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A New Method for Solving Second-Order Cone
Eigenvalue Complementarity Problems

Samir Adly · Hadia Rammal

Abstract In this paper, we study numerical methods for solving eigenvalue comple-
mentarity problems involving the product of second-order cones (or Lorentz cones).
We reformulate such problem to find the roots of a semismooth function. An extension
of the Lattice Projection Method (LPM) to solve the second-order cone eigenvalue
complementarity problem is proposed. The LPM is compared to the semismooth New-
ton methods, associated to the Fischer–Burmeister and the natural residual functions.
The performance profiles highlight the efficiency of the LPM. A globalization of these
methods, based on the smoothing and regularization approaches, are discussed.

Keywords Lorentz cone · Second-order cone eigenvalue complementarity problem ·
Semismooth Newton method · Lattice Projection Method

1 Introduction

The theory of Complementarity Problems plays an important role in nonlinear opti-
mization. The complementarity appears, for example, in the optimality conditions for
constrained nonlinear programming or variational inequalities when the set of con-
straints is a closed and convex cone. The particular case of linear complementarity
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problems was widely discussed in the literature from both the theoretical and numeri-
cal point of view. More recently, the subject of eigenvalue complementarity problems
has become one of the most well-established discipline in nonlinear optimization. It
consists, for a given square matrix, in finding a scalar (eigenvalue) and nonzero vec-
tor (eigenvector) satisfying a complementarity condition over a closed and convex
cone. When this cone coincides with the non-negative orthant, the problem is called
Pareto eigenvalue complementarity problem. In this case, the spectrum is finite and
its cardinality grows exponentially with the size of the matrix (see [1–3] for more
details).

A wide variety of applications in Sciences and Engineering requires the resolu-
tion of eigenvalue complementarity problems such as the dynamic analysis of struc-
tural mechanical systems, vibro-acoustic systems, electrical circuit simulation, fluid
dynamic, contact problem in mechanics (see, for instance, [4–8]). The development
of robust and efficient algorithms for solving eigenvalue complementarity problems
(EiCP, for short) has received more attention in recent years such as the spectral pro-
jected gradient algorithm [9], the semismooth Newton method [2], the scaling and
projection algorithm [10] or the Path solver [11].

More recently, a wide range of applications in engineering design, transportation
science, game theory, and economic equilibrium, can be formulated as optimization
problems involving second-order cone constrained [12] (know also as the Lorentz
cone). Equally important is the study of second-order cone complementarity problems
(SOCCP, for short) since it contains a large class of problems such as, for instance,
nonlinear complementarity problems and second-order cone programming problems.
Fukushima et al. [13], Chen et al. [14,15] studied smooth and nonsmooth approaches.
In [13], it has been shown that the natural residual and the Fischer–Burmeister functions
can be extended to the SOCCP by means of Jordan Algebra.

There are presently certain theoretical properties and a large variety of computa-
tional methods for solving SOCCP. We cite, for example, interior-points methods,
smoothing methods, SQP-type methods ([13–23]). Furthermore, the projection map-
ping onto second-order cone (SOC, for short) was studied by several authors. In
[14,15], it was proved that projection mapping onto SOC is a strongly semismooth
function. Later, in 2005, Hayashi et al. [19] gave an explicit representation for the
Jacobian of the projection onto SOC.

Motivated by these recent developments, we study throughout this paper, the
second-order eigenvalue complementarity problems (SOCEiCP). We reformulate the
SOCEiCP into a system of semismooth equations by using the second-order cone com-
plementarity functions (SOCC-functions, for short), the most frequently used in the
literature, namely, the min-function and the Fischer–Burmeister function. Our main
goal in this paper is to introduce the extended Lattice Projection Method (LPM) for
solving SOCEiCP. LPM has been first introduced in [1] to solve the Pareto eigenvalue
complementarity problems. The second-order cone eigenvalue complementarity prob-
lems is considered to be one of the most difficult problems to solve, and this is due
to the structure of the Lorentz spectrum which may be continuous (not finite and not
countable). Therefore, compute and detect all the eigenvalues of this problem are not
an easy task. As far as the authors know, this kind of technique for solving SOCE-
iCP has never been studied before. In addition, we study under which conditions the
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Jacobian matrix in the SNM algorithm (see Algorithm 1), at a solution, is nonsingular.
LPM is then compared to the semismooth Newton methods: SNMmin and SNMFB, by
using the performance profiles [24,25] as a comparison tool. The numerical experi-
ments highlight that the LPM solver is efficient for solving SOCEiCP.

This paper is organized as follows. In Sect. 2, we recall some background material
on Euclidean Jordan Algebras and review the spectral factorization associated with a
Lorentz cone. Moreover, we state a number of preliminary results for the projection
mapping onto a second-order cone. In Sect. 3, we reformulate SOCEiCP into a system
of semismooth equations. We extend, in Sect. 4, LPM to solve the SOCEiCP and give
its B-subdifferential. In Sect. 5, we study the nonsingularity conditions of the Jacobian
matrix, defined in the SNM algorithm. Then, we compare the LPM, in Sect. 6, with
SNMmin using the min-function and SNMFB via the Fischer–Burmeister function. In
Sect. 7, we discuss a globalization of the three methods studied in the last sections
by constructing appropriate merit functions. Finally, some concluding remarks are
presented in Sect. 8.

