
HAL Id: hal-01313118
https://hal.science/hal-01313118v1

Preprint submitted on 9 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multidimensional inequalities and generalized quantile
functions

Sinem Bas, Philippe Bich, Alain Chateauneuf

To cite this version:
Sinem Bas, Philippe Bich, Alain Chateauneuf. Multidimensional inequalities and generalized quantile
functions. 2016. �hal-01313118�

https://hal.science/hal-01313118v1
https://hal.archives-ouvertes.fr


Multidimensional inequalities and generalized

quantile functions ∗

Sinem Bas † Philippe Bich ‡ Alain Chateauneuf §

Abstract

In this paper, we extend the generalized Yaari dual theory for multidimen-

sional distributions, in the vein of Galichon and Henry’s paper [6]. We show

how a class of generalized quantiles -which encompasses Galichon and Henry’s

one or multivariate quantile transform [7] [4] [9]- allows to derive a general rep-

resentation theorem. Moreover, we derive from this representation theorem a

formula which could be applicable to multidimensional measure of inequality.
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1 Introduction

In a recent paper, Galichon and Henry [6] generalize Yaari dual theory to multi-

dimensional distributions, using Optimal coupling theory. They prove that the pref-

erence relationship of a decision maker confronted to choices on multidimensional

prospects can be evaluated with a weighted sum of multidimensional quantiles, when

this preference relationship can be written as a mutidimensional index that preserves

some first order stochastic dominance and satisfies some comonotonic independence

property.

The work of Galichon et al. rests on the notion of multidimensional quantile they

introduce, µ−quantile. Yet, the choice of a particular multidimensional quantile is

not completely obvious or natural, and other multidimensional quantiles have been

proposed in the literature, for example multivariate quantile transform (see [7], [4], [9]

or [8] for a brief presentation of this notion)

In this paper, we propose an extension of the generalized Yaari dual theory for

multidimensional distributions, in the vein of Galichon and Henry’s paper. But the

class of quantiles we consider encompasses Galichon et al.’s µ−quantile or multivariate

quantile transform. In particular, our class of quantiles is not built as the solution of

an optimal coupling problem, as in [6], but is required to satisfy natural and simple

properties. Also, we avoid to assume some Frechet derivability assumption on the

functional which represents the preference of the policymaker, but we try to propose

more standard and interpretable assumptions. Third, we try to get some explicit

formula of this inequality index, which could be implemented by a policymaker.

The paper is organized as follows. Section 2 recalls the Yaari dual theory of choice

for unidimensional distributions. Section 3 introduces our specific framework of mul-

tidimensional distributions, offers a general definition of quantiles and states a first

representation result. In Section 4 we compare more specifically our results with Gali-

chon et al. ones. In Section 5, it is shown how all the involved parameters can be

elicited by a policymaker. Finally, in Section 6, - discussion and concluding remarks-

some limitation of the proposed measure is raised, and one suggests a possible route

to explore in future work in order to amend it.
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2 Yaari dual theory of choice for unidimensional

distributions

In this section, we consider (S,F , P ) to be the probability space defined by S =

[0, 1], P being the Lebesgue measure and F the σ−algebra of borelian subsets of S.

Let V be the set of random variables on (S,F , P ) and V2 be the set of elements in

V with a finite second moment. Two elements (X, Y ) ∈ V × V are said to be equal

in law (denoted X =d Y ) if the probability law of X and Y coincide. For every

borelian subset E of S, 1IE denotes the characteristic function of E, that is 1IE(s) = 1

if s ∈ E and 1IE(s) = 0 otherwise. For every random variable X ∈ V , we can define its

cumulative distribution function FX(x) = P (X ≤ x), and its unidimensional quantile

F−1X , as follows:

F−1X (p) = inf{x ∈ IR : P (X ≤ x) ≥ p}.

The quantile function can be seen also as an element of V (since F−1X , is a measur-

able real function on S). Importantly, it is the solution of some optimization problem,

called optimal coupling problem, which we now recall.

For every U ∈ V2, define the maximum correlation functional associated to U as

follows:

∀X ∈ V2, ρU(X) := sup
X̃∈V2, X̃=dX

∫
[0,1]

U(p).X̃(p)dp

Choosing U(p) = p (which we now assume in this section), then Hardy-Littlewood

inequality guarantees that F−1X , is the unique (almost surely) solution X̃ in V2 of the

above optimization problem. In particular, ρU(X) := E(F−1X (p).p), and it follows that

the quantile posses the following well known properties:

Proposition 2.1. (i) For every X, Y ∈ V2 such that X =d Y , F−1X = F−1Y almost

surely, and F−1X =d X.

(ii) For every X, Y ∈ V2 and λ ≥ 0, F−1X + F−1Y and λF−1X are themselves the

quantiles of F−1X + F−1Y and of F−1λX .

(iii) For every λ ∈ R and X in V2, the quantile of X+λ is F−1X +λ (almost surely).

Proof. Property (i) is a consequence of the definition of the quantile QX in terms

of optimal coupling solution. For property (ii), recall that the solution F−1X ∈ V2 is
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characterized (1) F−1X is increasing (2) F−1X =d X. Indeed, the first condition can be

written: G(t) =
∫ t
0
F−1X is continuous and convex, and condition (2) is ∇G =d X.

Then, from optimal coupling solution, these two conditions characterized the (unique

almost surely) solution F−1X (see appendix 7.1.1). Now, let X ′ = F−1X and Y ′ = F−1Y .

From above, the quantile of X ′ + Y ′ is characterized by (1) F−1X′+Y ′ is increasing (2)

F−1X′+Y ′ =d X
′+Y ′. Thus, F−1X′+Y ′ = F−1X +F−1Y , because it satisfies the two conditions

(1) and (2). This is similar for F−1
λF−1

X

= λF−1X . The last property (iii) is a straighforward

consequence of the definition of quantile.

In the next section, we shall define a generalized class of multidimensional quantiles

using the same requirements.

Now, to state Yaari dual choice theory main representation result, we need to recall

comonotonicity concept:

Definition 2.2. Two random variables X and Y in V are comonotonic if

(X(s)−X(t))(Y (s)− Y (t)) ≥ 0

almost surely in (s, t) ∈ S × S.

Comonotonicity can be characterized using maximal correlation functional as fol-

lows [2]:

Proposition 2.3. Two random variables X and Y in V2 are comonotonic if and only

if

ρU(X + Y ) = ρU(X) + ρU(Y ).

Then we can state:

Theorem 2.1. (Yaari main representation theorem)

Let I : V2 → R. The two assertions below are equivalent:

(1) The functional I satisfies:

1. (Normalization) I(1IS) = 1

2. (Anonymity) for every (X, Y ) ∈ V2 × V2, X =d Y ⇒ I(X) = I(Y ).
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3. (Inequality Aversion) for every (X, Y ) ∈ V2 × V2, I(X + Y ) ≥ I(X) + I(Y ).

4. (Additive comonotonicity) for every (X, Y ) ∈ V2×V2 comonotonic, I(X+Y ) =

I(X) + I(Y ).

(2) There exists a unique convex and non-decreasing function f : [0, 1] → [0, 1],

f(0) = 0, f(1) = 1 such that:

I(X) =

∫ 1

0

f(1− FX(p))dp =

∫ 1

0

F−1X , (p).f ′(1− p)dp =

∫
S

Xd(f ◦ P )

where
∫
S
Xd(f ◦ P ) is the Choquet integral of X with respect to capacity f ◦ P .

