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Abstract

We introduce a variant of the vertex-distinguishing edge coloring problem, where each edge is assigned a
subset of colors. The label of a vertex is the union of the sets of colors on edges incident to it. In this
paper we investigate the problem of finding a coloring with the minimum number of colors where every
vertex receives a distinct label. Finding such a coloring generalizes several other well-known problems of
vertex-distinguishing colorings in graphs.

We show that for any graph (without connected component reduced to an edge or a single vertex), the
minimum number of colors for which such a coloring exists can only take 3 possible values depending on the
order of the graph. Moreover, we provide the exact value for paths, cycles and complete binary trees.

Keywords: Graph Coloring; Vertex Distinguishing Coloring

1. Introduction

Vertex-distinguishing edge colorings of graphs is a wide studied field in chromatic graph theory. Generally
speaking, it consists in an edge coloring of a graph (not necessarily proper) that leads to a vertex labeling
where every pair of vertices of the graph are distinguished by their labels (also called codes). For instance, a
set irregular edge coloring [5] is an edge coloring of a graph where each vertex v is assigned the set of colors
of the edges incident to v. In the literature, many other variants were considered where the codes are defined
by the multisets of the colors incident to v [1], the sums1 [3], the products, or differences [9]. The case where
the edge coloring is proper was also considered by Burris and Schelp [2].

More recently, several other variants of this problem were defined, in which the codes are produced from
a vertex coloring. In the literature, they are refereed to as identifying colorings. More precisely, from a
vertex coloring of a graph, the code of a vertex is defined as the set of colors of its extended neighborhood.
Instances of the identifying coloring problem where any pair of distinct (resp. adjacent) vertices must have
different codes were introduced in [8] (resp. [4]). If few results are known about this problem, its interest
is growing as it is a natural generalization of the famous identifying code problem [7] where the code of a
vertex is given by its presence in the neighbourhood of a set of a vertices.

In the current paper, our objective is to generalize both, the set irregular and identifying coloring prob-
lems. For that purpose, we define a new vertex-distinguishing edge coloring problem where every edges is
assigned a subset of colors. Given a simple graph G, a k-coloring of G is a function f : E(G) → 2{1...,k}

where every edge is labeled using a non-empty subset of {1, . . . , k}. For any k-coloring f of G, we define, for
every vertex u, the set idf (u) as follows:

idf (u) =
⋃

v s.t. uv∈E
f(uv).

If the context is clear, we will simply write id(u) for idf (u). A k-coloring f is union vertex-distinguishing if,
for all distinct u, v in V (G), idf (u) 6= idf (v). For a given graph G, we denote by χ∪(G) the smallest integer

∗Corresponding author
1In that case, colors are integers.
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k such that there exists a union vertex-distinguishing coloring of G. Figure 1 illustrates such a coloring,
where small labels correspond to the f function, and the large labels denote the codes.
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Figure 1: Example of a union vertex-distinguishing coloring

In most of the existing variants, only one color is allocated to each edge or vertex. Note however that
this idea of a coloring function that maps to subsets of integers was also considered by Hegde in 2009. In [6],
Hedge defined an edge-distinguishing vertex coloring where vertices are colored with sets of positive integers.
The codes are defined on edges and equal the symmetric difference of the sets of the vertices incident to
them.

As already mentioned, the union vertex-distinguishing problem generalizes existing problems related
to vertex-distinguishing colorings. For instance, the set irregular edge coloring problem can be seen as an
instance of the union vertex-distinguishing problem where only singletons are allowed on the edges. Moreover,
any identifying coloring f of a graph G induces a valid union vertex-distinguishing coloring. Indeed, it suffices
to color each edge of G with the set of its incident colors in f . Figure 2 illustrates this transformation. As
a consequence, each edge of G is colored with a set of size at most 2.
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Figure 2: Union vertex-distinguishing coloring (right side) produced from an identifying coloring (left side)

Thus if χS(G) (resp. χid(G)) denotes the minimum number of colors of a set irregular edge (resp.
identifying) coloring of a graph G, the following inequality holds:

χ∪(G) ≤ min(χS(G), χid(G)). (1)

