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� This article deals with a generalized semi-infinite programming problem (S). Under
appropriate assumptions, for such a problem we give necessary and sufficient optimality
conditions via reverse convex problems. In particular, a necessary and sufficient optimality
condition reduces the problem (S) to a min-max problem constrained with compact convex linked
constraints.
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1. INTRODUCTION

We consider the following generalized semi-infinite programming
problem

(S) min
x∈X

G(x ,y)≤0, ∀ y∈Y (x)

F (x),

where F : �p → �, G : �p × �q → � are functions, X is a nonempty
subset of �p , and Y (x) is an infinite index subset of �q depending on x ,
defined by

Y (x) = �y ∈ �q/g (x , y) ≤ 0�,

where g : �p × �q → � is a function.
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Note that semi-infinite programming problems differ from generalized
semi-infinite programming problems by the fact that the index set Y (x)
does not depend on the decision variable x . The class of generalized
semi-infinite programming problems has several applications. We cite,
for example, approximation theory, economics, optimal control, and
engineering.

In this article, we investigate a class of nonsmooth generalized semi-
infinite programming problems of the form of (S) whose feasible sets are
represented by a reverse convex constraint; that is, a constraint of the form
h(x) ≥ 0, with h : �p → � is a convex function. So that, in addition to the
tools of convex analysis, the use of some results related to reverse convex
problems will play an important role in our investigation. Precisely, our
goal in this article is to give necessary and sufficient optimality conditions
for problem (S). Normal cones, subdifferentials and min-max problems
are used to express some of these optimality conditions. In particular,
under appropriate assumptions and a new constraint qualification, we
provide a necessary and sufficient optimality condition which reduces the
problem (S) to a min-max problem constrained with compact convex
linked constraints. We note that these optimality conditions are new and
do not use differentiability assumptions. For papers dealing with optimality
conditions for generalized semi-infinite programming problems, we cite,
for example, [1–12].

This article is organized as follows. In section 2, we recall some
fundamental results of convex analysis that we need in the sequel.
Section 3 is devoted to some preliminaries. In section 4, we provide
necessary and sufficient optimality conditions for the generalized semi-
infinite programming problem (S).

2. BACKGROUND OF CONVEX ANALYSIS

In this section, we recall some results related to convex analysis that we
will use in the sequel.

Definition 2.1. Let h : �n −→ � be a function. The set

dom h = �x ∈ �n/ h(x) < +∞�

is called the effective domain of h. The function h is said to be proper if
dom h �= ∅, and h(x) > −∞, for all x ∈ �n .

In the sequel, for a subset A of �n , intA and bdA denote, respectively,
the interior and the boundary of A.

Proposition 2.1 ([13]). Let C be a nonempty convex subset of �n with a
nonempty interior. Then, C = intC.
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Proposition 2.2 ([13]). Let h : �n −→ � be a convex function. Assume that 

there exists x0 ∈ �n such that h(x0) < 0. Then

1) int�x ∈ �n/h(x) ≤ 0� = �x ∈ �n/h(x) < 0�,
2) bd�x ∈ �n/h(x) ≤ 0� = �x ∈ �n/h(x) = 0�.

Theorem 2.1 ([14]). Let h : �n −→ � ∪ �+∞� be a proper convex function.
Assume that int(dom h) is nonempty. Then, h is continuous on int(dom h).

Definition 2.2. Let h : �n −→ � ∪ �+∞� be a convex function, x̄ ∈
dom h and x∗ ∈ �n .

1) The vector x∗ is said to be a subgradient of h at x̄ if

h(x) ≥ h(x̄)+ < x∗, x − x̄ > ∀x ∈ �n �

The set of all subgradients of h at x̄ , which is denoted by �h(x̄), is called
the subdifferential of h at x̄ , that is, the set defined by

�h(x̄) = �x∗ ∈ �n/h(x) ≥ h(x̄)+ < x∗, x − x̄ >, ∀x ∈ �n��

When �h(x̄) �= ∅, we say that h is subdifferentiable at x̄ .
2) Let � ≥ 0. The vector x∗ is said to be an �-subgradient of h at x̄ if

h(x) ≥ h(x̄)+ < x∗, x − x̄ > −� ∀x ∈ �n �

The set of all �-subgradients of h at x̄ , which is denoted by ��h(x̄), is
called the �-subdifferential of h at x̄ , that is, the set defined by

��h(x̄) = �x∗ ∈ �n/ h(x) ≥ h(x̄)+ < x∗, x − x̄ > −�, ∀x ∈ �n��

When � = 0, ��h(x̄) reduces to �h(x̄).

