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ON ONE-SIDED LIPSCHITZ STABILITY OF SET-VALUED
CONTRACTIONS

S. Adly,1 A. L. Dontchev,2 and M. Théra1

1Laboratoire XLIM, Université de Limoges, Limoges Cedex, France
2Mathematical Reviews, Ann Arbor, Michigan, USA

We give conditions under which the distance from a point x to the set of fixed points
of the composition of the set-valued mappings F and G is bounded by a constant times the
smallest distance between F −1(x) and G(x). This estimate allows us to significantly sharpen
a result by T.-C. Lim [10] regarding fixed-points stability of set-valued contractions. A global
version of the Lyusternik-Graves theorem is obtained from this estimate as well. We apply the
generalization of Lim’s result to establish one-sided Lipschitz properties of the solution mapping
of a differential inclusion with a parameter.

Keywords Composition; Differential inclusions; Fixed points; Lyusternik-Graves
theorem; Lipschitz stability; Set-valued mappings.

In a path-breaking paper, Teck-Cheong Lim [10] showed that the
Pompeiu-Hausdorff distance between the sets of fixed points of two set-
valued contraction mappings is bounded by a constant times the uniform
Pompeiu-Hausdorff distance between the mappings. Specifically, he proved
the following result:

Lim’s Lemma (Lim [10, Lemma 1]). Let X be a complete metric space and
let T1 and T2 map X into the family of nonempty closed subsets of X . Suppose that
both T1 and T2 are Lipschitz continuous on X with the same Lipschitz constant
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� ∈ [0, 1). Then

haus (Fix(T1), Fix(T2)) ≤ 1
1 − �

sup
x∈X

haus (T1(x),T2(x))� (1)

Before going further, let us fix the notation and terminology.
Throughout this article, X and Y are metric spaces unless stated otherwise.
Any metric is denoted by �(·, ·), any norm by ‖ · ‖, and d(x ,C) is
the distance from a point x ∈ X to a subset C ⊂ X ; that is d(x ,C) =
inf ��(x , x ′)

∣∣ x ′ ∈ C� whenever C �= ∅ and d(x , ∅) = ∞. The closed ball
centered at x with radius r is denoted by �r (x), and the closed unit
ball is �. The excess from a set C to a set D is e(C ,D) = supx∈C d(x ,D)
under the convention e(∅,D) = 0 for D �= ∅ and e(D, ∅) = +∞ for any D;
thus, if e(C ,D) < ∞ then D must be nonempty. The Pompeiu-Hausdorff
distance between C and D is haus (C ,D) = max�e(C ,D), e(D,C)�. The
smallest distance between two sets C and D is denoted by d(C ,D), that is,
d(C ,D) = inf��(x ′, x)

∣∣ x ′ ∈ C , x ∈ D�. If one of the sets C and D is empty,
we set d(C ,D) = haus (C ,D) = +∞. Given a set D ⊂ X × Y we denote by
PX (D) the projection of D on X , that is, PX (D) = �x ∈ X | ∃ y ∈ Y such that
(x , y) ∈ D�.

Any mapping, possibly set-valued and acting from a space X to (the
subsets of) a space Y , is denoted by F : X ⇒ Y . The domain of F
is dom F = �x ∈ X | F (x) �= ∅�, its range is rge F = �y | ∃ x with y ∈ F (x)�,
and its graph is gph F = �(x , y) ∈ X × Y | y ∈ F (x)�. The inverse F −1 : Y ⇒

X of a mapping F : X ⇒ Y is defined as F −1(y) = �x | y ∈ F (x)�. By a
composition of a mappings B : Z ⇒ Y with a mapping A : X × P ⇒ Z we
mean a mapping C = B ◦ A : X × P ⇒ Y whose graph contains all points
(x , p, y) ∈ gphC for which there exists z ∈ Z such that (x , p, z) ∈ gphA and
(z, y) ∈ gphB; in other words, C(x , p) = �y ∈ B(z) | z ∈ A(x , p)�. We denote
the set of fixed points of a mapping F : X ⇒ X by Fix(F ); that is, Fix(F ) :=
�x ∈ X | x ∈ F (x)�� Note that for mappings F : Y ⇒ X and G : X ⇒ Y we
have Fix(F ◦ G) = �x ∈ X : F −1(x) ∩ G(x) �= ∅�.