If a graph G has a connected component isomorphic to K2 or at least two single vertices, there is no
union vertex-distinguishing coloring of G. Hence we restrict ourselves in this paper to graphs with connected
components of size at least 3. As for the identifying coloring problem [8], a lower bound is straightforwardly
available for χ∪(G):

Proposition 1. Every graph G = (V,E) where no connected component is isomorphic to a single vertex or
an edge admits a union vertex-distinguishing coloring and satisfies

dlog2(|V |+ 1)e ≤ χ∪(G).
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Proof. Since G admits no connected component isomorphic to a single vertex or an edge, there always exists
a union vertex-distinguishing coloring of G. Indeed, for every pair of vertices x, y, the sets of edges incident
to x and y are distinct. Thus, if one assigns different colors to each edge, all the pairs of vertices are incident
to distinct subsets of colors. In addition, since {1, . . . , k} admits 2k − 1 non empty subsets, a union vertex-
distinguishing k-coloring must satisfy |V | ≤ 2k−1. Indeed, otherwise two vertices must receive identical non
empty subsets of colors.

A graph G is optimally colored if χ∪(G) = dlog2(|V |+ 1)e. We will show that every graph can be colored
using dlog2(|V |+ 1)e or dlog2(|V |+ 1)e+ 1 or dlog2(|V |+ 1)e+ 2 colors. This result is somehow surprising
since in almost all the known variants of identifying coloring, there exist graphs for which the gap between
the lower bound and the minimum number of colors needed to identify all the vertices is arbitrarily large (see
e.g. [8]). We can easily prove that there exist classes of graphs on which the optimal value can be obtained
in any case (e.g. trees, paths, large enough cycles, complete binary trees...). In the case of complete graphs,
the lower bound provided by Proposition 1 is not always tight. Indeed, consider the complete graph Kn of
order n = 2k − 1 for any integer k > 1. If χ∪(Kn) = dlog2(|V |+ 1)e, then there exist two distinct vertices u
and v such that id(u) = {1} and id(v) = {2}. The only way to produce these codes is to color all the edges
incident to u with the singleton {1}, and all the edges incident to v with {2}. Hence the edge (u, v) would
receive two different colors, a contradiction. Harary proved in [5] that χS(Kn) = dlog2(n)e + 1. Putting
together this result with (1), it ensures that we have χ∪(Kn) ∈ {dlog2(n)e, dlog2(n)e+ 1}. We were not able
to find a graph for which dlog2(|V | + 1)e + 2 colors are needed. Determining if there exist, or not, graphs
that can reach this value remains open. Vizing’s theorem ensures that the minimum number of colors of
an edge coloring of any graph of maximum degree ∆ is either ∆ (which is the immediate lower bound) or
∆ + 1. Our result is similar since all the union vertex-distinguishing number is either the optimal value or
the optimal value plus one or the optimal value plus two.

The paper is organized as follows. In Section 2, we prove our main result that ensures that for every
graph G that admits a union vertex-distinguishing coloring, the value of χ∪(G) is between dlog2(|V | + 1)e
and dlog2(|V |+ 1)e+ 2. In Section 3, we prove that the lower bound is reached for paths, complete binary
trees, and cycles of length n with n 6= 7.

2. An almost tight upper bound on χ∪(G)

Theorem 2. Every graph G = (V,E) where no connected component is isomorphic to a single vertex or an
edge satisfies

χ∪(G) ≤ dlog2(|V |+ 1)e+ 2.

This section is devoted to prove Theorem 2. Let us first describe in a few words the structure of the proof.
A graph H is an edge-subgraph of G if V (H) = V (G) and E(H) ⊆ E(G). First we show in Lemma 3 that, for
every edge-subgraph H of G, we have χ∪(G) ≤ χ∪(H)+1. Thus, if we can find an edge subgraph H of G such
that χ∪(H) ≤ dlog2(|V |+ 1)e+ 1, the conclusion immediately holds. Lemmas 4 and 5 consist in extracting
such a subgraph and proving that it admits a union vertex-distinguishing coloring with dlog2(|V | + 1)e + 1
colors.

Lemma 3. Let G = (V,E) be a graph. For any edge-subgraph H of G, we have χ∪(G) ≤ χ∪(H) + 1.

