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Nonsmooth Lur’e Dynamical Systems in Hilbert Spaces

Samir Adly1 ·Abderrahim Hantoute2 ·Ba Khiet Le2

Abstract In this paper, we study the well-posedness and stability analysis of set-valued
Lur’e dynamical systems in infinite-dimensional Hilbert spaces. The existence and unique-
ness results are established under the so-called passivity condition. Our approach uses a
regularization procedure for the term involving the maximal monotone operator. The Lya-
punov stability as well as the invariance properties are considered in detail. In addition,
we give some sufficient conditions ensuring the robust stability of the system in finite-
dimensional spaces. The theoretical developments are illustrated by means of two examples
dealing with nonregular electrical circuits and an other one in partial differential equations.
Our methodology is based on tools from set-valued and variational analysis.
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1 Introduction

The Lur’e dynamical systems consist of a coupling of a negative feedback interconnec-
tion of a linear time-invariant forward path (A, B, C, D) and a static nonlinear feedback
F . Such systems are of frequent use in control theory and have many applications in
engineering and applied mathematics (see, e.g., [1] and references therein). For instance,
many problems in electrical and mechanical engineering can be formulated by set-valued
Lur’e dynamical systems. This is the case, for example, in nonregular electrical circuits,
in designing state observers or in control of systems subjected to dry friction [2, 3]. More
recently, Lur’e dynamical systems with set-valued static feedback part have been used and
studied in [2–7]. It is also known that other mathematical models used to study non-smooth
dynamical systems (relay systems, evolution variational inequalities, projected dynamical
systems, complementarity systems. . . ) can be formulated into Lur’e dynamical systems
with a set-valued feedback nonlinearity [6, 8–11].
This paper considers the set-valued Lur’e dynamical systems in infinite dimensional
Hilbert spaces. Let H1,H2 be two Hilbert spaces, and consider bounded linear operators
A : H1 → H1, B : H2 → H1, C : H1 → H2 and D : H2 → H2. We also consider a
set-valued map F : H2 ⇒ H2. Then, given an initial point x0 ∈ H1, the problem consists
of finding an absolutely continuous function x(·) defined on [0, +∞) such that

(S)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ(t) = Ax(t) + Bλ(t) a.e. t ∈ [0, +∞); (1a)

y(t) = Cx(t) + Dλ(t), (1b)

y(t) ∈ F(−λ(t)), t ≥ 0; (1c)

x(0) = x0, (1d)

where λ, y : R+ → H2 are two connected unknown mappings. It is possible to include per-
turbation with locally integrable external force f (·) and/or a nonlinear Lipschitz continuous
map instead of the linear operator A but, for simplicity, we restrict ourselves to system (S).
To the best of our knowledge, such system was firstly introduced and analysed in a special
case in [5].

In order to illustrate our systems (S), we give the following classical scheme in Fig. 1
(see, e.g., [6]). Here A,B,C, D are referred to as the state, the input, the output, and
the feedthrough operators, respectively. Most of the previous works concern the finite-
dimensional case where the matrix D = 0 [4] or D �= 0 and F is a maximal monotone
operator [2, 6, 7]. The consideration of nonzero matrix D makes the analysis of the system
more difficult. If F coincides with the normal cone of Rn+ (i.e. F = NR

n+), then system (S)

reduces to the well-known linear complementarity systems largely studied in the literature
[3, 12]. In [6], the authors studied the well-posedness, stability and invariance properties of

Fig. 1 Set-valued Lur’e block
diagram
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system (S), where F is the inverse of the subdifferential mapping of a given proper con-
vex and lower semicontinuous function, or, equivalently, the subdifferential mapping of its
Fenchel conjugate. The well-posedness is improved in [7] for a general maximal mono-
tone operator by using the passivity of the linear systems. It is worth noting that in the
case D = 0, the monotonicity of set-valued map F is not necessary; in fact, only the local
hypo-monotonicity of F is sufficient [4].

In the present paper, nonzero operator D is allowed. The well-posedness and the sta-
bility analysis, including finite-time stability, of (S) are investigated in the general setting
of infinite-dimensional Hilbert spaces. When the underlying spaces are finite-dimensional,
we generalize a version of Krasovskii-LaSalle invariance principle, study the asymptotic
behaviour of solutions and investigate the attractive region. Furthermore, we give a condi-
tion that guarantees the attractivity of the set of equilibria. We also give sufficient conditions
ensuring the robust stability of (S) (see, e.g., [13]).

The paper is organized as follows: in Section 2, we recall some results in set-valued
analysis and extend some definitions of control theory to the infinite-dimensional setting.
The well-posedness and stability analysis of the system (S) are studied in detail in Section 3
and Section 4, respectively. Section 5 is dedicated to the analysis of the robust stability of the
Lur’e dynamical system (S). In Section 6, we present two examples in nonregular electrical
circuits and one example in partial differential equations to support the theoretical results.
Some concluding remarks are given in Section 7.

2 Notation and Mathematical Backgrounds

Let us first introduce some notation that will be used in the sequel. Denote by 〈·, ·〉 , ‖ · ‖ the
scalar product and the corresponding norm in a Hilbert spaceH; I the identity operator, BH
the closed unit ball inH. The interior of a given set S ⊂ H is denoted by int(S). The domain,
the range and the graph of a set-valued mapping A : H ⇒ H are defined respectively by

dom(A) = {x ∈ H : A(x) �= ∅}, rge(A) =
⋃

x∈H
A(x)

and

gph(A) = {(x, y) : x ∈ H, y ∈ A(x)}.
The inverse operator A−1 is defined by

x ∈ A−1(y) ⇔ y ∈ A(x) for all x, y ∈ H.

Obviously, one has dom(A−1) = rge(A) and rge(A−1) = dom(A). The operator A is
said to be monotone if for all x, y ∈ H, x∗ ∈ A(x), y∗ ∈ A(y), we have 〈x∗ − y∗, x −
y〉 ≥ 0. The operator A is said to be maximal monotone if there is no monotone set-valued
mapping B such that gph(A) is contained strictly in gph(B). Let A, B : H ⇒ H be two
maximal monotone operators on H such that dom(A) ∩ int(dom(B)) �= ∅, then A + B is
maximal monotone. Particularly, we note that if B : H → H is single-valued, monotone
and continuous then A + B is maximal monotone (see e.g. [14]). In the following, we
summarize some well-known results concerning maximal monotone operators that will be
used later.

Proposition 1 ([14–17]) Let A : H ⇒ H be a maximal monotone operator and let λ > 0.
Then
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1) the resolvent of A defined by JA
λ := (I + λA)−1 is a non-expansive and single-valued

map fromH toH.
2) the Yosida approximation of A defined by Aλ := 1

λ
(I − JA

λ ) = (λI + A−1)−1 satisfies

i) for all x ∈ H, Aλ(x) ∈ A(JA
λ x) ,

ii) Aλ is Lipschitz continuous with constant 1
λ
and also maximal monotone.

iii) If x ∈ dom(A), then ‖Aλx‖ ≤ ‖A0x‖, where A0x is the element of Ax of minimal
norm.

3) If xλ → x and (Aλxλ)λ>0 is bounded as λ → 0, then x ∈ domA. Moreover, if y is a
cluster point of (Aλxλ)λ>0 as λ → 0, then y ∈ A(x).

