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Introduction

In the seventies Moreau introduced and thoroughly studied the sweeping process, which is a particular differential inclusion. As a partial viewpoint, consider a timemoving closed convex set C(t) which drags a point u(t), so this point must stay in C(t) at every time t, and the opposite of its velocity, say -du dt (t), has to be normal to the set C(t). To take into account the nonsmoothness of the boundary of the convex set C(t), the law of motion is formulated as

⎧ ⎨ ⎩ -du dt (t) ∈ N (C(t); u(t)) u(0) = u 0 ∈ C(0) u(t) ∈ C(t) ∀t, (1.1)
where N (C(t); u(t)) is the (outward) normal cone to the set C(t) at the point u(t) in the sense of Modern Convex Analysis. The following interpretation arises (see [START_REF] Moreau | Evolution problem associated with a moving convex set in a Hilbert space[END_REF]) for the way how the point u(t) is "sweept": as long as the point u(t) happens to be in the interior of C(t), the normal cone N (C(t); u(t)) is reduced to zero, so u(t) does not move. When the point is "caught up with" by the boundary of C(t) it moves, subject to an inward normal direction, as if pushed by this boundary. Concrete original motivations of the sweeping process by Moreau are: quasi-static evolution in elastoplasticity, contact dynamics, friction dynamics, granular material (see [START_REF] Moreau | On unilateral constraints, friction and plasticity[END_REF][START_REF] Moreau | An introduction to unilateral dynamics[END_REF] and the references therein). The sweeping process model is also of great interest in nonsmooth mechanics, convex optimization, mathematical economics and more recently in the modeling and simulation of switched electrical circuits [START_REF] Acary | Nonsmooth Modeling and Simulation for Switched Circuits[END_REF][START_REF] Addi | A qualitative mathematical analysis of a class of linear variational inequalities via semi-complementarity problems[END_REF][START_REF] Adly | Variational analysis and generalized equations in electronics[END_REF][START_REF] Adly | Qualitative stability of a class of non-monotone variational inclusions[END_REF][START_REF] Brogliato | Existence and uniqueness of solutions for non-autonomous complementarity dynamical systems[END_REF]. Existence and uniqueness results when the convex sets C(t) are absolutely continuous or have bounded retraction are provided in [START_REF] Moreau | Evolution problem associated with a moving convex set in a Hilbert space[END_REF]. Those results will be discussed in Sect. 3.1. Moreau [START_REF] Moreau | Evolution problem associated with a moving convex set in a Hilbert space[END_REF] also introduced the second order sweeping process for the study of Lagrangian mechanical systems subject to frictionless unilateral constraints. For such systems the velocity may be discontinuous at the impact time. In this case, the acceleration can be defined as a measure. This kind of problems fall within the formalism of measure differential inclusions. For the sweeping process with nonconvex sets C(t), we refer the reader to [START_REF] Benabdellah | Existence of solutions to the nonconvex sweeping process[END_REF][START_REF] Bounkhel | Nonconvex sweeping process and prox-regularity in Hilbert space[END_REF][START_REF] Castaing | Equation différentielle multivoque avec contrainte sur l'état dans les espaces de Banach[END_REF][START_REF] Castaing | Evolution problems associated with non-convex closed moving sets with bounded variation[END_REF][START_REF] Colombo | The sweeping process without convexity[END_REF][START_REF] Colombo | Marques, sweeping by a continuous prox-regular set[END_REF][START_REF] Colombo | Prox-regular sets and applications[END_REF][START_REF] Edmond | BV solutions of nonconvex sweeping process differential inclusions with perturbation[END_REF][START_REF] Thibault | Sweeping process with regular and nonregular sets[END_REF][START_REF] Valadier | Quelques problèmes d'entrainement unilatéral en dimension finie[END_REF][START_REF] Valadier | Rafle et viabilité[END_REF] and the references therein.

A natural variant of the sweeping process is the differential inclusion ⎧ ⎨ ⎩ -du dt (t) ∈ N (C(t); u(t)) + F(t, u(t)) u(0) = u 0 ∈ C(0) u(t) ∈ C(t), ∀t ∈ [0, T ], (1.2) where F is a set-valued mapping from [0, T ] × H into weakly compact convex sets of a Hilbert space H . The particular case where all the sets C(t) are equal to a fixed convex set K is related to the Henry's mathematical model of planning procedure, see [START_REF] Henry | An existence theorem for a class of differential equations with multivalued right-hand side[END_REF] and Sect. 3.3 for more details; this model has been largely developed by Cornet [START_REF] Cornet | Existence of slow solutions for a class of differential inclusions[END_REF]. For the existence of solutions with time-varying convex/nonconvex sets C(t) we refer the reader to [START_REF] Bounkhel | Nonconvex sweeping process and prox-regularity in Hilbert space[END_REF][START_REF] Castaing | Evolution equations governed by the sweeping process[END_REF][START_REF] Castaing | BV periodic solutions of an evolution problem associated with continuous moving convex sets[END_REF][START_REF] Castaing | Evolution problems associated with non-convex closed moving sets with bounded variation[END_REF][START_REF] Edmond | Relaxation of an optimal control problem involving a perturbed sweeping process[END_REF][START_REF] Edmond | BV solutions of nonconvex sweeping process differential inclusions with perturbation[END_REF][START_REF] Haddad | Reduction of sweeping process to unconstrained differential inclusion[END_REF][START_REF] Haddad | Mixed semicontinuous perturbations of nonconvex sweeping processes[END_REF][START_REF] Kunze | On parabolic quasi-variational inequalities and state-dependent sweeping processes[END_REF][START_REF] Kunze | Portugaliae Math. On the discretization of degenerate sweeping process[END_REF][START_REF] Kunze | An introduction to Moreau's sweeping process[END_REF][START_REF] Monteiro Marques | Perturbations convexes semi-continues supérieurement dans les espaces de Hilbert[END_REF][START_REF] Thibault | Sweeping process with regular and nonregular sets[END_REF]. Applications to the crowd motion modeling have been realized in [START_REF] Maury | A mathematical framework for a crowd motion model[END_REF].

From a numerical point of view, the time-integration (also known as time-stepping) schemes have been applied to find an approximation of the solution to the sweeping process. The so called "catching-up" algorithm was introduced by Moreau [START_REF] Moreau | Sur l'évolution d'un système élastoplastique[END_REF][START_REF] Moreau | Evolution problem associated with a moving convex set in a Hilbert space[END_REF][START_REF] Moreau | Numerical aspects of the sweeping process[END_REF] to prove the existence of a solution to (1.1) and is defined by

u 0 ∈ H, (u k+1 -u k ) ∈ -N C(t k+1 ); u k+1 , (1.3) 
where u k stands for an approximation of u at the time t k . Using the fact that [I + N (C ; •)] -1 = proj C (the metric projection operator onto C), one sees that (1.3) is equivalent to u 0 ∈ H, u k+1 = proj C(t k+1 ) (u k ).

(1.4)

When the time step goes to zero, under various assumptions on the variation of C(t), the approximation constructed via (u k ) k in (1.4) contains a subsequence which converge weakly in H to some u satisfying (1.1) a.e. (see [START_REF] Kunze | An introduction to Moreau's sweeping process[END_REF][START_REF] Moreau | Evolution problem associated with a moving convex set in a Hilbert space[END_REF]). Another interesting mathematical formalism, called Differential Variational Inequalities (DVI), was introduced by Pang and Stewart [START_REF] Pang | Differential variational inequalities[END_REF]. It is a combination of an ordinary differential equation with a variational inequality or a complementarity constraint. A DVI consists to find trajectories t → x(t) and t → u(t) such that

dx dt (t) = f (t, x(t), u(t)) F(t, x(t), u(t)), v -u(t) ≥ 0, ∀v ∈ K , a.e. t ∈ [0, T ],
where K is a closed convex subset of H , f and F are given mappings. The DVI formalism unifies several known mathematical problems such as: ordinary differential equations with discontinuous right-hand term, differential algebraic equations, dynamic complementarity problems etc . . . (see [START_REF] Pang | Differential variational inequalities[END_REF] for more details). The DVI formalism was proved to be powerful for the treatment of many problems in science and engineering such as: unilateral contact problems in mechanics, finance, traffic networks, electrical circuits etc . . .

The main aim of the present paper is to analyze two variants of the sweeping process and to establish existence results for them. The first new variant is concerned with the case where the sweeping process (1.1) is perturbed by a Lipschitz mapping and where the moving convex set C(t) has a bounded variation. The mathematical formulation is then a measure differential inclusion (see Sect. 4).

The second variant is of the form

A 1 du dt (t) + A 0 u(t) -f (t) ∈ -N C(t); du dt (t) u(0) = u 0 ∈ H, ( 1.5) 
where A 0 , A 1 : H → H are two linear bounded, symmetric and semidefinite operators, f : [0, T ] → H is a bounded continuous mapping and C(t) is a nonempty closed and convex set of H for every t ∈ [0, T ]. Problem (1.5) includes as a special case the following evolution variational inequality:

⎧ ⎨ ⎩
Find u : [0, T ] -→ H, with u(0) = u 0 ∈ H, such that u(t) ∈ C(t) a.e. t ∈ [0, T ] and a 0 (u(t), v -u(t)) + a 1 ( u(t), v -u(t)) ≥ l(t), v -u(t) for all v ∈ C(t).

(1.6) Here a 0 (•, •) and a 1 (•, •) are real bilinear, bounded and symmetric forms, l ∈ W 1,2 ([0, T ], H ) and u(t) := du dt (t). The evolution variational inequalities of type (1.6) are widely used in applied mathematics, unilateral mechanics and various fields of sciences and engineering such as for instance traffic networks, energy market, transportation, elastoplasticity etc …(see e.g. [START_REF] Duvaut | Inequalities in Mechanics and Physics[END_REF]).

The remainder of this manuscript is organized as follows. Section 2 is devoted to several results of convex analysis which are used throughout the paper; in particular, Rockafellar's theorem on the Legendre-Fenchel conjugate of a convex integral functional on a functional space is stated in Sect. 2.2. In Sect. 3 we review the significance of the differential measure formulation of (1.1) where C(t) has a bounded variation and state Moreau's theorem on existence and uniqueness of solution; various known variants in the literature with applications to hysteresis phenomena, planning procedures and electrical circuits are also briefly described. The first new variant presented above of the perturbation with a Lipschiz mapping of the sweeping process involving convex set C(t) with bounded variation is studied in great detail in Sect. 4; a theorem of existence and uniqueness is established. Section 5 is dedicated to the second variant (1.5), for which a large analysis is made and an existence theorem is provided; under the coercivity of the linear operator A 0 the uniqueness is also obtained. Section 6 is devoted to some illustrative numerical simulations.

Notation and preliminaries

This section is devoted to concepts and preliminary results which will be used in the paper.

Subdifferential, normal cone, conjugate

Given a normed space X with topological dual X * and a convex function ϕ :

X → R ∪ {-∞, +∞}, the subdifferential of ϕ at a point x ∈ X with |ϕ(x)| < +∞ is defined as ∂ϕ(x) := x * ∈ X * : x * , x -x ≤ ϕ(x ) -ϕ(x), ∀x ∈ X ,
and the effective domain of ϕ is dom ϕ := {x ∈ X : ϕ(x ) < +∞}; the function ϕ is said to be proper whenever dom ϕ = ∅ and ϕ does not take on the value -∞. The subdifferential is related to the directional derivative ϕ (x; •) in the sense that

∂ϕ(x) = x * ∈ X * : x * , z ≤ ϕ (x; z), ∀z ∈ X , where ϕ (x; z) := inf τ >0 τ -1 ϕ(x + τ z) -ϕ(x) = lim τ ↓0 τ -1 ϕ(x + τ z) -ϕ(x) .
This characterization shows, for any convex function

ϕ 0 Gâteaux differentiable at x, that ∂ϕ 0 (x) = {Dϕ 0 (x)} and ∂(ϕ 0 + ϕ)(x) = Dϕ 0 (x) + ∂ϕ(x). ( 2.1) 
Through the directional derivative and the Hahn-Banach theorem, one also sees that, whenever ϕ is finite and continuous at x, the set ∂ϕ(x) is nonempty and weakly * compact in X * and ϕ (x; z) = max x * , z : x * ∈ ∂ϕ(x) .