A set-valued mapping F : X ⇒ Y is said to be Lipschitz continuous
relative to a set D ⊂ dom F when F is closed valued1 on D and there exists
a constant � ≥ 0 (Lipschitz constant) such that

haus (F (x), F (x ′)) ≤ ��(x , x ′) for all x , x ′ ∈ D� (2)

When D = X we say that F is Lipschitz continuous. In that case, dom F =
X . If a mapping F acting from a metric space X to a complete metric space

1Following [7], we require that Lipschitz continuous mappings must be closed valued to avoid
the situation when Lipschitz continuity does not entail continuity. This is also assumed implicitly
in [10].
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Y is Lipschitz continuous, then F necessarily has a closed graph. Indeed,
let (xk , yk) ∈ gph F and (xk , yk) → (x , y); then

d(y, F (x)) ≤ �(y, yk) + d(yk , F (xk)) + haus (F (xk), F (x)) ≤ �(y, yk)

+ ��(xk , x) → 0,

and, hence, (x , y) ∈ gph F .
It is well documented in the literature that the Lipschitz continuity

of a mapping F is equivalent to two properties of its inverse F −1: metric
regularity and linear openness. Without going into this further, we use
the fact established in [7, Proposition 3C.1] that a mapping G : Y ⇒ X is
Lipschitz continuous with constant � if and only if

d(x ,G(y)) ≤ �d(y,G−1(x)) for every x ∈ X , y ∈ Y � (3)

Going back to Lim’s lemma [10] we started with, first observe that it
implies the standard Nadler fixed point theorem for set-valued mappings
[11]; indeed, if T1 = T2 = T then the right side of (1) is zero and, hence,
so is the left side, thus Fix(T ) is nonempty. Right after the statement of
his lemma, Lim stated a theorem (Theorem 1) which follows immediately
from the lemma and which Lim apparently considered as the central result
in his paper. This theorem says that when �Tn� is a sequence of set-valued
mappings Tn : X ⇒ X each of which is Lipschitz continuous with the same
Lipschitz constant � ∈ [0, 1), then

lim
n→∞

sup
x∈X

haus (Tn(x),T0(x)) = 0 �⇒ lim
n→∞

haus (Fix(Tn), Fix(T0)) = 0�

(4)

In Theorems 2 and 3 in [10], Lim presented extensions of this implication
in some particular spaces and compact-valued nonexpansive mappings.
Finally, he applied his Theorem 1 to show continuity of the solution
mapping for a differential inclusion with respect to the initial conditions.

Observe that Lim’s lemma is a quantitative result and, therefore,
it is a natural tool to establish quantitative stability of perturbed fixed
points. Specifically, the following corollary of Lim’s lemma shows Lipschitz
continuity of fixed points:

Theorem 2 (Lipschitz continuity of fixed points). Let X be a complete
metric space and P be a metric space. Consider a mapping M : P × X ⇒ X with
the following properties:

(i) M (p, ·) is Lipschitz continuous with a Lipschitz constant � ∈ [0, 1) uniformly
in p ∈ P ;
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(ii) M (·, x) is Lipschitz continuous with a Lipschitz constant � uniformly in x ∈
X .

Then the mapping p �→ Fix(M (p, ·)) is Lipschitz continuous with a constant
�/(1 − �).

Proof. We will first show that for each p ∈ P the set Fix(M (p, ·)) is closed.
Let uk ∈ Fix(M (p, ·)) for all k and uk → u. Then uk ∈ M (p,uk) for all k.
We have

d(u,M (p,u)) ≤ d(u,M (p,uk)) + haus (M (p,uk),M (p,u))

≤ �(u,uk) + ��(u,uk) → 0 as k → ∞�

Hence, d(u,M (p,u)) = 0, that is, u ∈ M (p,u), which implies that u ∈
Fix(M (p, ·)), thus Fix(M (p, ·)) is closed.

