1 4,11 = 6S, Ψ 1 57 = Q, and Ψ 1 ij = 0 for the others, Ψ 2 11 = P B, Ψ 2 12 = C 1 K -0.5BN, Ψ 2 13 = C 1 K , Ψ 2 44 = Ψ 2 45 = C 2 K , Ψ 2 
56 = QB, Ψ 2 ij = 0 for the others. The following theorem gives a sufficient condition for robust finite-time H ∞ control via output feedback of the system (1). Theorem 3.1. For given positive constants T, c 1 , c 2 , γ and a positive definite matrix R, the robust finite-time H ∞ control of the system (1) has a solution if there exist a positive scalar η, symmetric positive definite matrices P, U 1 , U 2 , X 1 , X 2 , S, N and matrices Q, K such that the following conditions hold

Ψ = Ψ 1 Ψ 2 * Ψ 3 < 0, (6) 
α 2 c 1 + γηd ≤ α 1 c 2 e -ηT . (7) 
The output feedback controller is given by u(t) = N -1 Kz(t), t ≥ 0.

Proof. Consider the following Lyapunov-Krasovskii functional associated to the system (1):

V (t, x t ) = 4 i=1 V i (t, x t ), where V 1 (t, x t ) =e ηt x(t) P x(t), V 2 (t, x t ) = 2 i=1 e ηt t t-hi x(s) U i x(s)ds, V 3 (t, x t ) = 2 i=1 h i e ηt 0 -hi t t+s ẋ(τ ) X i ẋ(τ )dτ ds, V 4 (t, x t ) =(h 2 -h 1 )e ηt -h1 -h2 t t+s ẋ(τ ) S ẋ(τ )dτ ds. It is not difficult to verify that α 1 x(t) Rx(t) ≤ V (t, x t ), ∀t : 0 ≤ t ≤ T, (8) 
V (0, x 0 ) ≤ α 2 sup -h2≤s≤0 x(s) Rx(s), ẋ(s) R ẋ(s) ≤ α 2 c 1 , (9) 
V (0, x 0 ) ≤ α 3 ϕ 2 .
(10) Taking the derivative of V i (t, x), i = 1, . . . , 4, along the solution of the system, we get the following estimations

V1 (t, x t ) ≤ηV 1 + e ηt x(t) P A 1 + A 1 P + 2P BN -1 B P + C 1 F N F C 1 x(t) + 2x(t) P Gw(t) + x(t -h(t)) C 2 F N F C 2 x(t -h(t)) + 2x(t) P A 2 x(t -h(t)) + 2x(t) P f (t, x, x h , u, w) , V2 (t, x t ) =ηV 2 + e ηt x(t) (U 1 + U 2 )x(t) -x(t -h 1 ) U 1 x(t -h 1 ) -x(t -h 2 ) U 2 x(t -h 2 ) , V3 (t, x t ) =ηV 3 + e ηt ẋ(t) (h 2 1 X 1 + h 2 2 X 2 ) ẋ(t) - 2 i=1 h i t t-hi ẋ(s) X i ẋ(s)ds .
Applying Proposition 2, we have

-h i t t-hi ẋ(s) X i ẋ(s)ds ≤ -4x(t) X i x(t) -4x(t -h i ) X i x(t -h i ) -4x(t) X i x(t -h i )s + 12 h i x(t -h i ) X i t t-hi
x(s)ds

+ 12 h i x(t) X i t t-hi x(s)d - 12 h 2 i t t-hi x(s) dsX i t t-hi
x(s)ds.

Hence,

V3 (t,x t ) ≤ ηV 3 + e ηt ẋ(t) (h 2 1 X 1 + h 2 2 X 2 ) ẋ(t) + x(t) (-4X 1 -4X 2 )x(t) -4x(t -h 1 ) X 1 x(t -h 1 ) -4x(t -h 2 ) X 2 x(t -h 2 ) -4x(t) X 1 x(t -h 1 ) -4x(t) X 2 x(t -h 2 ) + 2 i=1 12 h i x(t) X i t t-hi
x(s)ds

+ 2 i=1 12 h i x(t -h i ) X i t t-hi
x(s)ds -

2 i=1 12 h 2 i t t-hi x(s) dsX i t t-hi
x(s)ds .