Proof. Let α be a k-coloring of H that is union vertex-distinguishing. We denote by {1, . . . , k} the colors of
α and let k+ 1 be a new color. Let us prove that G admits a union vertex-distinguishing coloring with k+ 1
colors. Consider the coloring β of G where β(e) = α(e) if e ∈ E(H) and β(e) = {k+ 1} otherwise. For every
vertex u in V (G), we have idβ(u) = idα(u) or idα(u)∪ {k+ 1}. Indeed, if u is not an endpoint of an edge of
E(G) \ E(H), then idβ(u) = idα(u). Otherwise, color k + 1 also appears in an edge incident to u and then
idβ(u) = idα(u) ∪ {k + 1}.

Thus, for every pair u, v of vertices, we have idβ(u)∩ {1, . . . , k} = idα(u) 6= idα(v) = idβ(v)∩ {1, . . . , k}.
Thus idβ(u) 6= idβ(v) which completes the proof.
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The star S1,k is a graph on k + 1 vertices with k vertices (called leaves) of degree one all connected to
the (k + 1)-th vertex (called the center). A star is non-trivial if it admits at least two leaves. A graph H is
a 1-subdivision of G if H can be obtained from G by subdividing each edge at most one time. A 1-star is a
1-subdivision of a non-trivial star.

Lemma 4. Any graph with no connected component isomorphic to a single vertex or an edge admits a
disjoint union of 1-stars as an edge-subgraph.

Proof. Assume by contradiction that there exists a graph G with no connected component isomorphic to
a single vertex or an edge that does not admit a 1-star as an edge-subgraph. Amongst all these counter-
examples, choose G that lexicographically minimizes its number of vertices and then its number of edges.
Note that the minimality of G ensures that G is connected and that G has at least 3 vertices.

For every edge e, if G \ e admits as an edge-subgraph a disjoint union of 1-stars as an edge-subgraph,
then G also does since G \ e is an edge subgraph of G. So G \ e has no decomposition into disjoint 1-stars.
Thus, by minimality of G, for every edge e, the graph G \ e has at least one connected component that is
reduced to a single vertex or an edge.

Let e = (u, v) be an edge where v is a vertex of maximum degree. Note that d(v) ≥ 2. First assume
that d(v) ≥ 3. In the graph G′ = G \ e, the component of u or the component of v have size at most 2.
Since d(v) ≥ 2 in G′, the component of u in G′ is a single vertex or an edge. For every neighbor w of v the
component of w in G \ e′, where e′ = (v, w), is either is single vertex or an edge. Indeed the component of v
contains both u and v and another neighbor of v. Thus, the component of v in G \ e is a 1-star with center
v. And hence, so is the component of v in G.

Assume now that d(v) = 2. By connectivity of G, G is a path or a cycle with at least three vertices.
Then G admits as an edge-subgraph a disjoint union of P3, P4 and P5 which are all 1-stars, a contradiction.

Lemma 5. Any 1-star can be optimally colored.

Proof. Let S be a 1-star. One can easily check that P3 can be colored using 2 colors (Theorem 8 actually
ensures that all the paths can be optimally colored). From now on we assume that S 6= P3. Let us denote
by u the center of S and by n1 and n2 the number of vertices at distance respectively 1 and 2 from u. Note
that n := |V | = 1 + n1 + n2 and that n1 ≥ n2 since each vertex incident to u is incident to at most one
vertex in the second neighborhood of u. Let Y be the set of non-neighbors of u distinct from u and X be
the set of vertices in N(u) incident to a vertex of Y . By definition of 1-stars, |X| = |Y | and (X,Y ) induces
a perfect matching. Finally, let Z = N(u) \X.

Let us denote by k the integer dlog2(n + 1)e. Since X and Y are disjoint and neither of them contain

u, we have |X| ≤ n− 1

2
≤ 2k−1 − 1. Assume first that |X| 6= 2k−1 − 1. Let α be a coloring satisfying the

following properties:

(i) For every vertex x ∈ X, α(u, x) is a strict subset of {1, . . . , k} of size at least 2 that contains color k such
that α(u, x) 6= α(u, x′) if x 6= x′. Moreover, if X contains at least two vertices, then ∪x∈Xα(u, x) =
{1, . . . , k}. Such sets necessarily exist since there are 2k−1−2 strict subsets of size at least 2 of {1, . . . , k}
containing k and |X| ≤ 2k−1 − 2.