In the theorem above, we recall that f ◦P is defined on the set of borelian subsets of

S as follows: for every borelian E ⊂ S, φ ◦P (E) = f(P (E)). The function obtained is

no longer a probability (it is not additive in general), but it is a capacity, and Choquet

integral is a way to extend the standard expectation with respect to a probability to

the case where the probability is replaced by a capacity.

3 A first representation result in the multidimen-

sional case

3.1 Framework

In this section, we consider a more general framework than in the previous section.

Let (S,F , P ) be a probability space. For every subset A of IRn, denote BA the Borelian

σ-algebra on A. Let E(.) be the expectation operator with respect to the probability

P . Let V be the set of random n-dimensional vectors on (S,F , P ) , i.e. V = {X :

(S,F , P ) → (IRn,BIRn) measurable}. For every X ∈ V , we write X = (X1, ..., Xn),

where for every s ∈ S, we define X(s) = (X1(s), ..., Xi(s), ..., Xn(s)). The probability

distribution of X on (IRn,BIRn) is denoted PX . We let V2 be the set of elements in V

with finite second moments, i.e. V2 = {X ∈ V : ∀i ∈ {1, 2, ..., n}, E(X2
i ) < +∞}.

For every X and Y in V , we denote X =d Y if X and Y have the same distribution,

that is PX = P Y . Recall the definition of the standard scalar product < .,> on

V2: for every X = (X1, ..., Xn) and Y = (Y1, ..., Yn), < X, Y >=
∑n

i=1E(XiYi) =∑n
i=1

∫
S
Xi(s)Yi(s)dP (s). Hereafter, X.Y simply denotes

∑n
i=1Xi.Yi.
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3.2 A new definition of quantiles

We now propose a new definition of multidimensional quantile through some natu-

ral properties that are satisfied in the unidimensional case. Importantly, we allow the

quantile operator to be defined on a strict subset V ′2 of the set of n-random variables

V2 (V ′2 will often be chosen equal to V2, but we will also sometimes consider V ′2 to

be, for example, the set of comonotonic or anti-comonotonic (when n = 2) random

vectors.) In the following, for every sets E and F , F(E,F ) denote the set of functions

from E to F .

Definition 3.1. Consider a n-dimensional random variable U ∈ V2 with values in

[0, 1]n. Let V ′2 be a convex cone of V2 containing the constant random variables. An

operator Q : V ′2 → F([0, 1]n,Rn) is a U-quantile operator (or simply of quantile oper-

ator when U is implicit) if it satisfies the three following properties: 1

1. (Law of quantiles) For every (X, Y ) ∈ V ′2 × V ′2 such that X =d Y , QX = QY

almost surely, and QX(U) =d X.

2. (Sum of quantiles) For every λ ≥ 0 and (X, Y ) ∈ V ′2 × V ′2 , QX +QY and QλX

are the quantiles of some random variable in V ′2 .

3. For every λ ∈ R and X in V ′2 , the quantile of X + λ(1IS, ..., 1IS) is QX + λ.

Sometimes we will assume one of the three additional assumptions:

4. For every strictly positive reals λ1, ..., λn, the function p ∈ Rn → (λ1p1, ..., λnpn)

is the quantile of some random variable in V ′2 .

5. (when n ≥ 2) For every symmetric definite positive n-matrix A, the function

p→ Ap is the quantile of some random variable in V ′2 .

6. If X = (X1, ..., Xn) ∈ V ′2 , where the Xi’s are mutually independent, then one has

QX(p) = (QX1(p1), ..., QXi
(pi), ..., QXn(pn)) for every p = (p1, ..., pi, ..., pn) ∈

[0, 1]n, where each QXi
is the one-dimensional quantile of Xi.

Remark 3.1. For n = 1, the standard unidimensional quantile defines a quantile

operator by X ∈ V2 → QX = F−1X ∈ F([0, 1],R) (see Proposition 2.1). Conversely, if

1. Hereafter, Q(X) is also denoted QX , and is called a quantile. Sometimes, to make more explicit

the parameter U , we will call QX a U -quantile, and will denote it QU
X .
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Property 6 is assumed to be true, then for n = 1, any quantile operator coincides with

the standard unidimensional quantile.

In the three next subsections, we give particular examples of quantile operators

illustrating Definition 3.1.

3.3 Example 1: multidimensional quantile on the set of comono-

tonic vectors

Consider V ′2 the class of comonotonic random vectors X = (X1, ..., Xn) ∈ V2, in

the sense that for every (i, j) ∈ {1, ..., n}2, (Xi, Xj) is comonotonic. Fix U a random

vector whose components are independent and uniformly distributed with values in

[0, 1]. Then a quantile operator can be defined by

∀X = (X1, ..., XN) ∈ V ′2 , QX(p1, ..., pn) = (F−1X1
(p1), ..., F

−1
Xn

(pn)).

Importantly, this could not define a quantile operator on whole V2, because when

X is not comonotonic, the law of QX(U) and the law of X could be different (in

particular it does not satisfy the first requirement of quantile operator).

We now check that this operator satisfies the requirements of Definition 3.1. Thus

V ′2 is a convex cone and contains the constant random vectors. Second, Point 1 in

Definition 3.1 is true, that is for every (X, Y ) ∈ V ′2 × V ′2 such that X =d Y , QX = QY

almost surely, and QX(U) =d X. The second equality is a consequence of comonotonic-

ity (see [3]: for comonotonic vectors, equality of two random vectors can be checked

component by component), and the first one is true because it’s true in the unidimen-

sional case. Third, Point 2 in Definition 3.1 is true, because for every λ ≥ 0 and X, Y

in V ′2 , QX + QY = (F−1X1
+ F−1Y1

, ..., F−1Xn
+ F−1Y1

) and QλX = (λF−1X1
, ..., λF−1Xn

) are the

quantile of (F−1X1
(U) + F−1Y1

(U), ..., F−1Xn
(U) + F−1Y1

(U)) and of (λF−1X1
(U), ..., λF−1Xn

(U))

(see Proposition 2.1).

Now, the last point is clear, since for every λ ∈ R and X in V ′2 , the quantile of

X + λ(1IS, ..., 1IS) = (X1 + λ1IS, ..., Xn + λ1IS) is (F−1X1+λ1IS
, ..., F−1Xn+λ1IS

) = QX + λ.
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3.4 Example 2: quantile on the set of anti-comonotonic 2-

random vectors

Recall that a 2-dimensional random vector (X1, X2) is anti-comonotonic if (X1,−X2)

is comonotonic. Let V ′2 the class of anti-comonotonic random vectors X = (X1, X2) ∈

V2 (thus in this subsection, n = 2). A quantile operator can be defined by

∀X ∈ V ′2 , QX(p1, p2) = (F−1X1
(p1), F

−1
X2

(1− p2)).

We let the reader check that it satisfies the requirements of Definition 3.1, which is

similar to the previous example.

3.5 Example 3: Galichon et al. µ−quantile

Let U ∈ V2 whose probability law µ has a finite second moment and is absolutely

continuous with respect to Lebesgue measure. Assume U takes its values in [0, 1]n. In

this subsection, V ′2 = V2. Given X ∈ V2, recall that the pair (X̃, U) ∈ V2×V2 is called

an optimal coupling if X̃ is a solution of the following optimization problem:

sup
X̃=dX

E(X̃.U)

From Optimal coupling theory (see Appendix 7.1.1):

Definition 3.2. (Galichon et al.) For every X ∈ V2, the unique (almost surely)

∇f : [0, 1]n → Rn such that (∇f(U), U) is an optimal coupling is called the µ−quantile

of X. We shall denote it Qµ
X . If µ is the probability of some U ∈ V2, we shall say by

extension that Qµ
X is the U-quantile of X.