2 Preliminaries

In this section, we recall some background material and preliminary results on com-
plementarity problems and Euclidean Jordan Algebras (see, e.g., [26,27]) as well as
some definitions and properties of the B-subdifferential and (strong) semismoothness,
which will be used in next sections.
We recall that the Pareto eigenvalue complementarity problem consists in finding a
scalar λ ∈ R and a vector x ∈ R

n \ {0} such that

x ≥ 0, λx − Ax ≥ 0 and 〈x, λx − Ax〉 = 0,

where A is real matrix of order n. The classical complementarity problem consists in
finding z ∈ R

n such that

z ≥ 0, F(z) ≥ 0 and 〈z, F(z)〉 = 0,

where F : R
n → R

n is a map. As mentioned in [28], the EiCP can be formulated as
the following variational inequality (VI):

Find x ∈ C = {x ∈ R
n+ : 〈e, x〉 = 1} such that

〈F(x), y − x〉 ≥ 0, ∀ y ∈ C,

where F : R
n → R

n is defined by

F(x) :=
(

xT Ax

xT x
I − A

)
x,
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I is the identity matrix and e is a column vector, whose components are all one. The
second-order cone complementarity problem consists in finding ζ ∈ R

m satisfying

f (ζ ) ∈ K, g(ζ ) ∈ K, 〈 f (ζ ), g(ζ )〉 = 0, (1)

where f, g : R
m → R

n are continuously differentiable mapping and K is the Cartesian
product of second-order cones in R

n , defined by

K := Kn1 × Kn2 × · · · × Knr ,

and n = n1 + n2 +· · ·+ nr . Kni ⊂ R
ni is the ni -dimensional second-order cone, also

called the Lorentz cone or ice cream cone, defined by

Kni := {x = (x1i , x2i ) ∈ R × R
ni −1 : x1i ≥ ‖x2i‖}, (2)

where ‖ · ‖ denotes the Euclidean norm defined by ‖x‖ := √
xT x for a vector x ∈ R

n .
The cone K is self-dual, i.e., K+ = K, where K+ is the dual cone of K, defined by

K+ := {x ∈ R
n : 〈x, y〉 ≥ 0,∀ y ∈ K}.

Corresponding to the Cartesian structure of K, we write in (1) f = ( f1, . . . , fr ) and
g = (g1, . . . , gr ) with fi , gi : R

m → R
ni .

The second-order cone eigenvalue complementarity problem consists in finding a
scalar λ > 0 and a vector x ∈ R

n \ {0} satisfying

x ∈ K, λx − Ax ∈ K and 〈x, λx − Ax〉 = 0. (3)

The scalar λ is called the Lorentz eigenvalue of the real matrix A ∈ Mn(R). From (1),
it is sufficient to take

m = n + 1, ζ = (x, λ), f (ζ ) = f (x, λ) = x and g(ζ ) = g(x, λ) = λx − Ax .

Then, (1) reduces to (3).
For two n-dimensional vectors x = (x1, x2) and y = (y1, y2) ∈ R × R

n−1, we
define their Jordan product as

x ◦ y := (xT y, x1 y2 + y1x2). (4)

An important character of Jordan Algebra is its eigen-decomposition, also called the
spectral factorization with respect to the second-order cone Kn . For more details, see,
e.g., [13,26].

For any vector x = (x1, x2) ∈ R × R
n−1, its spectral factorization is defined as

x := λ1(x)u(1)(x) + λ2(x)u(2)(x), (5)
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where λ1, λ2 ∈ R and u(1), u(2) ∈ R
n are the spectral values and the associated

spectral vectors of x , respectively, given by

λi (x) = x1 + (−1)i‖x2‖, i = 1, 2, (6)

and

u(i)(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2

(
1, (−1)i x2

‖x2‖
)

, if x2 �= 0,

i = 1, 2,
1

2
(1, (−1)iw), if x2 = 0,

(7)

with w ∈ R
n−1, such that ‖w‖ = 1.

For the proof of (5), (6) and (7), see, e.g., [29].
We recall now some definitions and properties of the B-subdifferential and (strong)

semismoothness, which will be used later.
Let H : R

n → R
m be a locally Lipschitz function. Then, the set

∂B H(z) :=
{

M ∈ R
m×n : ∃ (zk) ⊆ DH : zk → z and lim

k→+∞ ∇H(zk) = M

}
,

where DH := {z ∈ R
n : H is differentiable at z}, is nonempty and is called the B-

subdifferential of H . The Clarke subdifferential [30] of H is defined by the convex
hull

∂ H(z) := conv ∂B H(z).

A vector z is called a B D-regular for H iff all matrices in the B-subdifferential ∂B H(z)
are non-singular.

By using the subdifferential and the directional derivative (denoted by H ′(z; d)),
we define semismoothness and strong semismoothness, which are first introduced by
Mifflin [31] and extended later by Qi and Sun [32].

A directionally differentiable and locally Lipschitz function H : R
n → R

m is said
to be semismooth at x, iff

Md − H ′(x; d) = o(||d||),

for all M ∈ ∂ H(z +d) and d → 0. Moreover, if o(||d||) can be replaced by O(||d||2),
then the function H is said to be strongly semismooth.

Next, we recall some properties of the projection of any z ∈ R
n onto a second-order

cone.
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2.1 Projection onto (SOC)

For z ∈ R
n, the projection of z onto the second-order cone Kn is defined by

PKn (z) := arg min
z′∈Kn

‖z′ − z‖. (8)

It can be written explicitly as

PKn (z) = max{0, λ1}u1 + max{0, λ2}u2, (9)

where λ1, λ2 and u1, u2 are defined by (5) and (6) [13, Proposition 3.3]. Hence, we
get

PKn (z) =

⎧⎪⎪⎨
⎪⎪⎩

z (λ1 ≥ 0, λ2 ≥ 0),

1

2
(z1 + ‖z2‖)

(
1,

z2

‖z2‖
)

(λ1 < 0, λ2 > 0),

0 (λ1 ≤ 0, λ2 ≤ 0),

(10)

which is strongly semismooth at any z ∈ R
n [14].