Proposition 2 ([14, 16]) Let A : H ⇒ H be a maximal monotone operator. Then

1) A is sequentially weak-strong and strong-weak closed.
2) A is locally bounded on int(dom)A.

3) For T > 0, defineA : L2([0, T ];H) ⇒ L2([0, T ];H) by

y(·) ∈ Ax(·) iff y(t) ∈ Ax(t) a.e. t ∈ [0, T ].
ThenA is also a maximal monotone operator.

Next let us extend some definitions concerning passive systems which play an essential
role in control theory [3], to infinite dimensional spaces.

Definition 1 An operator P ∈ L(H) (the set of all linear and bounded operators fromH to
H) is said to be

– semi-positive definite (or monotone) iff for all x ∈ H,

〈Px, x〉 ≥ 0.

– positive definite iff there exists α > 0 such that for all x ∈ H,

〈Px, x〉 ≥ α‖x‖2. (2)

– symmetric iff P = P T , i.e., for all x, y ∈ H, we have 〈Px, y〉 = 〈x, Py〉.
Let A : H1 → H1, B : H2 → H1, C : H1 → H2 and D : H2 → H2 be some given
linear and bounded operators whereH1,H2 are Hilbert spaces.

Definition 2 (A,B,C,D) is said to be passive if there exists a symmetric positive definite
operator P ∈ L(H1) such that for all x ∈ H1, y ∈ H2, we have

〈PAx, x〉 + 〈(PB − CT )y, x〉 − 〈Dy, y〉 ≤ 0. (3)

In this case, we say that the system (A, B, C, D) is P -passive.

Remark 1 i) In finite dimension, the P -passivity of (A, B, C, D) is equivalent to
negative semi-definiteness of the matrix

⎛

⎝
PA + AT P PB − CT

BT P − C −(D + DT )

⎞

⎠ .
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ii) It is easy to see that if the system (A, B, C, D) is P -passive then the following
dissipation inequality holds

1

2
〈Px(t1), x(t1)〉 +

∫ t2

t1

〈y(τ), λ(τ )〉dτ ≥ 1

2
〈Px(t2), x(t2)〉 for all t2 ≥ t1 ≥ 0. (4)

Indeed,

d

dt

(1

2
〈Px(t), x(t)

)
−〈y(t), λ(t)〉=〈Px(t), Ax(t)+Bλ(t)〉−〈Cx(t)+Dλ(t), λ(t)〉≤ 0.

iii) The inequality in (3) is equivalent to

〈PAx, x〉 + 〈(CT − PB)y, x〉 − 〈Dy, y〉 ≤ 0 for all x ∈ H1, y ∈ H2.

Definition 3 (A, B, C, D) is said to be strictly P -passive if (A+εI, B, C,D) is P -passive
for some ε > 0.

Lemma 1 If (A,B,C,D) is P -passive, then

(i) D is positive semi-definite.
(ii) For every sequence (yn)n≥1 ⊂ H2 such that lim

n→+∞〈Dyn, yn〉 = 0, we have

lim
n→+∞(PB − CT )yn = 0.

Proof (i) Taking x = 0 in (3) for D.
(ii) Suppose that ξn := (PB − CT )yn does not converge to 0. Then there exists ε > 0

and a subsequence (ξnk
) such that ‖ξnk

‖ ≥ ε for all k. Choose M > 0 such that

(M − 1)ε − ‖PA‖ ≥ 0. Take y = ynk
, x = ξnk

M‖ξnk
‖ in (3), then we have

‖ξnk
‖

M
= 〈(PB − CT )ynk

, xnk
〉 ≤ 〈Dynk

, ynk
〉 − 〈PAxnk

, xnk
〉

≤ 〈Dynk
, ynk

〉 + ‖PA‖
M2

.

Consequently

〈Dynk
, ynk

〉 ≥ M‖ξnk
‖ − ‖PA‖
M2

≥ ε

M2
. (5)

Passing to the limit as k → +∞ in (5), we get a contradiction.

We end-up this section by recalling a version of Gronwall’s inequality (see, e.g., [18]).

Lemma 2 Let T > 0 be given and a(·), b(·) ∈ L1([0, T ];R) with b(t) ≥ 0 for almost all
t ∈ [0, T ]. Let an absolutely continuous function w : [0, T ] → R+ satisfy

(1 − α)w′(t) ≤ a(t)w(t) + b(t)wα(t), a.e. t ∈ [0, T ] (6)

where 0 ≤ α < 1. Then for all t ∈ [0, T ], we have

w1−α(t) ≤ w1−α(0)exp

(∫ t

0
a(τ)dτ

)

+
∫ t

0
exp

(∫ t

s

a(τ )dτ

)

b(s)ds. (7)
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3 Existence and Uniqueness of Solutions

In this section, we study the existence and uniqueness of the solutions of the system (S) by
using regularization. From (1b) and (1c) of (S), it is easy to compute λ(·) in term of x(·):

λ(·) ∈ −(D + F)−1(Cx(·)).
Therefore, we can rewrite the system (S) in the form of first order differential inclusion as
follows

ẋ(t) ∈ Ax(t) − B(D + F)−1(Cx(t)) a.e. t ≥ 0. (8)

The domain of the right-hand side of (8) is C−1(dom(D + F)−1) = C−1(rge(D + F)).
Here C−1(S) denotes the inverse image of the set S under C, defined by C−1(S) = {x ∈
H1 : Cx ∈ S}.

Suppose that the following assumptions hold

Assumption 1 F : H2 ⇒ H2 is maximal monotone.

Assumption 2 One of the followings holds:

(i) B is bijective;
(ii) rge(C) ∩ int(rge(D + F)) �= ∅.

Theorem 1 Let Assumptions 1, 2 hold and suppose that (A − kI, B, C, D) is I -passive for
some k ≥ 0. Then for each x0 ∈ H1 such that x0 ∈ C−1(rge(D + F)), there exists a unique
global solution x(·; x0) of the Lur’e dynamical system (S). Furthermore, the solutions con-
tinuously depend on the initial conditions in the sense that for x0, x1 ∈ C−1(rge(D + F)),
and t ≥ 0, one has

‖x(t; x0) − x(t; x1)‖ ≤ ekt‖x0 − x1‖. (9)

Proof Fix T > 0. On [0, T ] the system (S) is equivalent to the following differential
inclusion

ẋ(t) ∈ kx(t) + A1x(t) − B(D + F)−1(Cx(t)) a.e. t ∈ [0, T ], x(0) = x0, (10)

where A1 := A − kI . Since D +F is maximal monotone, then so is S := (D +F)−1. The
Yosida approximation of S of index μ > 0 is Sμ = (μI + S−1)−1 = (μI + D + F)−1 is
Lipschitz continuous. Let us approximate (10) by the following ODE

ẋμ(t) = kxμ(t) + A1xμ(t) − BSμ(Cxμ(t)) ∀t ∈ [0, T ], xμ(0) = x0. (11)

By the Cauchy-Lipschitz Theorem, (11) has a unique differentiable solution xμ(·). Let
Hμ(x) := −A1x + BSμ(Cx), x ∈ H1. Let us prove that Hμ is monotone. In fact, let xi ∈
H1 and yi = Sμ(Cxi) = (μI +D+F)−1(Cxi), i = 1, 2. Then Cxi −Dyi ∈ (F+μI)(yi).
Using the monotonicity of F + μI , we get

〈C(x1 − x2) − D(y1 − y2), y1 − y2〉 ≥ 0.