Then, we have the following results concerning the subdifferential.

Theorem 2.2 ([14]). Let h : �n −→ � ∪ �+∞� be a proper convex function.
Assume that int(dom h) is nonempty. Then, for all x ∈ int(dom h), we have
�h(x) �= ∅.
Theorem 2.3 ([13]). Let f , g : �n → � ∪ �+∞� be two convex functions.
Assume that there exists x0 ∈ domf ∩ domg such that g is continuous at x0. Then,
for every x ∈ domf ∩ domg and � ≥ 0, we have

��(f + g )(x) =
⋃

�1,�2≥0
�1+�2=�

���1 f (x) + ��2g (x)��
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Definition 2.3. Let C be a nonempty convex subset of �n and x̄ ∈ C .
The normal cone of C at x̄ , denoted by � (C , x̄) is defined by

� (C , x̄) = �x∗ ∈ �n/ < x∗, x − x̄ >≤ 0, ∀x ∈ C��

Definition 2.4. Let C be a nonempty convex subset of �n and x̄ ∈ C .
Let � ≥ 0. The set of �-normal directions to C at x̄ , denoted by ��(C , x̄) is
defined by

��(C , x̄) = �x∗ ∈ �n/ < x∗, x − x̄ >≤ �, ∀x ∈ C��

When � = 0, then ��(C , x̄) reduces to � (C , x̄).

Definition 2.5. Let A be a subset of �n . The indicator function of A
denoted by �A is the function defined on �n by

�A(x) =
{
0 if x ∈ A
+∞ if x �∈ A�

Proposition 2.3 ([13]). Let C be a closed convex subset of �n. Let x ∈ bdC.
Then, there exists x∗ ∈ �n\�0�, such that x∗ ∈ � (C , x).

Theorem 2.4 ([13]). Let C and D be two nonempty convex subsets of �n.
Assume that C ∩ intD �= ∅. Let x ∈ C ∩ D. Then

�C∩D(x) = �C(x) + �D(x)�

In the sequel, for a function h : �n −→ � and � ∈ �, ��(h) will
denote the lower level set of h at �, that is,

��(h) = �y ∈ �n/h(y) ≤ ���

Then, we have the following results.

Theorem 2.5 ([13]). Let h : �n −→ � be a convex function. Let x ∈ �n

such that 0� �h(x). Then

�
(
�h(x)(h), x

) = �+�h(x)

where �+�h(x) = ��x∗/� ∈ �+, x∗ ∈ �h(x)�.
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Theorem 2.6 ([13]). Let h : �n −→ � be a convex function and � ∈ �.
Assume that there exists x̄ ∈ �n such that h(x̄) < �. Then, for any x ∈
bd(��(h)), we have

�� (��(h), x) =
⋃
	≥0

�� (	h) (x)�

Theorem 2.7 ([15]). Consider the following convex maximization problem

(�) max
x∈X̂

h(x),

where h : �n → � is a convex function and X̂ is a closed convex subset of �n.
Let x̂ ∈ X̂ be a local maximum of (�). Then

�h(x̂) ⊂ � (X̂ , x̂)�

3. PRELIMINARIES

In this section, we give some preliminary results that will be useful for
our study. For the convenience of the reader, let us first recall the following
definition.

Definition 3.1. Consider the following minimization problem

(�) min
x∈X̂

ĝ (x)≥0

ĥ(x),

where ĥ : �p → � is a function, ĝ : �p → � is a convex function and
X̂ is a nonempty subset of �p . The constraint g (x) ≥ 0 is called a
reverse convex constraint and the problem (�) is called a problem with
a reverse convex constraint. It follows that the complement of the set
�x ∈ �p/g (x) ≥ 0� is open and convex. If, moreover, ĥ and X̂ are convex,
(�) is called a reverse convex problem. The constraint g (x) ≥ 0 is called
essential if

inf
x∈X̂

ĥ(x) < inf
x∈X̂

ĝ (x)≥0

ĥ(x)�

Note that when this property is not satisfied, the problem (�) is reduced
to a convex programming problem.