Let p1, p2 ∈ P . Applying Lim’s lemma with T1(x) = M (p1, x) and
T2(x) = M (p2, x) we have

haus
(
Fix(M (p1, ·)), Fix(M (p2, ·))

) ≤ 1
1 − �

sup
x∈X

haus (M (p1, x),M (p2, x))

≤ �

1 − �
�(p1, p2)�

�

As a corollary of our main result presented in Theorem 6, we will
obtain the following generalization of Lim’s lemma, where the Pompeiu-
Hausdorff distance is replaced by either of the excesses.

Theorem 3 (generalized Lim’s lemma). On the conditions of Lim’s lemma,

e(Fix(Ti), Fix(Tj)) ≤ 1
1 − �

sup
x∈X

e(Ti(x),Tj(x)) fori , j = 1, 2�

Theorem 3 allows us to obtain results that are parallel to Theorem 2
but for the weaker one-sided Lipschitz continuity property. First, we need
the following definition:

Definition. A mapping F : X ⇒ Y is said to be outer [resp. inner] Lipschitz
continuous at x̄ relative to a set D ⊂ dom F when x̄ ∈ D and there exists a
constant � ≥ 0 such that

e(F (x), F (x̄)) ≤ ��(x , x̄) [resp. e(F (x̄), F (x)) ≤ ��(x , x̄)] for all x ∈ D�
(5)

When D = X they we say that F is outer [resp. inner] Lipschitz continuous
at x̄ . In that case, dom F = X .
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Observe that both the outer and the inner Lipschitz continuity are
much weaker properties than the Lipschitz continuity. Directly from the
definition, when F is both outer and inner Lipschitz continuous at a
point, then it is Lipschitz continuous. The property of outer Lipschitz
continuity was introduced by Robinson [12] under the name “upper
Lipschitz continuity,” the main motivation being the important result due
to him that every mapping F : �n ⇒ �m whose graph is the union of
finitely many polyhedral convex sets is outer Lipschitz continuous at any
point of its domain.

From Theorem 3 we can obtain the following result, which strengthens
Theorem 2.

Theorem 4. Let X be a complete metric space and P be a metric space. Consider
a mapping M : P × X ⇒ X with the following properties:

(i) M (p, ·) is Lipschitz continuous with a Lipschitz constant � ∈ [0, 1) uniformly
in p ∈ P ;

(ii) M (·, x) is outer [resp. inner] Lipschitz continuous at p̄ with a constant �
uniformly in x ∈ X .

Then the mapping p �→ Fix(M (p, ·)) is outer [resp. inner] Lipschitz
continuous at p̄ with a constant �/(1 − �).

Proof. Applying Theorem 3 with T1(x) = M (p, x) and T2(x) = M (p̄, x)
we have

e(Fix(M (p, ·), Fix(M (p̄, ·))≤ 1
1 − �

sup
x∈X

e(M (p, x),M (p̄, x))≤ �

1 − �
�(p, p̄)�

�

Arutyunov derived in [1] a coincidence theorem which we
present here in the following form, where the assumptions about
completeness/closedness of graphs are different from those originally
used:

Theorem 5 (Arutyunov [1, Theorem 2]). Consider mappings F : Y ⇒ X
and G : X ⇒ Y and assume that one of the set gph F , gphG is complete and the
other is closed. Let � and � be nonnegative constants such that �� < 1. Suppose
that F is Lipschitz continuous with constant � and G is Lipschitz continuous with
constant �. Then for every � > 0 and every x ∈ X there exists a point 	 ∈ X such
that

F −1(	) ∩ G(	) �= ∅ and �(x , 	) ≤ �

1 − ��
d(F −1(x),G(x)) + ��
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The main part of the result given next as Theorem 6; namely, the
implication (i) ⇒ (ii), is equivalent, up to some adjustments regarding
closedness/completeness of sets, to Arutyunov’s theorem.