(2.2)

Concerning the continuity, we recall (see, e.g., [START_REF] Phelps | Convex Functions. Monotone Operators and Differentiability[END_REF][START_REF] Rockafellar | Conjugate Duality and Optimization[END_REF]) that a lower semicontinuous convex function on a Banach space is continuous on the interior of its effective domain. Three particular convex functions arise in general in many problems involving Modern Convex Analysis (see [START_REF] Borwein | Convex Functions: Constructions, Characterizations and Counterexamples[END_REF][START_REF] Hiriart-Urruty | Convex Analysis and Minimization Algorithms I & II[END_REF][START_REF] Moreau | Fonctionnelles Convexes[END_REF][START_REF] Rockafellar | Convex Analysis[END_REF][START_REF] Rockafellar | Conjugate Duality and Optimization[END_REF][START_REF] Rockafellar | Variational Analysis, Grundlehren der Mathematischen Wissenschaften[END_REF][START_REF] Zalinescu | Convex Analysis in General Vector Spaces[END_REF]). Given a nonempty closed convex set C of X , those functions correspond to the indicator and support functions ı C and σ C [or σ (C, •)] of C respectively, and to the distance function d C from the set C, defined by

ı C : X → R ∪ {+∞} with ı C (x) = 0 if x ∈ C and ı C (x) = +∞ if x ∈ C, σ C : X * → R ∪ {+∞} with σ C (x * ) := sup x∈C x * , x , d C : X → R with d C (x) := inf y∈C x -y .
From the definition of σ C , we see that σ C coincides with the Legendre-Fenchel conjugate of ı C , that is, σ C = (ı C ) * where, for the above function ϕ, its Legendre-Fenchel conjugate is defined as

ϕ * : X * → R ∪ {-∞, +∞} with ϕ * (x * ) := sup x∈X x * , x -ϕ(x) .
The Legendre-Fenchel conjugate is also related to the subdifferential. Indeed, for ϕ(x) finite, one has

x * ∈ ∂ϕ(x) ⇔ ϕ * (x * ) + ϕ(x) = x * , x ,
so, provided the convex function ϕ is proper and lower semicontinuous, the set-valued operator ∂ϕ * : X * ⇒ X is the inverse of the set-valued operator ∂ϕ; this ensures, in particular when the Banach space X is reflexive, that the set-valued operator ∂ϕ : X ⇒ X * is surjective if and only dom ϕ * = X * . Hence in particular ∂ϕ is surjective whenever dom ϕ is bounded and ϕ is bounded from below.

(2.3) Indeed, these boundedness properties taken together clearly imply that ϕ * is finite on X * , so ϕ * is continuous on X * (by the continuity property recalled above) and hence Dom ∂ϕ * = X * according to (2.2), which is equivalent (by a property recalled above) to the surjectivity of ∂ϕ. (Above, Dom ∂ϕ * denotes the effective domain of ∂ϕ * , where Dom M := {s ∈ S : M(s) = ∅} for any set-valued mapping M : S ⇒ Y between two sets S and Y ).

For ϕ = ı C and x ∈ C, it is readily seen that x * ∈ ∂ı C (x) if and only if x * , x -x ≤ 0, for all x ∈ C, so ∂ı C (x) is the set N (C; x) of outward normals of the convex set C at the point x ∈ C; the latter inequality characterization also says that

x * ∈ N (C; x) if and only if σ (C, x * ) = x * , x and x ∈ C. (2.4)
When X is a Hilbert space H , it is also clear from the inequality characterization above that yproj C (y) ∈ N (C; proj C (y)) for all y ∈ H, (2.5) where proj C (y) denotes the nearest point of y in C, hence proj C is the metric projection onto C. For the normed space X , it is known and not difficult to see, for x ∈ C, that

N (C; x) ∩ B X * = ∂d C (x) and σ (∂d C (x), z) = d C (x; z), ∀z ∈ X, (2.6) 
where B X * := {x * ∈ X : x * ≤ 1} (resp. B X := {x ∈ X : x ≤ 1}) denotes the closed unit ball of X * (resp. X ) centered at the origin. The fundamental concepts of subdifferential or normal cone, directional derivative and Legendre-Fenchel conjugate will be at the heart of our present paper. From the definitions it directly follows the monotonicity property of the subdifferential of the convex function ϕ (resp. normal cone of the convex set C) (property crucial for the paper), say

x * 1 -x * 2 , x 1 -x 2 ≥ 0 for all x * i ∈ ∂ϕ(x i ) resp. x * i ∈ N (C; x i ) .
It is worth mentioning that the converse (which is not obvious) also holds true, that is, a lower semicontinuous function ψ on a Banach space X is convex if and only if ∂ 0 ψ is monotone, where ∂ 0 is any subdifferential with appropriate fuzzy sum rule (see [START_REF] Correa | Subdifferential characterization of convexity[END_REF][START_REF] Poliquin | Subgradient monotonicity and convex functions[END_REF]) on the Banach space Suppose that the separable Banach space X is reflexive and μ is a σ -finite measure on S. For any p ∈ [1, +∞] denote by L p μ (S, X ) the vector space of classes of measurable mappings u(•) : S → X such that the function s → u(s) belongs to the standard space L p μ (S, R) and denote by u p the norm of u in L p μ (S, X ) given by the norm of s → u(s) in L p μ (S, R), so u p = S u(s) p dμ(s) 1/ p for 1 ≤ p < +∞, and similarly for p = +∞. For any real p ∈ [1, +∞[, taking q such that 1 p + 1 q = 1, the topological dual of L p μ (S, X ) is identified with L q μ (S, X * ) through the standard pairing. When μ is the Lebesgue measure λ on some interval I of R and there is no risk of confusion, we will just write L p (I, X ).

With any p ∈ [1, +∞] and any normal integrand ϕ : S × X → R ∪ {+∞} one can associate the integral functional

I ϕ : L p μ (S, X ) → R ∪ {-∞, +∞} with I ϕ (u) := S ϕ(s, u(s)) dμ(s) for all u(•) ∈ L p μ (S, X );
we recall that, for a measurable function ψ : S → R ∪ {-∞, +∞}, the extended real S ψ(s) dμ(s) is the infimum of integrals S ρ(s) dμ(s) of integrable real-valued functions ρ : S → R such that ψ(s) ≤ ρ(s) for μ-almost every s ∈ S (with the standard convention inf ∅ = +∞). One of the key results concerning normal convex integrand is the following theorem due to Rockafellar (see [START_REF] Rockafellar | Convex integral functionals and duality[END_REF][START_REF] Rockafellar | Conjugate Duality and Optimization[END_REF]). For various extensions outside the reflexive setting, we refer the reader to Castaing and Valadier [START_REF] Castaing | Convex Analysis and Measurable Multifunctions[END_REF]. 

Theorem
(I ϕ ) * (u * ) = I ϕ * (u * ) := S ϕ * (s, u * (s)) dμ(s) for all u * (•) ∈ L q μ (S, X * ).
Although the above concepts and results are recalled in the context of normed spaces for completeness of their statements, the framework of the rest of the paper is that of a Hilbert space H .

3 Convex sweeping process and some variants in the literature

Convex sweeping process

In 1971, Moreau [START_REF] Moreau | Rafle par un convexe variable I. Sém. Anal[END_REF][START_REF] Moreau | Rafle par un convexe variable II, Sém. Anal[END_REF] introduced the "sweeping process" (in the absolutely continuous framework) as the evolution differential inclusion

du dt (t) ∈ -N (C(t); u(t)) for a.e. t ∈ C(t), with u(T 0 ) = u 0 ∈ C(T 0 ), (3.1)
where 0 ≤ T 0 < T < +∞; for convenience, we will write sometimes, as usual, u(t) in place of du dt (t). In an earlier paper [START_REF] Moreau | Sur l'évolution d'un système élastoplastique[END_REF], Moreau showed how such an evolution equation arises in the theory of elastic mechanical systems submitted to nonsmooth efforts as dry friction; note that the velocity in such cases may present discontinuity in time. He also provided later in a 1973 paper [START_REF] Moreau | On unilateral constraints, friction and plasticity[END_REF] more details on applications to elasticity and other fields of mechanics.

The paper [START_REF] Moreau | Rafle par un convexe variable I. Sém. Anal[END_REF] is concerned with the situation where the discontinuity of the velocity is exhibited by an absolute continuity property of the state of the system. The main result of that paper [START_REF] Moreau | Rafle par un convexe variable I. Sém. Anal[END_REF] can be stated as follows.

Theorem 3.1 (Moreau's theorem for absolutely continuous convex sweeping process) Assume that the sets C(t) of the Hilbert space H are nonempty closed convex sets for which there is a nondecreasing absolutely continuous function v(•)

: [T 0 , T ] → R + := [0, +∞[ such that, for each y ∈ H, d(y, C(t)) ≤ d(y, C(s)) + v(t) -v(s) for all T 0 ≤ s ≤ t ≤ T.
Then, the evolution equation (3.1) admits one and only one absolutely continuous solution.

To take into account the more general situation where there are jumps, Moreau transformed the above model into a measure differential inclusion and proved in [START_REF] Moreau | Evolution problem associated with a moving convex set in a Hilbert space[END_REF] an existence result that we give in the following form. Theorem 3.2 (Moreau's theorem for convex sweeping process with bounded variation) Assume that the sets C(t) of the Hilbert space H are nonempty closed convex sets for which there is a positive Radon measure μ on [T 0 , T ] such that, for each y ∈ H,

d(y, C(t)) ≤ d(y, C(s)) + μ(]s, t]), for all T 0 ≤ s ≤ t ≤ T.
Then, the measure differential evolution inclusion

du ∈ -N (C(t); u(t)) u(T 0 ) = u 0 ∈ C(T 0 ) (3.2)
admits one and only one right continuous solution with bounded variation.

A mapping u(•) : [T 0 , T ] → H is a solution of the measure differential inclusion in the theorem provided that it is right continuous with bounded variation with u(T 0 ) = u 0 and u(t) ∈ C(t) for all t ∈ [T 0 , T ] and the differential measure du associated with u admits the derivative measure du dμ (see the next section for the meaning) as a density relative to μ and

du dμ (t) ∈ -N (C(t); u(t)) for μ -a.e. t ∈ [T 0 , T ].
In [START_REF] Edmond | BV solutions of nonconvex sweeping process differential inclusions with perturbation[END_REF] it is shown that u(•) is a solution if and only if the latter inclusion is fulfilled with some positive Radon measure ν on [T 0 , T ] in place of μ.