Using the same calculation as in V3 (t, x t ), we get

V4 (t, x t ) =ηV 4 + e ηt (h 2 -h 1 ) 2 ẋ(t) S ẋ(t) -(h 2 -h 1 ) t-h(t) t-h2 ẋ(s) S ẋ(s)ds -(h 2 -h 1 ) t-h1 t-h(t)
ẋ(s) S ẋ(s)ds

≤ηV 4 + e ηt (h 2 -h 1 ) 2 ẋ(t) S ẋ(t) -8x(t -h(t)) Sx(t -h(t)) -4x(t -h 2 ) Sx(t -h 2 ) -4x(t -h 1 ) Sx(t -h 1 ) -4x(t -h(t)) Sx(t -h 2 ) -4x(t -h(t)) Sx(t -h 1 ) - 12 (h 2 -h(t)) 2 t-h(t) t-h2 x(s) dsS t-h(t) t-h2
x(s)ds

- 12 (h(t) -h 1 ) 2 t-h1 t-h(t) x(s) dsS t-h1 t-h(t)
x(s)ds

+ 12 h 2 -h(t) x(t -h(t)) S t-h(t) t-h2 x(s)ds + 12 h 2 -h(t) x(t -h 2 ) S t-h(t) t-h2
x(s)ds

+ 12 h(t) -h 1 x(t -h 1 ) S t-h1 t-h(t)
x(s)ds

+ 12 h(t) -h 1 x(t -h(t)) S t-h1 t-h(t)
x(s)ds .

Multiplying both sides of ( 1) by e ηt 2 ẋ(t) Q from the right, we obtain

e ηt -2 ẋ(t) Q ẋ(t)+2 ẋ(t) Q(A 1 + BF C 1 )x(t) + 2 ẋ(t) Q(A 2 + BF C 2 )x(t -h(t)) + 2 ẋ(t) QGw(t) + 2 ẋ(t) Qf (t, x, x h , u, w) = 0. Consequently, 0 ≤ e ηt ẋ(t) (-2Q + 2QBN -1 B Q) ẋ(t) + x(t) C 1 F N F C 1 x(t) + 2 ẋ(t) QA 1 x(t) + x(t -h(t)) C 2 F N F C 2 x(t -h(t)) + 2 ẋ(t) QA 2 x(t -h(t)) + 2 ẋ(t) QGx(t) + 2 ẋ(t) Qf (t, x, x h , u, w) . (11) 
Adding the inequality [START_REF] Kwon | Exponential stability for uncertain dynamic systems with time-varying delays: LMI optimization approach[END_REF] and the zero term e ηt f (t, x, x h , u, w) f (t, x, x h , u, w) -f (t, x, x h , u, w) f (t, x, x h , u, w)

+ γηw(t) w(t) -γηw(t) w(t) + ηz(t) z(t) -ηz(t) z(t) = 0 to V (t, x t ), and using the estimation (4) for f (t, x, x h , u, w), and noting that

f (t, x, x h , u, w) f (t, x, x h , u, w) ≤ x(t) a 1 I + 2a 3 C 1 F F C 1 x(t) + a 3 w(t) w(t) + x(t -h(t)) a 2 I + 2a 3 C 2 F F C 2 x(t -h(t)), ηz(t) z(t) =ηx(t) C 1 C 1 x(t) + 2ηx(t) C 1 C 2 x(t -h(t)) + ηx(t -h(t)) C 2 C 2 x(t -h(t)),
we have