Theorem 6 (estimate for fixed points of composition). Let � and � be
nonnegative constants such that �� < 1. Consider a mapping F : Y ⇒ X with
closed and nonempty graph and PX (gph F ) complete. Then the following are
equivalent:

(i) The mapping F is Lipschitz continuous with constant �;
(ii) dom F = Y and for any mapping G : X ⇒ Y with closed graph which is

Lipschitz continuous with constant � and such that PY (gphG) is complete,
the following inequality holds:

d(x , Fix(F ◦ G)) ≤ �

1 − ��
d(F −1(x),G(x)) for everyx ∈ X � (6)

Proof. Let (i) hold, let G be as required in (ii) and let x ∈ X . If x � rge F
or G(x) = ∅, the right side of (6) is +∞ and we are done. Otherwise, let
y ∈ G(x). Choose � > 0. Since by definition dom F = Y , there exists u ∈
F (y) such that �(x ,u) < d(x , F (y)) + �� If u = x then x ∈ Fix(F ◦ G) and
the left side of (6) is zero, so there is nothing more to prove. Otherwise,
we have

d(x , F (y)) < (1 + �)�(u, x)� (7)

Denote a := (1 + �)�(u, x); then

a ≤ (1 + �)(d(x , F (y)) + �)� (8)

We will construct a sequence �(xk , yk)� with the following properties:

yk ∈ F −1(xk+1) ∩ G(xk) (9)

and

�(yk , yk−1) < �a(��)k−1, �(xk+1, xk) < a(��)k � (10)

Let x0 = x and y0 = y. In the first step, observe that, from (7),

d(x0, F (y0)) < a�

Then there exists x1 ∈ F (y0) with

�(x1, x0) < a(��)0�
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Furthermore, since

d(y0,G(x1)) ≤ haus (G(x0),G(x1)) ≤ ��(x0, x1) < �a,

there exists y1 ∈ G(x1) such that

�(y0, y1) < �a(��)0�

From the Lipschitz continuity of F , we have

d(x1, F (y1)) ≤ haus ((y0), F (y1)) ≤ ��(y0, y1) < ��a(��)0 = a(��)�

Hence, there exists x2 ∈ F (y1) with

�(x2, x1) < a(��)1�

We obtain (9) and (10) for k = 1.
Proceeding by induction, suppose that we have already found a

sequence �(xk , yk)� satisfying (9) and (10) for k = 1, � � � , j , for some j > 1.
Then

d(yj ,G(xj+1)) ≤ haus (G(xj),G(xj+1)) ≤ ��(xj , xj+1) < �a(��)j �

Hence, one can find yj+1 ∈ G(xj+1) such that

�(yj , yj+1) < �a(��)j �

The Lipschitz continuity of F gives us

d(xj+1, F (yj+1)) ≤ haus (F (yj), F (yj+1)) ≤ ��(yj , yj+1) < ��a(��)j = a(��)j+1�

Then there exists xj+2 ∈ F (yj+1) with

�(xj+2, xj+1) < a(��)j+1�

The induction step is complete.
For k > m + 1 > 1, from (10) we have

�(xk , xm) ≤
k−1∑
i=m

�(xi+1, xi) <
a(��)m

1 − ��

and

�(yk , ym) ≤
k−1∑
i=m

�(yi+1, yi) <
�a(��)m

1 − ��
�
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Hence, �(xk , yk)� is a Cauchy sequence. Since (xk , yk) belongs to
the complete set PX (gph F ) × PY (gphG) for all k we conclude that this
sequence is convergent to some (x̂ , ŷ). Since both F and G have closed
graphs, we have x̂ ∈ F (ŷ) and ŷ ∈ G(x̂), hence x̂ ∈ Fix(F ◦ G).

Note that

�(xk , x) ≤
k−1∑
i=0

�(xi+1, xi) < a
k−1∑
i=0

(��)i <
a

(1 − ��)
�

Passing to the limit with k → ∞, from (8) we obtain

d(x , Fix(F ◦ G)) ≤ �(x̂ , x) ≤ (1 + �)(d(x , F (y)) + �)

1 − ��
�

Since � can be arbitrarily small, we get

d(x , Fix(F ◦ G)) ≤ 1
1 − ��

d(x , F (y))� (11)