In the sequel, and under appropriate assumptions, the generalized
semi-infinite programming problem (S) will be viewed as a reverse convex
problem. Then, we will make the following assumptions.
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(3.1) The set X is convex and compact,
(3.2) The functions F is convex on �p ,
(3.3) The functions G is concave on �p × �q ,
(3.4) The function g is convex on �p × �q ,
(3.5) infx∈X F (x) < inf(S), where inf(S) denotes the infimal value of

problem (S),
(3.6) There exists a convex compact subset Z of �q , such that Y (x) ⊂ Z ,

for any x ∈ X .

For (x , y) ∈ �p × �q , set

f (x , y) = −G(x , y) and v(x) = inf
y∈Y (x)

f (x , y)�

Then, the problem (S) is written as

(S) min
x∈X

v(x)≥0

F (x , y)�

Remark 3.1. Let Assumptions (3.1)–(3.5) hold. Assumptions (3.3) and
(3.4) imply that the marginal function v(�) is convex, and Assumption
(3.5) implies that there exists x̄ ∈ X verifying

F (x̄) < inf(S) and v(x̄) < 0�

So that, in this case the constraint v(x) ≥ 0 is essential. Furthermore, (S)
is a reverse convex problem. This leads to the following definition.

Definition 3.2. Assume that X is convex, F and g are convex functions
on �p and �p × �q , respectively, and G is concave on �p × �q . We call
the problem (S) a reverse convex generalized semi-infinite programming
problem.

Remark 3.2. Let Assumptions (3.3), (3.4), and (3.6) hold. Then, the
marginal function v(�) is convex and finite valued. Hence, it is a
continuous function on �p (Theorem 2.1). If, moreover, Assumptions
(3.1) and (3.2) are satisfied, then, the problem (S) admits at least one
solution.

Consider the following minimization problem

(�) min
x∈X

v(x)=0

F (x)�

Then, we have the following result.
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Proposition 3.1. Let Assumptions (3.1)–(3.6) hold. Then, the problems (S) 

and (�) are equivalent in the following sense

i) (S) and (�) have the same set of solutions,
ii) inf(S) = inf(�).

Proof. Let x̄ ∈ X be the point given in Remark 3.1 which satisfies

F (x̄) < inf(S) and v(x̄) < 0� (1)

i) Let x̂ be a solution of problem (S). Note that such a point exists
according to Remark 3.2. Let us show that v(x̂) = 0. Assume that v(x̂) > 0.
Then, x̂ �= x̄ , and from the continuity of the function v(�), there exists x̃ ∈

x̂ , x̄�, x̃ = t x̄ + (1 − t)x̂ , t ∈ 
0, 1[, verifying v(x̃) = 0. Hence, x̃ is a feasible
point of (S). Then, from the convexity of F , we have

F (x̃) ≤ tF (x̄) + (1 − t)F (x̂) < F (x̂),

which contradicts the optimality of x̂ to the problem (S). To show that x̂
solves (�), let x be a feasible point of problem (�). Then, x is a feasible
point of (S). Hence,

F (x̂) ≤ F (x)�

So that x̂ solves (�).
Conversely, let x̂ be a solution of (�). Then v(x̂) = 0. Hence,

inf(S) ≤ F (x̂)� (2)

Let x be a feasible point of (S). We distinguish the following cases.

1) Assume that v(x) = 0. Hence, x is a feasible point of problem
(�). So that F (x̂) ≤ F (x).

