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INTRODUCTION

We consider the following generalized semi-infinite programming problem

(S ) min x∈X G (x,y)≤0, ∀ y∈Y (x) F (x),
where F : p → , G : p × q → are functions, X is a nonempty subset of p , and Y (x) is an infinite index subset of q depending on x, defined by Y (x) = y ∈ q /g (x, y) ≤ 0 , where g : p × q → is a function.

1

Note that semi-infinite programming problems differ from generalized semi-infinite programming problems by the fact that the index set Y (x) does not depend on the decision variable x. The class of generalized semi-infinite programming problems has several applications. We cite, for example, approximation theory, economics, optimal control, and engineering.

In this article, we investigate a class of nonsmooth generalized semiinfinite programming problems of the form of (S ) whose feasible sets are represented by a reverse convex constraint; that is, a constraint of the form h(x) ≥ 0, with h : p → is a convex function. So that, in addition to the tools of convex analysis, the use of some results related to reverse convex problems will play an important role in our investigation. Precisely, our goal in this article is to give necessary and sufficient optimality conditions for problem (S ). Normal cones, subdifferentials and min-max problems are used to express some of these optimality conditions. In particular, under appropriate assumptions and a new constraint qualification, we provide a necessary and sufficient optimality condition which reduces the problem (S ) to a min-max problem constrained with compact convex linked constraints. We note that these optimality conditions are new and do not use differentiability assumptions. For papers dealing with optimality conditions for generalized semi-infinite programming problems, we cite, for example, [START_REF] Hettich | Second order optimality conditions for genaralized semi-infinite programming problems[END_REF][START_REF] Th | Generalized semi-infinite optimization: A first-order optimality conditions and examples[END_REF][START_REF] Kanzi | Necessary optimality conditions for nonsmooth generalized semi-infinite programming problems[END_REF][START_REF] Kanzi | Convex generalized semi-infinite programming problems with constraint sets: Necessary conditions[END_REF][START_REF] Kanzi | Lagrange multiplier rules for non-differentiable DC geneneralized semi-infinite programming problems[END_REF][START_REF] Rückmann | First-order optimality conditions in generalized semiinfinite programming[END_REF][START_REF] Rückmann | Second-order optimality conditions in generalized semiinfinite programming[END_REF][START_REF] Stein | On optimality conditions for generalized semi-infinite programming problems[END_REF][START_REF] Stein | First order optimality conditions for degenerate index sets in generalized semi-infinite programming[END_REF][START_REF] Still | Generalized semi-infinite programming : Theory and methods[END_REF][START_REF] Ye | First-order optimality conditions for generalized semi-infinite programming problems[END_REF][START_REF] Chen | Optimality conditions for nonsmoth generalized semi-infinite programs[END_REF].

This article is organized as follows. In section 2, we recall some fundamental results of convex analysis that we need in the sequel. Section 3 is devoted to some preliminaries. In section 4, we provide necessary and sufficient optimality conditions for the generalized semiinfinite programming problem (S ).

BACKGROUND OF CONVEX ANALYSIS

In this section, we recall some results related to convex analysis that we will use in the sequel.

Definition 2.1. Let h : n -→ be a function. The set dom h = x ∈ n / h(x) < +∞
is called the effective domain of h. The function h is said to be proper if dom h = ∅, and h(x) > -∞, for all x ∈ n .

In the sequel, for a subset A of n , int A and bd A denote, respectively, the interior and the boundary of A.

Proposition 2.1 ( [START_REF] Hiriart-Urruty | Convex Analysis and Minimization Algorithms[END_REF]). Let C be a nonempty convex subset of n with a nonempty interior. Then, C = int C .

Proposition 2.2 ([13]

). Let h : n -→ be a convex function. Assume that there exists x 0 ∈ n such that h(x 0 )<0. Then [START_REF] Rockafellar | Convex Analysis[END_REF]). Let h : n -→ ∪ +∞ be a proper convex function. Assume that int(dom h) is nonempty. Then, h is continuous on int(dom h). Definition 2.2. Let h : n -→ ∪ +∞ be a convex function, x ∈ dom h and x * ∈ n .