This combined with (3) gives us

d(x , Fix(F ◦ G)) ≤ �

1 − ��
d(y, F −1(x))�

Taking into account that y can be arbitrarily chosen in G(x) we obtain (6).
Now, suppose that (ii) is satisfied. Let y, y′ ∈ Y and let x ∈ F (y). Choose

G(x) = y′ for all x ∈ X . Clearly, PY (gphG) is complete and G is Lipschitz
continuous with constant � = 0; moreover, d(x , Fix(F ◦ G)) = d(x , F (y′)).
From (6),

d(x , F (y′)) ≤ �d(y′, F −1(x)) ≤ ��(y, y′)�

Taking supremum with respect to x ∈ F (y) in the left side of this inequality,
we obtain that F is Lipschitz continuous. �

Remark 1. Note that the estimate (6) is sharp in the sense that if the left
side is zero, so is the right side.

Remark 2. One of the referees of the first version of this paper suggested
the following proof that (a part of) Theorem 6 follows from Theorem
5. Put U = PX (gph F ) and apply Theorem 5 with F being the identity
mapping from U to U and G identified with the composition F ◦ G
restricted on U , which is Lipschitz continuous with Lipschitz constant �� <
1. For any x ∈ U from Theorem 5 we have

d(x , Fix(F ◦ G)) ≤ 1
1 − ��

d(x , (F ◦ G)(x))�
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Further, for any y ∈ G(x) we have

d(x , Fix(F ◦ G)) ≤ d(x , F (y))�

Combining the last two estimates with (3) and noting that y is an arbitrary
point in G(x), we obtain (5). When x �U the right side of (5) is +∞ and
there is nothing more to prove.

Remark 3. Lim proved his lemma in [10] by using an iterative procedure
which is quite different from the one used in the proof of Theorem 6.
In particular, this procedure involves a construction of just one sequence
of iterates xk for both mappings T1 and T2. Also, the iteration we use is
related but different from the one in [1].

Proof of Theorem 3. Apply Theorem 6 with X = Y , F = I , the identity
mapping, and G = T1. Then G is Lipschitz continuous with Lipschitz
constant � ∈ [0, 1) and from (6) we have that for any x ∈ X ,

d(x , Fix(T1)) ≤ 1
1 − �

d(x ,T1(x))� (12)

Let T2 : X ⇒ Y be Lipschitz continuous with Lipschitz constant �. Clearly,
(12) holds for every x ∈ Fix(T2) and, hence, taking supremum with respect
to such x , we get

e(Fix(T2), Fix(T1)) ≤ 1
1 − �

sup
x∈T2(x)

d(x ,T1(x)) ≤ sup
x∈X

1
1 − �

e(T2(x),T1(x))�

By symmetry, the proof is complete. �

Proof of Theorem 5. It is easy to modify the proof of Theorem 6 for
the case when one of the sets gph F , gphG is complete while the other is
closed. Indeed, if gph F is complete, then (xk , yk) is convergent, and hence
the limit (x̂ , ŷ) satisfies x̂ ∈ F (ŷ) and ŷ ∈ G(x̂), Let x ∈ X and � > 0. From
(6), there exists 	 ∈ (F ◦ G)(	), or equivalently, F −1(	) ∩ G(	) �= ∅, such
that

�(x , 	) ≤ �

1 − ��
d(F −1(x),G(x)) + ��

�

Another application of Theorem 6 is the following result which is a
version of a general paradigm in nonlinear analysis the most popular form
of which appears in the basic inverse function theorem, for more see [7,
chap. 5]. A local version of it stems from early works of Lyusternik and
Graves and is most known as the Lyusternik-Graves theorem. Here we
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deduce from Theorem 6 the following global version of the Lyusternik-
Graves theorem:

Theorem 7 (Global Lyusternik-Graves). Let X be a complete metric space
and Y be a Banach space. Consider mappings 
 : X ⇒ Y and � : X ⇒ Y and
suppose that both 
−1 and � are globally Lipschitz continuous with constant � > 0
and � > 0, respectively. If �� < 1 then

d(x , (
 + �)−1(y)) ≤ �

1 − ��
d(y, (
 + �)(x)) for all (x , y) ∈ X × Y �

Proof. Choose y ∈ Y and let u ∈ Fix(
−1 ◦ (−� + y)); then there exists
z ∈−�(u) + y with u∈
−1(z). Hence, y ∈ �(u) + z ⊂ �(u) + 
(u), that is,
u ∈ (
 + �)−1(y). Thus, Fix(
−1 ◦ (−� + y)) ⊂ (
 + �)−1(y). Therefore,
for any x ∈ X we have

d(x , (
 + �)−1(y)) ≤ d(x , Fix(
−1 ◦ (−� + y)))�

Applying Theorem 6 with F = 
−1 and G(·) = −�(·) + y to the last
inequality, from (6) we get

d(x , Fix(
−1 ◦ (−� + y))) ≤ �

1 − ��
d(
(x),−�(x) + y)

≤ �

1 − ��
d(y,
(x) + �(x))�

�

There is a vast literature on fixed points of compositions which,
however, cover topics that are different from the subject of the present
paper. Results related to the ones obtained in the current paper are given
in [2–5, 8, 9, 13, 14].

In his paper, Lim [10, Theorem 4] presented an application of his
Theorem 1 given by (4) to obtain a stability result for the solution mapping
of an initial value problem for a differential inclusion. Specifically, he
proved continuity of the set of solutions, in the space of the continuous
functions equipped with the supremum norm, with respect to the
initial condition. However, Lim did not mention anything about Lipschitz
continuity of the solution set although such a statement easily follows from
his analysis. Also, some of his assumptions he maid are not necessary
to obtain such a result. In further lines we will first present the setting
of Lim’s result (Theorem 4) with some adjustments in terminology
and notation, and then show how to obtain Lipschitz continuity. Then
we generalize this result to one-sided Lipschitz stability of the solution
mapping with respect to a parameter. In order to simplify the presentation,
we work in the Euclidean space �n and consider an autonomous
differential inclusion over a finite time interval.
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Let a > 0 and let B be a bounded set in �n . Consider a mapping R
acting from B into the family of nonempty closed subsets of B which is
Lipschitz continuous with respect to the Pompeiu-Hausdorff metric with a
Lipschitz constant �; that is,

haus (R(x),R(y)) ≤ �‖x − y‖ for all x , y ∈ �� (13)

Given an initial point b ∈ B, consider the initial-value problem

ẋ(t) ∈ R(x(t)) for a.e. t ∈ [0, a], x(0) = b� (14)

By a solution of (14), we mean any absolutely continuous function which
satisfies (14) for almost every (a.e.) t ∈ [0, a], with x(0) = b. Let C([0, a],B)
be the space of continuous functions on the interval [0, a] with values in
B, equipped with the usual supremum norm ‖ · ‖C . Define the mapping

C([0, a],B) � x �→ T (b, x) =
{
y ∈ C([0, a],B)

∣∣∣∣there exists a Lebesgue

measurable function z such that z(�) ∈ R(x(�)) a.e. � ∈ [0, a]
such that y(t) = b +

∫ t

0
z(�)d� for all t ∈ [0, a]

}
,

where the integral is in the sense of Lebesgue.
We will first show that T (b, x) �= ∅ when x ∈ C([0, a],B)� Choose any

x ∈ C([0, a],B)� For each t ∈ [0, a], let z(t) be a projection of 0 ∈ �n on
the closed set R(x(t)). Since both x and R are continuous, we obtain that
the function z defined in such a way is measurable; since it is uniformly
bounded, it is integrable. Then y ∈ T (b, x) when y(t) = b + t

0 z(�)d� for
t ∈ [0, a].