Lemma 2.1 [33] The projection mapping PKn is differentiable at a point z =
(z1, z2) ∈ R × R

n−1 if and only if z1 �= ‖z2‖ holds. In fact, the projection map-
ping is continuously differentiable at every z such that z1 �= ‖z2‖, i.e., z /∈ bd(Kn),
where bd(Kn) is the boundary of Kn defined by

bd(Kn) := {z = (z1, z2) ∈ R × R
n−1 : z1 = ‖z2‖}.

Lemma 2.2 For any z = (z1, z2) ∈ R × R
n−1, an element V of the B-subdifferential

∂B PKn (z) has the following representation:

V = I (λ1 > 0, λ2 > 0), i.e., z ∈ int(Kn),

V = λ2
λ2−λ1

I + Z (λ1 < 0, λ2 > 0), i.e., z ∈ R
n \ (Kn ∪ −Kn),

V = 0n (λ1 < 0, λ2 < 0), i.e., z ∈ −int(Kn),

V ∈ {I, I + Z} (λ1 = 0, λ2 > 0), i.e., z ∈ bd(Kn) \ {0},
V ∈ {0n, Z} (λ1 < 0, λ2 = 0), i.e., z ∈ −bd(Kn) \ {0},
V = 0n or V = I or V ∈ S (λ1 = 0, λ2 = 0), i.e., z ∈ {0},

(11)
where

(r1, r2) := (z1, z2)

‖z2‖ , Z = 1

2

(−r1 r T
2

r2 −r1r2r T
2

)
and

S :=
{

1

2
(1 + β)I + 1

2

(−β ωT

ω −βωωT

)
: −1 ≤ β ≤ 1, ‖ω‖ = 1

}
.

Proof We can find a similar representation for the elements of ∂B PKn (z) and those
of the Clarke subdifferential ∂ PKn (z) in [15, Lemma 4], [19, Proposition 4.3], [33,
Lemma 2.5] and [34, Lemma 14]. ��
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3 Second-Order Eigenvalue Complementarity Problem

Throughout this section, we deal with the second-order cone eigenvalue complemen-
tarity problem defined in (3), which consists in finding a scalar λ > 0 and a vector
x ∈ R

n\{0} satisfying

x ∈ K, λx − Ax ∈ K, 〈x, λx − Ax〉 = 0.

The set

σ(A,K) := {λ > 0 : (λ, x) solves (3) for some x ∈ K \ {0}} (12)

is said to be the Lorentz spectrum of A. The component λ is called a Lorentz eigenvalue
of A, while the component x is called a Lorentz eigenvector of A. The eigenvalue
complementarity problem in the the case of the second-order cone has recently been
studied. For this reason, the number of publications is rather limited (see, for instance,
[35]).

In [35], Seeger and Torki studied the main properties and the structure of the Lorentz
spectral mapping σ(.,K). They recovered σ(A,K), defined in (12), by joining two
pieces and treated each one:

σ(A,K) = σint(A,K) ∪ σbd(A,K),

where σint(A,K) (respectively, σbd(A,K)) is the set of all eigenvalues λ of A associ-
ated with eigenvectors in the interior of K (respectively, in the boundary of K).

Moreover, they characterized the elements in the Lorentz spectrum and provided a
valuable information on their number. They announced that σ(A,K) is not necessarily
finite, but it can always be written as union of finitely many (at most 5n − 4) mutually
disjoint connected sets [35, Theorem 4.1 and Corollary 4.4] (see examples 3.1 and
3.2).

Furthermore, they showed the classes of matrices over which the Lorentz cone can
produce only a finite number of eigenvalues.

Proposition 3.1 [35] In each of the following cases, the real matrix
A ∈ R

n×n has a finite number of Lorentz eigenvalues:

(a) A is symmetric,
(b) the leading (n − 1) × (n − 1) principal submatrix of A has no (real) eigenvalues

with geometric multiplicity ≥ 2.

In what follows, we give some examples of discrete and continuous solutions.

Example 3.1 Consider the following matrix

A =

⎡
⎢⎢⎢⎢⎣

3 0 0 0 0
0 5 0 0 0
0 0 5 0 0
0 0 0 7 0
0 0 0 0 7

⎤
⎥⎥⎥⎥⎦ .
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A has a discrete Lorentz spectrum given by

σ(A,K) = {3, 4, 5}.

Example 3.2 Let

B =

⎡
⎢⎢⎢⎢⎣

3 2
3 0 2

3 0
0 5 0 0 0
0 0 5 0 0
0 0 0 7 0
0 0 0 0 7

⎤
⎥⎥⎥⎥⎦ .

We have

σ(B,K) = {3} ∪ [4.0009, 4.3333] ∪ [5.0016, 5.3333],

which is a continuous Lorentz spectrum of B.

As a first step toward a reformulation of the SOCEiCP as a system of equations,
we write

x ∈ K, y ∈ K, 〈x, y〉 = 0, λx − Ax − y = 0, 〈1n, x〉 − 1 = 0, (13)

where 1n is a vector of ones. The normalization equation (the last equation in (13)) is
used to ensure that x is a nonzero vector.