2) Assume that v(x) > 0. Using (1) and that the marginal function
v(�) is continuous on �p , it follows that there exists x∗ ∈ 
x , x̄�, x∗ = t x̄ +
(1 − t)x , t ∈ 
0, 1[ verifying v(x∗) = 0. Since X is convex, then x∗ ∈ X . So
that x∗ is a feasible point of (�). It follows that

F (x̂) ≤ F (x∗)� (3)

Assume that F (x̂) > F (x). From the convexity of F , we have

F (x∗) ≤ tF (x̄) + (1 − t)F (x) < t inf(S) + (1 − t)F (x̂)�
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 Using (2), we obtain

F (x∗) < F (x̂)

which contradicts (3). It follows that

F (x̂) ≤ F (x)�

Therefore, from the two cases, we deduce that x̂ is a solution of (S).

ii) We have

�x ∈ X /v(x) = 0� ⊂ �x ∈ X /v(x) ≥ 0��

So that

inf(S) ≤ inf(�)�

Let x1 and x2 be solutions to problems (S) and (�), respectively. From the
above case i), we have v(x1) = 0. So that, x1 is a feasible point of (�). It
follows that

F (x2) = inf(�) ≤ F (x1) = inf(S),

where the inequality follows from the feasibility of x1 to problem (�). We
deduce that inf(S) = inf(�). �

Remark 3.3. Note that a necessary condition for a feasible point x of (S)
to be optimal is that v(x) = 0 [see the proof of i) of Proposition 3.1].

4. OPTIMALITY CONDITIONS

In this section, we provide necessary and sufficient optimality
conditions for the generalized semi-infinite programming problem (S).
Some of these optimality conditions are established via stability results.

Theorem 4.1. (Necessary and Sufficient Optimality Conditions) Let
Assumptions (3.1)–(3.6) hold. Let x̂ be a feasible point of problem (S). Then, x̂ is
a solution of (S) if and only if

i) v(x̂) = 0,
ii) X ∩ int(�F (x̂)(F )) ⊂ X ∩ int(�v(x̂)(v)).

Proof. Let x̄ be the point given in Remark 3.1 that satisfies

F (x̄) < inf(S) and v(x̄) < 0�
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(⇒) Assume that x̂ is a solution of (S). Then, v(x̂) = 0 (see
Remark 3.3). We have

F (x̄) < inf(S) = F (x̂) and v(x̄) < 0 = v(x̂)�

With the above two strict inequalities and the convexity of F and v, we
deduce that

int(�F (x̂)(F )) = �x ∈ �p/F (x) < F (x̂)�

and

int(�v(x̂)(v)) = �x ∈ �p/v(x) < v(x̂)�

= �x ∈ �p/v(x) < 0��

Assume that X ∩ int(�F (x̂)(F )) is not a subset of X ∩ int(�v(x̂)(v)). Then,
there exists x̃ ∈ X such that F (x̃) < F (x̂), but

v(x̃) ≥ v(x̂) = 0

that is, x̃ �∈ int(�v(x̂)(v)). Hence, x̃ is a feasible point of (S). This
contradicts the optimality of x̂ .

(⇐) Let the conditions i) and ii) be satisfied. Assume that there
exists x ∈ X such that

v(x) ≥ 0 and F (x) < F (x̂) (4)

that is, x̂ is not a solution of (S). Then we have x ∈ X ∩ int(�F (x̂)(F )).
Property ii) implies that

v(x) < v(x̂)�

Since from i) we have v(x̂) = 0, it follows that v(x) < 0, which contradicts
the first inequality in (4). So that x̂ is a solution of (S). �

From Theorem 4.1 we deduce the following necessary optimality
condition expressed in terms of normal cones and subdifferentials.

Corollary 4.1. Let Assumptions (3.1)–(3.6) hold. Let x̂ be a feasible point of
problem (S). Assume that x̂ is a solution of (S). Then, v(x̂) = 0 and for any
� ≥ 0, we have

⋃
�1,�2≥0
�1+�2=�

{
��1(X , x̂) +

⋃
�≥0

��2(�v)(x̂)

}
⊂

⋃
	1,	2≥0
	1+	2=�

{
�	1(X , x̂) +

⋃
	≥0

�	2(�v)(x̂)

}
�
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Proof. Since x̂ solves (S), it follows from Theorem 4.1 that v(x̂) = 0 and

X ∩ int(�F (x̂)(F )) ⊂ X ∩ int(�v(x̂)(v))�

Then

intX ∩ int(�F (x̂)(F )) ⊂ X ∩ int(�F (x̂)(F )) ⊂ X ∩ int(�v(x̂)(v))

⊂ X ∩ �v(x̂)(v)