An elasto-plastic model and hysteresis

Many problems from thermo-plasticity, phase transition (etc) in the literature lead to variational inequalities in the form below. Consider, for example, the following elasto-plastic one (see, e.g. [START_REF] Krejčı | Vector hysteresis models[END_REF]). Let Z be a closed convex set of the 1 2 N (N + 1)dimensional vector space E of symmetric tensors N × N . Assume that the interior of Z is nonempty, so int Z = ∅ corresponds to the elasticity domain and bdry Z to the plasticity. Write the strain tensor ε = (ε) i, j (depending on time t) as ε := ε e + ε p , where ε e is the elastic strain and ε p the plastic strain. The elastic strain ε e is related to the stress tensor σ = (σ ) i, j linearly, that is, ε e = A 2 σ , where A is a (constant) symmetric positive definite matrix. The system is then subjected to the variational inequality:

ε p (t), z ≤ ε p (t), σ (t) , ∀z ∈ Z : principle of maximal dissipation
and to the region constraint σ (t) ∈ Z for all t ∈ [0, T ]; in this system, the tensor strain ε is supposed to be given as an absolutely continuous mapping and the initial tensor stress σ 0 is given in Z . Observing that the above inequality can be written as

-A σ (t) + A -1 ε(t), Aσ (t) -Az ≥ 0, Setting ζ(t) := Aσ (t) -A -1 ε(t), yields to the equivalent inequality -ζ (t), ζ (t) -Az -A -1 ε(t) ≥ 0 for all z ∈ Z . (3.3)
By setting,

C(t) := -A -1 ε(t) + A(Z ), problem (3.
3) is reduced to the convex sweeping process

ζ (t) ∈ -N (C(t); ζ(t)) ζ(0) = Aσ 0 -A -1 ε(0) ∈ C(0).
Clearly, we have

d(x, C(t)) ≤ d(x, C(s)) + A -1 t s ε(r ) dr.
This provides according to Theorem 3.1 above (besides to [31, Proposition 2.2]) another proof of existence and uniqueness of solution for that system. This defines a mapping Φ : W 1,1 ([0, T ], E) assigning to each absolutely continuous mapping ε ∈ W 1,1 ([0, T ], E) the solution Φ(ε) := σ ε of the system. This mapping Φ enjoys two particular properties: • Rate independence Denoting by σ ε the solution associated with ε and taking any absolutely continuous increasing bijection θ :

[0, T ] → [0, T ], for almost every t ∈ [0, T ], we have -A 2 σε (θ (t)) + ε(θ(t)), σ ε (θ (t)) -z ≥ 0 hence -A 2 σε (θ (t)) θ(t) + ε(θ(t)) θ(t)), σ ε (θ (t)) -z ≥ 0 (since θ(t) ≥ 0 a.e.
), from which it can be obtained, for almost every t ∈ [0, T ],

-A 2 d dt (σ ε • θ)(t) + d dt (ε • θ)(t), (σ ε • θ)(t) -z ≥ 0 (σ ε • θ)(0) = σ 0 ∈ C(0).

The uniqueness property guarantees that σ

ε • θ is the solution associated with ε • θ, otherwise stated, Φ(ε • θ) = Φ(ε) • θ .
The latter equality is known in the literature as the rate independence property (see, e.g., [START_REF] Brokate | Hysteresis and Phase Transitions[END_REF][START_REF] Krejčı | Vector hysteresis models[END_REF][START_REF] Visintin | Differential Models of Hysteresis[END_REF]).

• Causality For each τ ∈ [0, T ] and ε ∈ W 1,1 ([0, T ], E), denoting by σ ε the solution on [0, T ] of the system above, the restriction of σ | [0,τ ] to [0, τ ] coincides with the solution on [0, τ ] of the system associated with ε| [0,τ ] according to the same uniqueness property above. Then, for

ε i ∈ W 1,1 ([0, T ], E) (i = 1, 2), we have ε 1 | [0,τ ] = ε 2 | [0,τ ] ⇒ σ ε 1 (t) = σ ε 2 (t) ∀t ∈ [0, τ ],
otherwise stated

ε 1 | [0,τ ] = ε 2 | [0,τ ] ⇒ Φ(ε 1 )(t) = Φ(ε 2 )(t) ∀t ∈ [0, τ ];
this is generally called the causality property (see, e.g., [START_REF] Krejčı | Vector hysteresis models[END_REF]).

Both rate independence and causality properties translate that Φ is an hysteresis operator according to [START_REF] Brokate | Hysteresis and Phase Transitions[END_REF][START_REF] Krejčı | Vector hysteresis models[END_REF][START_REF] Visintin | Differential Models of Hysteresis[END_REF] where those properties are brought to light with various physical examples with hysteresis phenomena.

For several other models, we refer the reader to [START_REF] Brokate | Hysteresis and Phase Transitions[END_REF]. Of course, by Theorem 3.1 the mathematical features and properties above still hold in the context of a Hilbert space H with any closed convex set Z (without any condition on its interior) and any coercive bijective bounded symmetric linear operator A : H → H .

Planning procedure

In mathematical economy, Henry [START_REF] Henry | An existence theorem for a class of differential equations with multivalued right-hand side[END_REF] introduced, as mathematical model for the planning procedure, the differential inclusion

ẋ(t) ∈ proj T K (x(t)) F(x(t)) a.e. t ∈ [0, T ], x(0) = x 0 ∈ K ,
where K is a closed convex set of R N , F : R N ⇒ R N is an upper semi-continuous setvalued mapping with nonempty compact convex values, and T K (y) denotes the tangent cone of K at y. This differential inclusion is known (see [START_REF] Cornet | Existence of slow solutions for a class of differential inclusions[END_REF][START_REF] Henry | An existence theorem for a class of differential equations with multivalued right-hand side[END_REF]) to be completely linked to the following system

ẋ(t) ∈ -N (x(t); K ) + F(x(t)), x(0) = x 0 ∈ K ,
which enters in the following class of perturbed sweeping processes

ẋ(t) ∈ -N (C(t); x(t)) + F(x(t)) a.e. t ∈ [0, T ] x(0) = x 0 ∈ C(0),
where C(t) is, as in Sect. 3.1, a closed convex set moving in an absolutely continuous way. Existence results for such perturbed sweeping process are established in finite dimensions in [START_REF] Castaing | Evolution equations governed by the sweeping process[END_REF][START_REF] Monteiro Marques | Perturbations convexes semi-continues supérieurement dans les espaces de Hilbert[END_REF][START_REF] Thibault | Sweeping process with regular and nonregular sets[END_REF], and in [START_REF] Bounkhel | Nonconvex sweeping process and prox-regularity in Hilbert space[END_REF][START_REF] Monteiro Marques | Perturbations convexes semi-continues supérieurement dans les espaces de Hilbert[END_REF] for the Hilbert setting under compactness growth conditions for the set-valued mapping F. Under compactness growth assumptions on F, existence of solution has been proved in [START_REF] Edmond | BV solutions of nonconvex sweeping process differential inclusions with perturbation[END_REF] when the set C(t) moves with a bounded variation, and also in [START_REF] Monteiro Marques | Perturbations convexes semi-continues supérieurement dans les espaces de Hilbert[END_REF] when the set C(t) has a bounded retraction and F is weakly-norm upper semicontinuous.

Non-regular electrical circuits

The aim of this section is to illustrate the sweeping process in the theory of non-regular electrical circuits. Electrical devices like diodes are described in terms of Ampere-Volt characteristic (I, V) which is (possibly) a multifunction expressing the difference of potential V D across the device as a function of current i going through the device. The diode is a device that constitutes a rectifier which permits the easy flow of charges in one direction but restrains the flow in the opposite direction. Figure 1 illustrates the ampere-volt characteristic of an ideal diode model.

Let us consider the left circuit depicted in Fig. 2 involving a load resistance R > 0, an inductor L > 0, a diode (assumed to be ideal) and a current source c(t). Using Kirchhoff's laws, we have

V R + V L + V D = 0. Hence, L ẋ(t) + Rx(t) ∈ -N (R + ; x(t) -c(t)).
(3.4)

We have

N (R + ; x(t) -c(t)) = ∂ı R + (x(t) -c(t)) = ∂ı [c(t),+∞[ (x(t)) = N (C(t); x(t)), with C(t) = [c(t), +∞[.
Therefore, the inclusion (3.4) is equivalent to

L ẋ(t) + Rx(t) ∈ -N (C(t); x(t)), with C(t) = [c(t), +∞[, (3.5) 
which is of the form (1.2).

The right circuit depicted in Fig. 2 involves a load resistance R ≥ 0, a capacitor C > 0, a diode (assumed to be ideal) and a current source c(t). Using Kirchhoff's laws, we have

V R + V C = -V D .
Therefore,

Rx(t) + 1 C x(t)dt ∈ -N (R + ; x(t) -c(t)). ( 3.6) 
If the charge on the capacitor is q and the current flowing in the circuit is x, then x(t) = dq dt (t) = q(t). Hence (3.6) is equivalent to

R q(t) + 1 C q(t) ∈ -N (C(t); q(t)), (3.7) 
which is of the form (1.5).

Let us consider now the electrical system shown in Fig. 3 that is composed of two resistors capacitors

R 1 ≥ 0, R 2 ≥ 0 with voltage/current laws V R k = R k x k (k = 1, 2), three
C 1 > 0, C 2 > 0 with voltage/current laws V C k = 1 C k x k (t)dt, k = 1, 2 and two ideal diodes with characteristics 0 ≤ -V D k ⊥ i k ≥ 0. Using Kirchhoff's laws, we have V R 1 + V C 1 + V C 2 = -V D 1 ∈ -N (R + ; x 1 -c) V R 2 + V C 1 -V C 2 = -V D 2 ∈ -N (R + ; x 2 ).

Therefore the dynamics of this circuit is given by

A 1 R 1 0 0 R 2 q q1 q2 + A 0 1 C 1 + 1 C 2 -1 C 2 -1 C 2 1 C 1 + 1 C 2 q q 1 q 2 ∈ -N (C(t); q(t)), (3.8) 
with

C(t) = [c(t), +∞[×[0, +∞[ and qi (t) = x i (t), i = 1, 2. We observe that if R 1 > 0 and R 2 > 0, then (3.8) is equivalent to q(t) = proj C(t) -A -1 1 A 0 q(t) ,
which is an ordinary differential equation (see Remark 1, Sect. 5 for more detail). If

R 1 = 0 or R 2 = 0, then the operator [ A 1 + N (C(t); •)] -1 may be set-valued (see Example 1
) and (3.8) is of the form (1.5). The same analysis holds for the dynamics (3.7) while R > 0.

In the same way, we can show that the dynamical behavior of the circuit depicted in Fig. 4 is given by the following sweeping process Some other circuits containing Zener diodes, transistors, rectifier-stabilizer circuits, DC-DC Buck and Boost converters can be analyzed in the same way [START_REF] Acary | Nonsmooth Modeling and Simulation for Switched Circuits[END_REF][START_REF] Addi | A qualitative mathematical analysis of a class of linear variational inequalities via semi-complementarity problems[END_REF][START_REF] Addi | A method using the approach of Moreau and Panagiotopoulos for the mathematical formulation of non-regular circuits in electronics[END_REF][START_REF] Adly | Variational analysis and generalized equations in electronics[END_REF][START_REF] Adly | Stability analysis and attractivity results of a DC-DC buck converter[END_REF][START_REF] Adly | Qualitative stability of a class of non-monotone variational inclusions[END_REF]. The usage of tools from Modern Convex Analysis (and particularly the notion of Moreau's convex superpotential) in electronics for the study of electrical circuits is fairly recent. It is a quite promising topic of research which may help engineers for the simulation of complicated electrical circuits. Due to the lack of smoothness in some circuits, most used softwares like Simulation Program with Integrated Circuits Emphasis (SPICE) can not simulate non-regular circuits without approximation of i-v characteristic of the involved nonlinear electrical devices (Fig. 5).

A 1 L 1 0 0 L 2 ẋ ẋ1 ẋ2 + A 0 R 1 + R 2 -R 2 -R 2 R 1 + R 2 x x 1 x 2 ∈ -N (C(t); x(t)), ( 3 
In the next sections we study and prove existence of solutions of two new variants of Moreau's sweeping process.

Lipschitz single-valued perturbation variant of BV sweeping process

In this section we are concerned with the differential inclusion

du ∈ -N (C(t); u(t)) + f (t, u(t)), u(0) = u 0 ∈ C(0) (4.1)
where f : I × H → H is a Carathéodory mapping and where the variation of C(t) is expressed by a given positive Radon measure μ on I as in the line of Theorem 3.2. The case of a set-valued mapping F : I × H ⇒ H (in place of f ) has been studied in [START_REF] Castaing | BV periodic solutions of an evolution problem associated with continuous moving convex sets[END_REF][START_REF] Castaing | Evolution problems associated with non-convex closed moving sets with bounded variation[END_REF] in the finite dimensional setting and in [START_REF] Edmond | BV solutions of nonconvex sweeping process differential inclusions with perturbation[END_REF] under the assumption

F(t, x) ⊂ β(t)(1 + x )K
where K is a fixed normed compact subset of H . Our aim here is to study in the Hilbert setting the new variant where f satisfies a Lipschitz condition and no compactness condition is assumed.