Without any loss of generality, we can suppose that λ is strictly positive. If the
matrix A has a negative eigenvalue λ < 0, we set Ã = A + μIn , where μ > 0 is large
enough. It is easy then to observe that the eigenvalues of Ã are strictly positive.

The SOCEiCP can be reformulated as the following nonsmooth system of equations

Φ(z) = Φ(x, y, λ) :=

⎡
⎢⎢⎢⎢⎢⎣

ϕ1(x1, y1)
...

ϕr (xr , yr )

λx − Ax − y
〈1n, x〉 − 1

⎤
⎥⎥⎥⎥⎥⎦

= 0, (14)

where Φ : R
n × R

n × R → R
2n+1 and ϕi : R

ni × R
ni → R

ni is a second-order cone
complementarity function (SOCC-function) associated with the cone Kni (ni ≥ 1) on
Euclidean Jordan Algebras, i.e.,

ϕi (xi , yi ) = 0 ⇐⇒ xi ∈ Kni , yi ∈ Kni , xT
i yi = 0. (15)

In this paper, we focus on the natural residual function, also called, the min-
function, denoted by ϕsoc

min, and the Fischer–Burmeister function, denoted by ϕsoc
FB ,

defined, respectively, by
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ϕsoc
min(x, y) := x − PKn (x − y), (16)

ϕsoc
FB (x, y) := x + y − (x2 + y2)1/2. (17)

Note that the ϕsoc
FB function defined above was proposed by Gowda et al. in [36]. Xiu

and al. established also the definition of ϕsoc
FB and proved that it is Lipschitz continuous

in [37]. Furthermore, Sun and Sun in [21] showed that it is strongly semismooth
everywhere, and so is the ϕsoc

min function (see [14] for more details).
In what follows, we give the B-subdifferential of Φ in two cases. The first case is

defined when the SOCC-function is given by the ϕsoc
min function defined in (16), and

the second one is related to the ϕsoc
FB function, defined in (17).

Lemma 3.1 The function Φmin : R
n ×R

n ×R → R
2n+1, defined in (14) with ϕ being

the ϕsoc
min function, is semismooth. Moreover, each element Hmin of the B-subdifferential

of Φmin at z = (x, y, λ) is given by

Hmin =
⎡
⎣ I − V V 0

λI − A −I x
1T

n 0 0

⎤
⎦ , (18)

where V ∈ ∂B PKn (x − y).

Taking into account the proposition 3.1 in [38], we have the following.
Given a vector (x, y) ∈ R

n × R
n , then each element VFB in ∂Bϕsoc

FB (x, y) is given by

VFB = [I − Vx I − Vy], (19)

with Vx and Vy having the following representation:

(i) If x2 + y2 ∈ int(Kn), then Vx = L−1
w Lx and Vy = L−1

w L y ,

where w := (x2 + y2)1/2, and for x ∈ Kn , Lx =
[

x1 xT
2

x2 x1 I

]
.

If x ∈ int(Kn), where

int(Kn) := {x = (x1, x2) ∈ R × R
n−1 : x1 > ‖x2‖},

then,

L−1
x = 1

det(x)

⎡
⎣ x1 −xT

2

−x2
det(x)

x1
I + x2xT

2

x1

⎤
⎦ ,

where det(x) := x2
1 − ‖x2‖2 denotes the determinant of x .

9



(ii) If x2 + y2 ∈ bd(Kn) and (x, y) �= (0, 0), then

Vx ∈
{

1

2
√

2l1

(
1 l̄2

T

l̄2 4I − 3l̄2l̄2
T

)
Lx + 1

2

(
1
−l̄2

)
uT

}

Vy ∈
{

1

2
√

2l1

(
1 l̄2

T

l̄2 4I − 3l̄2l̄2
T

)
L y + 1

2

(
1
−l̄2

)
vT

}
,

where u = (u1, u2), v = (v1, v2) ∈ R × R
n−1 satisfying |u1| ≤ ‖u2‖ ≤ 1 and

|v1| ≤ ‖v2‖ ≤ 1, where l = (l1, l2) := x2 + y2 and l̄2 = l2/‖l2‖.
(iii) If (x, y) = (0, 0), then Vx ∈ {Lx̃ }, Vy ∈ {L ỹ} for some x̃, ỹ with

‖x̃‖2 + ‖ỹ‖2 = 1, or

Vx ∈
{

1

2

(
1
l̄2

)
ξ T + 1

2

(
1
−l̄2

)
uT + 2

(
0 0

(I − l̄2l̄2
T
)s2 (I − l̄2l̄2

T
)s1

)}

Vy ∈
{

1

2

(
1
l̄2

)
ηT + 1

2

(
1
−l̄2

)
vT + 2

(
0 0

(I − l̄2l̄2
T
)l2 (I − l̄2l̄2

T
)l1

)}
,

where u = (u1, u2), v = (v1, v2), ξ = (ξ1, ξ2), η = (η1, η2) ∈ R × R
n−1

satisfying |u1| ≤ ‖u2‖ ≤ 1, |v1| ≤ ‖v2‖ ≤ 1, |ξ1| ≤ ‖ξ2‖ ≤ 1 and
|η1| ≤ ‖η2‖ ≤ 1, where l̄2 ∈ R

n−1 such that ‖l̄2‖ = 1, and s = (s1, s2),

l = (l1, l2) ∈ R × R
n−1 satisfying ‖s‖2 + ‖l‖2 ≤ 1/2.

For more details, see [38]. Therefore, we get the following lemma.