1) int x ∈ n /h(x) ≤ 0 = x ∈ n /h(x) < 0 , 2) bd x ∈ n /h(x) ≤ 0 = x ∈ n /h(x) = 0 . Theorem 2.1 ([
1) The vector x * is said to be a subgradient of h at x if

h(x) ≥ h( x)+ < x * , x -x > ∀x ∈ n
The set of all subgradients of h at x, which is denoted by h( x), is called the subdifferential of h at x, that is, the set defined by

h( x) = x * ∈ n /h(x) ≥ h( x)+ < x * , x -x >, ∀x ∈ n When h( x) = ∅, we say that h is subdifferentiable at x. 2) Let ≥ 0. The vector x * is said to be an -subgradient of h at x if h(x) ≥ h( x)+ < x * , x -x > -∀x ∈ n
The set of all -subgradients of h at x, which is denoted by h( x), is called the -subdifferential of h at x, that is, the set defined by

h( x) = x * ∈ n / h(x) ≥ h( x)+ < x * , x -x > -, ∀x ∈ n When = 0, h( x) reduces to h( x).
Then, we have the following results concerning the subdifferential.

Theorem 2.2 ([14]

). Let h : n -→ ∪ +∞ be a proper convex function. Assume that int(dom h) is nonempty. Then, for all x ∈ int(dom h), we have h(x) = ∅.

Theorem 2.3 ([13]

). Let f , g : n → ∪ +∞ be two convex functions. Assume that there exists x 0 ∈ domf ∩ domg such that g is continuous at x 0 . Then, for every x ∈ domf ∩ domg and ≥ 0, we have

(f + g )(x) = 1 , 2 ≥0 1 + 2 = 1 f (x) + 2 g (x)
Definition 2.3. Let C be a nonempty convex subset of n and x ∈ C . The normal cone of C at x, denoted by (C , x) is defined by

(C , x) = x * ∈ n / < x * , x -x >≤ 0, ∀x ∈ C Definition 2.4.
Let C be a nonempty convex subset of n and x ∈ C . Let ≥ 0. The set of -normal directions to C at x, denoted by (C , x) is defined by

(C , x) = x * ∈ n / < x * , x -x >≤ , ∀x ∈ C When = 0, then (C , x) reduces to (C , x).
Definition 2.5. Let A be a subset of n . The indicator function of A denoted by A is the function defined on n by [START_REF] Hiriart-Urruty | Convex Analysis and Minimization Algorithms[END_REF]). Let C be a closed convex subset of n . Let x ∈ bd C . Then, there exists x * ∈ n \ 0 , such that x * ∈ (C , x).

A (x) = 0 if x ∈ A +∞ if x ∈ A Proposition 2.3 ([

Theorem 2.4 ([13]). Let C and D be two nonempty convex subsets of n . Assume that C

∩ int D = ∅. Let x ∈ C ∩ D. Then C ∩D (x) = C (x) + D (x)
In the sequel, for a function h : n -→ and ∈ , (h) will denote the lower level set of h at , that is,

(h) = y ∈ n /h(y) ≤
Then, we have the following results.

Theorem 2.5 ([13]). Let h :

n -→ be a convex function. Let x ∈ n such that 0 h(x). Then h(x) (h), x = + h(x)
where

+ h(x) = x * / ∈ + , x * ∈ h(x) .
Theorem 2.6 ( [START_REF] Hiriart-Urruty | Convex Analysis and Minimization Algorithms[END_REF]). Let h : n -→ be a convex function and ∈ . Assume that there exists x ∈ n such that h( x) < . Then, for any x ∈ bd( (h)), we have

( (h), x) = ≥0 ( h) (x)
Theorem 2.7 ( [START_REF] Hiriart-Urruty | From convex optimization to nonconvex optimization. Part I: Necessary and sufficient conditions for global optimality[END_REF]). Consider the following convex maximization problem

( ) max x∈ X h(x),
where h : n → is a convex function and X is a closed convex subset of n . Let x ∈ X be a local maximum of ( ). Then h( x) ⊂ ( X , x)

PRELIMINARIES

In this section, we give some preliminary results that will be useful for our study. For the convenience of the reader, let us first recall the following definition.

Definition 3.1. Consider the following minimization problem

( ) min x∈ X ĝ (x)≥0 ĥ(x),
where ĥ : p → is a function, ĝ : p → is a convex function and X is a nonempty subset of p . The constraint g (x) ≥ 0 is called a reverse convex constraint and the problem ( ) is called a problem with a reverse convex constraint. It follows that the complement of the set x ∈ p /g (x) ≥ 0 is open and convex. If, moreover, ĥ and X are convex,

( ) is called a reverse convex problem. The constraint g (x) ≥ 0 is called essential if inf x∈ X ĥ(x) < inf x∈ X ĝ (x)≥0 ĥ(x)
Note that when this property is not satisfied, the problem ( ) is reduced to a convex programming problem.