Since (A1, B, C, D) is I -passive, we have

〈−A1(x1−x2), x1−x2〉+〈B(y1−y2), x1−x2〉 ≥ 〈C(x1−x2)−D(y1−y2), y1−y2〉 ≥ 0.

Hence Hμ is monotone. For any ε > 0, one has

1

2

d

dt
‖xμ(t +ε)−xμ(t)‖2 = 〈ẋμ(t +ε)− ẋμ(t), xμ(t +ε)−xμ(t) ≤ k‖xμ(t +ε)−xμ(t)‖2.
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From Gronwall’s inequality, one obtains

‖xμ(t + ε) − xμ(t)‖ ≤ ‖xμ(ε) − xμ(0)‖ekt ≤ ‖xμ(ε) − xμ(0)‖ekT .

Dividing both side by ε and taking the limit as ε → 0, one obtains for all t ∈ [0, T ] that
‖ẋμ(t)‖ ≤ ‖ẋμ(0)‖ekT ≤ (‖Ax0‖ + ‖B‖‖S0(Cx0)‖)ekT =: M1. (12)

Hence for all μ > 0, ẋμ(·) is uniformly bounded by M1 and xμ(·) is uniformly bounded by
M2 := ‖x0‖ + M1T on [0, T ]. Therefore, BSμ(Cxμ(·)) is uniformly bounded on [0, T ].
Let us prove that there exists some μ0 > 0 such that(
Sμ(Cxμ(·)))

μ≤μ0
is uniformly bounded. Note that this conclusion holds if B is bijective

since then B−1 is bounded due to the known Bounded Inverse Theorem. Suppose on con-
trary that there exist sequences yn = Sμn(Cxμn(tn)), μn → 0+ and tn ∈ [0, T ] such that
‖yn‖ → +∞ as n → +∞ . Let γ ∈ rge(C) ∩ int (rge(D + F)). Then there exists some
r > 0 such that γ + rBH1 ⊂ rge(D +F) = dom(D +F)−1 and (D +F)−1 is bounded on
γ +rBH1 by some constantM3 > 0 (Proposition 2). Set xn = γ +rξn, where ξn = yn/‖yn‖
and zn ∈ (D + F)−1(xn). It is clear that the sequence (zn) is bounded by M3. One has
xn −Dzn ∈ F(zn) and Cxμn(tn)−Dyn −μnyn ∈ F(yn). From the monotonicity of F , we
get

〈Cxμn(tn) − xn − D(yn − zn) − μnyn, yn − zn〉 ≥ 0. (13)

Dividing both side of (13) by ‖yn‖2 and taking the limit as n → +∞, one has
lim

n→+∞〈Dξn, ξn〉 = 0 since
(
xμn(tn)

)
, (xn), (zn) are bounded. Note that

lim
n→+∞ Bξn = 0 due to the boundedness of (Byn). Hence lim

n→+∞ CT ξn = 0 thanks to

Lemma 1. From (13) and the monotonicity of D, we deduce

〈Cxμn(tn) − xn, yn − zn〉 ≥ μn〈yn, yn − zn〉 ≥ μn〈zn, yn − zn〉. (14)

Dividing both sides of (14) by ‖yn‖, then taking the liminf and noting that
lim

n→+∞〈Cxμn(tn), ξn〉 = lim
n→+∞〈xμn(tn), C

T ξn〉 = 0, one obtains:

lim inf
n→+∞〈−xn, ξn〉 ≥ 0.

Thus, 0 ≥ lim sup
n→+∞

〈xn, ξn〉 = lim
n→+∞〈γ + rξn, ξn〉 = r since γ ∈ rge(C) and lim

n→+∞ CT ξn =
0, which is a contradiction. Hence

(
Sμ(Cxμ(·)))

μ≤μ0
is uniformly bounded by some

constant M4 > 0.
Next, we will prove that

(
xμ(·))

μ≤μ0
is a Cauchy sequence in C([0, T ];H1). Indeed, let

0 < μ, ν ≤ μ0, we have

1

2

d

dt
‖xν(t) − xμ(t)‖2

= 〈ẋν(t) − ẋμ(t), xν(t) − xμ(t)〉
= 〈A(xν(t) − xμ(t)) − B(yν(t) − yμ(t)), xν(t) − xμ(t)〉
≤ k‖xν(t) − xμ(t)‖2 + 〈D(yν(t) − yμ(t)) − C(xν(t) − xμ(t)), yν(t) − yμ(t)〉,

where yν(t) = Sν(Cxλ(t)), yμ(t) = Sμ(Cxμ(t)) and the last inequality comes from the
passivity of (A1, B, C, D). On the other hand, one has

Cxν(t) − Dyν(t) − νyν(t) ∈ F(yν(t)) and Cxμ(t) − Dyμ(t) − μyμ(t) ∈ F(yμ(t)).

Using the monotonicity of F , we get

〈D(
yν(t)−yμ(t)

)−C
(
xν(t)−xμ(t)

)
, yν(t)−yμ(t)〉 ≤ 〈−νyν(t)+μyμ(t), yν(t)−yμ(t)〉.
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Therefore,

1

2

d

dt
‖xν(t) − xμ(t)‖2

≤ k‖xν(t) − xμ(t)‖2 + 〈D(yν(t) − yμ(t)) − C(xν(t) − xμ(t)), yν(t) − yμ(t)〉
≤ k‖xν(t) − xμ(t)‖2 + 〈−νyν(t) + μyμ(t), yν(t) − yμ(t)〉
= k‖xν(t) − xμ(t)‖2 + 〈(μ − ν)yμ(t), yν(t) − yμ(t)〉 − ν‖yλ(t) − yμ(t)‖2
≤ k‖xν(t) − xμ(t)‖2 + |ν − μ|‖yμ(t)‖‖yν(t) − yμ(t)‖
≤ k‖xν(t) − xμ(t)‖2 + 2M2

4 |ν − μ|.
Using Gronwall’s inequality and noting that xλ(0) = xμ(0) = x0, one has

‖xν(t) − xμ(t)‖2 ≤ 4M2
4 |ν − μ|

∫ t

0
e2k(t−s)ds ≤ 4M2

4T |ν − μ|e2kT , ∀t ∈ [0, T ], (15)

or equivalently

‖xν(t) − xμ(t)‖ ≤ 2M4e
kT

√|ν − μ|T , ∀t ∈ [0, T ]. (16)

As a consequence, (xμ(·))μ≤μ0 is a Cauchy sequence in C([0, T ];H1) and there exists a
(Lipschitz continuous) function x(·) ∈ C([0, T ];H1) such that xμ(·) converges to x(·) in
C([0, T ];H1). Let ν → 0 in (16), one has

‖xμ(t) − x(t)‖ ≤ 2M4e
kT

√
μT , ∀t ∈ [0, T ]. (17)

For each t ∈ [0, T ], (
Sμ(Cxμ(t))

)

μ≤μ0
is bounded and Cxμ(t) → Cx(t) hence Cx(t) ∈

domS = rge(D +F) (Proposition 1). Since
(
ẋμ(·)) is uniformly bounded by M1 on [0, T ],

there exists a subsequence, still denoted by
(
ẋμ(·)), such that (ẋμ(·)) converges weakly to

ẋ(·) in L2([0, T ],H1) (see e.g. Theorem 4, p. 23 [15]). In addition,
(
Sμ(Cxμ(·)))

μ≤μ0
is

uniformly bounded by M4, there exists some γ (·) ∈ L2([0, T ],H1) and a subsequence, still
denoted by itself, such that

(
Sμ(Cxμ(·)))

μ≤μ0
converges weakly to γ (·) in L2([0, T ],H1).