Lemma 3.2 The function ΦFB : R
n ×R

n ×R → R
2n+1, defined in (14) with ϕ being

the ϕsoc
FB function, is semismooth. Moreover, each element HFB in ∂BΦFB(z) is given

by

HFB =
⎡
⎣ I − Vx I − Vy 0

λI − A −I x
1T

n 0 0

⎤
⎦ , (20)

where Vx and Vy are given by the above equations.

4 The Lattice Projection Method (LPM)

In this section, we generalize the LPM given in [1] to solve SOCEiCP, which leads us
to solve a nonlinear and nonsmooth system of (2n + 1) equations involving the same
number of variables. The originality of this formulation is that it is not based on the
complementarity approach.

Lemma 4.1 The SOCEiCP, with λ > 0, consists in finding the roots of the following
nonlinear and nonsmooth function h : R

n × R → R
n, (x, λ) �→ h(x, λ), defined by

h(x, λ) := PK(Ax) − λx . (21)

10



Proof Suppose that λ > 0 and x ∈ K. By the definition of the normal cone, we have

K � x ⊥ λx − Ax ∈ K ⇐⇒ Ax − λx ∈ NK(x).

Therefore SOCEiCP is equivalent to

x = PK(
1

λ
Ax).

Hence,

PK(Ax) = λx .

�

In short, we are led to solve the following system of (2n + 1) equations

PK(ỹ) − λx = 0,

Ax − ỹ = 0,

〈1n, x〉 − 1 = 0.

Remark 4.1 Lemma 4.1 showed that

K � x ⊥ (λx − Ax) ∈ K ⇐⇒ PK(Ax) = λx,

which means that the SOCEiCP is equivalent to solve the nonlinear eigenvalue problem

(PK ◦ A)(x) = λx .

The SOCEiCP can be written equivalently to the following nonsmooth system of
equations:

ΦLPM(z̃) :=
⎡
⎣ PK(ỹ) − λx

Ax − ỹ
< 1n, x > −1

⎤
⎦ = 0, (22)

where ΦLPM : R
n × R

n × R → R
2n+1, z̃ = (x, ỹ, λ) �→ ΦLPM(z̃).

Remark 4.2 We note that the solutions of the nonlinear equation (22) do not satisfy
necessarily λ > 0. Maintaining the non-negativity of λ in the algorithm is not an easy
task. If the matrix A has a nonpositive eigenvalue λ < 0, then we set Ã = A+μIn with
μ > 0 and large enough. It is easy to see in this case that the spectrum σ( Ã) ⊂ R

∗+.

The Algorithm 1 presented in the following part is used to solve (22). This method
will be called LPM.

The following lemma gives a brief description of the representation of the B-
subdifferential of ΦLPM.

11



Lemma 4.2 The function ΦLPM : R
n × R

n × R → R
2n+1, defined in (22), is semi-

smooth. Moreover, each element H̃ of the B-subdifferential of ΦLPM at z̃ = (x, ỹ, λ)

is given by

H̃ =
⎡
⎣−λI Ṽ −x

A −I 0
1T

n 0 0

⎤
⎦ , (23)

where Ṽ ∈ ∂B PK(ỹ).

Proof Chen et al. [14] showed that PK(·) is strongly semismooth, so that ΦLPM is
semismooth. The computation of the B-subdifferential of ΦLPM offers no difficulty
and we get obviously the representation formula (23). ��

The algorithm we are about to describe is the Semismooth Newton Method SNM
for solving SOCEiCP.

Algorithm 1 (Semismooth Newton Method SNM)

Initialization. Choose an initial point z0 and set k = 0.
Iteration.1 One has a current point zk . Choose Mk ∈ ∂BΦ(zk) and compute hk

by solving the linear system
Mkhk = −Φ(zk). (24)

Then, set zk+1 = zk + hk and k = k + 1,

where Φ is either ΦLPM or Φmin or ΦFB. To ensure that the linear system (24) admits
a unique solution, the matrix Mk must be nonsingular. Furthermore, the following
theorem gives some conditions to ensure the local convergence of the above algorithm
[32].

Theorem 4.1 Let z̄ be a zero of the function Φ. Suppose the following

(i) Φ is semismooth (resp. strongly semismooth) at z̄ ;
(ii) all matrices Mk ∈ ∂BΦ(z̄) are nonsingular. Then, there exists a neighborhood

V of z̄ such that the SNM, initialized at any z0 ∈ V , generates a sequence (zk)k∈N

that converges superlinearly (resp. quadratically) to z̄.

5 Nonsingularity Conditions

We study, in this section, under which conditions the Jacobain matrix, defined in (24)
of the Algorithm 1, is nonsingular at a solution. More precisely, we study the nonsin-
gularity conditions of the elements of the B-subdifferential of Φ(z∗) and ΦLPM(z̃∗)
defined, respectively, in (14) and (22). Firstly, we give some notations, which will be
used later.The index set {1, 2, ..., n} will be abbreviated by the capital letter I .

1 As stopping criteria, we use ‖Φ(zk )‖ < 10−8.
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If M = (mi j ) ∈ Mn(R) is a matrix and J ,K ⊆ I , then MJ K denotes the submatrix
in M|J |,|K|(R) with elements mi j , i ∈ J , j ∈ K.