Before defining the concept of solution of the measure differential inclusion (4.1), some preliminaries are necessary. Throughout the rest of this section, all the measures on a compact interval I = [T 0 , T ] of R will be Radon measures.

We start this section by recalling some results from vector measures. For two positive Radon measures ν and ν on I and for I (t, r ) := I ∩ [tr, t + r ], it is known (see, e.g., [START_REF] Mattila | Geometry of Sets and Measures in Euclidean Spaces[END_REF]Theorem 2.12]) that the limit

d ν dν (t) := lim r ↓0 ν(I (t, r )) ν(I (t, r ))
(with the convention 0 0 = 0) exists and is finite for ν-almost every t ∈ I and it defines a Borel function of t, called the derivative of ν with respect to ν. Furthermore, the measure ν is absolutely continuous with respect to ν if and only if d 

I → H is ν-integrable on I if and only if the mapping t → u(t) d ν d ν (t) is ν-integrable on I ; furthermore, in that case, I u(t) d ν(t) = I u(t) d ν dν (t) dν(t). ( 4.2) 
When ν and ν are each one absolutely continuous with respect to the other, we will say that they are absolutely continuously equivalent. Now suppose that the mapping u(•) : I → H has bounded variation and denote by du the differential measure associated with u (see [START_REF] Dinculeanu | Vector Measures[END_REF][START_REF] Moreau | Sur les mesures différentielles des fonctions vectorielles à variation bornée[END_REF]); if in addition, u(•) is right continuous, then

u(t) = u(s) + ]s,t]
du for all s, t ∈ I with s ≤ t.

Conversely, if there exists some mapping û(•) ∈ L 1 ν (I, H ) such that u(t) = u(T 0 ) + ]T 0 ,t] û dν for all t ∈ I , then u(•) is of bounded variation and right continuous and du = û dν; so û(•) is a density of the vector measure du relative to ν. Then, putting I -(t, r ) := [tr, t] and I + (t, r ) := [t, t + r ], according to Moreau and Valadier [START_REF] Moreau | A chain rule involving vector functions of bounded variation[END_REF], for ν-almost every t ∈ I , the following limits exist in H and The following proposition concerning a particular chain rule for differential measures will be needed. Its statement is a consequence of a more general result from Moreau [START_REF] Moreau | Sur les mesures différentielles des fonctions vectorielles à variation bornée[END_REF].

û(t) = du dν (t) := lim r ↓0 du(I (t, r )) dν(I (t, r )) = lim r ↓0 du(I -(t, r )) dν(I -(t, r )) = lim r ↓0 du(I + (t,
Proposition 1 Let H be a Hilbert space, ν be a positive Radon measure on the closed bounded interval I , and u(•) : I → H be a right continuous with bounded variation mapping such that the differential measure du has a density du dν relative to ν. Then, the function Φ : I → R with Φ(t) := u(t) 2 is a right continuous with bounded variation function whose differential measure dΦ satisfies, in the sense of ordering of real measures,

dΦ ≤ 2 u(•), du dν (•) dν.
The next result is a substitute of Grownwall's lemma relative to Radon measures. We refer, for example, to [START_REF] Monteiro Marques | Perturbations convexes semi-continues supérieurement dans les espaces de Hilbert[END_REF] for its statement (see also [START_REF] Monteiro Marques | Differential Inclusions in Nonsmooth Mechanical Problems, Shocks and Dry Friction[END_REF]).

Lemma 1 Let ν be a positive Radon measure on [T 0 , T ] and let g(•) ∈ L 1 ν ([T 0 , T ], R + ). Assume that, for a fixed real number θ ≥ 0, one has, for all t ∈]T 0 , T ],

0 ≤ g(t)ν({t}) ≤ θ < 1. Let ϕ ∈ L ∞ ν ([T 0 , T ], R + )
and let some fixed real number α ≥ 0 satisfying, for all t ∈ [T 0 , T ],

ϕ(t) ≤ α + ]T 0 ,T ] g(s)ϕ(s) dν(s).
Then, for all t ∈ [T 0 , T ],

ϕ(t) ≤ α exp ⎧ ⎪ ⎨ ⎪ ⎩ 1 1 -θ ]T 0 ,t] g(s)ϕ(s) dν(s) ⎫ ⎪ ⎬ ⎪ ⎭ .
We establish now a stability property of the subdifferential of the distance function from a continuous moving set.

Proposition 2 Let E be a metric space, C : E ⇒ H be a set-valued mapping with nonempty closed convex sets of a normed space X , and let t 0 ∈ cl Q with Q ⊂ E. Assume that there exists a non-negative real-valued function η :

Q → R with lim Q t→t 0 η(t) = 0 such that, for all t ∈ Q, d(x, C(t)) ≤ d(x, C(t 0 )) + η(t) for all x ∈ X.
Let (t n ) n be a sequence in Q tending to t 0 and let (x n ) n be a sequence in H converging to some x ∈ C(t 0 ) with x n ∈ C(t n ) for all n. Then, for all z ∈ X,

lim sup n→∞ d C(t n ) (x n ; z) ≤ d C(t 0 ) (x; z).
Proof Let (t n ) n and (x n ) n be as in the statement. Fix any z ∈ X . Then, for each real τ > 0, we have, for all n,

d C(t n ) (x n ; z) ≤ τ -1 [d C(t n ) (x n + τ z) -d C(t n ) (x n )] = τ -1 d C(t n ) (x n + τ z) ≤ τ -1 [d C(t 0 ) (x + τ z) + x n -x + η(t n )], which gives lim sup n→∞ d C(t n ) (x , ; z) ≤ τ -1 d C(t 0 ) (x + τ z) = τ -1 [d C(t 0 ) (x + τ z) -d C(t 0 ) (x)].
This justifies the desired inequality lim sup

n→∞ d C(t n ) (x , ; z) ≤ d C(t 0 ) (x; z).
We can now prove, using some ideas from [START_REF] Edmond | BV solutions of nonconvex sweeping process differential inclusions with perturbation[END_REF], the theorem concerning the above measure differential inclusion. The case of prox-regular sets C(t) will be treated elsewhere. 

(•) ∈ L 1 λ (I, R) such that f (t, x) ≤ β(t)(1 + x ) for all x ∈ t∈I C(t);
(ii) for each real r > 0, the functions ( f (•, x)) x∈r B H are equicontinuous and there exists some non-negative function L r (•)

∈ L 1 λ (I, R) such that f (t, x) -f (t, y) ≤ L r (t) x -y for all t ∈ I, x, y ∈ r B H .
Then, for each u 0 ∈ C(T 0 ), the following perturbed sweeping process

-du ∈ N (C(t); u(t)) + f (t, u(t)) u(T 0 ) = u 0
has one and only one right continuous with bounded variation solution.

Proof I-First, let us suppose that

T T 0 (β(s) + 1) dλ(s) ≤ 1/4, (4.5) 
and let us construct a sequence of appropriate right continuous with bounded variation mappings. Put

l := 2 μ(]T 0 , T ]) + u 0 + 1 ,
and consider on I the positive Radon measure

ν := μ + (l + 1)(β(•) + 1)λ. ( 4.6) 
As in Moreau [START_REF] Moreau | Evolution problem associated with a moving convex set in a Hilbert space[END_REF] and Castaing and Monteiro Marques [START_REF] Castaing | Evolution problems associated with non-convex closed moving sets with bounded variation[END_REF], consider the function v(•) :

I → R defined by v(t) := ν(]T 0 , t])
and set

V := v(T ) = ν(]T 0 , T ]).
The function v(•) is increasing and right continuous with v(T 0 ) = 0. Let (ε n ) n be a sequence of positive real numbers with

ε n ↓ 0. For each n ∈ N, let 0 = V n 0 < V n 1 < • • • < V n q n = V be a partition such that V j+1 -V j ≤ ε n ∀ j = 0, . . . , q n -1, and V n 0 , . . . , V n q n ⊂ V n+1 0 , . . . , V n+1 q n+1 . (4.7) Put V n 1+q n := V + ε n .
For each n ∈ N, consider the partition of I associated with the subsets

J n j := v -1 [V n j , V n j+1 [ , j = 0, 1, . . . , q n ,
and note that (J m j )

q m
j=0 is a refinement of (J n j )

q n j=0 whenever m ≥ n. Since v(•) is increasing and right continuous, it is easy to see that, for each j = 0, 1, . . . , q n , the set J n j is either empty or an interval of the form [r, s[ with r < s. Furthermore, we have J n q n = {T }. This produces an integer p(n) ∈ N and a finite sequence

T 0 = t n 0 < t n 1 < • • • < t n p(n) = T
such that, for each i ∈ {0, . . . , p(n) -1}, there is some j ∈ {0, . . . , q n -1} for which

[t n i , t n i+1 [= J n j . It ensues that, for any i ∈ {0, . . . , p(n) -1}, ν(]t n i , t]) = v(t) -v(t n i ) ≤ ε n for all t ∈ [t n i , t n i+1 [, (4.8) 
which entails

ν(]t n i , t n i+1 [) ≤ ε n , (4.9) 
hence (since λ ≤ ν)

t n i+1 -t n i ≤ ε n . (4.10)
For each i ∈ {0, . . . , p(n) -1}, put

σ n i := (l + 1) t n i+1 t n i (β(s) + 1) dλ(s) and η n i := t n i+1 -t n i , (4.11) 
and observe that η n i → 0 as n → ∞. For each i ∈ {0, . . . , p(n) -1}, choose some

s n i ∈ [t n i , t n i+1 [ such that β(s n i ) ≤ inf s∈[t n i ,t n i+1 [ β(s) + 1, (4.12) 
and define the function ρ n : I → I by ρ n (T ) := s n p(n)-1 and

ρ n (t) := s n i if t ∈ [t n i , t n i+1 [ (0 ≤ i ≤ p(n) -1). (4.13)
Now, put u n 0 := u 0 , y n 0 := f (ρ n (t n 0 ), u n 0 ) and u n 1 := proj C(t n 1 ) (u n 0 -η n 0 y n 0 ), and define by induction {u n i : i = 0, . . . , p(n)} and {y n i : i = 0, . . . , p(n) -1} such that

y n i := f ρ n (t n i ), u n i and u n i+1 := proj C(t n i+1 ) u n i -η n i y n i . (4.14)
Fix any i ∈ {0, . . . , p(n) -1}. From (4.14) we have, by the variation assumption of C(•),

u n i+1 -u n i + η n i y n i = d C t n i+1 u n i -η n i y n i ≤ d C(t n i ) u n i -η n i y n i + μ(]t n i , t n i+1 ]) ≤ μ(]t n i , t n i+1 ]) + η n i y n i , ( 4.15) 
which implies

u n i+1 ≤ u n i + μ(]t n i , t n i+1 ]) + 2η n i y n i ,
and hence

u n i+1 ≤ u n 0 + i k=0 μ(]t n k , t n k+1 ]) + 2η n k y n k . (4.16)
On the other hand, from assumption (i),

y n i ≤ β ρ n t n i 1 + u n i ≤ β ρ n (t n i ) 1 + max 0≤k≤ p(n) u n k , ( 4.17) 
and this latter inequality combined with (4.16) yields

u n i+1 ≤ u n 0 + i k=0 μ(]t n k , t n k+1 ]) + 2 1 + max 0≤k≤ p(n) u n k i k=0 η n k β ρ n t n k .
Noting by (4.12) that i k=0

η n k β ρ n t n k = i k=0 t n k+1 t n k β ρ n t n k dλ(s) ≤ t n i+1 T 0 (β(s) + 1) dλ(s),
we obtain

u n i+1 ≤ u n 0 + μ(]T 0 , T ]) + 2 1 + max 0≤k≤ p(n) u n k T T 0 (β(s) + 1) dλ(s).
Thanks to (4.5) it results that

max 0≤k≤ p(n) u n k ≤ u n 0 + μ(]T 0 , T ]) + 1 2 1 + max 0≤k≤ p(n) u n k ,
which, according to the definition of l, gives max 0≤k≤n

u n k ≤ 2 μ(]T 0 , T ]) + u 0 + 1 2 ≤ l. (4.18)
The latter inequality, combined with (4.12), yields

η n i y n i ≤ η n i β ρ n (t n i ) 1 + u n i ≤ (l + 1) t n i+1 t n i (β(s) + 1) dλ(s) = σ n i . (4.19)
Consequently, by (4.15),

d C(t n i+1 ) u n i -η n i y n i ≤ μ(]t n i , t n i+1 ]) + η n i y n i ≤ μ(]t n i , t n i+1 ]) + σ n i , ( 4.20) 
and hence by (4.6) and (4.11) [since

u n i+1 = proj C(t n i+1 ) (u n i -η n i y n i )] u n i+1 -u n i + η n i y n i ≤ μ(]t n i , t n i+1 ]) + σ n i ≤ ν(]t n i , t n i+1 ]). (4.21)
Step 1. Construction of the sequence (u n (•)).