Note that

‖J S
μ(Cxμ(t)) − Cx(t)‖ ≤ ‖J S

μ(Cxμ(t)) − Cxμ(t)‖ + ‖Cxμ(t) − Cx(t)‖
≤ μ‖Sμ(Cxμ(t))‖ + ‖C‖‖xμ(t) − x(t)‖
≤ μM4 + 2M4‖C‖ekT

√
μT .

Hence J S
μ(Cxμ(·))μ≤μ0 converges strongly to Cx(·) in C([0, T ],H1), thus in

L2([0, T ],H1) also. Furthermore, one has the relation

Sμ(Cxμ(t)) ∈ S(J S
μ(Cxμ(t))), ∀t ∈ [0, T ],

which implies that (Proposition 2)

γ (t) ∈ S(Cx(t)) = (D + F)−1(Cx(t)) for almost all t ∈ [0, T ].
On the other hand, from (11), one deduce that

ẋ(t) = Ax(t) − Bγ (t) a.e. t ∈ [0, T ].
It means that x(·) is a solution of (10). Let H(x) := −A1x + BS(Cx), x ∈ H1, then
the monotonicity of H can be proved similarly for Hμ. Thus (10) has at most a solution.
Therefore, x(·) is the unique solution of (10), or equivalently of (S), on [0, T ]. Since T is
arbitrary, the conclusion follows which completes the global existence and uniqueness of
solutions.

8



Let x0, x1 ∈ C−1(rge(D + F)). From the monotonicity of H(x), one has

1

2

d

dt
‖x(t; x0)−x(t; x1)‖2=〈ẋ(t; x0)−ẋ(t; x1), x(t; x0)−x(t; x1)≤k‖x(t; x0)−x(t; x1)‖2.

Using Gronwall’s inequality, for all t ≥ 0, one has

‖x(t; x0) − x(t; x1)‖ ≤ ‖x0 − x1‖ekt ,

and the proof of Theorem 1 is thereby completed.

Remark 2 i) In the case of finite dimension, the interior in Assumption 2 can be reduced
to relative interior.

ii) If there exists some symmetric positive definite P ∈ L(H) such that PB = CT , then
it is easy to see that (A − kI, B, C, D) is P -passive for k large enough. However,
in this case, from the proof of Theorem 1, Assumption 2 (ii) and the maximality of
F + D are sufficient for the well-posedness without requiring the monotonicity of F
or D.

iii) In [7], the existence and uniqueness of solutions are acquired by proving the operator
H : H1 ⇒ H1, x �→ H(x) = −A1x + BS(Cx), where A1 = A − kI, is maximal
monotone. The authors use a characterization of maximal monotonicity which cannot
be extended for infinite-dimensional spaces. Our approach is based on a regulariza-
tion procedure; however it also allows to obtain the maximal monotonicity of H , even
in reflexive Banach spaces.

(iv) If D is positive definite then the proof is much easier since then (F + D)−1 is
single-valued Lipschitz continuous. Hence −A + B(F + D)−1(C·) is single-valued
monotone, Lipschitz continuous and thus is maximal monotone. Therefore, the case
when D is monotone but not positive definite is more interesting.

(v) The operator A does not play an important role in Theorem 1. Indeed, the result is
still true if A is replaced by any Lipschitz continuous function satisfying the passivity
condition (3). In contrast, the role of the operators B,C,D can be seen in Assumption
2. It is easy to realize that Assumption 2 (i) and (ii) are two kind of independently
sufficient conditions, which do not imply to each other. For example in R2, let us take

−A = B = I2 =
⎛

⎝
1 0

0 1

⎞

⎠ , C =
⎛

⎝
1 0

0 0

⎞

⎠ , D = F =
⎛

⎝
0 0

0 1

⎞

⎠ ,

then B is bijective but int(rge(D + F)) = ∅. On the other hand, if we take

−A = I2, C = 02, B = D =
⎛

⎝
0 0

0 1

⎞

⎠ ,F =
⎛

⎝
1 0

0 0

⎞

⎠ ,

then rge(C) ∩ int(rge(D + F)) �= ∅ but B is not bijective.

Corollary 1 Let Assumptions 1, 2 hold and suppose that (A − kI, B, C, D) is P -passive
for some k ≥ 0 and symmetric positive definite P ∈ L(H1). Then for each x0 ∈ H1 such
that x0 ∈ C−1(rge(D + F)), there exists a unique solution x(·; x0) of the Lur’e dynamical
system (S). In addition, the solutions continuously depend on the initial conditions.

Proof Using classical technique of changing variable, one can reduce the P -passivity into
I -passivity. Indeed, let R be the square root operator of P , then R ∈ L(H1) is also symmet-
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ric and positive definite. The system (S) can be recast in the following form of first order
differential inclusion

ẋ(t) ∈ Ax(t) − B(D + F)−1(Cx(t)) a.e. t ≥ 0, (18)

which is equivalent to

Rẋ ∈ kRx + RA1R
−1Rx − RB(D + F)−1(CR−1Rx),

where A1 = A − kI and (A1, B, C, D) is P -passive. Setting z = Rx, we have

ż ∈ kz + RA1R
−1z − RB(D + F)−1(CR−1z).

By setting (Ā, B̄, C̄) = (RA1R
−1, RB, CR−1), we derive

ż ∈ kz + Āz − B̄(D + F)−1(C̄z). (19)

In addition, for all y1 ∈ H1, y2 ∈ H2, we have

〈Āy1, y1〉 + 〈(B̄ − C̄T )y2, y1〉 − 〈Dy2, y2〉
= 〈PA1ȳ1, ȳ1〉 + 〈(PB − CT )y2, ȳ1〉 − 〈Dy2, y2〉 ≤ 0, (20)

with ȳ1 = R−1y1. We conclude that (Ā, B̄, C̄,D) is I -passive. The desired result follows
then by Theorem 1.

4 Stability Analysis

In this section, we investigate the stability of equilibria and extend the Krasovskii-LaSalle
invariance principle for our system (S). LetW be the set of equilibria of (S), defined by

W = {x̄ ∈ A and 0 ∈ Ax̄ − B(D + F)−1(Cx̄)}, (21)

where A = {x ∈ H1 : x ∈ C−1(rge(D + F))}. Assume that the well-posedness of the
system is already acquired and for a given initial point x0 ∈ H, let x(·; x0) be the unique
solution of (S). First, we assume the following assumption related to the generalized sector
nonlinearities, a familiar term in stability analysis of Lur’e dynamical systems [3].

Assumption 3 0 ∈ F(0).

Remark 3 i) If Assumption 3 holds, then the monotonicity of F implies that F is in the
sector [0, +∞], i.e for all y ∈ H2, y

∗ ∈ F(y), we have 〈y, y∗〉 ≥ 0.
ii) Assumption 3 also ensures that 0 ∈ W and x(t; 0) = 0 for all t ≥ 0.

Let us recall some basic definitions of Lyapunov stability theory [4, 19] adapted to
system (S).

Definition 4 The equilibrium point x = 0 is said to be stable if

∀ε > 0, ∃δ > 0 such that f or all x0 ∈ Bδ ∩ A, then ‖x(t; x0)‖ ≤ ε, ∀t ≥ 0.