(ii) Every edge (x, y) between x of X and y of Y satisfies α(x, y) = α(u, x) \ k.

(iii) Every edge (u, z) with z ∈ Z, α(u, z) is a strict non-empty subset of {1, . . . , k} that has not been
assigned yet to an edge. Moreover, if Z is non-empty, the set {1, . . . , k − 1} must be one of these sets.
If X is empty then the label of at least one edge must also contain k. This is possible since there are
at most 2k − 2 edges in G and 2k − 2 strict non-empty subsets of {1, . . . , k}.

Note that for each vertex v 6= u, id(v) corresponds to a unique α(v, w) for a neighbor w of v. This is
clear for vertices of Y ∪Z that have degree one. If v ∈ X and w is its neighbor in Y , we have by construction
α(v, w) ⊂ α(v, u), thus id(v) = α(v, u). Moreover id(u) = {1, . . . , k}. Indeed, the degree of u is at least 2.
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If the size of X is at least two then, by construction ∪x∈Xα(u, x) = {1, . . . , k} and thus id(u) = {1, . . . , k}.
If the size of X is one, then u has another neighbor in Z. Since α(u, x) contains k and one edge between u
and Z is labeled {1, . . . , k − 1}, we have id(u) = {1, . . . , k}. Finally, if X is empty, then one edge is labeled
by {1, . . . , k − 1} and one label contains k. Thus id(u) = {1, . . . , k}.

Since all the edges get strict distinct subsets of {1, ..., k}, α is union vertex-distinguishing.
Consider now the case |X| = 2k−1 − 1. It means that Z is empty. Let x1, x2 two vertices of X and y1,

y2 their neighbors in Y . We construct α as follows:

(i) α(x1, u) = {1, . . . , k − 2, k};

(ii) α(x1, y1) = {k};

(iii) α(x2, u) = {1, . . . , k − 1};

(iv) α(x2, y2) = {1, . . . , k − 2};

(v) For every other vertex x ∈ X, α(u, x) is a strict subset of {1, . . . , k} of size at least 2 that contains
color k and that has not been assigned yet. Such sets necessarily exist since there are 2k−1 − 3 strict
subsets of size at least 2 of {1, . . . , k} containing k that have not been assigned yet and there remain
2k−1 − 3 vertices in X.

(vi) Every edge (x, y) between x of X \ {x1, x2} and y of Y \ {y1, y2} satisfies α(x, y) = α(u, x) \ k.

As before, for each vertex v 6= u, id(v) corresponds to a unique α(v, w) for a neighbor w of v and
id(u) = {1, . . . , k}. Since all the edges get again strict distinct subsets of {1, ..., k}, α is union vertex-
distinguishing.

According to Lemma 4, we know that every graph with no connected component isomorphic to a vertex
or an edge admits a disjoint union of 1-stars as an edge-subgraph. Since adding edges to a graph only costs
one color, it remains to prove that the disjoint union of 1-stars admits a union vertex-distinguishing edge
coloring using the optimal number of colors plus one in order to prove Theorem 2.

Lemma 6. A disjoint union of graphs that can be separately optimally colored can be colored together using
at most the optimal number of colors plus one.

Proof. Let us first give a few general definitions. Given two graphs H1 and H2, we denote by H1 ∪H2 the
disjoint union of H1 and H2. A graph K is a k-graph if its number of vertices is between 2k and 2k+1 − 1.
Note that if H1 and H2 are two k-graphs then H1 ∪H2 is a (k + 1)-graph.

Claim 7. Let H1 and H2 be two k-graphs that can be optimally colored. Then H1 ∪ H2 can be optimally
colored.