In particular, the µ−quantile Qµ
X does not depend on U , but on the law of U .

Proposition 3.3. The µ-quantile of Galichon et al. defines a U-quantile operator on

V2.

See the proof in Appendix 7.2.
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3.6 A fourth example: multivariate quantile transform

The multivariate quantile transform was introduced by [7], [4] or [9]. See also [8] for

a brief presentation of this concept. We recall the definition of multivariate quantile

transform in the case n = 2, the general case being a straightforward generalization.

Let (S,F , P ) be any probabilized space. Let U1, U2 be two independent and

identically U([0, 1])-distributed random variables on S, and U = (U1, U2). Define

a U -quantile operator as follows: for every X = (X1, X2), a random vector on S,

QX = (Q1
X , Q

2
X) is defined by

Q1
X(p1, p2) = F−1X1

(p1),

where F−1X1
is the one-dimensional quantile of X1, and by

Q2
X(p1, p2) = inf{x ∈ R : P (X2 ≤ x | F−1X1

(U1) = F−1X1
(p1)) ≥ p2},

i.e. Q2
X(p1, p2) is the one-dimensional conditionnal quantile of X2 given the first com-

ponent Q1
X .

Proposition 3.4. The multivariate quantile transform defines a U-quantile operator

on V2.

See the proof in appendix 7.3.

Interestingly, the multivariate quantile transform is not a particular case of Gali-

chon et al.’s quantile:

Proposition 3.5. Denote by QX the multivariate quantile of every X ∈ V2. There

does not exists some measure µ such that for every X ∈ V2, QX = Qµ
X , where Qµ

denotes Galichon et al.’s quantile operator.

Proof. Consider the case n = 2. Let U1, U2 be two independent and identically

U([0, 1])-distributed random variables on S. By contradiction, assume that there exists

some probability measure µ such thatQX = Qµ
X . In particular, sinceQ(U1,−U1)(p1, p2) =

(p1,−p1), we should have Qµ
(U1,−U1) = (p1,−p1). But by definition of Qµ

(U1,−U1), there

is a convex function f : R2 → R such that Qµ
(U1,−U1) = ∇f . Thus, ∂f

∂p1
(p1, p2) = p1
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and ∂f
∂p2

(p1, p2) = −p1, which implies that the Hessian of f is equal to
(

1 0

0 −1

)
, a

contradiction with the convexity of f .

3.7 The main representation result

Fix U ∈ V2, and consider Q a U -quantile operator on V ′2 , a convex cone of V2

containing the constant random variables. The preferences of the decision maker on

V2 are now assumed to be represented by a function I : V2 → R.

3.7.1 The main assumptions

Throughout this paper, we assume that the function I : V2 → R satisfies the

following assumptions:

Assumptions on I

1. Normalization: I(1IS, ..., 1IS) = 1

2. Monotonicity: ∀(X, Y ) ∈ V2 × V2, X ≥ Y ⇒ I(X) ≥ I(Y ).

3. Inequality Aversion: for every (X, Y ) ∈ V ′2 × V ′2 such that I(X) = I(Y ) and

every λ ∈ [0, 1], we have I(λX + (1− λ)Y ) ≥ I(X).

4. Positive homogeneity: for every λ ≥ 0 and X ∈ V2, we have I(λX) = λI(X).

5. Additivity on Quantiles: for every (X, Y ) ∈ V ′2 × V ′2 , we have I(QX(U) +

QY (U)) = I(QX(U)) + I(QY (U)).

6. Neutrality: I(X) only depends of the law of X, that is for every (X, Y ) ∈ V2×V2
with the same law, I(X) = I(Y ).

Remark 3.2. Inequality aversion is equivalent to concavity, i.e. to: for every (X, Y ) ∈

V ′2 × V ′2 and λ ∈ [0, 1], I(λX + (1 − λ)Y ) ≥ λI(X) + (1 − λ)I(Y ). Indeed, concavity

clearly implies inequality aversion. Conversely, if inequality aversion is true, consider

X ′ = X−I(X)(1IS, ..., 1IS), Y ′ = Y −I(Y )(1IS, ..., 1IS). From neutrality and from point

3 in Definition 3.1, we get I(X ′) = I(QX′(U)) = I((QX(U) − I(X)) = I(QX(U)) −

I(X) (from additivity on quantiles) which is finally 0, and similarly I(Y ′) = 0. Then

Inequality Aversion at X ′ and Y ′ implies the above inequality. Indeed, first notice

that for every constant c and X ∈ V ′2 , I(X + c) = I(QX(U) + c) (since X + c and
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QX(U) + c have the same law from point 3 in Definition 3.1) which is also equal to

I(QX(U))+c = I(X)+c from Additivity on Quantiles, thus finally I(X+c) = I(X)+c.

Now, from Inequality Aversion at X ′ and Y ′ we get I(λX ′ + (1 − λ)Y ′) ≥ 0 or also

I(λX + (1−λ)Y − (λI(X)(1IS, ..., 1IS) + (1−λ)I(Y )(1IS, ..., 1IS)) ≥ 0 and developping,

and from I(X + c) = I(X) + c, we finally get concavity.

3.7.2 The representation theorem

The proof of the following theorem can be found in Appendix 7.4.

Theorem 3.3. The mapping I : V2 → R satisfies Assumptions 1-6 above if and only

if there exists a function φ : [0, 1]n → Rn whose components are non negative (almost

surely) and such that:

(i) E((1IS, ..., 1IS).φ(U)) = 1.

(ii) For every X ∈ V ′2 , I(X) =
∫
QX(U).φ(U)dP = minX̃=dX

∫
X̃.φ(U)dP, i.e.

I(.) is the min correlation risk measure with respect to φ(U).

Corollary 3.4. Assume that that the support of PU is [0, 1]n.

— In the above theorem, φ = ∇g(−id) for some convex function g.

— If we additionnaly assume that Q satisfies point 4 in Definition 3.1, then φ is

separable, i.e. φ(p1, ..., pn) = (φ1(p1), ..., φn(pn)), where each φi is a decreasing

non negative function.

— Last, when n ≥ 2, if Q also satisfies point 5 in Definition 3.1, then there exists

a ∈ R+, b = (b1, ..., bn) ∈ Rn, such that φ(p1, ..., pn) = (b1, ..., bn)−a.(p1, ..., pn).

In this case, Condition (iii) above is always satisfied, and can be removed in the

equivalence.

Remark 3.5. First, in the two main examples of quantile operators of this paper

(Galichon et al µ−quantile and multivariate quantile operator), V ′2 is the total space

V2.

Second, the interpretation of this representation theorem is similar to Yaari stan-

dard interpretation of dual choice theory: the formula I(X) =
∫
QX(U).φ(U)dP could

be seen as a corrected mean of X, the correction being a way to compensate the inequal-

ity created by the distribution X. Indeed, the quantile QX can be seen as an attempt to
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re-order the distribution X (indeed, for n = 1, the unidimensional quantile corresponds

to standard increasing re-ordering). Then, the weight φ(U) compensates the effect due

to the ordering of QX , which is a consequence of I(X) = minX̃=dX

∫
X̃.φ(U)dP . In-

deed, this equality implies that −QX(U) and φ(U) are optimally coupled, which corre-

sponds to the intuition that φ(U) and −QX(U) are ”ordered” in opposite directions.