Following [START_REF] Castaing | Evolution problems associated with non-convex closed moving sets with bounded variation[END_REF][START_REF] Moreau | Evolution problem associated with a moving convex set in a Hilbert space[END_REF], define the mapping u n (•) : I → H by u n (T ) := u n p(n) and

u n (t) = u n i + ν(]t n i , t]) ν(]t n i , t n i+1 ]) u n i+1 -u n i + η n i y n i -(t -t n i )y n i if t ∈ t n i , t n i+1 . (4.22)
We observe that u n (•) is well defined on I and it is right continuous with bounded variation on each interval [t n i , t n i+1 ], so it is right continuous with bounded variation on the whole interval I . Furthermore, the definition of u n (•) can be rewritten, for any t ∈ I , as

u n (t) = u n (T 0 ) + ]T 0 ,t] Π n (s) dν(s) - ]T 0 ,t] f (ρ n (s), u n (δ n (s)) dλ(s),
where 

Π n (t) := p(n)-1 i=0 u n i+1 -u n i + η n i y n i ν(]t n i , t n i+1 ]) 1 ]t n i ,t n i+1 ] (t
u n (t) = u n (T 0 ) + ]T 0 ,t] Π n (s) -f ρ n (s), u n (δ n (s)) dλ dν (s) dν(s).
This tells us that the vector measure du n has the latter integrand as a density in L ∞ ν (I, H ) relative to ν, so by the first equality in (4.3)

du n dν (•) is a density of du n with respect to ν, (

and, for ν-almost every t ∈ I , This allows us to write, for every t ∈ I ,

du n dν (t) + f ρ n (t), u n (δ n (t)) dλ dν (t) = Π n (t) = p(n)-1 i=0 u n i+1 -u n i + η n i y n i ν(]t n i , t n i+1 ]) 1 ]t n i ,t n i+1 ] (t). ( 4 
d C(θ n (t)) (u m (t)) = d C(θ n (t)) (u m (t)) -d C(θ m (t)) u m (θ m (t)) ≤ d C(θ n (t)) (u m (t)) -d C(θ m (t)) (u m (t)) + u m (θ m (t)) -u m (t) ,
and hence, according to the variation assumption on C(•) and to the fact that one of the partitions (J m j )

q m j=0 and (J n j )

q n
j=0 is a refinement of the other (depending on either Consequently, by (4.30), we deduce, for ν-almost every t ∈ I ,

n ≤ m or m < n), d C(θ n (t)) (u m (t)) ≤ max {μ(]t, θ n (t)]), μ(]t, θ m (t)])}+ u m (θ m (t))-u m (t)
du n dν (t) + f ρ n (t), u n (δ n (t)) dλ dν (t), u n (θ n (t)) -u m (t) ≤ d C(θ n (t)) (u m (t)) ≤ γ n (t) + 2γ m (t),
which entails by (4.25) and (4.28)

du n dν (t) + f ρ n (t), u n (δ n (t)) dλ dν (t), u n (t) -u m (t) (4.36) ≤ γ n (t) + 2γ m (t) + u n (t) -u n (θ n (t)) ≤ γ n (t) + 2γ m (t) + 2ν(]t, θ n (t)]).
(4.37)

On the other hand, for every t ∈ I , write

f ρ n (t), u n (δ n (t)) -f (t, u n (t)) dλ dν (t) = f ρ n (t), u n (δ n (t)) -f t, u n (δ n (t)) dλ dν (t) + f t, u n (δ n (t)) -f (t, u n (t)) dλ dν (t),
and observe by the equicontinuity assumption in (ii) that the first expression {•} dλ dν (t) in the right-hand side tends to 0 as n → ∞ since there is some real r > 0 such that u n (t) ≤ r , for all t ∈ I and n ∈ N, according to (4.18), (4. [START_REF] Colombo | Marques, sweeping by a continuous prox-regular set[END_REF]) and (4.22). By the inequality

u n (δ n (t)) -u n (t) dλ dν (t) ≤ 2ν(]δ n (t), t]) dλ dν (t)
[due to (4.28)] and by (4.4), we also see that u n (δ n (t))u n (t) → 0 and hence the second expression {•} dλ dν (t) tends to 0 as n → ∞ according to the Lipschitz property of f (t, •) on r B H in the assumption (ii). Consequently,

f ρ n (t), u n (δ n (t)) -f (t, u n (t)) dλ dν (t) → 0 as n → ∞, (4.38) 
and, for

ϕ n,m (t) := dλ dν (t) f ρ n (t), u n (δ n (t)) -f (t, u n (t)) u n (t) -u m (t) ,
we have ]T 0 ,T ] ϕ n,m (t) dν(t) → 0 as n, m → ∞ by the Lebesgue dominated convergence theorem (because u n (t) ≤ r as seen above). From this and (4.36), for any n, m, it ensures that, for ν-almost every t ∈ I ,

du n dν (t) - du m dν (t), u n (t) -u m (t) ≤ L r (t) dλ dν (t) u n (t) -u m (t) 2 + 4(γ n (t) + γ m (t)) + 2ν(]t, θ n (t)]) + 2ν(]t, θ m (t)]) + ϕ n,m (t) + ϕ m,n (t),
and, for

α n,m := ]T 0 ,T ] 4(γ n (t) + γ m (t)) + 2ν(]t, θ n (t)]) + 2ν(]t, θ m (t)]) + ϕ n,m (t) +ϕ m,n (t) dν(t),
we have α n,m → 0 as n, m → ∞. On the other hand, Proposition 1 says that 2 and noting that u n (T 0 ) = u m (T 0 ), we deduce that, for all t ∈ I ,

d( u n (•) -u m (•) 2 ) ≤ 2 du n dν (•) - du m dν (•), u n (•) -u m (•) , thus, putting ψ n,m (t) := u n (t) -u m (t)
ψ n,m (t) ≤ ]T 0 ,T ] 2L r (s) dλ dν (s)ψ n,m (s) dν(s) + α n,m .
Noting that L r (s) dλ dν (s)ν({s}) = 0 for all s (since dλ dν (s) = 0 if ν(s) > 0 according to (4.4)) we can apply Lemma 1 and this yields

ψ n,m (t) ≤ α n,m exp ⎛ ⎜ ⎝ ]T 0 ,t] 2L r (s) dλ dν (s) dν(s) ⎞ ⎟ ⎠ = α n,m exp ⎛ ⎜ ⎝ ]T 0 ,t] 2L r (s) dλ(s) ⎞ ⎟ ⎠ , thus sup t∈I ψ n,m (t) ≤ α n,m exp ⎛ ⎜ ⎝ ]T 0 ,T ] 2L r (s) dλ(s) ⎞ ⎟ ⎠ .
This ensures that the sequence (u n (•)) n satisfies the Cauchy property with respect to the norm of uniform convergence on the space of all bounded mappings from I into H . Consequently, this sequence (u n (•)) n converges uniformly on I to some mapping u(•). This also tells us that the mapping u(•) does not depend on the partition 

V n 0 < • • • < V n q n of [0, V ]
u n (θ n (t)) -u(t) ≤ u n (t) -u(t) + 2ν(]t, θ n (t)]),
we see that, as n → ∞,

θ n (t) ↓ t and u n (θ n (t)) → u(t).
Furthermore, taking into account the closedness of C(t) and observing, by the variation assumption, that

d C(t) u n (θ n (t)) ≤ d C(δ n (t)) u n (θ n (t)) + μ(]δ n (t), t]) ≤ d C(δ n (t)) u n (δ n (t)) + u n (θ n (t)) -u n (δ n (t)) + μ(]δ n (t), t]) = u n (θ n (t)) -u n (δ n (t)) + μ(]δ n (t), t]),
we also see (since

μ({t}) = ν({t})) that u(t) ∈ C(t) for every t ∈ I with ν({t}) = 0.
We also know by construction that u n (T 0 ) ∈ C(T 0 ) and u n (T ) ∈ C(T ), so u(T 0 ) ∈ C(T 0 ) and u(T ) ∈ C(T ). Consider now any t ∈]T 0 , T [ with ν({t}) > 0.

We may choose the partitions 

V n 0 < • • • < V n q n (satisfying (4.7)) such that v(t) ∈ {V n 1 , . . . , V n q n }, say v(t) = V n j n (t)+1 for some j n (t) ∈ {0, . . . , q n -1}. It follows that J n j n (t)+1 = v -1 ([V j n (t)+1 , V j n (t)
ξ n (•) ∈ conv{ζ k : k ≥ n}, for all n ∈ N.
This sequence (ξ n (•)) n has a subsequence (that we do not relabel) converging ν-almost everywhere to ζ(•), hence, there is some Borel set I 0 ⊂ I with ν(I \ I 0 ) = 0 such that, for all t ∈ I 0 ,

ζ(t) ∈ n conv{ζ k (t) : k ≥ n}.
Fixing any t ∈ I 0 and any z ∈ H , it results from (4.30) that

-ζ(t), z ≤ inf n∈N sup k≥n -ζ k (t), z ≤ lim sup n→∞ d C(θ n (t)) u n (θ n (t)); z , and, since u n (θ n (t)) → u(t) with u(t) ∈ C(t) [see (4.39)], Proposition 2 implies that -ζ(t), z ≤ d C(t) u(t); z).

The latter inequality means, for each

t ∈ I 0 , that -ζ(t) ∈ ∂d C(t) (u(t)) hence du dν (t) + f (t, u(t)) dλ dν (t) ∈ -N (C(t); u(t)), (4.40) 
which finishes the proof of existence of a solution in the case where

T T 0 (β(s) + 1) dλ(s) ≤ 1/4.