= X ∩ �v(x̂)(v) (5)

where the above equality follows from the closedness of the sets X and
�v(x̂)(v). Moreover,

intX ∩ int(�F (x̂)(F )) = int
(
X ∩ �F (x̂)(F )

)
= X ∩ �F (x̂)(F )

= X ∩ �F (x̂)(F )

where the above second equality follows from the convexity of the set X ∩
�F (x̂)(F ) (see Proposition 2.1). Therefore, from (5) we obtain

X ∩ �F (x̂)(F ) ⊂ X ∩ �v(x̂)(v)�

So that, for any � ≥ 0, we have

��

(
X ∩ �v(x̂)(v)

) ⊂ ��

(
X ∩ �F (x̂)(F )

)
� (6)

Let x̄ ∈ X be the point given in Remark 3.1. Then, x̄ satisfies

F (x̄) < F (x̂) and v(x̄) < v(x̂)�

So that

X ∩ int(�F (x̂)(F )) �= ∅ and X ∩ int(�v(x̂)(v)) �= ∅�

Then, we have

dom�X ∩ int
(
dom��F (x̂)(F )

)
�= ∅

and

dom�X ∩ int
(
dom��v(x̂)(v)

)
�= ∅�
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On the other hand, we have

��

(
X ∩ �F (x̂)(F ), x̂

) = ���X∩�F (x̂)(F )(x̂)

= ��

(
�X + ��F (x̂)(F )

)
(x̂)�

Using Theorems 2.1 and 2.3, we obtain

��
(
�X + ��F (x̂)(F )

)
(x̂) =

⋃
	1,	2≥0
	1+	2=�

��	1�X (x̂) + �	2��F (x̂)(F )(x̂)��

On the other hand, since int(�F (x̂)(F )) is nonempty and x̂ ∈ bd
(
�F (x̂)(F )

)
,

it follows that (see Theorem 2.6)

�	2��F (x̂)(F )(x̂) = �	2

(
�F (x̂)(F ), x̂

)
=

⋃
	≥0

�	2(	F )(x̂)�

Hence,

��
(
�X + ��F (x̂)(F )

)
(x̂) =

⋃
	1,	2≥0
	1+	2=�

{
�	1(X , x̂) +

⋃
	≥0

�	2(	F )(x̂)

}
�

By similar calculation and arguments, we also have

��

(
X ∩ �v(x̂)(v), x̂

) =
⋃

�1,�2≥0
�1+�2=�

{
��1(X , x̂) +

⋃
�≥0

��2(�v)(x̂)

}
�

Then, the result follows from the inclusion in (6). �

In the remainder of this section, we will give optimality conditions
involving stability results. For � ∈ �, we consider the following
parameterized maximization problem

(��) max
x∈X

F (x)≤�

v(x)

and for 	 ∈ �, we associate to the generalized semi-infinite programming
problem (S) the following parameterized minimization problem

(S	) min
x∈X

v(x)≥	

F (x)�
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Let

� (��) = �x ∈ X /F (x) ≤ �� and � (S	) = �x ∈ X /v(x) ≥ 	�

be, respectively, the feasible sets of problems (��) and (S	) respectively.
Note that for 	 = 0, we obtain the problem (S).

The following Propositions 4.1 and 4.2 give stability results for
problems (��) and (S	), respectively. Their proofs are an adaptation of
those given in [16]. These stability results allow us to establish a necessary
and sufficient optimality condition that reduces the problem (S) to a min-
max problem. Then, in order to provide the main result of this section, we
need first to establish some preliminary results.

Proposition 4.1. Let � ∈ �. Assume that Assumptions (3.1)–(3.4) and (3.6)
hold, and that � is not a local minimum of F over X . Then, for any sequence
�m → �, as m → +∞, with �m < �, ∀m ∈ �, we have

lim
m→+∞

sup(��m ) = sup(��)�

Proof. Let �k → 0+, k ∈ �. For �k , there exists xk ∈ X , such that

F (xk) ≤ � and v(xk) > sup(��) − �k �

We distinguish the following cases.