In particular, in the unidimensional case, this implies that φ is a decreasing function,

thus high values of X receive low weights when evaluated by the decision maker.

Recall also that for every Y ∈ V2 with non negative components, the max correlation

risk measure ΨY is defined by ΨY (X) = maxX̃=dX

∫
X̃.Y dP . This is a coherent (i.e.

monotone, positively homogeneous and subadditive) and law invariant risk measure

(see [8], p. 192). In particular it is convex. Thus, in the above theorem, I(X) =

−Ψφ(U)(−X) is concave.

In the unidimensional case n = 1, we can choose the quantile operator to be equal

to the standard 1-dimensional quantile, i.e. QX = F−1X . Then we get

Corollary 3.6. For n = 1, S = [0, 1], U(p) = p and P be the Lebesgue measure,

Theorem 3.3 is equivalent to Yaari Theorem 2.1.

Proof. Indeed, from corollary above, φ(x) = g′(−x) for some concave function g de-

fined on [−1, 0], which can be chosen such that g(−1) = 0. Since φ is non negative,

g is also non decreasing. Define f(x) = g(x − 1) on [0, 1]. It is convex, non de-

creasing, f(0) = 0. Moreover, Theorem 3.3 delivers I(X) =
∫
F−1X (p).g′(−p)dp =∫

F−1X (p).f ′(1 − p)dp =
∫
X(f ◦ P ), and finally f(1) = 1 is a consequence of normal-

ization assumption (since I(1) = 1 =
∫
F−1X (p).f ′(1− p)dp = f(1)).

4 The case of µ-quantile: Galichon and Henry re-

visited

In this subsection, we compare Galichon et al. Representation Theorem 5 (see [6])

with Theorem 3.3. Let U ∈ V2 whose probability law µ is absolutely continuous with
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respect to Lebesgue measure. To make the comparison easier, we first recall Axioms

1’, 2’ and 3’ used in Galichon et al. [6].

Remark that without any loss of generality, we can assume that I satisfies the

normalization assumption in subsection 3.7.1.

Axiom 1’ The functional I is continuous on V 2, and at least at one point its Frechet

derivative exists and is non-zero.

For every (X, Y ) ∈ V2, we say that X µ-first order stochastically dominates Y

(resp. X µ-first order strictly stochastically dominates Y ) if QX(U) ≥ QY (U) almost

surely (resp. QX(U) > QY (U) almost surely).

Axiom 2’ The functional I preserves µ-first order stochastic dominance, in the sense

that if X µ-first order stochastically dominates Y , then I(X) ≥ I(Y ), and if X µ-first

order strictly stochastically dominates Y , then I(X) > I(Y ).

For the last axiom, recall the standard definition of the maximal correlation func-

tional: for every X ∈ V2, ρµ(X) := sup
Ũ∈V2,Ũ=dU

∫
X.ŨdP The following definition of

µ-comonotonicity was introduced by Galichon et al.

Definition 4.1. We say X1, ..., Xn in V2 are µ−comonotonic if

ρµ(
n∑
i=1

Xi) =
n∑
i=1

ρµ(Xi).

Axiom 3’ If X, Y and Z are µ−comonotonic in V2, then for every α ∈ [0, 1], I(X) ≥

I(Y ) implies

I(αX + (1− α)Z) ≥ I(αY + (1− α)Z).

Theorem 4.1. (Galichon-Henry [6]) The functional I satisfies Axioms 1’, 2’ , 3’

and Inequality aversion if and only there exists a functional I ′ : V2 → R representing

the same preference relation on V2 (in the sense I(X) ≤ I(Y ) if and only if I ′(X) ≤

I ′(Y )) which satisfies the 6 Assumptions in subsection 3.7.1. From Theorem 3.3, this

13



is equivalent to the existence a ∈ R, b = (b1, ..., bn) ∈ Rn, such that φ(p1, ..., pn) =

(b1, ..., bn)− a.(p1, ..., pn) has non negative components and

∀X ∈ V2, I ′(X) = E(QX(U).φ(U)).

Proof. When the quantile operator QU is the µ-quantile of Galichon et al., we now

from [6] that Axioms 1’, 2’ , 3’ and Inequality aversion is equivalent with the existence

of a functional I ′ : V2 → R representing the same preference relation on V2 as I,

the existence of a ∈ R, b = (b1, ..., bn) ∈ Rn, such that φ(p1, ..., pn) = (b1, ..., bn) −

a.(p1, ..., pn) has non negative components and

∀X ∈ V2, I ′(X) = E(QX(U).φ(U)).

which is equivalent to Theorem 3.3 (thus with the set of 6 assumptions on I ′).

5 Unicity and elicitation of the parameters

The following theorem shows that in our framework the parameters of the in-

equality mindedness evaluations are unique and depend on the policy maker eval-

uations of some specific distributions. In the following theorem, let S = [0, 1]n,

U(p1, ..., pn) = (p1, ..., pn), P be the Lebesgue measure on [0, 1]n, QX be the the asso-

ciated U -quantile operator when U(p) = p.

Theorem 5.1. Let I : V2 → R. Assume I satisfies Normalization, Monotonicity,

Inequality aversion, Positive homogeneity and Additivity on Quantiles and constants.

Assume the quantile operator Q satisfies point (1) to (6) in Definition 3.1. Then

∀X ∈ V 2 : I(X) = −a
∫
QX(p).p dP + b

∫
QX(p) dP,

where

a =
4− 8I(1I{p1≥ 1

2
}, ..., 1I{pn≥ 1

2
}))

n

and

bi =
a

2
+ I(0, ..., 0, 1IS, ..., 0).

Proof in Appendix 7.4
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6 Discussion and concluding remarks

As seen in corollay 3.6, choosing U(p) = p allows to recover Yaari’s theory for

n = 1. But the same choice U(p) = p for n > 1 may lead also to some controversial

result, as illustrated below. Hereafter, we concentrate on the µ−quantile of Galichon

et al. The following result is proved in appendix 7.7.

Theorem 6.1. (most inegalitarian situation with fixed marginals) Let U = (U1, ..., Un) ∈

V2 whose probability law is absolutely continuous with respect to the Lebesgue measure.

Under assumption of Theorem 4.1, for every X ∈ V2, min
Xk=dYk,k=1,...,n

I(Y1, ..., Yn) is

reached at Y = (QU1
X1

(U1), ..., Q
Un
Xn

(Un)) where QUk
Xk

denotes the Uk-quantile of Xk for

every k = 1, ..., n.

Corollary 6.2. (most inegalitarian situation with fixed marginals when U(p) = p) If

U(p) = p then for every Y in Theorem above, the components of Y = (Y1, ..., Yn) are

pairwise independent.

Proof. Indeed, the theorem above gives Y = (QU1
X1

(p1), ..., Q
Un
Xn

(pn)) whose components

are clearly independent with respect to Lebesgue measure.

Corollary 6.3. There does not exist U ∈ V2 whose probability law is absolutely con-

tinuous with respect to the Lebesgue measure such that for every X ∈ V2,

min
Xk=dYk,k=1,...,n

I(Y1, ..., Yn)

is reached at a comonotonic vector.