In the sequel, and under appropriate assumptions, the generalized semi-infinite programming problem (S ) will be viewed as a reverse convex problem. Then, we will make the following assumptions.

(3.1) The set X is convex and compact, (3.2) The functions F is convex on p , (3.3) The functions G is concave on p × q , (3.4) The function g is convex on p × q , (3.5) inf x∈X F (x) < inf(S ), where inf(S ) denotes the infimal value of problem (S ), (3.6) There exists a convex compact subset Z of q , such that Y (x) ⊂ Z , for any x ∈ X .

For (x, y)

∈ p × q , set f (x, y) = -G (x, y) and v(x) = inf y∈Y (x) f (x, y)
Then, the problem (S ) is written as

(S ) min x∈X v(x)≥0 F (x, y) Remark 3.1. Let Assumptions (3.1)-(3.5) hold. Assumptions (3.
3) and (3.4) imply that the marginal function v( ) is convex, and Assumption (3.5) implies that there exists x ∈ X verifying F ( x) < inf(S ) and v( x) < 0 So that, in this case the constraint v(x) ≥ 0 is essential. Furthermore, (S ) is a reverse convex problem. This leads to the following definition. Definition 3.2. Assume that X is convex, F and g are convex functions on p and p × q , respectively, and G is concave on p × q . We call the problem (S ) a reverse convex generalized semi-infinite programming problem. Consider the following minimization problem

( ) min x∈X v(x)=0 F (x)
Then, we have the following result. Proof. Let x ∈ X be the point given in Remark 3.1 which satisfies

F ( x) < inf(S ) and v( x) < 0 (1) 
i) Let x be a solution of problem (S ). Note that such a point exists according to Remark 3.2. Let us show that v( x) = 0. Assume that v( x) > 0. Then, x = x, and from the continuity of the function v( ), there exists x ∈

x, x ,

x = t x + (1 -t ) x, t ∈ 0, 1[, verifying v( x) = 0.
Hence, x is a feasible point of (S ). Then, from the convexity of F , we have

F ( x) ≤ tF ( x) + (1 -t )F ( x) < F ( x),
which contradicts the optimality of x to the problem (S ). To show that x solves ( ), let x be a feasible point of problem ( ). Then, x is a feasible point of (S ). Hence,

F ( x) ≤ F (x)
So that x solves ( ).

Conversely, let x be a solution of ( ). Then v( x) = 0. Hence,

inf(S ) ≤ F ( x) (2) 
Let x be a feasible point of (S ). We distinguish the following cases.

1) Assume that v(x) = 0. Hence, x is a feasible point of problem ( ). So that F ( x) ≤ F (x).
2) Assume that v(x) > 0. Using [START_REF] Hettich | Second order optimality conditions for genaralized semi-infinite programming problems[END_REF] and that the marginal function v( ) is continuous on p , it follows that there exists

x * ∈ x, x , x * = t x + (1 -t )x, t ∈ 0, 1[ verifying v(x * ) = 0. Since X is convex, then x * ∈ X . So that x * is a feasible point of ( ). It follows that F ( x) ≤ F (x * ) (3) 
Assume that F ( x) > F (x). From the convexity of F , we have

F (x * ) ≤ tF ( x) + (1 -t )F (x) < t inf(S ) + (1 -t )F ( x)
Using (2), we obtain

F (x * ) < F ( x)
which contradicts [START_REF] Kanzi | Necessary optimality conditions for nonsmooth generalized semi-infinite programming problems[END_REF]. It follows that

F ( x) ≤ F (x)
Therefore, from the two cases, we deduce that x is a solution of (S ).

ii) We have

x ∈ X /v(x) = 0 ⊂ x ∈ X /v(x) ≥ 0 So that inf(S ) ≤ inf( )
Let x 1 and x 2 be solutions to problems (S ) and ( ), respectively. From the above case i), we have v(x 1 ) = 0. So that, x 1 is a feasible point of ( ). It follows that

F (x 2 ) = inf( ) ≤ F (x 1 ) = inf(S ),
where the inequality follows from the feasibility of x 1 to problem ( ). We deduce that inf(S ) = inf( ).