II. Case where

T T 0 (β(s) + 1) dλ(s) > 1/4.
First, from (4.40), we note that the mapping u(•) in the above case is also a solution with the measure μ + λ in place of ν therein, since the measure μ + λ is absolutely continuous with respect to ν and vice versa. Let T 0 , T 1 , . . . , T p be a subdivision of [T 0 , T ] such that, for each i = 1, . . . , p,

T i T i-1 (β(s) + 1) dλ(s) ≤ 1 4 .
For each i = 1, . . . , p, denote by μ i the Radon measure induced on [T i-1 , T i ] by μ and set ν i := μ i + λ. Then, the part I provides a right continuous with bounded variation mapping u

1 : [T 0 , T 1 ] → H such that u 1 (T 0 ) = u 0 , u 1 (t) ∈ C(t) for all t ∈ [T 0 , T 1 ], du 1 has du 1 dν 1 as a density in L 1 ν 1 ([T 0 , T 1 ], H ) relative to ν 1 ,
and

du 1 dν 1 (t) + f (t, u 1 (t)) dλ dν 1 (t) ∈ -N (C(t); u 1 (t)) ν 1 -a.e. t ∈ [T 0 , T 1 ].
Similarly, there is a right continuous with bounded variation mapping

u 2 : [T 1 , T 2 ] → H such that u 2 (T 1 ) = u 1 (T 1 ), u 2 (t) ∈ C(t) for all t ∈ [T 1 , T 2 ], du 2 has du 2 dν 2 as a density in L 1 ν 2 ([T 1 , T 2 ], H ) relative to ν 2 ,
and

du 2 dν 1 (t) + f (t, u 2 (t)) dλ dν 2 (t) ∈ -N (C(t); u 2 (t)) ν 2 -a.e. t ∈ [T 1 , T 2 ].
So, by induction, we obtain a finite sequence of right continuous with bounded variation mappings

u i : [T i-1 , T i ] → H (i = 1, . . . , p) such that u i (T i-1 ) = u i-1 (T i-1 ), u i (t) ∈ C(t) for all t ∈ [T i-1 , T i ],
the vector measure du i has du i dν i as a density in

L 1 ν i ([T i-1 , T i ], H ) relative to ν i , and 
du i dν i (t) + f (t, u i (t)) dλ dν i (t) ∈ -N (C(t); u i (t)) ν i -a.e. t ∈ [T i-1 , T i ].
Then, the mapping u p) is well defined and right continuous with bounded variation, and the inclusions u(t) ∈ C(t), for all t ∈ [T 0 , T ], along with the equality u(T 0 ) = u 0 are obviously fulfilled. On the other hand, putting

: [T 0 , T ] → H with u(t) := u i (t) if t ∈ [T i-1 , T i ] (i = 1, . . . ,
g(t) := 1 [t 0 ,T 1 ] (t) du 1 dν 1 (t) + p i=2 1 ]T i-1 ,T i ] (t) du i dν i (t) for all t ∈ [T 0 , T ]
and considering the Radon measure ν 0 := μ + λ on [T 0 , T ], we easily see that

u(t) = u(T 0 ) + ]T 0 ,t] g(s) dν 0 (s) for all t ∈ [T 0 , T ], so the vector measure du has g(•) ∈ L 1 ν 0 ([T 0 , T ], H ) as a density relative to ν 0 du dν 0 (•) = g(•) ν 0 -a.e. Furthermore, for ν 0 -almost every t ∈ [T 0 , T ], du dν 0 (t) + f (t, u(t)) dλ dν 0 (t) ∈ -N (C(t); u(t)), so u(•) is a solution on the whole interval [T 0 , T ].

III. Uniqueness.

Let u i : [T 0 , T ] → H (i = 1, 2) be two solutions which are right continuous with bounded variation, so, u i (T 0 ) = u 0 , u i (t) ∈ C(t) for all t ∈ [T 0 , T ], and there exist two Radon measures ν i on [T 0 , T ] (i = 1, 2) absolutely continuously equivalent to μ + λ and such that the vector measure du i has du i dν i (•) ∈ L 1 ν i ([T 0 , T ], H ) as a density relative to ν i and

- du i dν i (t) -f (t, u i (t)) dλ dν i (t) ∈ N (C(t); u i (t)) for ν i -a.e. t ∈ [T 0 , T ].
With respect to the positive Radon measure ν := ν 1 + ν 2 absolutely continuously equivalent to μ+λ hence to ν i , the measures du i and λ have densities in L 1 ν ([T 0 , T ], H ) and L 1 ν ([T 0 , T ], R + ) respectively, and

du i dν (t) = du i dν i (t) dν i dν (t) and dλ dν (t) = dλ dν i (t) dν i dν (t)
with dν i dν (t) ≥ 0. Since N (C(t); u(t)) is a cone, it ensues that, for ν-almost every t ∈ [T 0 , T ], - du i dν (t) -f (t, u(t)) dλ dν (t) ∈ N (C(t); u(t)).
Noting that u 1 (•) and u 2 (•) are bounded on [0, T ] as mappings with bounded variation on [T 0 , T ], choose a real r > 0 such that u i (t) ≤ r for all i = 1, 2 and t ∈ [T 0 , T ].

The monotonicity of the normal cone and the Lipschitz property of f (t, •) on r B yield, for ν-almost every t ∈ [T 0 , T ],

du 1 dν (t) - du 2 dν (t), u 1 (t) -u 2 (t) ≤ L r (t) dλ dν (t) u 1 (t) -u 2 (t) 2 ,
thus Proposition 1 says that, for all t ∈ [T 0 , T ],

u 1 (t) -u 2 (t) ≤ ]T 0 ,t] 2L r (s) dλ dν (s) u 1 (s) -u 2 (s) 2 dν(s),
and Lemma 1 entails, for all t ∈ [T 0 , T ], that u 1 (t)u 2 (t) 2 ≤ 0, which confirms the uniqueness of solution and finishes the proof of the theorem.

A variant with velocity in the moving set

In this section we are interested in the following variant of the sweeping process:

A 1 u(t) + A 0 u(t) -f (t) ∈ -N (C(t); u(t)) a.e. t ∈ [0, T ], u(0) = u 0 ∈ H, ( 5.1) 
where f : [0, T ] → H is a continuous mapping and A 0 , A 1 : H → H are two bounded symmetric linear operators which are semi-definite positive in the standard sense, that is, A i x, x ≥ 0, for all x ∈ H and i = 0, 1.

By a solution, we mean an absolutely continuous mapping u(•) : [0, T ] → H with u(0) = u 0 such that the above inclusion is fulfilled for almost every t ∈ [0, T ]. We have to be careful with such a variant. Indeed, even in the simple case where A 0 and A 1 are the null operators, that is, the system is reduced to

f (t) ∈ N (C(t); u(t)) with u(0) = u 0 ∈ H, ( 5.2) 
a solution does not always exist. Taking, for example,

C(t) = [t, +∞[ in R and f (t) = 1, no solution exists in [0, T ].
However, assuming that C(t) is bounded for all t ∈ [0, T ], the property (2.3) tells us that the set-valued operator N (C(t); •) is surjective and hence (5.2) has at least one solution u(•). Such boundedness condition of C(t) will be assumed in our analysis below.

Remark 1 Writing the inclusion in (5.1) as

-A 0 u(t) + f (t) ∈ ∂(ϕ A 1 + ı C(t) )( u(t)),
we see that it is equivalent to

u(t) ∈ ∂(ϕ A 1 + ı C(t) ) * (-A 0 u(t) + f (t)).
By setting

g(t, x) := (ϕ A 1 + ı C(t) ) * (-x), where ϕ A 1 (x) = 1 2 A 1 x, x ,
it appears that (5.1) is equivalent to the differential evolution inclusion

u(t) + ∂g(t, -A 0 u(t) + f (t)) 0 u(0) = u 0 ∈ H.
We emphasize that, in the latter differential inclusion, the convex function g(t, •) depends on the time t. Instead of continuing in this direction, our aim here is to show how an adaptation of Moreau's catching up algorithm leads to a constructive proof of existence of a solution to (5.1). Then, for any initial point u 0 ∈ H , the evolution variational inequality (5.1) admits at least a Lipschitz continuous solution u : [0, T ] → H. Proof Consider, for each n ∈ N the following partition of the interval I := [0, T ]

t n i := i T n for 0 ≤ i ≤ n, I n i :=]t n i , t n i+1 ] for 0 ≤ i ≤ n -1. (5.3)
By assumption C(0) ⊂ R B H , hence the continuity of v implies:

C(t) ⊂ ρB H , for all t ∈ [0, T ], with ρ := R + max t∈[0,T ] |v(t)|. (5.4) Put u n 0 = u 0 := T /n and f n i := f (t n i ) for all i = 1, . . . , n. Consider the continuous convex function ϕ A k : H → R, k = 0, 1, with ϕ A k (x) := 1 2 A k (x),
x for all x ∈ H, and note by (2.1) that

η n A 0 + A 1 + N C(t n 1 ); • = ∂(η n ϕ A 0 + ϕ A 1 + ı C(t n 1 ) ) with dom (η n ϕ A 0 + ϕ A 1 + ı C(t n 1 ) ) bounded in H since C(t n 1 ) ⊂ ρ B H . The function η n ϕ A 0 + ϕ A 1 + ı C(t n 1 )
is also bounded from below on ρB H (containing its effective domain), since the linear operators A 0 and A 1 are bounded. By (2.3) the set-valued operator 

η n A 0 + A 1 + N (C(t n 1 ); •) is surjective, so we can choose some z n 1 ∈ H such that f n 1 -A 0 u n 0 ∈ η n A 0 + A 1 + N (C(
f n i+1 -A 0 u n i ∈ η n A 0 + A 1 + N (C(t n i+1 ); •) (z n i+1 ),
and we set u n i+1 := u n i + η n z n i+1 . We then obtain by induction finite sequences (u n i ) n i=0 and (z n i ) n i=1 such that, for all i = 0, . . . , n -1, Using the linearity of A 0 and the definition of u n i+1 , we see that On the other hand, we have A 0 = ∇ϕ 0 , for the continuous convex function ϕ 0 (x) = 1 2 A 0 x, x . Therefore, the absolute continuity of ϕ 0 • u and ϕ 0 • u n gives

f n i+1 -A 0 u n i ∈ η n A 0 + A 1 + N (C(
f n i+1 -A 0 u n i+1 -A 1 z n i+1 ∈ N C
T 0 A 0 u(t), u(t) dt = T 0 d dt ϕ 0 (u(t))dt = ϕ 0 (u(T )) -ϕ 0 (u(0)) ≤ lim inf n→∞ ϕ 0 (u n (T )) -ϕ 0 (u n (0)) = lim inf n→∞ ⎛ ⎝ T 0 d dt ϕ 0 (u n (t)) dt ⎞ ⎠ = lim inf n→∞ T 0 A 0 u n (t), un (t) dt, ( 5.14) 
where the inequality is due to the weak lower semicontinuity of ϕ 0 on H and to the fact that u n (T ) → u(T ) weakly in H as n → ∞. We have also

lim inf n→∞ T 0 A 0 u n (t), un (t) dt = lim inf n→∞ T 0 A 0 u n (θ n (t)), un (t) dt (5.15) since T 0 | A 0 u n (t) -A 0 u n (θ n (t)), un (t) | dt ≤ ρ 2 A 0 T 0 |t -θ n (t)| dt.
From the properties of A 1 , it is easy to verify that the function x(•) → T 0 A 1 x(t), x(t) dt is convex and strongly continuous on L 2 ([0, T ]; H ) thus weakly lower semicontinuous on L 2 ([0, T ], H ). Recalling by (5.10) that

un (•) u(•) weakly in L 2 ([0, T ], H ) as n → ∞, we obtain T 0 A 1 u(t), u(t) dt ≤ lim inf n→∞ T 0 A 1 un (t), un (t) dt. ( 5.16) 
On the other hand, by Theorem 2.2, the convex function x(•) → T 0 σ (C(t), x(t)) dt is weakly lower semicontinuous on L 2 ([0, T ], H ). Also, the mappings A i : L 2 ([0, T ], H ) → L 2 ([0, T ], H ) (i = 0, 1), with ( A i x)(t) := A i x(t) for all t ∈ [0, T ], satisfy A i x 2 ≤ A i x 2 ; then they are continuous and hence weakly×weakly continuous from L 2 ([0, T ], H ) into itself. Since the sequences

(u n (•)) n and ( un (•)) n converge weakly in L 2 ([0, T ], H ) to u(•) and u(•) respectively, it results that (recall ζ n (t) := -A 0 u n (θ n (t)) -A 1 ( un (t)) + f n (t)), T 0 σ C(t), -A 0 u(t) -A 1 ( u(t)) + f (t) dt ≤ lim inf n→∞ T 0 σ C(t), ζ n (t) dt. Since C(t) ⊂ C(θ n (t)) + |v(θ n (t)) -v(t)|B H (according to the assumption on C(•)), we also observe that T 0 σ C(t), ζ n (t) dt ≤ T 0 σ C(θ n (t)), ζ n (t) dt + T 0 ζ n (t) |v(θ n (t)) -v(t)| dt ≤ T 0 σ C(θ n (t)), ζ n (t) dt + ( u 0 + ρT ) A 0 + ρ A 1 + β T 0 |v(θ n (t))-v(t)| dt. It is easily seen that T 0 |v(t) -v(θ n (t))| ds → 0 as n → ∞, thus lim inf n→∞ T 0 σ C(θ n (t)), ζ n (t) dt ≥ lim inf n→∞ T 0 σ C(t), ζ n (t) dt.
We then deduce that lim inf

n→∞ T 0 σ (C(θ n (t)), ζ n (t) dt ≥ T 0 σ C(t), -A 0 u(t) -A 1 ( u(t)) + f (t) dt.
(5.17) Using all the inequalities (5.12)-(5.17) together, it follows that