We introduce the following function F of class C1

F : R
n × R

n × R → R
2n+1, z = (x, y, λ) �→ F(z) given by

F(z) =
⎡
⎣ y

λx − Ax − y
〈1n, x〉 − 1

⎤
⎦ . (25)

Proposition 5.1 Any H ∈ ∂BΦ(z), with ϕ being one of the SOCC-functions ϕsoc
min or

ϕsoc
FB , can be written in the form

H = Da + Db F ′(z), (26)

where Da, Db ∈ M2n+1(R) are positive semidefinite diagonal matrices, defined by

Da =
⎡
⎣ I − V 0 0

0 0 0
0 0 0

⎤
⎦ and Db =

⎡
⎣ V 0 0

0 I 0
0 0 1

⎤
⎦ , (27)

in the case where ϕ(x, y) = ϕsoc
min(x, y).

Da =
⎡
⎣ I − L−1

w Lx 0 0
0 0 0
0 0 0

⎤
⎦ and Db =

⎡
⎣ I − L−1

w L y 0 0
0 I 0
0 0 1

⎤
⎦ , (28)

in the case where ϕ(x, y) = ϕsoc
FB (x, y) and x2 + y2 ∈ int(Kn).

Proof If H ∈ ∂BΦmin(z), then by Lemma 3.1, we have

H = Hmin =
⎡
⎣ I − V V 0

λI − A −I x
1T

n 0 0

⎤
⎦ .

If H ∈ ∂BΦFB(z), then using Lemma 3.2, we get

H = HFB =
⎡
⎣ I − L−1

w Lx I − L−1
w L y 0

λI − A −I x
1T

n 0 0

⎤
⎦ .

On the other hand, we have

F ′(z) =
⎡
⎣ 0 I 0

λI − A −I x
1T

n 0 0

⎤
⎦ . (29)

Therefore, from these equalities and using [39], we get the desired result. ��
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Now let z∗ = (x∗, y∗, λ∗) be a solution of (14), and from the vector function F
defined in (25), set

G : R
n × R → R

n+1, w∗ = (x∗, λ∗) �→ G(w∗) defined by

G(w∗) = G(x∗, λ∗) =
[

λ∗x∗ − Ax∗
〈1n, x∗〉 − 1

]
, (30)

and
J = �a + �bG ′(w∗), (31)

where

�a =
[

I − V 0
0 0

]
, �b =

[
V 0
0 1

]
in the case ofϕsoc

min. (32)

�a =
[

I − L−1
w Lx 0

0 0

]
, �b =

[
I − L−1

w L(λ∗x∗−Ax∗) 0
0 1

]
in the case of ϕsoc

FB ,

(33)

and G ′(w∗) is given by

G ′(w∗) =
[

λ∗ I − A x∗
1T

n 0

]
. (34)

Given a fixed solution z∗ = (x∗, y∗, λ∗) of (14) and let w∗ = (x∗, λ∗).
The point w∗ is said to be nondegenerate iff w∗

i + Gi (w
∗) ∈ int(Kni ), for all i ∈

{1, . . . , r + 1}. Then, the index sets

α := {i ∈ {1, . . . , r + 1} : w∗
i ∈ int(Kni ), Gi (w

∗) = 0},
β := {i ∈ {1, . . . , r + 1} : w∗

i ∈ bd+(Kni ), Gi (w
∗) ∈ bd+(Kni )},

γ := {i ∈ {1, . . . , r + 1} : w∗
i = 0, Gi (w

∗) ∈ int(Kni )},

where bd+(Kni ) = bd(Kni ) \ {0}, form a partition of {1, . . . , r + 1}.
Moreover, we set

�̃a :=
[

I − Ṽ 0
0 0

]
, �̃b :=

[
Ṽ 0
0 1

]
, where Ṽ ∈ ∂B PK(ỹ).

We note that λ∗�̃a = �̃λ∗a , and we set

J̃ = �̃λ∗a + �̃bG ′(w∗). (35)

Proposition 5.2 Let z∗ = (x∗, y∗, λ∗) be a fixed solution of(14) with w∗ = (x∗, λ∗)
being nondegenerate. If the submatrix G ′(w∗)αα is nonsingular and if its Schur-
complement

G ′(w∗)ββ − G ′(w∗)βαG ′(w∗)−1
αα G ′(w∗)αβ
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is a P-matrix, then, the Jacobians J and J̃ , defined, respectively, in (31) and (35), are
nonsingular matrices.

Proof Solving SOCEiCP is equivalent to solving the following system

find w ∈ R
n+1\{0}, such that

w ∈ K, G(w) ∈ K, 〈w, G(w)〉 = 0,
(36)

where G is given by (30). The desired result follows immediately from Theorem 2.8
in [39]. ��
Remark 5.1 If r < n, i.e., α ⊂ {1, . . . , n + 1}, then G ′(w∗)αα is nonsingular if and
only if (λ∗ I − A)αα is nonsingular since in this case, we have
G ′(w∗)αα = (λ∗ I − A)αα . Moreover, its Schur-complement is a P-matrix if and only
if

(λ∗ I − A)ββ − (λ∗ I − A)βα(λ∗ I − A)−1
αα (λ∗ I − A)αβ

is a P-matrix.

Therefore, we get the following generalized theorems to the second-order cone.

Theorem 5.1 Assume that z∗ = (x∗, y∗, λ∗) is a fixed solution of (14) with w∗ =
(x∗, λ∗) nondegenerate. Then, all elements H in the B-subdifferential ∂BΦ(z∗), with
ϕ being one of the SOCC-functions ϕsoc

min or ϕsoc
FB , are nonsingular if and only if J is

nonsingular.