V (t, x t ) ≤ ηV (t, x t ) + e ηt x(t) (P A 1 + A 1 P + U 1 + U 2 + a 1 I + ηC 1 C 1 -4X 1 -4X 2 + 2P BN -1 B P + 2C 1 F N F C 1 + 2a 3 C 1 F F C 1 B x(t) + w(t) (a 4 I -γηI)w(t) + x(t -h 1 ) (-U 1 -4X 1 -4S)x(t -h 1 ) + x(t -h 2 ) (-U 2 -4X 2 -4S)x(t -h 2 ) + x(t -h(t)) -8S + a 2 I + ηC 2 C 2 + 2C 2 F N F C 2 + 2a 3 C 2 F F C 2 x(t -h(t)) + ẋ(t) h 2 1 X 1 + h 2 2 X 2 + (h 2 -h 1 ) 2 S -2Q + 2QBN -1 B Q ẋ(t) -f (.) f (.) + 2x(t) (P A 2 + ηC 1 C 2 )x(t -h(t)) + 2x(t) P Gw(t) + 2x(t) P f (.) -4x(t) X 1 x(t -h 1 ) -4x(t) X 2 x(t -h 2 ) -4x(t -h(t)) Sx(t -h 2 ) + 2 ẋ(t) QGw(t) + 2 ẋ(t) Qf (.) - 2 i=1 12 h 2 i t t-hi x(s) dsX i t t-hi x(s)ds + 2 i=1 12 h i x(t) X i t t-hi x(s)ds + 2 i=1 12 h i x(t -h i ) X i t t-hi
x(s)dsr

- 12 (h 2 -h(t)) 2 t-h(t) t-h2 x(s) dsS t-h(t) t-h2 x(s)ds -4x(t -h(t)) Sx(t -h 1 ) - 12 (h(t) -h 1 ) 2 t-h1 t-h(t) x(s) dsS t-h1 t-h(t)
x(s)ds + 2 ẋ(t) QA 1 x(t)

+ 12 h 2 -h(t) x(t -h(t)) S t-h(t) t-h2
x(s)ds + 2 ẋ(t) QA 2 x(t -h(t))

+ 12 h 2 -h(t) x(t -h 2 ) S t-h(t) t-h2 x(s)ds + 12 h(t) -h 1 x(t -h 1 ) S t-h1 t-h(t)
x(s)ds

+ 12 h(t) -h 1 x(t -h(t)) S t-h1 t-h(t)
x(s)ds + e ηt γηw(t) w(t) -e ηt ηz(t) z(t).

We obtain V (t, x t ) -ηV (t, x t ) ≤ e ηt ξ(t) W ξ(t) + e ηt γηw(t) w(t) -e ηt ηz(t) z(t),

where ξ(t) = x(t) , x(t -h 1 ) , x(t h 2 ) , x(t -h(t)) , ẋ(t) , w(t) , f (.) ,

1 h 1 t t-h1 x(s) ds, 1 h 2 t t-h2 x(s) ds, 1 h 2 -h(t) t-h(t) t-h2
x(s) ds, Therefore, from [START_REF] Liu | Delay-dependent observer-based H∞ finite-time control for switched systems with time-varying delay[END_REF] it follows that