T 0 A 0 u(t)+ A 1 u(t)-f (t), u(t) dt + T 0 σ C(t), -A 0 u(t)-A 1 u(t)+ f (t) dt ≤ 0,
(5.18) by taking lim inf n→∞ on both sides of (5.12). On the other hand, for almost every

t ∈ [0, T ], the inclusion u(t) ∈ C(t) yields σ C(t), -A 0 u(t) -A 1 u(t) + f (t) ≥ -A 0 u(t) -A 1 u(t) + f (t), u(t) , or stated differently, σ C(t), -A 0 u(t) -A 1 u(t) + f (t) + A 0 u(t) + A 1 u(t) -f (t), u(t) ≥ 0.
Taking the latter inequality into account, it results from (5.18) that, for almost every

t ∈ [0, T ], σ C(t), -A 0 u(t) -A 1 u(t) + f (t) + A 0 u(t) + A 1 u(t) -f (t), u(t) = 0, which means, according to (2.4), A 0 u(t) + A 1 u(t) -f (t) ∈ -N C(t) ( u(t)), for a. e. t ∈ [0, T ].
This translates the desired inclusion (5.1) and completes the proof of the theorem.

Next is a uniqueness result related to Theorem 5.1 when the linear operator A 0 is coercive.

Theorem 5.2 Assume in addition to the hypotheses in Theorem 5.1, that A

0 is coer- cive, that is, for all x ∈ H, A 0 x, x ≥ α 0 x 2 ,
for some real constant α 0 > 0. Then, for any initial point u 0 ∈ H, there exists one and only one Lipschitz continuous solution of (5.1).

Proof Suppose that (u 1 , u 2 ) are two solutions for (5.1) such that u 1 (0) = u 2 (0) = u 0 . Then, for almost every t ∈ [0, T ], we have

A 0 u i (t) + A 1 ui (t) -f (t), ui (t) -z ≤ 0, for all z ∈ C(t).
Using the fact that ui (t) ∈ C(t) a.e., we obtain, for a.e. t ∈ [0, T ],

A 0 u 1 (t) + A 1 u1 (t) -f (t), u1 (t) -u2 (t) ≤ 0, -A 0 u 2 (t) -A 1 u2 (t) + f (t), u1 (t) -u2 (t) ≤ 0,
and adding both inequalities yields

A 0 u 1 (t) -A 0 u 2 (t) + A 1 u1 (t) -A 1 u2 (t), u1 (t) -u2 (t) ≤ 0, a.e. t ∈ [0, T ].
Since A 1 is monotone, we deduce

A 0 u 1 (t) -A 0 u 2 (t), u1 (t) -u2 (t) ≤ 0, a. e. t ∈ [0, T ].
Consequently, for almost every t ∈ [0, T ],

d dt A 0 u 1 (t)-A 0 u 2 (t), u 1 (t)-u 2 (t) = 2 A 0 u 1 (t)-A 0 u 2 (t), u1 (t) -u2 (t) ≤ 0.
By integrating, using the equalities u 1 (0) = u 2 (0) = u 0 and the coerciveness of A 0 , we have

α 0 u 1 (t) -u 2 (t) 2 ≤ A 0 u 1 (t) -A 0 u 2 (t), u 1 (t) -u 2 (t) ≤ 0, for all t ∈ [0, T ],
which completes the proof of Theorem 5.2.

The next example shows that the coerciveness of A 0 is essential to have the uniqueness of solution.

Example 1 Let H = R 2 , T = 1, u 0 = (0, 0), A 0 = A 1 = 1 0 0 0 and C(t) = [t, 1] × [0, 1] for t ∈ [0, 1].
Here A 0 is a symmetric and positive semi-definite matrix (not coercive). The set-valued mapping C(•) is Lipschitz continuous. Consider f (t) = (0, 0) for all 0 ≤ t ≤ 1. The first solution is u(t) = ( 1 2 t 2 , t) for 0 ≤ t ≤ 1, with u(t) = (t, 1) ∈ C(t) for all t ∈ [0, 1], and hence satisfies (5.1), since

N [t, 1] × [0, 1]; (t, 1) = ] -∞, 0] × [0, +∞[ if t ∈ [0, 1[, R × [0, +∞[ if t = 1.
We define the second solution as follows u(t) = ( 1 2 t 2 , 1 2 t) for 0 ≤ t ≤ 1, with u(t) = (t, 1 2 ) ∈ C(t) for t ∈ [0, 1]. A simple computation shows that

N [t, 1] × [0, 1]; (t, 1 2 ) = ] -∞, 0] × {0} if t ∈ [0, 1[, R × {0} if t = 1.
Therefore, u(t) = ( 1 2 t 2 , 1 2 t) satisfies (5.1).

Application

As a direct application of Theorem (5.2) we obtain an existence and uniqueness result for the evolution variational inequality given in (1.6). Then, for every u 0 ∈ H , there exists one and only one Lipschitz continuous solution u : [0, T ] → H of (1.6).

Proof For i = 0, 1 we note by A i the linear, bounded and symmetric operators associated respectively with a i (•, •), that is, a i (u, v) = A i u, v for all u, v ∈ H . Since C has convex values, the evolution variational inequality of type (1.6) can be rewritten in the form

A 1 u(t) + A 0 u(t) -l(t) ∈ -N C(t) ( u(t)) a.e. t ∈ [0, T ], u(0) = u 0 ∈ H, ( 5.19) 
By Sobolev embedding theorem, W 1,2 ([0, T ], H ) ⊂ C([0, T ], H ), we conclude that l is continuous. Thus all assumptions of Theorem 5.2 are satisfied and so the proof is complete.

Numerical experiments

In this section, we will give some numerical simulation to illustrate the theoretical results discussed in the last sections. In order to solve numerically problem (5.1), we will use the following algorithm discussed in the proof of Theorem 5.1. Let us suppose that the dimension of H is finite, i.e., dim R (H ) < +∞. For n ∈ N, let

0 = t n 0 < t n 1 < • • • < t n i < • • • < t n n = T,
be a finite partition of the interval [0, T ]. We denote by η n i = t n i+1t n i the length of the time step.

For simplicity, we will suppose that η n i = η n = T n , i = 0, 1, . . . , n which means that t n i = i T n . The approximation of f (t n i ) will be denoted by f n i .

Algorithm 1 Fix n ≥ 2 and set η n = T n , u n 0 = u 0 and f n 0 = f (t n 0 ). For i = 0, 1, . . . , n -1 Since C(t n i+1 ) is bounded, convex and closed in a finite dimensional space, by the classical result of Stampacchia, the variational inequality (6.1) has a solution. If one of the matrices A 0 or A 1 is positive definite, then this solution is unique and the operator [η n A 0 + A 1 + N C(t n i+1 ) ] -1 is single valued and non-expansive. Since A 0 and A 1 are symmetric, (6.2) is equivalent to solve the following optimization problem min z∈C(t n i+1 )

-Compute f n i+1 = f (
1 2 A 1 z, z + η n 1 2 A 0 z, z -A 0 u n i -f n i+1 , z . (6.3)
We note that this optimization problem is convex since A 1 , A 0 are positive semidefinite, η n > 0 and the set C(t n k+1 ) is (closed and) convex. The choice of the adequate solver for solving the optimization problem (6.3) depends on the structure of the set C(t). If the set C(t) is polyhedral, i.e., described by linear inequalities and equalities of the form Ax ≤ b and C x = d with A ∈ R m×n , b ∈ R m , C ∈ R p×n and d ∈ R p , then it is possible to use any quadratic programming solver (e.g., quadprog in Matlab). If the set C(t) is described by finitely many nonlinear inequalities and linear equalities C(t)= x ∈ H : g j (t, x) ≤ 0, j=1, 2, . . . , m and h k (t, x)=0, k = 1, 2, . . . , p , then we can use any nonlinear programming solver (e.g., Sequential Quadratic Programming, interior point method or fmincon in Matlab).

Example 2 Let H = R 2 , T = 1, u 0 = (0, 0), A 0 = 1 0 0 1 , A 1 = 1 0 0 0 and C(t) = {t} × [t, 1] for 0 ≤ t ≤ 1. For f (t) = (0, 1 2 t 2 ), t ∈ [0, 1], it is easy to check that the unique solution of (5.1) is given by

u(t) = 1 2 t 2 , 1 2 t 2 , t ∈ [0, 1].

By the way of conclusion

In this paper, using tools from convex analysis, we studied the well-posedness of some variants of the sweeping process within the framework of measure differential inclusions and evolution variational inequalities. We proved that the perturbed measure differential inclusion (4.1) has a unique right continuous solution with bounded variation. Under the assumption that the moving set C(t) has a continuous variation for every t ∈ [0, T ] with C(0) bounded and the coercivity of the linear operator A 0 , we proved that the sweeping process (1.5) with velocity in the moving set has a unique Lipschitz continuous solution. There remain many issues that need answers and further investigation. For example, as a consequence of the preceding assumption on C, it results that the set C(t) is bounded for every t ∈ [0, T ]. This assumption is essential in the proof of Theorem 5.1. It would be interesting to extend this result to the case of unbounded convex moving sets. As shown in the counter-example 1, the sweeping process problem (1.5) generated by an unbounded moving set can fail to have a solution for some f . We think that some compatibility conditions on f are needed to prove the existence of at least one solution. In some applications, the assumption of the convexity of C(t) is not satisfied, it will be also interesting to investigate the case of prox-regular sets C(t). This is out of the scope of the current manuscript and will be the aim of a future work.
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 1 Fig. 1 Ideal diode model
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 2 Fig. 2 Resistor-inductor-diode model (RLD, left) and resistor-capacitor-diode model (RCD, right)
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 34 Fig. 3 Electrical circuit with resistors, capacitors and ideal diodes (RCD)
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 5 Fig. 5 Comparison of the exact and the approximate solution of Example 2
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  dν (•) is a density of ν relative to ν, or otherwise stated, if and only if the equality ν = d ν dν (•)ν holds true. Under such an absolute continuity assumption, a mapping u(•) :

Theorem 4 . 1

 41 Let H be a Hilbert space and C(•) : [T 0 , T ] ⇒ H be a set-valued mapping from [T 0 , T ] into the nonempty closed convex subsets of H for which there exists a positive Radon measure μ on I := [T 0 , T ] such that for all s, t ∈ I with s ≤ t |d(y, C(t))d(y, C(s))| ≤ μ(]s, t]) for all y ∈ H. Let f : I × H → H be a mapping such that (i) there exists a non-negative function β

Theorem 5 . 3

 53 Let a i (•, •) : H × H -→ R be real bilinear, bounded and symmetric forms such that for all u ∈ H ; a 1 (u, u) ≥ 0 and a 0 (u, u) ≥ α 0 u 2 for some positive constant α 0 > 0. Let l ∈ W 1,2 ([0, T ], H ) be uniformly bounded, that is, there existsβ > 0 such that l(t) ≤ β for all t ∈ [0, T ]. Assume that C(0) ⊂ R B Hand the nonempty closed sets C(t) of H have a continuous variation inthe sense that there is some nondecreasing continuous function v(•) : [0, T ] → R with v(0) = 0 and such that |d(y, C(t))d(y, C(s))| ≤ |v(t) -v(s)| for all y ∈ H and s, t ∈ [0, T ].