Definition 5 The equilibrium point x = 0 is said to be attractive if

∀ε > 0, ∃δ > 0 such that f or all x0 ∈ Bδ ∩ A, then lim
t→∞ ‖x(t; x0)‖ = 0.

If this is true for all x0 ∈ A then x = 0 is said globally attractive.
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Definition 6 If the trivial equilibrium point is stable and attractive, it is called asymptotic
stable; if it is stable and globally attractive, it is called globally asymptotically stable.

Definition 7 The equilibrium point x = 0 is said to be exponentially stable if

∃δ > 0, ε > 0, a ≥ 0 such that f or all x0 ∈ Bδ ∩ A, then ‖x(t; x0)‖ ≤ ae−εt .

If this is true for all x0 ∈ A then x = 0 is said globally exponentially stable.

Definition 8 The equilibrium point x = 0 is said to be finite-time stable if it is stable and
for all x0 ∈ A, there exists tf < +∞ such that

x(t; x0) = 0 for all t ≥ tf .

Theorem 2 Let Assumption 3 hold and suppose that (A, B, C, D) is P -passive. Then the
origin is stable.

Proof Define the Lyapunov function V (x) = 1
2 〈Px, x〉 which is positive definite. It is

sufficient to prove that the derivative of V (·) along the trajectories of system (S) is non-
positive, i.e., V (·) is non-increasing along the system trajectories. Indeed, we have

V̇ (x) = 〈V ′(x), ẋ〉 = 〈P ẋ, x〉 = 〈PAx, x〉 + 〈PBλ, x〉
≤ 〈Cx, λ〉 + 〈Dλ, λ〉 = 〈Cx + Dλ, λ〉 ≤ 0, (22)

where λ ∈ −(D +F)−1(Cx), the first inequality comes from the passivity of (A, B, C, D)

and the second inequality is deduced from the fact that Cx + Dλ ∈ F(−λ) and F is in the
sector [0, +∞]. Given x0 ∈ A, let x(·) := x(·; x0) then V (x(t)) ≤ V (x0) ≤ 1

2‖P ‖.‖x0‖2,
where ‖P ‖ is the operator norm of P . Note that V (x) ≥ 1

2λmin(P )‖x‖2 where λmin(P ) > 0
is the smallest eigenvalue of P . Hence for all t ≥ 0

‖x(t)‖ ≤
√

‖P ‖
λmin(P )

‖x0‖,

which implies the stability of the origin.

Remark 4 The Lyapunov function V (·) defined above is differentiable. In [20], the authors
give a general sufficient condition in Hilbert space under which two extended proper lower
semi-continuous functions form a Lyapunov pair.

Theorem 3 Let Assumption 3 hold and suppose that (A,B,C,D) is strictly P -passive.
Then the origin is globally exponentially stable.

Proof Let ε > 0 be such that (A + εI, B, C, D) is P -passive. Define the same Lyapunov
function V (·) as in Theorem 2. Then the derivative of V (·) along the trajectories of the
system is

V̇ (x) = 〈PAx, x〉 + 〈PBλ, x〉 = 〈P(A + εI)x, x〉 + 〈PBλ, x〉 − εxT Px

≤ 〈Cx + Dλ, λ〉 − 2εV (x) ≤ −2εV (x), (23)
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where λ ∈ −(D + F)−1(Cx) and the first inequality comes from the passivity of (A +
εI, B, C, D). Given x0 ∈ A and let x(·) := x(·; x0) be the unique solution of (S). Then we
obtain

d

dt
V (x(t)) ≤ −2εV (x(t)) for a.e. t ≥ 0. (24)

Using a simple integration and note that V (x) ≥ 1
2λmin(P )‖x‖2 , one infers

1

2
λmin(P )‖x(t)‖2 ≤ V (x(t)) ≤ V (x0)e

−2εt , (25)

which implies that

‖x(t)‖ ≤
√

2V (x0)

λmin(P )
e−εt . (26)

Hence the origin is globally exponentially stable.

The following theorem provides an asymptotical result with weaker assumption than
strict passivity. In contrast, the rate of convergence cannot be estimated.

Theorem 4 Suppose for any 0 < β ≤ α, there exists ε > 0 such that

sup
β≤‖x‖≤α, y∈−(D+F)−1(Cx)

{〈PAx, x〉 + 〈PBy, x〉} ≤ −ε. (27)

Then the origin is globally asymptotically stable.

Proof From (27), it is easy to obtain that

sup
x∈H, y∈−(D+F)−1(Cx)

{〈PAx, x〉 + 〈PBy, x〉} ≤ 0.

Then the derivative of V (·) along the trajectories of system (S) is non-positive since

V̇ (x) = 〈PAx, x〉 + 〈PBλ, x〉,
where λ ∈ −(D + F)−1(Cx). Hence, the origin is stable. Given x0 ∈ A and let x(·) :=
x(·; x0) be the unique solution of (S). Let c = V (x0) and define �c = {x ∈ H : V (x) ≤ c}.
Since V (·) is non-increasing along the system trajectories, one infers that x(t) ∈ �c for

all t ≥ 0. It is easy to see that �c ⊂ Bα where α =
√

2c
λmin(P )

. Note that V (x(·)) is non-
increasing and bounded from below by 0. Hence there exists a non-negative real number b

such that
V (x(t)) → b as t → +∞.

It is sufficient to prove that b = 0 since V (x) ≥ 1
2λmin(P )‖x‖2. Arguing by contradiction,

suppose that b > 0. Then we can find β > 0 such that Bβ ⊂ �b. Hence for all t ≥
0, ‖x(t)‖ ≥ β. Then from (27), there exists ε > 0 such that for a.e. t ≥ 0,

d

dt
V (x(t)) = 〈PAx(t), x(t)〉 + 〈PBλ(t), x(t)〉 ≤ −ε, (28)

where λ(t) ∈ −(D + F)−1(Cx(t)). Therefore for all t ≥ 0

V (x(t)) = V (x0) +
∫ t

0

d

ds
V (x(s)) ≤ V (x0) − εt,

which is a contradiction and the proof is completed.
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Theorem 5 Suppose that there exists ε > 0 such that for all x ∈ H1 :
sup

y∈−(D+F)−1(Cx)

{〈PAx, x〉 + 〈PBy, x〉} ≤ −ε‖x‖. (29)

Then the origin is finite-time stable.

Proof It is not difficult to see that condition (29) implies condition (27). Hence the origin
is globally asymptotically stable, i.e. for each x0 ∈ A, we have

lim
t→∞ ‖x(t; x0)‖ = 0.

The derivative of V (·) along the trajectories of system (S) is

V̇ (x) = 〈PAx, x〉 + 〈PBλ, x〉,
where λ ∈ −(D + F)−1(Cx). Thus, from (29), one infers

V̇ (x) ≤ −ε‖x‖.
Note that V (x) ≤ 1

2‖P ‖.‖x‖2, where ‖P ‖ is the norm of P . Consequently

V̇ (x) ≤ −kV 1/2(x),

where k = ε
√
2/‖P ‖. It means that for almost all t ≥ 0, one has

d

dt
V (x(t; x0)) + kV 1/2(x(t; x0)) ≤ 0. (30)

Assume that for all t ≥ 0, w(t) := V (x(t; x0)) > 0. Dividing (30) by 2
√

w(t) and
integrating from 0 to t , we have for all t ≥ 0,

w(t) − w(0) ≤ −kt/2,

which is a contradiction. Therefore, there exists tf < +∞ such that w(tf ) = 0. Since w(·)
is non-negative and non-increasing, we deduce that w(t) = 0 for all t ≥ tf . Then it is easy
to conclude that x(t; x0) = 0 for all t ≥ tf . The result has been proved.