Case 1. Assume that there exists k0 ∈ �, such that

F (xk) = � ∀ k ∈ �, k ≥ k0�

Then, since � is not a local minimum of F over X , for 1
p , there exists xk,p ∈

B(xk , 1
p ) ∩ X , such that

F (xk,p) < F (xk) = � ∀ k ≥ k0�

We have xk,p → xk , as p → +∞. Then, from the continuity of F as a finite
convex function, we have F (xk,p) → F (xk), as p → +∞. Moreover, �m → �,
as m → +∞, and �m < �, ∀m ∈ �. Then, there exists m0 ∈ �, such that

F (xk,p) < �m , ∀m ≥ m0�

Since xk,p is a feasible point of problem (��m ), m ≥ m0, we have

sup(��m ) ≥ v(xk,p) m ≥ m0�
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Then

lim inf
m→+∞

sup(��m ) ≥ v(xk,p)�

Since v(�) is lower semi-continuous on �p , then

lim inf
m→+∞

sup(��m ) ≥ lim inf
p→+∞

v(xk,p) ≥ v(xk) ≥ sup(��) − �k �

Letting k → +∞, we obtain

lim inf
m→+∞

sup(��m ) ≥ sup(��)� (7)

On the other hand, for every m ∈ �, we have � (��m ) ⊂ � (��), and,
hence,

sup(��m ) ≤ sup(��)�

So that

lim sup
m→+∞

sup(��m ) ≤ sup(��)� (8)

From (7) and (8), we deduce that

lim
m→+∞

sup(��m ) = sup(��)�

Case 2. Assume that there exists an infinite subset � of � such that

F (xk) �= � ∀ k ∈ � �

So that

F (xk) < � ∀ k ∈ � �

Then, for all k ∈ � , we have

F (xk) < �m for large m�

It follows from the feasibility of xk to problem (��m ) that

sup(��m ) ≥ v(xk) > sup(��) − �k �

Then

lim inf
m→+∞

sup(��m ) ≥ sup(��) − �k �
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Letting k → +∞, k ∈ � , we obtain

lim inf
m→+∞

sup(��m ) ≥ lim
k→+∞
k∈�

(sup(��) − �k) = sup(��)� (9)

On the other hand, we have

sup(��) ≥ sup(��m )�

Then

sup(��) ≥ lim sup
m→+∞

sup(��m )� (10)

From (9) and (10), we obtain

lim
m→+∞

sup(��m ) = sup(��)� �

The following theorem provides a necessary optimality condition
for (S).

Theorem 4.2. Assume that Assumptions (3.1)–(3.6) are satisfied. Assume that
x̂ is a solution of (S). Then, v(x̂) = 0 and

inf
x∈X

F (x)≤F (x̂)

sup
y∈�q

g (x ,y)≤0

G(x , y) = 0� 	(x̂)

Proof. The condition v(x̂) = 0 follows from Theorem 4.1. Let � = F (x̂),
and �m → �, as m → +∞, with �m < �, ∀m ∈ �. Let x ∈ X such that
F (x) ≤ �m . Then

v(x) < 0� (11)

Otherwise v(x) ≥ 0. So that

�m < � = F (x̂) = inf(S) ≤ F (x) ≤ �m

which gives a contradiction. Then, from (11), we have

sup
x∈X

F (x)≤�m

v(x) = sup(��m ) ≤ 0�

Proposition 4.1 implies that

lim
m→+∞

sup(��m ) = sup(��) ≤ 0�

14



Since v(x̂) = 0 and x̂ is a feasible point of problem (��), it follows that

sup(��) = sup
x∈X

F (x)≤F (x̂)

v(x) = 0

= sup
x∈X

F (x)≤F (x̂)

inf
y∈Y (x)

f (x , y)

with f (x , y) = −G(x , y). So that

inf
x∈X

F (x)≤F (x̂)

sup
y∈�q

g (x ,y)≤0

G(x , y) = 0�
�

We consider the following constraint qualification:

(4.1) For every x ∈ X verifying v(x) = 0, there exist x∗ ∈ �v(x) and x̂ ∈ X ,
such that 〈x∗, x̂ − x〉 > 0.