  X . Another deep important property of the subdifferential in Convex Analysis (established in the Hilbert setting by Moreau [39, Proposition 12.b] and in the Banach setting by Rockafellar [53, Theorem A, p. 210] concerns the maximal monotonicity[10]):

	Theorem 2.1 (Moreau in Hilbert spaces and Rockafellar in Banach spaces) Let X be
	a Banach space. Then, the subdifferential of a proper lower semicontinuous convex
	function ϕ on X is maximal monotone in the sense that there is no monotone set-valued
	operator from X into X * whose graph is larger than the graph of ∂ϕ.
	2.2 Normal convex integrand
	Assume that the normed space X is separable and complete; a set-valued mapping M
	from a measurable space (S, S) into closed subsets of X is S-measurable provided
	that, for each open set U of X , one has M -1 (U ) ∈ S. So, following Rockafellar
	[55], an extended real-valued function ϕ : S × X → R ∪ {+∞} is called a normal
	integrand whenever ϕ(s, •) is proper and lower semicontinuous for all s ∈ S and
	the (epigraphical) set-valued mapping s → epi ϕ(s, •) (from S into X × R) is S
	measurable. As usual, B(X ) denotes the Borel σ -field of X . When, in addition ϕ(s, •)
	is convex for all s ∈ S, one says that ϕ is a normal convex integrand. For a set-
	valued mapping M : S ⇒ X with Dom M = ∅, it is readily seen that the function
	(s, x) → ı M(s) (x) is a normal (convex) integrand if and only if the set-valued mapping
	M is measurable and takes on closed (convex) values. For a normal integrand, it is
	known (see, for example, [17,55]) that, for any measurable mapping u(•) : S → X ,
	the function s → ϕ(s, u(s)) is measurable. Furthermore, (s, x * ) → ϕ * (s, x * ) is a
	normal convex integrand, where by convenience of notation
	ϕ

* (s, x * ) := ϕ(s, •) * (x * ) for all x * ∈ X * .

  Definition 1 A mapping u : I → H is a solution of the measure differential inclusion (4.1) if:(i) u(•) is of bounded variation, right continuous, and satisfies u(T 0 ) = u 0 and u(t) ∈ C(t) for all t ∈ I ; (ii) there exists a positive Radon measure ν absolutely continuously equivalent to μ + λ and with respect to which the differential measure du of u(•) is absolutely

	continuous with du dν (•) as an L 1 ν (I, H )-density and
	du dν	(t) + f (t, u(t))	dλ dν	(t) ∈ -N (C(t); u(t)) ν -a.e. t ∈ I.
								r )) dν(I + (t, r ))	. (4.3)
	In particular, the last equality ensures that
	du dν	(t) =	du({t}) dν({t})	and	dλ dν	(t) = 0, whenever ν({t}) > 0.	(4.4)

Above and in the rest of the paper λ denotes the Lebesgue measure.

  satisfying (4.7). Furthermore, by (4.28), extracting a subsequence if necessary, we may suppose that du n Let us prove that u(•) is a solution. First, for each t ∈ I , noting by (4.10) that 0 ≤ θ n (t)t ≤ ε n , and writing by(4.28) 

	du n dν	(s) dν(s) -→
	]T 0 ,t]	]T 0 ,t]
	Since du n dν (•) is, by (4.23), a density of du n relative to ν, we also have u n (t) = u 0 + ]T 0 ,t] du n dν (s) dν(s), thus it ensues that u(t) = u 0 + ]T 0 ,t] h(s) dν(s), and this tells us that u(•) is right continuous with bounded variation on I , and the vector measure du
	has h(•) ∈ L 2	

dν (•) n converges weakly in L 2 ν (I, H ) to some mapping h(•) ∈ L 2 ν (I, H ), so, for every t ∈ I , h(s) dν(s) weakly in H. ν (I, H ) as a density relative to ν and du dν (•) = h(•) ν-a.e. We also deduce that du n dν (•) -→ du dν (•) weakly in L 2 ν (I, H ).

Step 3.

  Moreover, for each t ∈ I with ν({t}) > 0, we have dλ dν (t) = 0 by (4.4), so it results, for any t ∈ I , that e n (t) := f ρ n (t), u n (δ n (t))

	(4.39) as n → ∞. The Lebesgue dominated convergence theorem then yields that (e n (•)) n Now let us show that du dν (t) + f (t, u(t)) dλ dν (t) ∈ -N (C(t); u(t)) ν -a.e. t ∈ I. As above, we write by (4.28) dν (t) → f (t, u(t)) dλ dν (t) =: e(t) u dλ converges strongly to e(•) in L 2 ν (I, H ). Putting ζ n (t) := du n dν (t) + e n (t) and ζ(t) := du dν (t) + e(t), the sequence (ζ n (•)) n converges weakly in L 2 ν (I, H ) to ζ(•) and by Mazur's lemma there exists a sequence (ξ n (•)) n converging strongly in L 2 ν (I, H ) to ζ(•) with

+2 [) is of the form [t, τ [ with τ > t, thus t = t n i n (t)+1 for some i n (t) ∈ {0, . . . , p(n) -1}. It results, for all n, that θ n (t) = t hence u n (t) ∈ C(t), and this gives u(t) ∈ C(t), since u n (t) → u(t) as n → ∞ according to the aforementioned independence property of u(•) with respect to the partition V n 0 < • • • < V n q n . So, u(t) ∈ C(t) for all t ∈ I. n (δ n (t))u(t) ≤ u n (t)u(t) + 2ν(]δ n (t), t]), which entails, for each t ∈ I with ν({t}) = 0, that u n (δ n (t)) → u(t). Using this and the assumption (ii), for each t ∈ I with ν({t}) = 0, we can see (as for (4.38)) that f ρ n (t), u n (δ n (t)) dλ dν (t) → f (t, u(t)) dλ dν (t) as n → ∞.

  Assume that C(0) ⊂ R B H and the nonempty closed sets C(t) of H have a continuous variation in the sensethat there is some nondecreasing continuous function v(•) : [0, T ] → R with v(0) = 0 and such that |d(y, C(t))d(y, C(s))| ≤ |v(t) -v(s)| for all y ∈ H and s, t ∈ [0, T ].

	5.1 A constructive existence result
	Theorem 5.1 Let H be a separable Hilbert space. Let A 0 , A 1 : H → H be two
	bounded semi-definite symmetric linear operators and let f : [0, T ] → H be a
	continuous mapping which is bounded by a real β ≥ 0, that is,

f (t) ≤ β, for all t ∈ [0, T ].

  Now, let us prove the convergence of the sequences(u n (•)) n , ( un (•)) n and ( f n (•)) n .Then D ε is closed and convex in L 2 ([0, T ], H ), hence weakly closed, and un ∈ D ε for large n, by(5.11) since v(•) is uniformly continuous on [0, T ]. The weak convergence of un to u in L 2 ([0, T ], H ) implies that u ∈ D ε for all ε > 0. Since every C(t) is closed, the claim follows. Now let us prove the inclusion in (5.1). Put ζ n (t) := -A 0 u n (θ n (t)) -A 1 ( un (t)) + f n (t) for all t ∈ [0, T ].

	and, for some ζ(•) ∈ L 2 ([0, T ], H ), Fix ε > 0 and let	
	un (•) In particular, u(0) = u 0 . The Lipschitz continuity of the mapping u n and the weak ζ(•) in the weak topology of L 2 ([0, T ], H ). (5.9) lower semicontinuity of the norm give u(t) -u(s) ≤ lim inf n→∞ u n (t) -u n (s) ≤ ρ|t -s| for all t, s ∈ [0, T ]. The mapping u(•) is then Lipschitz continuous on [0, T ], and hence the derivative mapping u(•) exists almost everywhere. Fix any t ∈ [0, T ]. For each z ∈ H with z ≤ 1, we can write D We then note that the inclusion (5.7) is equivalent by (2.4) to the inequality
	| z, u n (θ n (t)) -u(t) | ≤ | z, u n (θ n (t)) -u n (t) | + | z, u n (t) -u(t) | ≤ ρ|θ n (t) -t| + | z, u n (t) -u(t) |, σ C(θ
	which entails, according to (5.7), that u n (θ n (t)) → u(t) weakly in H as n → ∞. On
	the other hand,			
				T
	z, u n (t) = z, u 0 +	0	t n i+1 ; z n i+1 . 1 [0,t] (s)z, un (s) ds,
	So, defining the function θ n from [0, T ] to [0, T ] by θ n (0) = t n 1 and θ n (t) = t n i+1 for any t ∈]t n i , t n i+1 ], the latter inclusion becomes and using (5.9) and taking the limit as n → ∞ give
	f n (t) -A 0 u n (θ n (t)) -A 1 un (t) ∈ N (C(θ n (t)); un (t)) a.e. t ∈ [0, T ], T t z, u(t) = z, u 0 + 1 [0,t] (s)z, ζ(s) ds = z, u 0 + ζ(s) ds .	(5.6)
	and we also note that	0			0
	sup t∈[0,T ] The latter equality being true for all z ∈ H , we deduce that u(t) = u 0 + |θ n (t) -t| → 0 as n → ∞. and this guarantees that u(•) = ζ(•) almost everywhere hence	t 0 ζ(s) ds,
	We have, for all n,	un (•)	u(•) weakly in L 2 ([0, T ], H )	(5.10)
	u n (t) ≤ u 0 + ρT, according to (5.9) again. Furthermore, since f n (t) = f (θ n (t)) and f (•) is continuous, f n (t) ≤ β for all t ∈ [0, T ] and un (t) ≤ ρ for almost all t ∈ [0, T ], we have, for every t ∈ [0, T ], that f n (t) → f (t) strongly in H as n → ∞.
	Let us prove that u(t) ∈ C(t), for almost every t ∈ [0, T ].
	so the sequence of mappings (u n (•)) n is uniformly bounded in norm and variation. First, using the assumption on the variation of C(•), we note that
	Hence, (see [[38], Theorem 0.2.1]), we find a mapping u : [0, T ] → H with bounded
	variation and a subsequence still denoted (u n (•)) n , such that u n (t) u(t) weakly in H for all t ∈ [0, T ], u n (•) u(•) in the weak-star topology of L ∞ ([0, T ], H ), un (t) = z n i+1 ∈ C(θ (5.11) (5.7) (5.8)

n (t)) ⊂ C(t) + |v(θ n (t)) -v(t)|B H , for a.e. t ∈]t n i , t n i+1 ], so un (t) ∈ C(t) + |v(θ n (t)) -v(t)|B H , for a. e. t ∈ [0, T ]. ε = φ ∈ L 2 ([0, T ]; H ) : φ(t) ∈ C(t) + εB H a. e. t ∈ [0, T ] . n (t)), ζ n (t) + -ζ n (t), un (t) ≤ 0, a.e. since un (t) ∈ C(θ n (t)), and integrating on [0, T ] we get T 0 σ C(θ n (t)), ζ n (t) dt + T 0 -ζ n (t), un (t) dt ≤ 0. (5.12) Furthermore, using the strong convergence of f n (t) to f (t) for all t ∈ [0, T ] along with the inequality f n (t) ≤ β, we see that ( f n (•)) n converges strongly in L 2 ([0, T ], H ) as n → ∞. This combined with the weak convergence of ( un (•)) n to u(•) in L 2 ([0, T ], H ) ensures that T 0 f (t), u(t) dt = lim n→∞ T 0 f n (t), un (t) dt. (5.13)

  The discretized variational inclusion (6.1) is equivalent to

	t n i+1 ) i+1 the following variational inequalities (see Remark 2) -Solve for z n	
	f n i+1 -A 0 u n i ∈ η n A 0 + A 1 + N C(t n i+1 ) z n i+1	(6.1)
	-Update u n i+1 = u n i + η n z n i+1 .		
	end		
	Remark 2 z n i+1 ∈ η n A 0 + A 1 + N C(t n i+1 )	-1 f n i+1 -A 0 u n i .	(6.2)
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