Remark 3.3. Note that a necessary condition for a feasible point x of (S ) to be optimal is that v(x) = 0 [see the proof of i) of Proposition 3.1].

OPTIMALITY CONDITIONS

In this section, we provide necessary and sufficient optimality conditions for the generalized semi-infinite programming problem (S ). Some of these optimality conditions are established via stability results. 

i) v( x) = 0, ii) X ∩ int( F ( x) (F )) ⊂ X ∩ int( v( x) (v)).
Proof. Let x be the point given in Remark 3.1 that satisfies F ( x) < inf(S ) and v( x) < 0 ( ⇒) Assume that x is a solution of (S ). Then, v( x) = 0 (see Remark 3.3). We have

F ( x) < inf(S ) = F ( x) and v( x) < 0 = v( x)
With the above two strict inequalities and the convexity of F and v, we deduce that

int( F ( x) (F )) = x ∈ p /F (x) < F ( x) and int( v( x) (v)) = x ∈ p /v(x) < v( x) = x ∈ p /v(x) < 0 Assume that X ∩ int( F ( x) (F )) is not a subset of X ∩ int( v( x) (v)). Then, there exists x ∈ X such that F ( x) < F ( x), but v( x) ≥ v( x) = 0 that is, x ∈ int( v( x) (v)).
Hence, x is a feasible point of (S ). This contradicts the optimality of x.

(⇐ ) Let the conditions i) and ii) be satisfied. Assume that there exists x ∈ X such that v(x) ≥ 0 and

F (x) < F ( x) (4) 
that is, x is not a solution of (S ). Then we have x ∈ X ∩ int( F ( x) (F )).

Property ii) implies that

v(x) < v( x)
Since from i) we have v( x) = 0, it follows that v(x) < 0, which contradicts the first inequality in (4). So that x is a solution of (S ).

From Theorem 4.1 we deduce the following necessary optimality condition expressed in terms of normal cones and subdifferentials.

Corollary 4.1. Let Assumptions (3.1)-(3.6) hold. Let x be a feasible point of problem (S ).

Assume that x is a solution of (S ). Then, v( x) = 0 and for any ≥ 0, we have

1 , 2 ≥0 1 + 2 = 1 (X , x) + ≥0 2 ( v)( x) ⊂ 1 , 2 ≥0 1 + 2 = 1 (X , x) + ≥0 2 ( v)( x)
Proof. Since x solves (S ), it follows from Theorem 4.1 that v( x) = 0 and

X ∩ int( F ( x) (F )) ⊂ X ∩ int( v( x) (v)) Then intX ∩ int( F ( x) (F )) ⊂ X ∩ int( F ( x) (F )) ⊂ X ∩ int( v( x) (v)) ⊂ X ∩ v( x) (v) = X ∩ v( x) (v) (5) 
where the above equality follows from the closedness of the sets X and

v( x) (v). Moreover, intX ∩ int( F ( x) (F )) = int X ∩ F ( x) (F ) = X ∩ F ( x) (F ) = X ∩ F ( x) (F )
where the above second equality follows from the convexity of the set X ∩ F ( x) (F ) (see Proposition 2.1). Therefore, from ( 5) we obtain

X ∩ F ( x) (F ) ⊂ X ∩ v( x) (v)
So that, for any ≥ 0, we have

X ∩ v( x) (v) ⊂ X ∩ F ( x) (F ) (6) 
Let x ∈ X be the point given in Remark 3.1. Then, x satisfies

F ( x) < F ( x) and v( x) < v( x) So that X ∩ int( F ( x) (F )) = ∅ and X ∩ int( v( x) (v)) = ∅ Then, we have dom X ∩ int dom F ( x) (F ) = ∅ and dom X ∩ int dom v( x) (v) = ∅ Let ( ) = x ∈ X /F (x) ≤ and (S ) = x ∈ X /v(x) ≥
be, respectively, the feasible sets of problems ( ) and (S ) respectively. Note that for = 0, we obtain the problem (S ).

The following Propositions 4.1 and 4.2 give stability results for problems ( ) and (S ), respectively. Their proofs are an adaptation of those given in [START_REF] Tuy | Convex Programs with additional reverse convex constraint[END_REF]. These stability results allow us to establish a necessary and sufficient optimality condition that reduces the problem (S ) to a minmax problem. Then, in order to provide the main result of this section, we need first to establish some preliminary results. 

lim m→+∞ sup( m ) = sup( ) Proof. Let k → 0 + , k ∈ . For k , there exists x k ∈ X , such that F (x k ) ≤ and v(x k ) > sup( ) -k
We distinguish the following cases.