Remark 4.1. Assumption (4.1) is equivalent to say that for every x ∈ X
verifying v(x) = 0, we have �v(x) �⊂ � (X , x). In other terms, if 
 denotes
the set of solutions to the problem

max
x∈X

v(x)

we have

�x ∈ X /v(x) = 0� ∩ 
 = ∅�
Proposition 4.2. Let Assumption (3.1)–(3.6) and (4.1) hold. Let 	m → 0+, as
m → +∞, with 	m > 0, ∀m ∈ �. Then

lim
m→+∞

inf(S	m ) = inf(S)�

Proof. Let �k → 0+, k ∈ �. For �k , there exists xk ∈ X such that

v(xk) ≥ 0 and F (xk) < inf(S) + �k �

We distinguish the following cases.

Case 1. Assume that there exists k0 ∈ �, such that

v(xk) = 0 ∀ k ≥ k0�

Assumption (4.1) means that for every x ∈ X such that v(x) = 0, �v(x) is
not a subset of � (X , x). So that 0 is not a local maximum of v(�) over X

15



(Theorem 2.7). Then, for 1
p , p ∈ �∗, there exists xk,p ∈ B

(
xk , 1

p

) ∩ X , such
that

v(xk,p) > v(xk) = 0�

Then, there exists m0 ∈ �, such that

v(xk,p) > 	m ∀m ≥ m0�

Since xk,p is feasible for (S	m ), m ≥ m0, then

inf(S	m ) ≤ F (xk,p)�

So that

lim sup
m→+∞

inf(S	m ) ≤ F (xk,p)�

Since F is upper semi-continuous on �p and xk,p → xk , as p → +∞, then

lim sup
m→+∞

inf(S	m ) ≤ lim sup
p→+∞

F (xk,p) ≤ F (xk) < inf(S) + �k �

Letting k → +∞, we obtain

lim sup
m→+∞

inf(S	m ) ≤ inf(S)� (12)

On the other hand, we have

� (S	m ) ⊂ �x ∈ �p/ x ∈ X , v(x) ≥ 0��

Then

inf(S) ≤ inf(S	m )

and

inf(S) ≤ lim inf
m→+∞

inf(S	m )� (13)

From (12) and (13), we deduce that

lim
m→+∞

inf(�	m ) = inf(S)�

Case 2. Assume that there exists an infinite subset � of � such that

v(xk) �= 0 ∀ k ∈ � �
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So that

v(xk) > 0 ∀ k ∈ � �

Since 	m → 0+, there exists m0 ∈ � such that for all k ∈ � , we have

v(xk) > 	m ∀m ≥ m0�

Hence, xk is a feasible point for (S	m ), m ≥ m0. Then

inf(S	m ) ≤ F (xk) < inf(S) + �k �

So that

lim sup
m→+∞

inf(S	m ) ≤ F (xk) < inf(S) + �k �

Letting k to +∞, k ∈ � , we obtain

lim sup
m→+∞

inf(S	m ) ≤ lim
k→+∞
k∈�

(inf(S) + �k) = inf(S)� (14)

On the other hand, we have

inf(S) ≤ inf(S	m )�

So that

inf(S) ≤ lim inf
m→+∞

inf(S	m )� (15)

Hence, from (14) and (15), we obtain

lim
m→+∞

inf(S	m ) = inf(S)� �

The following theorem gives a sufficient optimality condition. The
proof is based on the use of the stability of problem (S) under
perturbation (Proposition 4.2).

Theorem 4.3. Let Assumptions (3.1)–(3.6) and (4.1) hold. Let x̄ be a feasible
point of (S). Assume that v(x̂) = 0 and x̂ satisfies the condition 	(x̂) given in
Theorem 4.2. Then, x̂ solves (S).

Proof. Let 	m → 0, with 	m > 0, ∀m ∈ �. Let x ∈ X such that v(x) ≥
	m , ∀m ∈ �. Then

F (x) > F (x̂)� (16)
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Otherwise, F (x) ≤ F (x̂). So that

	m ≤ v(x) ≤ sup
u∈X

F (u)≤F (x̂)

v(u) = 0 = v(x̂) < 	m

which gives a contradiction. Then, property (16) implies that

inf(S	m ) = inf
x∈X

v(x)≥	m

F (x) ≥ F (x̂)�

It follows from Proposition 4.2 that

lim
m→+∞

inf(S	m ) = inf(S) ≥ F (x̂)�

So that F (x̂) = inf(S). Hence, x̂ solves (S). �

The following theorem gives a necessary and sufficient optimality
condition that reduces the problem (S) to a min-max problem with
compact convex linked constraints.