Remark 5 We give some cases such that condition (29) of Theorem 5 holds. For example,
consider P = I, B = C = √

εI , D = 0, A is negative semidefinite and F = NBH2
the

normal cone of the unit ball. Then it is easy to compute that

F−1(x) = ∂‖x‖ = Sign(x) =
⎧
⎨

⎩

x/‖x‖ if x �= 0,

BH2 if x = 0.

Clearly (29) holds for x = 0. If x �= 0 then

sup
y∈−(D+F)−1(Cx)

{〈PAx, x〉 + 〈PBy, x〉} ≤ 〈− εx

‖x‖ , x〉 = −ε‖x‖. (31)

In some cases, the system (A, B, C, D) is passive but neither strictly passive nor satisfy
(27). Thus it is natural to extend the Krasovskii-LaSalle invariance principle to obtain the
asymptotical property of the system. From now, let us consider the system (S) in finite-
dimensional spaces (H1 = R

n and H2 = R
m). Let x0 ∈ A and x(·; x0) be the solution of

(S), denote the orbit by

γ (x0) := {x(t; x0) : t ≥ 0} ⊂ A,
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and the limit set by

�(x0) := {p ∈ R
n : ∃{ti}, ti → ∞ as i → ∞ and x(ti; x0) → p}.

A set S ⊂ A is said invariant if and only if for all x0 ∈ S, the solution x(·; x0) of (S)

starting at x0 remains in S. The following theorem ensures the Lipschitz dependence of the
solutions with respect to the initial conditions.

Theorem 6 Let Assumption 3 hold and suppose that (A, B, C, D) is P -passive. Then the
solutions of (S) are Lipschitz dependent on the initial conditions, i.e., the mapping x0 �→
x(·; x0) is Lipschitz continuous.

Proof Let x0i ∈ A and xi(·) := xi(·; x0i ) be the unique solution of (S) satisfying initial
condition xi(0) = x0i (i = 1, 2). Similarly to the proof of Theorem 2, for almost all t ≥ 0,
one obtains

d

dt

〈
1

2
P(x1(t) − x2(t)), x1(t) − x2(t)

〉

= 〈P(ẋ1(t) − ẋ2(t)), x1(t) − x2(t)〉
= 〈PA(x1(t) − x2(t)), x1(t) − x2(t)〉 + 〈PB(λ1(t) − λ2(t)), x1(t) − x2(t)〉
≤ 〈C(x1(t) − x2(t)) + D(λ1(t) − λ2(t)), λ1(t) − λ2(t)〉 ≤ 0,

where the first inequality comes from the passivity of (A, B, C, D) and the second inequal-
ity is deduced from the fact thatCxi(t)+Dλi(t) ∈ F(−λi(t))(i = 1, 2) andF is monotone.
Thus for all t ≥ 0, we have

λmin(P )‖x1(t) − x2(t)‖2 ≤ 〈P(x1(t) − x2(t)), x1(t) − x2(t)〉
≤ 〈P(x01 − x02), x01 − x02〉 ≤ ‖P ‖.‖x01 − x02‖2.

Therefore,

sup
t≥0

‖x1(t) − x2(t)‖ ≤
√

‖P ‖
λmin(P )

‖x01 − x02‖,

and the result follows.

Remark 6 Let x0 ∈ A. Then the following results are obtained by using the similar
arguments as in [4, 6, 18, 19].

(i) If γ (x0) is bounded, then �(x0) �= ∅ and lim
t→∞ d(x(t; x0),�(x0)) = 0.

(ii) The set of stationary solutionsW is invariant.
(iii) The limit set �(x0) is invariant.
(iv) There exists a constant k ∈ R such that V (x) = k for all x ∈ �(x0), where V is the

Lyapunov function defined in Theorem 2.

Theorem 7 Let Assumption 3 hold. Furthermore, assume that

y ∈ R
m, y∗ ∈ F(y) : 〈y∗, y〉 = 0 ⇒ y = 0. (32)

Then for each x0 ∈ A, we have

lim
t→+∞ d(x(t; x0),M) = 0,

whereM is the largest invariant subset of

P = {x ∈ A : 〈PAx, x〉 = 0 and Cx ∈ F(0)}. (33)
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Proof Theorem 6 implies that γ (x0) is bounded and hence

lim
t→∞ d(x(t; x0),�(x0)) = 0.

Since �(x0) is invariant, it is sufficient to prove that �(x0) ⊂ P (Remark 6-iii). Let z ∈
�(x0), then there exists a real constant k such that (Remark 6-iv):

V (x(t; z)) = k for all t ≥ 0.

Therefore for almost all t ≥ 0,

0 = d

dt
V (x(t; z)) = 〈P ẋ(t; z), x(t; z)〉 = 〈PAx(t; z), x(t; z)〉 + 〈PBλ(t), x(t; z)〉

≤ 〈Cx(t; z) + Dλ(t), λ(t)〉 ≤ 0,

where λ(t) ∈ −(D + F)−1(Cx(t)).

Consequently,
〈Cx(t; z) + Dλ(t), λ(t)〉 = 0.

Using (32), one has λ(t) = 0 for almost all t ≥ 0.
Hence,

〈PAx(t; z), x(t; z)〉 = 0 and Cx(t; z) ∈ F(0) for almost all t ≥ 0.

Since x(·; z) is continuous and the graph of F is closed, by letting t → +∞, we have
z = x(0; z) ∈ P , which completes the proof of Theorem 7.

Remark 7 i) The condition (32) holds for a large class of maximal monotone operators.
In particular it holds for the set-valued function Sign(·) in R

m, an important function
in control theory. Theorem 7 is an extension of Theorem 5 in [6] when F = ∂�∗,−
for some proper, convex lower semi-continuous function �∗,−. It is easy to see that
the condition (32) in Theorem 7 is then weaker than the condition in Theorem 5 [6].
Indeed, let some y ∈ Rm, y∗ ∈ F(y) = ∂�∗,−(y) such that 〈y∗, y〉 = 0. If the
condition in Theorem 5 [6] holds, then 0 = 〈y∗, y −0〉 ≥ �∗,−(y)−�∗,−(0) ≥ 0 and
it implies that y = 0. Thus the condition (32) in Theorem 7 is satisfied. Furthermore,
one can see that the largest invariant subset here is also improved.

ii) The passivity of (A, B, C, D) implies that PA is negative semidefinite, see Lemma
1. It is easy to see that if PA is negative definite, then the origin is globally
asymptotically stable sinceM = {0}.

iii) If the assumptions of Theorem 7 hold, then the set of stationary solutions W =
ker(A) ∩ C−1(F(0)) ⊂ P . Indeed let x0 ∈ W, then there exists λ ∈ H2 such that
Ax0 = −Bλ and−λ ∈ (F+D)−1(Cx0), or equivalentlyCx0+Dλ ∈ F(−λ).Hence,

0 = 〈PAx0, x0〉 + 〈PBλ, x0〉 ≤ 〈Cx0 + Dλ, λ〉 ≤ 0,

which implies that λ = 0 and thus Ax0 = 0, Cx0 ∈ F(0). Therefore W ⊂
ker(A) ∩ C−1(F(0)). Conversely, let x0 ∈ ker(A) ∩ C−1(F(0)), i.e., Ax0 =
0, Cx0 ∈ F(0). Consequently, 0 ∈ Ax0 − B(F + D)−1(Cx0), i.e. x0 ∈ W . Hence,
ker(A) ∩ C−1(F(0)) ⊂ W . In conclusion,W = ker(A) ∩ C−1(F(0)).

iv) If there exists a negative definite matrix Q such that P = AT Q, then for each x0 ∈ A,
we have

lim
t→+∞ d(x(t; x0),W) = 0.