Proof. By contradiction: if such U exists, consider X = U . Since the Uk-quantile of

Xk is identity, the above theorem gives that min
Xk=dYk,k=1,...,n

I(Y1, ..., Yn) is reached at

Y = U . But if U is comonotonic, the support S of the probability measure µ of U

cannot contain any subset of dimension larger than 1. But then the Lebesgue measure

of S should be 0, thus by absolute continuity, µ(S) = 0, a contradiction.

Intuitively the most inegalitarian situations should occur when the marginals are

comonotonic. The above results show that the previous framework does not allow it.

15



Substituting S = [0, 1] to S = [0, 1]n and defining I(X) as in Theorem 5.1, where

P is now the Lebesgue measure on [0, 1] and U(p) = (p, ..., p), one can easily see

that with this formulation, the most inegalitarian situation occurs when the marginals

are comonotonic. Indeed, a similar argument to Theorem 6.1 gives that the most

inegalitarian situations is reached at Y = (F−1X1
, ..., F−1Xn

) which is clearly comonotonic.

It will be the purpose of a future research to axiomatize such formula, noticing that

in such a case technical difficulties arise, because the law of U is no longer absolutely

continuous with respect to the Lebesgue measure.

7 Appendix

7.1 Proof of Proposition 2.1

(i) For every X ∈ V2, the random variables Q̃X and X have the same law (see [5],

Lemma A19 p.408 ),

(ii) For every X, Y ∈ V2, QX + QY is itself the quantile of some random variable

in V 2 (for example the quantile of Q̃X + Q̃Y ).

(iii) For every λ ≥ 0 and X in V2, QλX is itself the quantile of some random variable

in V 2 (for example the quantile of λQ̃X).

(iv) The quantile of every constant random variable k on (S,F , P ) is equal to itself

(almost surely).

7.1.1 Reminders of optimal transportation and optimal coupling.

Consider hereafer a random vector U ∈ V2. Sometimes, we shall assume that the

law of U is absolutely continuous with respect to Lebegue measure: this means that

for every borelian subset A ⊂ IRn of Lebesgue-measure 0, PU(A) = 0.

An important object hereafter is ρU , the maximal correlation functional with re-

spect to U : this is the real function defined on V2 by

(P) ∀X ∈ V2, ρU(X) = sup
X̃=dX

E(X̃.U)
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From Optimal coupling theory, given X ∈ V2, we have the following proposition:

Proposition 7.1. Assume U is absolutely continuous with respect to Lebegue measure.

Then:

(i) Existence and uniqueness: there exists a solution X̃ ∈ V2 of (P), unique (almost

everywhere). The pair (X̃, U) is called an optimal coupling. 2

(ii) Form of the solution: a solution X̃ ∈ V2 can be written X̃ = ∇f(U) for f :

Rn → R convex and lower semicontinuous. Moreover, ∇f in the previous decompo-

sition is unique, which means that if ∇f(U) = ∇g(U) is a solution of (P), where

f, g : Rn → R are convex and l.s.c., then ∇f = ∇g.

(iii) Characterization of the solution: if f : Rn → R convex and l.s.c. function such

that ∇f(U) =d X then ∇f(U) is a solution of (P).

(iv) Symmetry:

sup
X̃=dX,Ũ=dU

E(X̃.Ũ) = sup
X̃=dX

E(X̃.U) = sup
Ũ=dU

E(X.Ũ).

Remark 7.1. In particular, when U is absolutely continuous with respect to Lebesgue

measure, this proves the existence of a convex and l.s.c. function f : Rn → R such

that ∇f exists almost surely, and ∇f(U) has the same law as X.

Now, the equality ρU(X) = supŨ=dU
E(X.Ũ) proves that ρU depends only on the

law of U . Thus, one could define equivalently, for every probability measure µ with a

finite second moment:

ρµ(X) = sup
X̃=dX

E(X̃.U)

where U is any element in V2 whose law is µ. With the previous notations, we could

note ρPU = ρU .

2. Obviously, X̃ depends on U , not only on the law of U .

17



7.2 Proof that Galichon et al. µ-quantile defines a quantile

operator

We have to prove the 3 points of the definition of a quantile operator, but we will

prove as a matter of fact that the 3 additional properties are also true (the last one in

the particular case where S = [0, 1]n, U(p1, ..., pn) = (p1, ..., pn) and P is the Lebesgue

measure.)

Point i) is true by definition of µ−quantile.

For Point iii), remark that from optimal coupling theory (see reminders above)

sup
X̃=dX

E(X̃.U) = sup
Ũ=dU

E(Ũ .X).

In particular, the µ−quantile of X + λ(1IS, ..., 1IS) satisfies

E(QX+λ(1IS ,...,1IS)(U).U) = sup
Ũ=dU

E(Ũ .(X + λ(1IS, ..., 1IS)) = sup
Ũ=dU

E(Ũ .X) + λE(U).

which is also equal to

sup
X̃=dX

E(U.X̃) + λE(U) = E(QX(U).U) + λE(U) = E((QX(U) + λ(1IS, ..., 1IS)).U).

and since the law of QX(U) + λ(1IS, ..., 1IS) is the law of X + λ(1IS, ..., 1IS), we get that

QX+λ(1IS ,...,1IS) = QX + λ(1IS, ..., 1IS).

Point iv) comes from the fact that f(p)→
∑n

k=1 λkp
2
k

2
is continuous and convex, thus

∇f(p) = (λ1p1, ..., λnpn) is the quantile function of f(U). For Point ii), we use the

following lemma:

Lemma 7.2. i) The µ-quantile of QX(U) +QY (U) is QX +QY .

ii) For every λ ≥ 0, the µ-quantile of λQX(U) is λ.QX .

Proof. i) Use the characterization of µ-Quantile: considering any U ∈ V2 such that

PU = µ, QX = ∇f and QY = ∇g for some convex and l.s.c. functions f, g : Rn →

R, and (∇f(U), U) and (∇g(U), U) are optimal couplings (see Proposition 7.1, (ii)).

Thus, from Proposition 7.1, (iii), (QX +QY )(U) = ∇(f + g)(U) is a solution of

sup
X̃=dQX(U)+QY (U)

E(X̃.U)
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(because f + g is convex and l.s.c., and ∇(f + g)(U) = QX(U) + QY (U). Thus, by

definition, ∇(f + g) = QX +QY is the µ-quantile of QX(U) +QY (U).

ii) Similar to i): let λ ≥ 0. Then QX = ∇f for some convex and l.s.c. function

f : Rn → R, and (∇f(U), U) is an optimal coupling. From Proposition 7.1, (iii), since

λ.f convex and l.s.c., λQX(U) = ∇(λf)(U) is a solution of

sup
X̃=dλQX(U)

E(X̃.U)

Thus, by definition, ∇(λf) = λQX is the µ-quantile of λQX(U).

Last, we prove the last point when S = [0, 1]n, U(p1, ..., pn) = (p1, ..., pn) and P

is the Lebesgue measure. Thus, we want to show that if X = (X1, ..., Xn) where

the Xi’s are independent, then one has QX(p) = (QX1(p1), ..., QXi
(pi), ..., QXn(pn))

for every p = (p1, ..., pi, ..., pn) ∈ [0, 1]n . From Optimal Coupling Theory, it is

enough to prove that there exists f : p ∈ [0, 1]n −→ f(p) ∈ R such that f is convex,

∇f = QX and QX =d X. Take f(p1, ..., pn) =
∑n

i=1

∫ pi

0

QXi
(t)dt , then f is convex and

∇f = QX . Let us check that QX =d X. P (QX1 ≤ x1, ..., QXi
≤ xi, ..., QXn ≤ xn) =∏n

i=1 ν(QXi
(pi) ≤ xi) where ν the Lebesgue measure on [0, 1]. Thus, P (..., QXi

(pi) ≤

xi, ...) =
∏n

i=1 FXi
(xi) , hence QX =d X.