Proof Let H = Hmin ∈ ∂BΦmin(z∗) and let X = (p, q, r) ∈ R
n × R

n × R be an
arbitrary vector such that

H X = 0R2n+1 . (37)

The previous equation (37) can be written explicitly as

⎡
⎣ I − V V 0

λ∗ I − A −I x∗
1T

n 0 0

⎤
⎦

⎡
⎣ p

q
r

⎤
⎦ =

⎡
⎣ 0Rn

0Rn

0R

⎤
⎦ ,

where V ∈ ∂B PKn (x − y). Therefore,

(I − V )p + V q = 0Rn , (38)

(λ∗ I − A)p − q + r x∗ = 0Rn , (39)

〈1n, p〉 = 0. (40)

Using (39), we have
q = (λ∗ I − A)p + r x∗. (41)

Consequently, (38) becomes

(I − V )p + V (λ∗ I − A)p + r V x∗ = 0Rn . (42)
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Therefore,

(I − V )p + V (λ∗ I − A)p + r V x∗ = 0Rn ,

〈1n, p〉 = 0,

which can be rewritten in the following matricial form

[
I − V + V (λ∗ I − A) V x∗
1T

n 0

] [
p
r

]
=

[
0Rn

0R

]
. (43)

By setting Y = (p, r) ∈ R
n × R, clearly, (43) is equivalent to

J Y = 0Rn+1 . (44)

Hence,

H X = 0R2n+1 ⇐⇒
{

J Y = 0Rn+1 ,

q = (λ∗ I − A)p + r x∗,

which completes the proof. For the case of the elements HFB ∈ ∂BΦFB(z∗), it is
sufficient to apply the same steps given above. ��
Theorem 5.2 Assume that z̃∗ = (x∗, ỹ∗, λ∗) is a fixed root of ΦLPM defined in (22)
with w∗ = (x∗, λ∗) nondegenerate. Then the Jacobian J̃ defined in (35) is nonsingular
if and only if all elements in ∂BΦLPM(z̃∗) are nonsingular.

Proof Let H̃ ∈ ∂BΦLPM(z̃∗) and let X = (p, q, r) ∈ R
n × R

n × R such that

H̃ X = 0R2n+1 . (45)

The previous equation can be written explicitly as

⎡
⎣−λ∗ I Ṽ −x∗

A −I 0
1T

n 0 0

⎤
⎦

⎡
⎣ p

q
r

⎤
⎦ =

⎡
⎣ 0Rn

0Rn

0R

⎤
⎦ ,

where Ṽ ∈ ∂B PK(ỹ). Hence,

− λ∗ p + Ṽ q − r x∗ = 0Rn , (46)

Ap − q = 0Rn , (47)

〈1n, p〉 = 0. (48)

Using (47), we have
q = Ap. (49)
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Consequently, (46) becomes

(λ∗ I − Ṽ A)p + r x∗ = 0Rn . (50)

Therefore,
(λ∗ I − Ṽ A)p + r x∗ = 0Rn ,

〈1n, p〉 = 0.
(51)

Note that

I = I − Ṽ + Ṽ .

Then, (51) becomes

λ∗(I − Ṽ )p + Ṽ (λ∗ I − A)p + r x∗ = 0Rn ,

〈1n, p〉 = 0.
(52)

We note also that we have

Ṽ x∗ = x∗.

Consequently, (52) can be rewritten in the following matricial form

[
λ∗(I − Ṽ ) + Ṽ (λ∗ I − A) Ṽ x∗
1T

n 0

] [
p
r

]
=

[
0Rn

0R

]
. (53)

By setting Y = (p, r) ∈ R
n × R, it is clear that (53) is equivalent to

J̃ Y = 0Rn+1 . (54)

Hence,

H̃ X = 0R2n+1 ⇐⇒
{

J̃ Y = 0Rn+1,

q = Ap.

The desired conclusion of Theorem 5.2 follows immediately from the last equivalence.
��

6 Numerical Experiments

In this section, we apply the semismooth Newton method SNM, defined in Algorithm 1,
in order to solve the SOCEiCP and give some numerical results to verify the efficiency
of the LPM. The latter will be compared with two other solvers. The first one is the
semismooth Newton method, related to ϕsoc

min defined in (16) (denoted by SNMmin),
and the second one is related to ϕsoc

FB defined in (17) (denoted by SNMFB).
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We choose the performance profiles developed in Dolan and Moré [24,25] as a tool
to compare the solvers. Computing time, number of functions evaluations and number
of failures are used as performance measures to compare the three solvers.

The numerical experiments are carried out in a Powerbook Mac OS 10.6.8 with a
processor 2.33 GHz Intel Core 2 Duo and 2Go memory. All the program codes are
written and executed in Matlab 7.7.

Let S be the set of the three solvers that will be compared. Before establishing the
figures, we give some notations :

• rp,s denotes the performance ratio defined by

rp,s := tp,s

min{tp,s : s ∈ S} ,

• p is an element of the set of matrices P = 160 taken to compare the solvers, with
10,000 initial points,

• s denotes each solver,

• ns is the number of solvers,

• t is a real factor, and

• tp,s denotes the average number of functions evaluations, the average computing
time and the number of failures, respectively, in Figs. 1, 2, and 3.