Case 1. Assume that there exists k 0 ∈ , such that

F (x k ) = ∀ k ∈ , k ≥ k 0
Then, since is not a local minimum of F over X , for 1 p , there exists

x k,p ∈ B(x k , 1 p ) ∩ X , such that F (x k,p ) < F (x k ) = ∀ k ≥ k 0
We have x k,p → x k , as p → +∞. Then, from the continuity of F as a finite convex function, we have F (x k,p ) → F (x k ), as p → +∞. Moreover, m → , as m → +∞, and m < , ∀ m ∈ . Then, there exists m 0 ∈ , such that

F (x k,p ) < m , ∀ m ≥ m 0 Since x k,p is a feasible point of problem ( m ), m ≥ m 0 , we have sup( m ) ≥ v(x k,p ) m ≥ m 0 Then lim inf m→+∞ sup( m ) ≥ v(x k,p ) Since v( ) is lower semi-continuous on p , then lim inf m→+∞ sup( m ) ≥ lim inf p→+∞ v(x k,p ) ≥ v(x k ) ≥ sup( ) -k Letting k → +∞, we obtain lim inf m→+∞ sup( m ) ≥ sup( ) (7) 
On the other hand, for every m ∈ , we have ( m ) ⊂ ( ), and, hence,

sup( m ) ≤ sup( ) So that lim sup m→+∞ sup( m ) ≤ sup( ) (8) 
From ( 7) and ( 8), we deduce that lim m→+∞ sup( m ) = sup( ) Case 2. Assume that there exists an infinite subset of such that

F (x k ) = ∀ k ∈ So that F (x k ) < ∀ k ∈
Then, for all k ∈ , we have

F (x k ) < m for large m It follows from the feasibility of x k to problem ( m ) that sup( m ) ≥ v(x k ) > sup( ) -k Then lim inf m→+∞ sup( m ) ≥ sup( ) -k Letting k → +∞, k ∈ , we obtain lim inf m→+∞ sup( m ) ≥ lim k→+∞ k∈ (sup( ) -k ) = sup( ) (9) 
On the other hand, we have

sup( ) ≥ sup( m ) Then sup( ) ≥ lim sup m→+∞ sup( m ) (10) 
From ( 9) and ( 10), we obtain

lim m→+∞ sup( m ) = sup( )
The following theorem provides a necessary optimality condition for (S ). 

< , ∀ m ∈ . Let x ∈ X such that F (x) ≤ m . Then v(x) < 0 (11) Otherwise v(x) ≥ 0. So that m < = F ( x) = inf(S ) ≤ F (x) ≤ m
which gives a contradiction. Then, from (11), we have

sup x∈X F (x)≤ m v(x) = sup( m ) ≤ 0 Proposition 4.1 implies that lim m→+∞ sup( m ) = sup( ) ≤ 0 Since v( x) = 0 and x is a feasible point of problem ( ), it follows that sup( ) = sup x∈X F (x)≤F ( x) v(x) = 0 = sup x∈X F (x)≤F ( x) inf y∈Y (x) f (x, y) with f (x, y) = -G (x, y). So that inf x∈X F (x)≤F ( x) sup y∈ q g (x,y)≤0 G (x, y) = 0
We consider the following constraint qualification: (4.1) For every x ∈ X verifying v(x) = 0, there exist x * ∈ v(x) and x ∈ X , such that x * , xx > 0. 

lim m→+∞ inf(S m ) = inf(S ) Proof. Let k → 0 + , k ∈ . For k , there exists x k ∈ X such that v(x k ) ≥ 0 and F (x k ) < inf(S ) + k
We distinguish the following cases.