7.3 Proof of Proposition 3.4

Proof. First, from its definition, QX only depends on the distribution of X. Moreover,

the proof of QX(U) =d X can be found in [8], page 14. Thus Point 1 in Definition 3.1

is satisfied. Second, we will prove that the U -quantile of QX(U) +QY (U) is QX +QY

(where X = (X1, X2) and Y = (Y1, y2) are both 2-random variables), which will prove

Point 2 in Definition 3.1 . First, by definition of U -quantile, the first component

of the U -quantile of QX(U) + QY (U) is the standard one-dimensional quantile of

F−1X (U1) + F−1Y (U1), which is F−1X + F−1Y (see Proposition 2.1). Now, we check the

same result for the second component. This is essentially the same proof as for the

first component, but with a conditionnal argument. Let Z = QX(U) + QY (U). By

definition,

Q2
Z(p1, p2) = inf{x ∈ R : P (Q2

X(U) +Q2
Y (U) ≤ x | F−1

Q1
X+Q1

Y
(U1) = F−1

Q1
X+Q1

Y
(p1)) ≥ p2}.
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But as explained before, the one-dimensional quantile of Q1
X + Q1

Y = F−1X1
(U1) +

F−1Y1
(U1) is F−1X1

+ F−1Y1
, thus we get

Q2
Z(p1, p2) = inf{x ∈ R : P (Q2

X(U) +Q2
Y (U) ≤ x | E) ≥ p2},

where E = {s ∈ S : F−1X1
(U1(s)) + F−1Y1

(U1(s)) = F−1X1
(p1) + F−1Y1

(p1)}.

This can be written

Q2
Z(p1, p2) = inf{x ∈ R : PE(Q2

X(U) +Q2
Y (U)) ≤ x) ≥ p2},

where PE denotes P conditionnally to the event E.

Thus p1 being fixed, Q2
Z(p1, .) is the one-dimensional quantile of Z = Q2

X(U) +

Q2
Y (U) in the new probability space (S,F , PE). We shall use the following lemma to

re-inforce this statement:

Lemma 7.3.

Q2
Z(p1, p2) = inf{x ∈ R : PE(Q2

X(p1, U
2) +Q2

Y (p1, U
2)) ≤ x) ≥ p2}.

We have to prove that the conditionnal probability allows to replace U1(.) in the

probability above by p1. First, remark that E = E1 ∩ E2 where E1 = {s ∈ S :

F−1X1
(U1(s)) = F−1X1

(p1))} and E2 = {s ∈ S : F−1Y1
(U1(s)) = F−1Y1

(p1))}, which is a

consequence of the comonotonicity of F−1X1
(U1) and F−1Y1

(U1). Indeed, clearly, E1∩E2 ⊂

E. To prove the other inclusion, let s̄ ∈ S such that p1 = U1(s̄) (in particular s̄ ∈ E),

and take s′ /∈ E1∩E2. In a first case (the other cases being treated similarly), we have

F−1X1
(U1)(s

′) > F−1X1
(U1(s̄)). Then by comonotonicity, F−1Y1

(U1)(s
′) ≥ F−1Y1

(U1(s̄)), thus,

by summing these inequalities, we get s′ /∈ E; the other cases are similar.

Thus, PE(Q2
X(U1, U2) +Q2

Y (U1, U2) ≤ x) is equal to the probability of{
s ∈ S : inf

{
x′ ∈ R : P (s′ ∈ S : X2(s′) ≤ x′) ≥ U2(s) | F−1X1

(U1(s
′)) = F−1X1

(U1(s)))
}

+ inf
{
x′ ∈ R : P (s′ ∈ S : Y 2(s′) ≤ x′) ≥ U2(s) | F−1Y1

(U1(s
′)) = F−1Y1

(U1(s))
}
≤ x

}
conditionnaly to

E = E1 ∪ E2 = {s ∈ S : F−1X1
(U1(s)) = F−1X1

(p1) and F−1Y1
(U1(s)) = F−1Y1

(p1)},
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which is thus the probability of{
s ∈ S : inf

{
x′ ∈ R : P (s′ ∈ S : X2(s′) ≤ x′) ≥ U2(s) | F−1X1

(U1(s
′)) = F−1X1

(p1))
}

+ inf
{
x′ ∈ R : P (s′ ∈ S : Y 2(s′) ≤ x′) ≥ U2(s) | F−1Y1

(U1(s
′)) = F−1Y1

(p1))
}
≤ x

}
conditionnaly to E, which is exactly the conclusion of the lemma.

The previous lemma proves that p1 being fixed, Q2
Z(p1, .) is the one-dimensional

quantile of Z = Q2
X(p1, U

2)+Q2
Y (p2, U

2) in the new probability space (S,F , PE). Note

that the law of U2 with respect to the probability PE is absolutely continuous with

respect to the Lebesgue measure on R, simply because U2 is independent from E.

Thus, we know that Q2
Z(p1, .) is characterized by Q2

Z(p1, .) = ∇g with ∇g(U) =d Z,

where g : [0, 1] → R is a convex function. But if we take g(t) =
∫ t
0
(Q2

X(p1, u) +

Q2
Y (p1, u)du), it satisfies ∇g(U) =d Z, thus we only have to prove that ∇g is increasing

(thus g convex).

But exactly as Lemma 7.3 above, we get that Q2
X(p1, .) (resp. Q2

Y (p1, .)) is the

one-dimensional quantile of X (resp. of Y ) in (S,F , PE1) (resp. in (S,F , PE2)). In

particular, Q2
X(p1, .) and Q2

Y are increasing, thus ∇g = Q2
X(p1, .)+Q2

Y (p1, .) is increas-

ing. Finally, Q2
Z(p1, p2) = Q2

X(p1, p2) +Q2
Y (p1, p2).

We prove similarly that the U -quantile of λQX(U) is λQX , which ends the proof.

7.4 Proof of Theorem 3.3

Step one: first prove that if the quantile operator Q satisfies the basic assumptions (1),

(2) and (3), and if I satisfies Assumptions (1)-(6), then there exists φ : [0, 1]n → Rn,

with non negative components, such that (i) E((1IS, ..., 1IS).φ(U)) = 1, (ii) for every

X ∈ V ′2 , I(X) =
∫
QX(U).φ(U)dP = minX̃=dX

∫
X̃.φ(U)dP .

Define

W = {X : ([0, 1]n,B[0,1]n , PU)→ (IRn,BIRn) measurable},

where PU is the probability measure of U on [0, 1]n, and let W2 be the set of square-

integrable random variables of W . Remark that in the particular case where U(p) = p

and P is the Lebesgue measure, then W2 = V2.
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Define

C = {QX : X ∈ V ′2}

the subset of W2 whose elements are all possible quantiles of random variables in V ′2 .

From the definition of quantiles, C is a cone 3. Indeed, if λ ≥ 0, then for every X ∈ V ′2 ,

λQX is the quantile of some X ′ ∈ V ′2 (Point 2 of Quantile operator definition), thus

λQX ∈ C. Similarly, if X, Y are in V ′2 , then QX + QY is a quantile of some Z ∈ V ′2 .

Last, 0 ∈ C since 0 is the quantile of itself.