Remark 6.1 In our case, a failure is declared if the Jacobian matrix is ill-conditioned
or in the SNM defined in Algorithm 1, the number of iterations exceeded 100.
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Fig. 1 Performance profiles where tp,s is the average number of functions evaluations
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Fig. 2 Performance profiles where tp,s is the average computing time
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Fig. 3 Performance profiles where tp,s is the average number of failures

Figure 1 shows the performance profiles given by the three solvers, i.e., LPM,
SNMFB and SNMmin. We compare the number of functions evaluations required to
find a solution by each solver. Clearly, LPM has the most wins (since it has the highest
probability). In the interval [0, 0.5], LPM can solve 90 % of the problems, while
SNMmin and SNMFB do not attain the 30 %. When t ≥ 2, the performance of the
latters becomes interesting.

In Fig. 2, the computing time is the comparing tool. Clearly, the performance profile
of the LPM is interesting since it has the highest probability to solve problems. On the
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other hand, SNMFB and SNMmin require a more running time to find a solution and
have a lower number of wins.

Figure 3 shows the efficiency of the LPM, where the average number of failures to
find each solution is the comparing tool. Clearly, in the interval [0, 0.5], LPM is able
to solve about 90 % of problems and detects the Lorentz eigenvalues while the others
do not reach the 50 %. We see also that when t ≥ 2, the performance of SNMFB
becomes interesting. This allows us to conclude that the number of failures (in the
sense of Remark 6.1) given by SNMmin is high, which prevents to find solutions.

7 Globally Convergent Methods

In this section, we will discuss briefly a globalization of the three methods studied in
the last sections by constructing appropriate merit functions associated to Φmin, ΦFB
and ΦLPM defined, respectively, in (14) and (22).

For the function ΦFB, we introduce the following classical merit function ΨFB :
R

2n+1 → R
2n+1, defined by

ΨFB(z) := 1

2
ΦFB(z)T ΦFB(z). (55)

We note that the function ΨFB is of class C1 and that SOCEiCP is also equivalent to
the following unconstrained global optimization problem

min
z∈R2n+1

ΨFB(z).

Since ΨFB is continuously differentiable, it is easy to force global convergence of the
algorithm by using the gradient of the merit function (see [40]).

Algorithm 2 (Semismooth Newton Method SNM)

Step 0. (Data)
Choose parameters δ, ρ ∈ ]0, 1[, σ ∈ ]0, 0.5[, κ > 2 and initial point
z0 := (x0, y0, λ0) ∈ R

n × R
n × R. Give the error bound 0 < ε << 1 and set k = 0.

Step 1. (Termination criteria)
If ‖∇ΨF B(zk)‖ ≤ ε, stop, where the function ΨFB(·) is defined in (55).
Step 2. (Search direction calculation)
At a current point zk , we select Mk ∈ ∂ΦFB(zk) and compute hk by solving the linear
system

Mkhk = −ΦFB(zk). (56)

If system (56) is unsolvable or if hk does not satisfy the following condition

∇ΨF B(zk)T hk ≤ −ρ‖hk‖κ , (57)

then set

hk = −∇ΨF B(zk).
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Step 3. (Line search)
Let mk be the smallest non-negative integer m such that

ΨF B(zk + δmhk) − ΨF B(zk) ≤ σδm∇ΨF B(zk)T hk, (58)

and let αk := δmk and zk+1 := zk + αkhk .

Step 4. (Update)
Set k := k + 1 and go to Step 1.

We have the following convergence result (see [40] for more details).

Theorem 7.1 [40] Let F be a C1-function and let {zk = (xk, yk, λk)} denote a
sequence generated by Algorithm 2. Then, the following statements hold.

(a) Each accumulation point of the sequence {zk} is a stationary point of ΨFB.
(b) If the sequence {zk} has an accumulation point z∗ which is a B D-regular solution

of the system ΦFB(z) = 0, then {zk} converges Q-superlinealry to z∗.
(c) If, in addition to the assumptions of part (b), the gradient of F is locally Lipshitz

continuous at z∗, then {zk} converges Q-quadratically to z∗.

Remark 7.1 We can construct also merit functions Ψmin and ΨLPM associated to the
natural residual function Φmin and ΦLPM defined, respectively, in (14) and (22):

Ψmin(z) = 1

2
‖Φmin(z)‖2 and ΨLPM(z̃) = 1

2
‖ΦLPM(z̃)‖2.

The drawback of these two functions are their non-differentiability. As an immediate
consequence, numerical methods based on the gradient of the function, such as steepest
descent method and Newton’s method, cannot be applicable directly to Ψmin and ΨLPM.
To overcome this difficulty, Fukushima et al. [13] and Hayashi et al. [19] proposed
smoothing and regularization methods by replacing the original non differentiable
function by a sequence of differentiable approximations. The boundedness of the level-
sets (or the coercivity) of the objective function plays an important role to ensure the
global convergence of a descent method. Further investigations must be done in this
direction for SOCEiCP.

8 Conclusions

In this paper, we have studied numerical methods for solving the second-order cone
eigenvalue complementarity problem. We have reformulated such a problem into a
system of semismooth equations. Moreover, we have extended the LPM, introduced
in [1], to solve the SOCEiCP. The performance profiles highlight the efficiency of the
LPM method for solving SOCEiCP. It will be interesting to compare the globalization
of the three methods in the future (using remark 7.1). Another natural question is
to generalize the LPM to the mixed eigenvalue complementarity problems (where
only some components of the vector x ∈ R

n are cone-constrained and the identity
I in (3) is replaced by some matrix of order n). This kind of problems appears in
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the study of the equilibrium state of mechanical systems with unilateral contact [8].
Another interesting question would be the generalization of the LPM method for
solving quadratic eigenvalue complementarity problems. This is out of the scope of
this paper and will probably be the subject of a future project of research.
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