In fact, 〈PAx, x〉 = 0 implies 〈QAx,Ax〉 = 0 and thus Ax = 0, which permits us to
deduce thatW = P , i.e. the set of equilibria is attractive.
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5 Robust Stability of Set-valued Lur’e Dynamical Systems

Stability of disturbed set-valued Lur’e dynamical systems in finite-dimensional spaces
(H1 = R

n andH2 = R
m) is analysed in this section. We present some conditions of uncer-

tain deviations such that the stability is preserved. The system (S) is a model for certain real
system in practice. Generally, due to the uncertainty or measured errors, the real system is
different from (S) by some uncertainties and governed by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̄x(t) = Āx̄(t) + B̄λ̄(t) a.e. t ∈ [0, +∞);

ȳ(t) = Cx̄(t) + Dλ̄(t),

ȳ(t) ∈ F(−λ̄(t)), t ≥ 0;

x̄(0) = x0,

(34)

where Ā = A + δA, B̄ = B + δB with unknown deviations δA, δB. By the previous works
developed in Section 4, the passivity of a system may imply the stability of the origin. Our
problem is to find conditions for δA, δB such that the disturbed system (34) is still passive.
Then the stability of (34) is maintained.

Lemma 3 Suppose that there exists a matrix P = P T > 0 such that

⎛

⎝
PA + AT P PB − CT

BT P − C −(D + DT )

⎞

⎠ +
⎛

⎝
PδA + δT

AP PδB

δT
BP 0m

⎞

⎠ ≤ 0

then (Ā, B̄, C, D) is passive.

Proof It is a direct consequence from Definition 2 of passivity.

Let

Z =

Zc
︷ ︸︸ ︷⎛

⎝
PA + AT P PB − CT

BT P − C −(D + DT )

⎞

⎠ +

Zd
︷ ︸︸ ︷⎛

⎝
PδA + δT

AP PδB

δT
BP 0m

⎞

⎠ .

Denote Zc and Zd the constant part and disturbed part of Z respectively then Z = Zc +Zd.

Since Zc is symmetric, there exist an orthogonal matrix O and a diagonal matrix D such
that Zc = OT DO.

Lemma 4 If D + OZdOT ≤ 0 then (Ā, B̄, C,D) is passive.

Proof Under the assumption above, for all x ∈ R
n+m, we have

〈Zx, x〉 = 〈(OT DO + Zd)x, x〉 = 〈(D + OZdOT )Ox,Ox〉 ≤ 0.

Hence Z is negative semi definite.
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Remark 8 The condition in Lemma 4 is considered as a robustness measure since it provides
some bounds of the deviations such that the disturbed system remains stable. For example,
if

(OZdOT )ii ≤ −Dii and (OZdOT )ij = 0, i �= j,

then the condition in Lemma 4 holds.

Proposition 3 Let Assumption 3 hold and suppose that the condition in Lemma 4 is
satisfied. Then origin of the disturbed system (34) is stable.

In the next part, let us give another sufficient condition for the robust stability of the
system (34) by using the S-procedure [21]. We recall the following lemma.

Lemma 5 [21] Let T0, T1, . . . , Tp be n × n symmetric matrices. The following condition

ξT T0ξ ≤ 0 for all ξ ∈ ∩p

i=1{x ∈ R
n : xT Tix ≤ 0}

holds if there exist τ1 ≥ 0, τ2 ≥ 0, . . . , τp ≥ 0 satisfying T0 − ∑p

i=1 τiTi ≤ 0.

Here the unknown deviations are supposed to be in the following form

[δA(t) δB(t)] = F(t)[Ea Eb]
where Ea, Eb are constant matrix and F(t) is time-varying matrix satisfying

‖F(t)‖ ≤ 1.

Theorem 8 Let Assumption 3 hold. The origin of the disturbed system (34) is stable if there
exist P = P T > 0, ν1 ≥ 0, ν2 ≥ 0 such that the following linear matrix inequality (LMI)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

AT P + PA + ν1E
T
a Ea PB − CT P P

BT P − C −(D + DT ) + ν2E
T
b Eb 0 0

P 0 −ν1I 0

P 0 0 −ν2I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

≤ 0 (35)

is solvable.

Proof Let
u = δAx = F(t)Eax, v = δBλ = F(t)Ebλ.

We have

V̇ |(34) = 〈P Āx, x〉 + 〈P B̄λ, x〉 = 〈PAx, x〉 + 〈PBλ, x〉 + 〈u, Px〉 + 〈v, Px〉
≤ 〈PAx, x〉 + 〈PBλ, x〉 + 〈u, Px〉 + 〈v, Px〉 − 〈Cx + Dλ, λ〉

(note that 〈Cx + Dλ, λ〉 ≤ 0 since Cx + Dλ ∈ F(−λ))

≤ 〈PAx, x〉 + 〈(PB − CT )λ, x〉 − 〈Dλ, λ〉 + 〈u, Px〉 + 〈v, Px〉.
Since ‖F(t)‖ ≤ 1, we have

uT u ≤ xT ET
a Eax and vT v ≤ λT ET

b Ebλ.
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Applying the S-procedure with

T0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

AT P + PA PB − CT P P

BT P − C −(D + DT ) 0 0

P 0 0 0

P 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

T1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−ET
a Ea 0 0 0

0 0 0 0

0 0 I 0

0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, T2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0

0 −ET
b Eb 0 0

0 0 0 0

0 0 0 I

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and ξ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x

λ

u

v

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

It implies that if the matrix inequality (35) is solvable, then V̇ |(34) ≤ 0. Thus, the origin of
the perturbed system is stable.

Remark 9 Theorem 8 allows us to check stability of the perturbed system by solving LMIs.
There are many efficient numerical algorithms to solve LMIs, for example the interior-point
methods [21].

6 Some Illustrative Examples in Finite and Infinite Dimensional Spaces

Here we provide two examples in electrical circuits (finite dimension) and one example
in partial differential equation (infinite dimension) to illustrate the theoretical develop-
ments in previous sections. For the ampere-volt characteristics of some familiar electrical
devices (resistors, ideal diodes, diacs, silicon controller rectifiers. . . ), see [4, 22] for ref-
erences. In particular, the voltage-current characteristic function fdiac of a diac is upper
semi-continuous on R with convex, compact values (Fig. 2). The mapping is set-valued at
0 and single-valued differentiable with bounded derivative in R \ {0} by some real number
k > 0. Then it is easy to see that fdiac + kI is monotone.