Theorem 4.4. Let Assumptions (3.1)–(3.6) and (4.1) hold. Let x̂ be a feasible
point of (S). Then, x̂ solves (S) if and only if

i) Then, v(x̂) = 0,
ii) inf x∈X

F (x)≤F (x̂)
sup y∈�q

g (x ,y)≤0
G(x , y) = 0.

Proof. Use Theorems 4.2 and 4.3. �

For illustration, let us give the following simple example.

Example 4.1. Let X = � − 4, 4
, F : � → �, G : �2 → �, g = (g1, g2):
�2 → �2 be the functions defined by{

F (x) = x2 + 1
G(x , y) = −3x2 − y2 + 1

{
g1(x , y) = −x − y
g2(x , y) = y − x �

For all x ∈ � − 4, 4
, we have Y (x) = � − x , x
 ⊂ � − 4, 4
. Then,
Assumptions (3.1) to (3.4) and (3.6) are satisfied. Moreover, we have

min
x∈[−4,4]

(x2 + 1) = 1 < min
x∈[−4,4]

−3x2−y2+1≤0, ∀ y∈[−x ,x]
(x2 + 1) = 4

3
�
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Hence, Assumption (3.5) is satisfied. Let us verify Assumption (4.1). We 

have

v(x) = 3x2 − 1 �v(x) = �v
′
(x)� = �6x�

�x ∈ [−4, 4]/v(x) = 0� =
{
− 1√

3
,
1√
3

}
�v

(
− 1√

3

)
=

{
−2

√
3
}

and �v
(

1√
3

)
=

{
2
√
3
}
�

• For x = 1√
3
, let x∗ = 2

√
3 ∈ �v

(
1√
3

)
, and x̂ = 4 ∈ X . Then

x∗
(
x̂ − 1√

3

)
> 0�

• For x = − 1√
3
, let x∗ = −2

√
3 ∈ �v

(− 1√
3

)
, and x̂ = −4 ∈ X . Then

x∗
(
x̂ + 1√

3

)
> 0�

Hence, Assumption (4.1) is satisfied. Let us find the solutions of problem
(S) via the optimality conditions. For this, let us apply Theorem 4.4. Let x̄
be a feasible point of (S). Then, x̄ solves (S) if and only if v(x̄) = 0 and

inf
x∈X

F (x)≤F (x̄)

sup
y∈�

g (x ,y)≤0

G(x , y) = 0�

The equation v(x̄) = 0, gives x̄ = − 1√
3
and x̄ = 1√

3
. We have

F
(

− 1√
3

)
= F

(
1√
3

)
= 4

3
�

Replacing the functions F , G , and g by their expressions, we get

inf
x∈X

F (x)≤F (x̄)

sup
y∈�

g (x ,y)≤0

G(x , y) = inf
x∈[−4,4]
x2+1≤ 4

3

sup
y∈[−x ,x]

(−3x2 − y2 + 1)�

We have

sup
y∈[−x ,x]

(−3x2 − y2 + 1) = 1 − 3x2
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and

inf
x∈[−4,4]
x2+1≤ 4

3

(1 − 3x2) = 0�

Therefore, − 1√
3
and 1√

3
are solutions of (S).

5. CONCLUSION

Our investigation in this article concerned a class of nonsmooth
generalized semi-infinite programming problems whose feasible sets are
represented by a reverse convex constraint. So the use of reverse convex
problems played an important role to establish our results. Then, for
problem (S), under appropriate assumptions, we have given necessary and
sufficient optimality conditions. These optimality conditions are new and
do not use differentiability assumptions. Normal cones, subdifferentials,
and max-min problems are the main tools used to express these
optimality conditions. In particular, using a new constraint qualification
(Assumption (4.1)), we have provided a necessary and sufficient optimality
condition which reduces (S) to a min-max problem with compact convex
linked constraints. Therefore, such an optimality condition provides
an alternative to solve the considered class of generalized semi-infinite
programming problems via min-max problems with linked constraints.
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