Case 1. Assume that there exists k 0 ∈ , such that v(x k ) = 0 ∀ k ≥ k 0 Assumption (4.1) means that for every x ∈ X such that v(x) = 0, v(x) is not a subset of (X , x). So that 0 is not a local maximum of v( ) over X (Theorem 2.7). Then, for 1 p , p ∈ * , there exists

x k,p ∈ B x k , 1 p ∩ X , such that v(x k,p ) > v(x k ) = 0
Then, there exists m 0 ∈ , such that

v(x k,p ) > m ∀ m ≥ m 0 Since x k,p is feasible for (S m ), m ≥ m 0 , then inf(S m ) ≤ F (x k,p ) So that lim sup m→+∞ inf(S m ) ≤ F (x k,p )
Since F is upper semi-continuous on p and x k,p → x k , as p → +∞, then lim sup

m→+∞ inf(S m ) ≤ lim sup p→+∞ F (x k,p ) ≤ F (x k ) < inf(S ) + k Letting k → +∞, we obtain lim sup m→+∞ inf(S m ) ≤ inf(S ) (12) 
On the other hand, we have

(S m ) ⊂ x ∈ p / x ∈ X , v(x) ≥ 0 Then inf(S ) ≤ inf(S m ) and inf(S ) ≤ lim inf m→+∞ inf(S m ) (13) 
From ( 12) and ( 13), we deduce that

lim m→+∞ inf( m ) = inf(S )
Case 2. Assume that there exists an infinite subset of such that

v(x k ) = 0 ∀ k ∈ So that v(x k ) > 0 ∀ k ∈
Since m → 0 + , there exists m 0 ∈ such that for all k ∈ , we have

v(x k ) > m ∀ m ≥ m 0 Hence, x k is a feasible point for (S m ), m ≥ m 0 . Then inf(S m ) ≤ F (x k ) < inf(S ) + k So that lim sup m→+∞ inf(S m ) ≤ F (x k ) < inf(S ) + k Letting k to +∞, k ∈ , we obtain lim sup m→+∞ inf(S m ) ≤ lim k→+∞ k∈ (inf(S ) + k ) = inf(S ) (14) 
On the other hand, we have

inf(S ) ≤ inf(S m ) So that inf(S ) ≤ lim inf m→+∞ inf(S m ) (15) 
Hence, from ( 14) and ( 15), we obtain

lim m→+∞ inf(S m ) = inf(S )
The following theorem gives a sufficient optimality condition. The proof is based on the use of the stability of problem (S ) under perturbation (Proposition 4.2). 

Proof. Let

m → 0, with m > 0, ∀ m ∈ . Let x ∈ X such that v(x) ≥ m , ∀ m ∈ . Then F (x) > F ( x) (16) 
Otherwise

, F (x) ≤ F ( x). So that m ≤ v(x) ≤ sup u∈X F (u)≤F ( x) v(u) = 0 = v( x) < m
which gives a contradiction. Then, property [START_REF] Tuy | Convex Programs with additional reverse convex constraint[END_REF] 

implies that inf(S m ) = inf x∈X v(x)≥ m F (x) ≥ F ( x) It follows from Proposition 4.2 that lim m→+∞ inf(S m ) = inf(S ) ≥ F ( x)
So that F ( x) = inf(S ). Hence, x solves (S ).

The following theorem gives a necessary and sufficient optimality condition that reduces the problem (S ) to a min-max problem with compact convex linked constraints. 

4.1. Let X = -4, 4 , F : → , G : 2 → , g = (g 1 , g 2 ):
2 → 2 be the functions defined by 

F (x) = x 2 + 1 G (x, y) = -3x 2 -y 2 + 1 g 1 (x, y) = -x -y g 2 (x, y) = y -x For all x ∈ -4, 4 , we have Y (x) = -x, x ⊂ -
(x 2 + 1) = 1 < min x∈[-4,4] -3x 2 -y 2 +1≤0, ∀ y∈[-x,x] (x 2 + 1) = 4 3 
Hence, Assumption (3.5) is satisfied. Let us verify Assumption (4.1). We have 

v(x) = 3x 2 -1 v(x) = v (x) = 6x x ∈ [-4, 4]/v(x) = 0 = - 1 √ 3 , 1 √ 3 v - 1 √ 3 = -2 √ 3 and v 1 √ 3 = 2 √ 3 • For x = 1 √ 3 , let x * = 2 √ 3 ∈ v 1

CONCLUSION

Our investigation in this article concerned a class of nonsmooth generalized semi-infinite programming problems whose feasible sets are represented by a reverse convex constraint. So the use of reverse convex problems played an important role to establish our results. Then, for problem (S ), under appropriate assumptions, we have given necessary and sufficient optimality conditions. These optimality conditions are new and do not use differentiability assumptions. Normal cones, subdifferentials, and max-min problems are the main tools used to express these optimality conditions. In particular, using a new constraint qualification (Assumption (4.1)), we have provided a necessary and sufficient optimality condition which reduces (S ) to a min-max problem with compact convex linked constraints. Therefore, such an optimality condition provides an alternative to solve the considered class of generalized semi-infinite programming problems via min-max problems with linked constraints.