Let F ⊂ W2 be the vector space spanned by C. It can be written

F = C − C = {c− c′ : (c, c′) ∈ C × C}.

Now, define Ĩ : F → IR by

∀(X, Y ) ∈ V ′2 × V ′2 : Ĩ(QX −QY ) = I(QX(U))− I(QY (U)).

Since I satisfies Positive Linearity on Quantiles, Ĩ is linear on F . Let p : W2 → IR be

defined by

∀X ∈ W2, p(X) = −I(−X(U)).

We have the following properties:

— First, W2 and F are Riesz spaces (i.e. partially ordered vector spaces which

also are lattices) for the natural order defined by X . Y ⇔ X(s) ≤ Y (s) for

almost every s ∈ S.

— Second, the function p satisfies Monotonicity (because I satisfies Monotonicity),

i.e., X ≤ Y ⇒ p(X) ≤ p(Y ).

— Third, p is a sublinear function, which means the following properties (1) and

(2) are true:

(1) we have p(X + Y ) ≤ p(X) + p(Y ) for every X and Y in W2.

(2) p is positively homogeneous.

Property (1) is true from Inequality Aversion Assumption (see Point 3 in Re-

mark 3.2). Property (2) is true because I is itself positively homogeneous.

— Fourth, Ĩ is positive on F , that is QX −QY ≥ 0 implies Ĩ(QX −QY ) ≥ 0 from

Monotonicity of I.

3. Throughout this paper, cone will be used for convex cone containing 0.
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— Last, we have Ĩ(QX − QY ) ≤ p(QX − QY ) for all QX , QY ∈ C. Indeed,

From Inequality aversion, I(QX(U)) + I((−QX(U)) + QY (U))) ≤ I(QX(U) +

QY (U)+(−QX(U))) = I(QY (U)), thus Ĩ(QX−QY ) = I(QX(U))−I(QY (U)) ≤

−I((−QX(U)) +QY (U))) = p(QX −QY ).

By Hahn-Banach Extension Theorem (Th. 8.31 in [1]), and since from above Ĩ is

a positive linear function on F , majorized by the monotone sublinear function p, Ĩ

extends to a linear functional Ī on W2, satifying

Ī(X) ≤ p(X) ∀X ∈ W2.

Moreover, if X ≥ 0, then

Ī(−X) = −Ī(X) ≤ p(−X) ≤ p(0) = 0

from positive homogeneity and Monotonicity of p. This proves that the extension Ī is

a positive operator.

Recall in the following that a norm ‖.‖ on W2 is a lattice norm if | X |≤| Y | a.e.⇒

‖X‖ ≤ ‖Y ‖ . In particular, this is the case for ‖.‖2. A Banach lattice is, by definition,

a Banach space for the lattice norm. Again, this is true for (W2, ‖.‖2), which is even

a Hilbert space.

Since every positive operator on a Banach lattice is continuous (see Theorem 9.6,

p. 350 in [1]), Ī is continuous on W2, which is a Hilbert space for the scalar product

< X, Y >=
∫
X.Y dP . Thus, from Riesz representation theorem, there is φ ∈ W2 with

non negative components on the support of PU (because Ī is positive) such that

∀X ∈ W2, Ī(X) =

∫
[0,1]n

X(p)φ(p)dPU

In particular, taking any X ∈ V ′2 , we get

I(X) = I(QX(U)) = Ī(QX) =

∫
[0,1]n

QX(p).φ(p)dPU =

∫
S

QX(U).φ(U)dP

Note that∫
(1IS, ..., 1IS).φ(U)dP =

∫
[0,1]n

(1, ..., 1).φdPU = I(1IS, ..., 1IS) = 1

because the Quantile of (1IS, ..., 1IS) is (1, ..., 1).
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Now, for every Y ∈ W2 such that X(U) =d Y (U),

Ī(−Y ) =

∫
−Y (U(p)).φ(U(p))dP ≤ p(−Y ) = −I(Y (U)) = −I(X(U))

where

−I(X(U)) = −I(QX(U)(U)) = −Ĩ(QX(U)) = −Ī(QX(U)) = −
∫
QX(U)(U).φ(U)dP

that is

∀Y ∈W2 such that Y (U) =d X(U),

∫
Y (U).φ(U)dP ≥

∫
QX(U)(U).φ(U)dP (1)

Now givenX ′ ∈ V2, there existsX ∈ W2 such thatX(U) =d X
′ (from optimal coupling

theory, because U is absolutely continuous with respect to Lebesgue measure).

Thus the previous equation gives

∀Y ∈W2 such that Y (U) =d X(U),

∫
Y (U).φ(U)dP ≥

∫
QX′(U).φ(U)dP (2)

But every Y ′ ∈ V2 such that Y ′ =d X
′ can be written in a similar way Y ′ = Y (U) for

some Y ∈ W2, and finally we get

∀Y ′ ∈ V2 such that Y ′ =d X
′,

∫
Y ′.φ(U)dP ≥

∫
QX′(U).φ(U)dP (3)

whis ends the proof of (ii).

Step two: Converse implication: Assume there exists φ : [0, 1]n → Rn, with non

negative components, such that (i) E((1IS, ..., 1IS).φ(U)) = 1, (ii) for every X ∈ V ′2 ,

I(X) =
∫
QX(U).φ(U)dP = minX̃=dX

∫
X̃.φ(U)dP , and let us prove I satisfies As-

sumptions (1)-(5).

Assumption (1) is exactly (i) above. Monotonicity, concavity, positive homogeneity

and neutrality are a consequence of I(X) = minX̃=dX

∫
X̃.φ(U)dP , i.e. I is the min

correlation risk measure with respect to φ(U) (see remark 3.5). Additivity on quantiles

is straighforward.

7.5 Proof of Corollary 3.4

Step one: Let us now assume the quantile operator satisfies additionally (4) in

Definition 3.1 and that the support of PU is [0, 1]n, and let us prove that φ(p) =
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(φ(p1), ..., φ(pn)).

Consider a diagonal n−matrix D with strictly positive diagonal. From Point (iv)

in Definition 3.1, p → Dp is the quantile of some XD(U) ∈ V ′2 for some XD ∈ W2,

that is Dp = QXD(U)(p), thus DU(p) = QXD(U)(U(p)) whose law is the law of XD(U).

Moreover, the previous equation implies that for every Y ∈ W2 whose law is equal to

the law of XD

∫
Y (U).φ(U(p))dP ≥

∫
DU(p).φ(U(p))dP (4)

From optimal coupling theory, and since the law of DU(p) is absolutely continuous

with respect to the Lebesgue measure, there is some l.s.c. convex function fD : Rn →

R such that−φ(U(p)) = ∇fD(DU(p)). Thus, −φ(x) = ∇fD(Dx) for every x ∈ [0, 1]n.

From Aleksandrof theorem, since fD is convex, ∇fD, thus φ, are almost surely C1 on

]0, 1[n.

Differentiating this equality at any x ∈]0, 1[n, we get

∇φ(x) = −∇2fD(Dx).D

for every diagonal n−matrix D with strictly positive diagonal, where ∇φ(x) and

∇2f(x) are assimilated to n-matrices.

Then, we use the following lemma:

Lemma 7.4. Let A be a n-matrix.

i) Assume for every diagonal n−matrix D with strictly positive diagonal, there

exists a symmetric non negative matrix B such that A = −BD. Then A is diagonal

with a negative diagonal.

ii) Moreover, if for every symmetric definite positive matrix D, there exists a sym-

metric non negative matrix B such that A = −BD. Then A = λIn for some negative

λ.