1 h(t) -h 1 t-h1 t-h(t) x(s) ds , W = (W ij ) 11×11 , W 11 = P A 1 + A 1 P + U 1 + U 2 + a 1 I + ηC 1 C 1 -4X 1 -4X 2 + 2P BN -1 B P + 2C 1 F N F C 1 + 2a 3 C 1 F F C 1 , W 22 = -U 1 -4X 1 -4S, W 33 = -U 2 -4X 2 -4S, W 44 = -8S + a 2 I + ηC 2 C 2 + 2C 2 F N F C 2 + 2a 3 C 2 F F C 2 , W 55 = h 2 1 X 1 + h 2 2 X 2 + (h 2 -h 1 ) 2 S -2Q + 2QBN -1 B Q, W 66 = a 4 I -γηI, W 77 = -I, W 88 = -12X 1 , W 99 = -12X 2 , W 10,10 = W 11,11 = -12S, W 12 = -2X 1 , W 13 = -2X 2 , W 14 = P A 2 + ηC 1 C 2 , W 15 = A 1 Q, W 16 = P G, W 17 = P , W 18 = W 28 = 6X 1 , W 19 = W 39 = 6X 2 , W 24 = W 34 = -2S, W 45 = A 2 Q, W 56 = QG, W
d dt e -ηt V (t, x t ) ≤ ξ(t) W ξ(t) + γηw(t) w(t) -ηz(t) z(t). ( 13 
)
We prove that the matrix inequality W < 0 holds if the LMI (6) holds. By using Proposition 1 for each nonlinear items W 11 , W 44 , W 55 , then the condition W < 0 holds if and only if

Ω = Ω 1 Ω 2 * Ω 3 < 0,
where

Ω 1 = (Ω 1 ij ) 11×11 , Ω 2 = (Ω 2 ij ) 6×11 , Ω 3 = diag -0.5N, -0.5N -1 , - 1 2a 3 I, - 1 2a 3 I, -0.5N -1 , -0.5N , Ω 1 11 = P A 1 + A 1 P + U 1 + U 2 + a 1 I + ηC 1 C 1 -4X 1 -4X 2 , Ω 1 44 = -8S + a 2 I + ηC 2 C 2 , Ω 1 55 = h 2 1 X 1 + h 2 2 X 2 + (h 2 -h 1 ) 2 S -2Q, and Ω 1 ij = W ij for the others, Ω 2 11 = P B, Ω 2 12 = Ω 2 13 = C 1 F , Ω 2 44 = Ω 2 45 = C 2 F , Ω 2 56 = QB, Ω 2 ij = 0 for the others. Define the matrix ∆ as follows ∆ =           I n 0 BN 0 0 0 0 0 I 9n+m+r 0 0 0 0 0 0 0 N 0 0 0 0 0 0 0 N 0 0 0 0 0 0 N 0 0 0 0 0 0 0 N 0 0 0 0 0 0 0 I m           .
Since the matrix ∆ is regular (full column), we have Λ = ∆Ω∆ < 0 where

Λ = Λ 1 Λ 2 * Λ 3 < 0,
where

Λ 1 = (Λ 1 ) 11×11 , Λ 2 = (Λ 2 ij ) 6×11 , Λ 3 = diag -0.5N, -0.5N, - 1 2a 3 N 2 , - 1 2a 3 N 2 , -0.5N, -0.5N , Λ 1 11 = P A 1 + A 1 P + U 1 + U 2 + a 1 I + ηC 1 C 1 -4X 1 -4X 2 + BN F C 1 + C 1 F N B -0.5BN B , and Λ 1 ij = Ω ij for the others, Λ 2 11 = P B, Λ 2 12 = C 1 F N -0.5BN, Λ 2 13 = C 1 F N, Λ 2 44 = λ 2 45 = C 2 F N, Λ 2 56 = QB, Λ 2 ij = 0 for the others. Let F N = K , then F = N -1 K. Since -(N -I) 2 ≤ 0, we have -N 2 ≤ -2N + I. Then - 1 2a 3 N 2 ≤ - 1 a 3 N + 1 2a 3 I.
Then the condition Λ < 0 holds if Ψ < 0, therefore W < 0 and hence from the inequality ( 13) we obtain

d dt e -ηt V (t, x t ) < γηw(t) w(t). (14) 
Integrating ( 14) from 0 to t, with t ∈ [0, T ], we get

V (t, x t ) ≤ e ηt V (0, x 0 ) + γη t 0 w(s) w(s)ds ≤ e ηT (α 2 c 1 + γηd).
Therefore,