Remark 3 . 2 .

 32 Let Assumptions (3.3),(3.4), and (3.6) hold. Then, the marginal function v( ) is convex and finite valued. Hence, it is a continuous function on p (Theorem 2.1). If, moreover, Assumptions (3.1) and (3.2) are satisfied, then, the problem (S ) admits at least one solution.

Proposition 3 . 1 .

 31 Let Assumptions (3.1)-(3.6) hold. Then, the problems (S ) and ( ) are equivalent in the following sense i) (S ) and ( ) have the same set of solutions, ii) inf(S ) = inf( ).

Theorem 4 . 1 .

 41 (Necessary and Sufficient Optimality Conditions) Let Assumptions (3.1)-(3.6) hold. Let x be a feasible point of problem (S ). Then, x is a solution of (S ) if and only if

Proposition 4 . 1 .

 41 Let ∈ . Assume that Assumptions (3.1)-(3.4) and(3.6) hold, and that is not a local minimum of F over X . Then, for any sequence m → , as m → +∞, with m < , ∀ m ∈ , we have

Theorem 4 . 2 .

 42 Assume that Assumptions (3.1)-(3.6) are satisfied. Assume that x is a solution of (S ). Then, v( x) = 0 and inf x∈X F (x)≤F ( x) sup y∈ q g (x,y)≤0 G (x, y) = 0 ( x) Proof. The condition v( x) = 0 follows from Theorem 4.1. Let = F ( x), and m → , as m → +∞, with m

Remark 4 . 1 .

 41 Assumption (4.1) is equivalent to say that for every x ∈ X verifying v(x) = 0, we have v(x) ⊂ (X , x). In other terms, if denotes the set of solutions to the problem max x∈X v(x) we have x ∈ X /v(x) = 0 ∩ = ∅ Proposition 4.2. Let Assumption (3.1)-(3.6) and (4.1) hold. Let m → 0 + , as m → +∞, with m > 0, ∀ m ∈ . Then

Theorem 4 . 3 .

 43 Let Assumptions (3.1)-(3.6) and (4.1) hold. Let x be a feasible point of (S ). Assume that v( x) = 0 and x satisfies the condition ( x) given in Theorem 4.2. Then, x solves (S ).

Theorem 4 . 4 .

 44 Let Assumptions (3.1)-(3.6) and (4.1) hold. Let x be a feasible point of (S ). Then, x solves (S ) if and only ifi) Then, v( x) = 0, ii) inf x∈X F (x)≤F ( x)sup y∈ q g (x,y)≤0 G (x, y) = 0.Proof. Use Theorems 4.2 and 4.3.For illustration, let us give the following simple example.

Example

  

√ 3 , 3 > 0 • 1 √ 3 , 2 √ 3 ∈ v - 1 √ 3 , 1 √ 3 and x = 1 √ 3 3 ( 1 -Therefore, - 1 √ 3 and 1 √ 3

 3301323131313311313 and x = 4 ∈ X . Then x * x -1 √ For x =let x * =and x = -4 ∈ X . Then x (4.1) is satisfied. Let us find the solutions of problem (S ) via the optimality conditions. For this, let us apply Theorem 4.4. Let x be a feasible point of (S ). Then, x solves (S ) if and only if v( x) = 0 and inf x∈X F (x)≤F ( x) sup y∈ g (x,y)≤0 G (x, y) = 0 The equation v( x) = 0, gives x = -Replacing the functions F , G , and g by their expressions, we get inf x∈X F (x)≤F ( x) y∈[-x,x](-3x 2y 2 + 1) = 1 -3x 2 ) = 0 are solutions of (S ).

On the other hand, we have

Using Theorems 2.1 and 2.3, we obtain

On the other hand, since int(

Hence,

By similar calculation and arguments, we also have

Then, the result follows from the inclusion in [START_REF] Rückmann | First-order optimality conditions in generalized semiinfinite programming[END_REF].

In the remainder of this section, we will give optimality conditions involving stability results. For ∈ , we consider the following parameterized maximization problem

and for ∈ , we associate to the generalized semi-infinite programming problem (S ) the following parameterized minimization problem (S ) min