To prove Lipschitz continuity of T (b, ·) we use a similar argument.
Let x1, x2 ∈ C([0, a],B) and let y1 ∈ T (b, x1). From the very definition of
the mapping T , there exists a measurable selection z1 of R(x1) such that
y1(t) = b + t

0 z1(�)d� for all t ∈ [0, a]. For each t ∈ [0, a], let z2(t) be a
projection of z1(t) on R(x2(t)). Since z1 is measurable and R is continuous,
we obtain that the function z2 defined in such a way is measurable; since
it is uniformly bounded, it is integrable. Let y2(t) = b + ∫ t

0 z2(�)d� for t ∈
[0, a]. Then, from the Lipschitz continuity property (13) of R we obtain

‖y1 − y2‖C ≤
∫ a

0
‖z1(�) − z2(�)‖d� ≤ �

∫ a

0
‖x1(�) − x2(�)‖d� ≤ �a‖x1 − x2‖C �

11



Hence, the mapping T (b, ·) is Lipschitz continuous with a Lipschitz
constant �a which is independent of b. Let b1, b2 ∈ B and denote T1(x) =
T (b1, x) and T2(x) = T (b2, x). Observe that

haus (T1(x),T2(x)) ≤ ‖b1 − b2‖� (15)

Indeed, let y1 ∈ T1(x). Then there exists an associate selection z of R(x)
such y1(t) = b1 + ∫ t

0 z(�)d� for all t ∈ [0, a]. Clearly y2 defined as y2(t) =
b2 + ∫ t

0 z(�)d�, t ∈ [0, a], is from T2(x). This yields (15).
Denote by S(b) the set of solutions of the differential inclusion (14)

for a fixed initial condition b ∈ B. Then S(b) = Fix(T (b, ·)). From Lim’s
lemma we obtain the following theorem:

Theorem 8. Consider the differential inclusion (14) for a Lipschitz continuous
mapping R with a Lipschitz constant � as in (13). Choose a > 0 such that �a < 1.
Then the solution mapping S of (14) is Lipschitz continuous from the set B to the
collection of nonempty subsets of functions from the space C([0, a],B).

In Lim’s paper [10], it is assumed that R is in addition convex-valued
and the conclusion is that the solution mapping S is merely continuous,
obtained as an application of [10, Theorem 1].

We can obtain even more general results for a differential inclusion
with a parameter, that is,

ẋ(t) ∈ R(p, x(t)) for a.e. t ∈ [0, a], x(0) = b, (16)

where now b ∈ B is fixed and p is a parameter from a metric space P
with a reference value p̄. By repeating the above argument where we use
Theorem 4 instead of Lim’s lemma, we obtain:

Theorem 9. Consider the differential inclusion (16), where the mapping R is
Lipschitz continuous with respect to x ∈ B with constant �, uniformly in p ∈ P ,
and outer [resp. inner] Lipschitz continuous with respect to p at p̄ with constant �,
uniformly in x ∈ B. Let �a < 1. Then the solution mapping

P � p �→ S(p) = �x ∈ C([0, a],B) | x solves (16) for p ∈ P �

is outer [resp. inner] Lipschitz continuous at p̄ with a constant �/(1 − �a).

Theorem 9 can be easily extended to a nonautonomous setting, as in
Lim’s original paper [10], or even in a much more general context of
infinite-dimensional spaces. Specifically, in a series of papers A. Cernea
considered various nonlinear differential inclusions and proved stability of
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their solutions by using Lim’s lemma. In particular, in [6] he considered
nonlinear integrodifferential inclusions of the following form:

ẋ(t) ∈ F (t , x(t),V (x)(t)) for a.e. t ∈ [0,∞), x(0) = x0, (17)

where F : [0,+∞) × X × X ⇒ X , X is a separable Banach space and
V : C([0,+∞),X ) → C([0,+∞),X ) is the nonlinear Volterra integral
operator

V (x)(t) =
∫ t

0
k(s, x(s))ds,

where k : [0,+∞) × X → X is Lipschitz continuous. Applying Lim’s
lemma, Cernea proved Lipschitz continuity of the Lipschitz mapping on an
infinite time horizon. To do that, instead of considering sufficiently small
time interval as in Theorem 8 above, he used a weighted L2 space with
a sufficiently large weight to obtain Lipschitz continuity of the mapping
defining the inclusion (17) with a Lipschitz constant less than 1. Then
he followed the approach based on Lim’s lemma. By using the extension
of Lim’s lemma in this article, this result can be extended to differential
inclusion of the form (17) involving a parameter p ∈ P and employing, as
in Theorem 9, the outer [resp. inner] Lipschitz continuity.
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