α 1 x(t) Rx(t) ≤ V (t, x t ) ≤ e ηT (α 2 c 1 + γηd),
or equivalently,

x(t) Rx(t) ≤ e ηT (α 2 c 1 + γηd) α 1 ≤ c 2 , ∀t ∈ [0, T ],
which implies that the system of ( 1) is robustly finite-time stabilizable w.r.t. (c 1 , c 2 , T, R). To complete the proof of the theorem, it remains to show the γ-optimal level condition [START_REF] Dorato | Short time stability in linear time-varying systems[END_REF]. For this, we consider the following relation

T 0 η z(t) 2 -γη w(t) 2 dt = T 0 η z(t) 2 -γη w(t) 2 + d dt e -ηt V (t, x t ) dt - T 0 d dt e -ηt V (t, x t ) dt.
Since V (t, x t ) ≥ 0, we have

- T 0 d dt e -ηt V (t, x t ) dt = -e -ηT V (T, x T ) + V (0, x 0 ) ≤ α 3 ϕ 2 .
On the other hand, from [START_REF] Meng | Finite-time H∞ control for linear continuous system with normbounded disturbance[END_REF] we have

η z(t) 2 -γη w(t) 2 + d dt e -ηt V (t, x t ) < 0, therefore T 0 η z(t) 2 -γη w(t) 2 dt ≤ α 3 ϕ 2 .
Setting c 0 = α 3 γη > 0, the above inequality yields sup

T 0 z(t) 2 dt c 0 ϕ 2 + T 0 w(t) 2 dt ≤ γ.
This estimation holds for all non-zero w

∈ L 2 ([0, T ], R r ), ϕ ∈ C 1 ([-h 2 , 0], R n ),
and hence the condition (5) is derived. This completes the proof of the theorem.

Remark 1. We note that the condition [START_REF] Gahinet | LMI Control Toolbox For use with MATLAB[END_REF] is not an LMI with respect to η, since η appears in a nonlinear item. However, the condition ( 6) is an LMI, so we can find the scalar η from the condition (6), and check the condition [START_REF] Gahinet | LMI Control Toolbox For use with MATLAB[END_REF]. If the problem is feasible, the output feedback controller F = N -1 K solves the robust finite-time H ∞ control problem.

In the sequel, we apply the result of Theorem 3.1 to study the robust finite-time H ∞ control problem for uncertain linear systems with interval time-varying delay [START_REF] Meng | Finite-time H∞ control for linear continuous system with normbounded disturbance[END_REF][START_REF] Xiang | Robust finite-time H∞ control for a class of uncertain switched neutral systems[END_REF][START_REF] Xiang | H∞ finite-time control for nonlinear switched discrete-time systems with norm-bounded disturbance[END_REF][START_REF] Xu | H∞ optimal stabilization of a class of uncertain impulsive systems: An LMI approach[END_REF]. Consider the following uncertain linear system with time-varying delay:

         ẋ(t) = [A 1 + ∆A 1 (t)]x(t) + [A 2 + ∆A 2 (t)]x(t -h(t)) +[B + ∆B(t)]u(t) + [G + ∆G(t)]w(t), t ≥ 0, z(t) = C 1 x(t) + C 2 x(t -h(t)), x(t) = ϕ(t), t ∈ [-h 2 , 0], (15) 
where the delay function h(t) satisfies the condition (2), the uncertainties ∆A 1 (t), ∆A 2 (t), ∆B(t), ∆G(t) are given as

[∆A 1 (t) ∆A 2 (t) ∆B(t) ∆G(t)] = DE(t)[M a1 M a2 M b M g ],
where D, M a1 , M a2 , M b , M g are known real constant matrices of appropriate dimensions and E(t) is an unknown uncertain matrix satisfying