Fig. 2 A typical voltage-current
characteristics of a diac
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Example 1 Consider the circuit in Fig. 3 with a resistor R > 0, a capacitor C0 > 0, an
inductor L > 0 and a diac. Let x1 be the charge on the capacitors and x2 be the current
through the inductors. Using Kirchhoff’s circuit laws (see also [12]), we have

⎛

⎝
ẋ1

ẋ2

⎞

⎠ =

A
︷ ︸︸ ︷
⎛

⎝
0 −1

1
LC0

0

⎞

⎠

⎛

⎝
x1

x2

⎞

⎠ +

B
︷ ︸︸ ︷⎛

⎝
1

0

⎞

⎠ λ, (36)

where

y =

C
︷ ︸︸ ︷(

1

C0
0

)
⎛

⎝
x1

x2

⎞

⎠ +
D

︷︸︸︷
R λ and y ∈ fdiac(−λ). (37)

It is not difficult to verify that if R ≥ k (k is defined at the beginning of this section),
then all the assumptions of Corollary 1 are satisfied with

P =
⎛

⎝

1
C0

0

0 L

⎞

⎠ .

Thus the existence and uniqueness of solutions on [0, +∞) are ensured. In addition

PB = CT and PA =
⎛

⎜
⎝

0 − 1
C0

1
C0

0

⎞

⎟
⎠

is positive semidefinite and 0 ∈ fdiac(0). By Theorem 2, the origin is stable. Note that all
the assumptions of Theorem 7 also holds and we can compute the set P = C0fdiac(0) × R

which is defined in (33). Thus, one can obtain more information about x1(·) that
lim

t→+∞ d(x1(t), C0fdiac(0)) = 0.

Let us consider the perturbed system of (36) by replacing A,B by A + δA, B + δB respec-
tively and find certain condition such that the origin is still stable. Thanks to Lemma 4, with
some simple calculations, we have the following sufficient condition

⎛

⎝
02×2 02×1

01×2 2R

⎞

⎠ ≥
⎛

⎝
PδA + δT

AP PδB

δT
BP 0

⎞

⎠ ⇔
⎛

⎝
PδA + δT

AP PδB

δT
BP −2R

⎞

⎠ ≤ 0.

For example, if δA(1, 1) ≤ 0, δA(2, 2) ≤ 0 and δA(1, 2) = δA(2, 1) = 0, δB = 02×1 then
the origin’s stability of the perturbed system is maintained.

Fig. 3 RLC circuit with a diac
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Example 2 Let us consider the four-diode bridge full wave rectifier in Fig. 4 with a resistor
R > 0, a capacitor C0 > 0, an inductor L > 0 and four ideal diodes (see [12] for reference).
Using Kirchhoff’s circuit laws, one obtains

⎛

⎝
v̇L

i̇L

⎞

⎠ =

A
︷ ︸︸ ︷
⎛

⎝
0 − 1

C0

1
L

0

⎞

⎠

⎛

⎝
vL

iL

⎞

⎠ +

B
︷ ︸︸ ︷
⎛

⎝
0 0 − 1

C0

1
C0

0 0 0 0

⎞

⎠ λ, (38)

where

λ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−vDR1

−vDF2

iDF1

iDR2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, y =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

iDR1

iDF2

−vDF1

−vDR2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, 0 ≤ λi ⊥ yi ≥ 0 for i = 1, 2, 3, 4

and

y =

C
︷ ︸︸ ︷⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0

0 0

−1 0

1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎝
vL

iL

⎞

⎠ +

D
︷ ︸︸ ︷
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
R

1
R

−1 0

1
R

1
R

0 −1

1 0 0 0

0 1 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

λ.

Note that D is positive semidefinite but not positive definite. In this case, the maximal
monotone operator F : R

4 ⇒ R
4 is defined by x = (x1 x2 x3 x4)

T �→ F(x) =
(NR−(x1) NR−(x2) NR−(x3) NR−(x4))

T where N denotes the normal cone. Then all the
assumptions of Corollary 1 hold with

P =
⎛

⎝
C0 0

0 L

⎞

⎠ ,

Fig. 4 A four-diode bridge wave rectifier

20



which assures the existence and uniqueness of solutions on [0, +∞). Again, we have

PB = CT and PA =
⎛

⎝
0 −1

1 0

⎞

⎠

is positive semidefinite and 0 ∈ F(0). By Theorem 2 the origin is stable. Similarly, the
origin of the disturbed system of (38) is stable if

⎛

⎝
02×2 02×4

04×2 D + DT

⎞

⎠ ≥
⎛

⎝
PδA + δT

AP PδB

δT
BP 04×4

⎞

⎠ ,

or equivalently,
⎛

⎝
05×5 0

0 4
R

⎞

⎠ ≥ V

⎛

⎝
PδA + δT

AP PδB

δT
BP 04×4

⎞

⎠V T ,

where V is the orthogonal matrix defined by

V =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0

0 1 0 0 0 0

0 0 − 1√
2
0 0 1√

2

0 0 1√
2

0 0 1√
2

0 0 0 1 0 0

0 0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Example 3 Let H1 = H2 = L2(0, 1) and (e1, e2, . . . , en, . . .) be an orthonormal basis
of L2(0, 1). Fix some positive integer n. Define the operators A,B,C, D : L2(0, 1) →
L2(0, 1) as follows: −A = B = I , the identity operator; Cei = 0 for 1 ≤ i ≤ n, Cei = ei

for i ≥ n + 1; and Dei = ei for 1 ≤ i ≤ n, Cei = 0 for i ≥ n + 1. It is easy to verify that
A, B,C,D are symmetric linear bounded and (A + 3

4 I, B,C, D) is passive. Furthermore
D is monotone but not positive definite and there is no symmetric positive definite P ∈
L(L2(0, 1)) such that PB = CT . Define F : L2(0, 1) ⇒ L2(0, 1) by F = ∂‖ · ‖, then F
is maximal monotone. Consider the following partial differential equation

∂x̃

∂t
(l, t) = Ax̃(l, t) + Bλ̃(l, t), x̃(l, 0) = x̃0(l), a.e. 0 ≤ l ≤ 1, t ≥ 0, (39)

with observation

ỹ(l, t) = Cx̃(l, t) + Dλ̃(l, t) ∈ ∂‖ · ‖(λ̃(l, t)). (40)

Let x(t) = x̃(·, t), λ(t) = λ̃(·, t), y(t) = ỹ(·, t), one obtains the system in the form (S)

in infinite dimensional Hilbert space L2(0, 1). Then all the assumptions of Theorem 1 are
satisfies and hence there exists a unique Lipschitz continuous solution x(·) defined on R+.
Furthermore, Assumption 3 is satisfied and (A, B, C, D) is strictly passive. It follows that
the origin is globally exponentially stable by using Theorem 3.
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7 Conclusion

In this paper, the well-posedness and stability analysis of set-valued Lur’e dynamical
systems with nonzero feedthrough operator D in infinite-dimensional spaces have been
thoroughly studied, under the so-called passivity condition. This work improves and extends
in different ways the recent results obtained in [2, 6, 7]. The robust stability of the systems
is investigated in the finite-dimensional case. We also provide examples in nonregular elec-
trical circuits as well as in partial differential equations to illustrate the theoretical results.
For upcoming works, it would be interesting to study deeply the role played by the passiv-
ity condition within the theory of maximal monotone operators; that is, to find a general
framework where this condition ensures the maximal monotonicity of the composition of
monotone operators. An other research topic will be the consideration of Lur’e dynamical
systems with general initial condition, not necessarily a point in the domain of the involved
operator.
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