Proof. Taking D = In we get that −A is symmetric non negative. Thus, B and D

commutes, thus taking a diagonal matrix D with distinct elements in the diagonal, we

get B diagonal, thus A diagonal, and since −A is symmetric non negative, A has a
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negative diagonal. Then point ii) is straightforward. �

From the lemma, ∇φ(x) = (∇φ1(x), ...,∇φn(x)) is diagonal for almost every x in

]0, 1[n, with a negative diagonal. Thus φ(x) = (φ1(x1), ..., φn(xn)) where each φi is

decreasing.

Step two. Let now assume the quantile operator satisfies additionally (5) with n ≥ 2,

and let us prove that φ(p) = b− ap.

Now, for every definite positive symmetric n-matrix S, from Point (5) of quantile

operator definition, it turns out that p → Sp is the quantile of some XS(U) ∈ V ′2 ,

that is Sp = QXS(U)(p). As above, from optimal coupling theory, and since the law of

QXS(U) is absolutely continuous with respect to the Lebesgue measure, there is some

l.s.c. convex function fS : Rn → R such that −φ(U(p)) = ∇fS(SU(p)), thus −φ(x) =

∇fS(Sx) at every x ∈ [0, 1]n. Differentiating this equality at every interior point x, we

get −∇φ(x) = ∇2fS(Sx).S for every definite positive symmetric n-matrix S. From

point ii) of Lemma above, ∇φ(x) = (∇φ1(x), ...,∇φn(x)) = (λ1(x1), ..., λn(xn)) with

λ(x1) = ... = λn(xn) ≤ 0, thus ∇φ(x) = −a(1, ..., 1) for some constant a ≥ 0, and

finally φ(x) = b− ax for some b = (b1, ..., bn).

7.6 Proof of Theorem 5.1

From Theorem 2 and from Property (6) of quantile, when the X1, ..., Xn are mu-

tually independent we get I(X) =
∑n

i=1

∫ 1

0

F−1Xi
(t)(bi − at)dt.

It is immediate that Q(0,...,0,S∗,0,...,0) = (0, ..., 0, S∗, 0, ..., 0) since Qk = k.

If k is a constant hence denoting αi = I(0, ..., 0, S∗, 0, ..., 0) one gets αi = bi − a
2
.

(Note that from 1.2 of Theorem 2, αi > 0. Furthermore, since Q(S∗,...,S∗)=(S∗,...,S∗) one

gets 1 = I(S∗, ..., S∗) =
∑n

i=1 αi.

Let fi : t ∈ [0, 1] −→ fi(t) ∈ [0, 1] be defined by:

fi(t) = 1
2bi−a(at2 + 2(bi− a)t), then fi(0) = 0, fi(1) = 1, fi is increasing since a > 0
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and φ ≥ 0 implies bi ≥ a, fi is convex and f ′i(1− t) = bi−at
αi

. Therefore,

I(X) =
n∑
i=1

∫ 1

0

F−1Xi
(t)f ′i(1− t)dt

Note that

∫ 1

0

F−1Xi
(t)f ′i(1− t)dt is the measure of welfare allocated to attribute i

when the policy maker applies the inequality distortion evaluation fi, therefore I(X)

can be interpreted as the weighted average of the various attribute evaluations through

the weights αi allocated to each attribute i by the policymaker.

Finally notice that the derivation hence the unicity of a and b will be performed as

soon as we can determine a. Actually since αi = I(0, ..., 0, S∗, 0, ..., 0) , we will obtain

bi = αi + a
2

.

The next step aims at computing a.

Consider the events Ai = {p = (p1, ..., pi, ..., pn) ∈ [0, 1]n, pi ≥ 1
2
}. Assume that

these events are independent (which will be proved below) then applying the formula

above for X = (A∗1, ..., A
∗
i , ..., A

∗
n), one gets I(X) =

∑n
i=1

∫ 1

0

F−1A∗i
(t)(bi − at)dt

Note that

F−1A∗i
(t) =

1, if 1
2
≤ t ≤ 0

0, if 0 ≤ t ≤ 1
2

Taking into account that bi = αi+
a
2

and
∑n

i=1 αi = 1, one gets that I(A∗1, ..., A
∗
i , ..., A

∗
n) =

1
2
− na

8
.

Hence letting αi = I(0, ..., 0, S∗, 0, ..., 0), β = I(A∗1, ..., A
∗
i , ..., A

∗
n) , one gets that

a = 4−8β
n

and bi = αi + a
2
, ∀i = 1, ..., n .

It remains to prove that the Ai’s are independent. This is immediate since:

P (p = (p1, ..., pi, ..., pn) ∈ [0, 1]n, p1 ≥ 1
2
, ..., pn ≥ 1

2
) = (1

2
)n =

∏n
i=1 P (p =

(p1, ..., pi, ..., pn) ∈ [0, 1]n, pi ≥ 1
2
)

7.7 Proof of Theorem 6.1

Proof. From Theorem 4.1, we have

I(Y ) = E(QU
Y (U).((b1, ..., bn)− a.(U1, ...Un)) =

n∑
i=1

biE(QU
Y (U)i)− aE(QU

Y (U).U).
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The first part is constant, because the law of QU
Y (U) is equal to the law of Y , thus

each component QU
Y (U)i has the same law as Xi. Consequently

min
Xk=dYk,k=1,...,n

I(Y1, ..., Yn) =
n∑
i=1

biE(Xi)− a max
Xk=dYk,k=1,...,n

E(QU
Y (U).U).

But

max
Xk=dYk,k=1,...,n

E(QU
Y (U).U)) = max

Xk=dYk,k=1,...,n

n∑
i=1

E(QU
Y (U)i.Ui).

Since QY (U) has the same law as Y , it has the same marginals, thus QY (U)i =d Xi

for every i = 1, ..., n.

Thus

max
Xk=dYk,k=1,...,n

n∑
i=1

E(QU
Y (U)i.Ui)) ≤

n∑
i=1

max
Xi=dYi

E(Yi.Ui).

But from Optimal coupling theory, since each Ui has a probability law on R which

is absolutely continuous with respect to the Lebesgue measure, for every i = 1, ..., n

we get

max
Xi=dYi

E(Yi.Ui) = E(QUi
Xi

(Ui).Ui),

where QUi
Xi

= g′i, almost surely, for some l.s.c. convex function gi on Ui(S), and with

QUi
Xi

=d Xi.

To finish, let us prove that Y = Ỹ := (QU1
X1

(U1), ..., QUn
Xn

(Un)) is a solution of

max
Xk=dYk,k=1,...,n

E(QU
Y (U).U))

From above, we only have to prove that Ỹ := (QU1
X1

(U1), ..., QUn
Xn

(Un)) can be written

QU
Y (U) for some Y ∈ V2 with Xk =d Yk for every k = 1, ..., n.

From optimal coupling theory, given Y , QU
Y is characterized as QU

Y (U) = ∇f(U)

for some convex l.s.c. function f : Rn → R with ∇f(U) =d Y (such ∇f is unique

almost surely). Then define Y = Ỹ and f(x1, ..., xn) = (g1(x1), ..., gn(xn)). Since each

gk is l.s.c. convex on Uk(S), f is l.s.c. and convex. Moreover, ∇f(U) = Ỹ , and from

the previous characterization, Ỹ = Y = QU
Y (U), with Xk =d Ỹk =d Yk, k = 1, ..., n.

this ends the proof.
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