E(t) E(t) ≤ I, ∀t ≥ 0.
To apply Theorem 3.1, we denote

f (t, x, x h , u, ω) = ∆A 1 (t)x(t) + ∆A 2 (t)x(t -h(t)) + ∆B(t)u(t) + ∆G(t)ω(t), λ d = λ max (D D), λ m1 = λ max (M a1 M a1 ), λ m2 = λ max (M a2 M a2 ), λ m b = λ max (M b M b ), λ mg = λ max (M g M g ).
We have

f 2 ≤ 4 ∆A 1 x 2 + 4 ∆A 2 x h 2 + 4 ∆Bu 2 + 4 ∆Gω 2 ≤ 4λ d λ m1 x 2 + 4λ d λ m2 x h 2 + 4λ d λ m b u 2 + 4λ d λ mg ω 2
By the same notations used in Theorem 3.1

a 1 = 4λ d λ m1 , a 2 = 4λ d λ m2 , a 3 = 4λ d λ m b , a 4 = 4λ d λ mg ,
we have Corollary 1. The robust finite-time H ∞ control of the system (15) has a solution if there exist a positive scalar η, symmetric positive definite matrices P, U 1 , U 2 , X 1 , X 2 , S, N and matrices Q, K such that the following conditions hold

Ψ = Ψ 1 Ψ 2 * Ψ 3 < 0, (16) 
α 2 c 1 + γηd ≤ α 1 c 2 e -ηT . (17) 
The output feedback controller is given by u(t) = N -1 Kz(t), ∀t ≥ 0.

Remark 2. The proposed output feedback controller can ensure robustly finitetime stability of the closed-loop system while also guaranteeing an adequate level of system performance which is expressed in terms of LMIs. The result in this paper advances recent findings H ∞ controller reported in [START_REF] Fridman | Delay-dependent stability and H∞control: constant and timevarying delays[END_REF][START_REF] Liu | Delay-dependent observer-based H∞ finite-time control for switched systems with time-varying delay[END_REF][START_REF] Senthilkumar | Delay-dependent robust stabilization and H∞ control for nonlinear stochastic systems with Markovian jump parameters and interval timevarying delays[END_REF][START_REF] Xiang | Robust finite-time H∞ control for a class of uncertain switched neutral systems[END_REF][START_REF] Xiang | H∞ finite-time control for nonlinear switched discrete-time systems with norm-bounded disturbance[END_REF], where the time delays considered are interval time-varying as opposed to constant delays. Moreover, we construct Lyapunov-like functionals different from the ones in [START_REF] Liu | Delay-dependent observer-based H∞ finite-time control for switched systems with time-varying delay[END_REF][START_REF] Senthilkumar | Delay-dependent robust stabilization and H∞ control for nonlinear stochastic systems with Markovian jump parameters and interval timevarying delays[END_REF][START_REF] Xiang | Robust finite-time H∞ control for a class of uncertain switched neutral systems[END_REF][START_REF] Xiang | H∞ finite-time control for nonlinear switched discrete-time systems with norm-bounded disturbance[END_REF] and estimate the derivative of V (•) by the generalized integral inequality, which leads to a less conservative LMI condition and reduced numerical complexity, and also as shown in the numerical example below, the proposed LMI condition in this paper can be solved with less free weighting matrix unknowns comparatively.

Example 1. Consider the system (1) where

A 1 = 0.8 0.05 0 -1.1 , A 2 = -1 0 0.02 0.9 , B = -6 1 2 4 , G = 0.01 0 0.5 0.2 , C 1 = 0.01 -0.2 , C 2 = -0.02 0.1 , f (.) = 0.1   sin(t)x 2 1 (t) + x 2 1 (t -h(t)) + cos(t)u 2 2 (t) + ω 2 2 (t) sin(t)x 2 2 (t) + x 2 2 (t -h(t)) + cos(t)u 2 1 (t) + ω 2 1 (t)   and a 1 = a 2 = a 3 = a 4 = 0.01, h(t) =    0.1 + 0.3 cos(t), t ∈ I = 0, π 2 k∈N + (- π 2 + 2kπ, π 2 + 2kπ) 0.1, t ∈ R + \ I. ϕ(t) = [2, 2.4], t ∈ [-0.4, 0]
. Note that the functions h(t) are non-differentiable, therefore, the methods proposed in [START_REF] Liu | Delay-dependent observer-based H∞ finite-time control for switched systems with time-varying delay[END_REF][START_REF] Senthilkumar | Delay-dependent robust stabilization and H∞ control for nonlinear stochastic systems with Markovian jump parameters and interval timevarying delays[END_REF][START_REF] Xiang | Robust finite-time H∞ control for a class of uncertain switched neutral systems[END_REF][START_REF] Xiang | H∞ finite-time control for nonlinear switched discrete-time systems with norm-bounded disturbance[END_REF] are not applicable to this system. For given h 1 = 0.1, h 2 = 0.4, T = 5, d = 1, γ = 4, c 1 = 1, c 2 = 37, R = 0.1I, by using the LMI Toolbox in Matlab (see [START_REF] Gahinet | LMI Control Toolbox For use with MATLAB[END_REF]), the LMI in Theorem 3.1 is satisfied with η = 0.4138 and We also note that the function h(t) is non-differentiable, therefore, the methods proposed in [START_REF] Meng | Finite-time H∞ control for linear continuous system with normbounded disturbance[END_REF][START_REF] Xiang | Robust finite-time H∞ control for a class of uncertain switched neutral systems[END_REF][START_REF] Xiang | H∞ finite-time control for nonlinear switched discrete-time systems with norm-bounded disturbance[END_REF] are not applicable to this system. By using the LMI Toolbox in Matlab, the LMI in Corollary 1 is satisfied with T = 8, d = 2, γ = 1, c 1 = 1, c 2 = 74, R = 0.04I, η = 0. 

2 , 11 =

 211 W 3,10 = W 4,10 = W 4,11 = 6S, W 57 = Q, and W ij = 0 for the others.

  ) =[3, 3.8] and with the delay h(t) is given as in Example 1.

  The robust finite-time H ∞ control problem for the systems[START_REF] Senthilkumar | Delay-dependent robust stabilization and H∞ control for nonlinear stochastic systems with Markovian jump parameters and interval timevarying delays[END_REF] has a solution, and the output feedback control u(t) = N -1 Kz(t) is defined byu(t) = 10-6 0.0086 -0.4288 0.0099 -0.4942 x(t) + 10 -6 -0.3430 0.0858 -0.3953 0.0988 x(t -h(t)). Moreover, the solution x(t, ϕ) satisfies x(t) Rx(t) ≤ 74, ∀t ∈ [0, 8]. 4. Conclusions. This paper has investigated the robust finite-time H ∞ control problem via the output feedback controls for nonlinear systems with the interval and non-differentiable time-varying delays. Based on constructing the improved Lyapunov functionals and by utilizing a new generalized integral inequality, new LMI-based sufficient conditions for designing output feedback controller are derived for the considered system. An application to H ∞ control of uncertain linear systems with the interval time-varying delays is given. Numerical examples have been given to illustrate the effectiveness of the proposed results. The foregoing results have the potential to be useful for the study of finite-time H ∞ control via output feedback for nonlinear non-autonomous systems with time-varying delay and disturbances.

		X 1 =	323.1831 -12.8844 -12.8844 121.4385	, X 2 =	13.8824 -0.6318 -0.6318 5.1041	,
		S =	84.9282 -1.2178 -1.2178 34.5612	, N = 10 3 6.3315 0.4824 0.4824 4.6013	,
			Q =	0.5451 -0.0093 -0.0093 0.2147	, K =	0.0591 0.0496	.
								4
	and						
	P =	3.3747 -0.7143 -0.7143 1.3600	, U 1 =	2.3774 -0.1270 -0.1270 2.1229	, U 2 =	0.7881 0.2115 0.2115 1.2668	,
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