Proof. Indeed, let α (respectively β) be an optimal union vertex-distinguishing coloring of H1 (resp. H2)
both using colors {1, . . . , k}. Then consider the coloring γ of H1∪H2 such that γ(e) = α(e) if e is an edge of
H1 and γ(e) = β(e) ∪ {k + 1} if e is an edge of H2. We claim that γ is union vertex-distinguishing. Indeed
two vertices u, v of H1 satisfies id(u) 6= id(v) since α is distinguishing. Similarly, two vertices u, v of H2

satisfies id(u)∩ {1, . . . , k} 6= id(v)∩ {1, . . . , k} since β is distinguishing. Now let u ∈ V (H1) and v ∈ V (H2).
Since any vertex of H2 is incident to an edge of H2, k+ 1 appears in id(v) while it does not appear in id(u).
This completes the proof.

Thus H1 ∪H2 can be colored using (k + 1) colors. Since we noticed that if H1 and H2 are two k-graphs
then H1 ∪H2 is a (k + 1)-graph, this coloring is optimal.
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Using Claim 7, let us prove the lemma. Let H = {H1, . . . ,H`} be ` graphs that can be optimally colored.
Let us prove that their disjoint union can be colored using at most the optimal number of colors plus one.
We prove it by induction on the number of graphs in H. The case ` = 1 is clear.

First assume that there exists an integer k such that H contains two k-graphs, without loss of generality,
we can assume that these graphs are H1 and H2. By Claim 7, H1 ∪ H2 can be optimally colored. Thus
H′ = H ∪ (H1 ∪H2) \ {H1, H2} contains less graphs than H and all of them can be optimally colored. By
induction their union, which also is the disjoint union of H1, . . . ,H` can be colored using at most the optimal
number of colors plus one, which achieves the proof in that case.

Thus we can assume that for every k, there is at most one k-graph. Order the graphs of H in increasing
size. Let us prove by induction on i that if Hi is a ki-graph then the disjoint union of H1, H2, · · · , Hi can
be colored using ki + 1 colors. The base case i = 1 is trivial: H1 can be colored using k1 colors so it can
be colored using k1 + 1 colors. Now, let us consider the inductive case. Let H1, · · · , Hi be the graphs in H.
By induction hypothesis there exists a coloring α using ki−1 + 1 colors to color H1 ∪ · · · ∪Hi−1. Moreover,
since Hi is a ki-graph, there exists a ki-coloring of Hi. Note that ki ≥ ki−1 + 1 since there is a unique
ki-graph. Define γ as α(e) if e is an edge of Hj with j < i or β(e) ∪ {ki + 1} if e ∈ E(Hi). The coloring γ
is a (ki + 1)-coloring of H1 ∪ · · · ∪Hi. As in Claim 7, we can show that it is vertex-distinguishing. Indeed
two vertices u, v of H1 ∪ · · · ∪ Hi−1 satisfies id(u) 6= id(v) since α is vertex-distinguishing. Similarly, two
vertices u, v of Hi satisfies id(u) ∩ {1, . . . , ki} 6= id(v) ∩ {1, . . . , ki} since β is vertex-distinguishing. Now let
u ∈ V (H1 ∪ · · · ∪Hi−1) and v ∈ V (Hi). Since any vertex of H2 is incident to an edge of H2, ki + 1 appears
in id(v) while it does not appear in id(u). Thus all the vertices can be identified.

Finally, H = H1 ∪ · · · ∪H` can be colored using k` + 1 colors. By definition of k`, we have

k` ≤ dlog2(|V (H`)|+ 1)e ≤ dlog2(|V (H)|+ 1)e.

Thus the graph H can be colored with the optimal number of colors plus one.

Let us finally combine all these lemmas to prove Theorem 2. Let G be a graph that does not contain any
connected component of size at most 2. According to Lemma 4, G admits a graph H as an edge-subgraph
that is a disjoint union of 1-stars. Lemma 5 ensures that each of these 1-stars can be optimally colored. Thus,
the graph H is the disjoint union of graphs that can be optimally colored. Lemma 6 ensures that the whole
graph H can be colored using at most dlog2(|V (H)| + 1)e + 1 colors. Finally, since H is an edge-subgraph
of G, Lemma 3 ensures that G can be colored using at most dlog2(|V (H)|+ 1)e+ 2 colors. Thus Theorem 2
holds.

3. Exact values for several classes of graphs

In this section, we show that several sparse classes of graphs can be optimally colored. In particular, we
show that paths, cycles (of large enough length) and complete binary trees can be optimally colored. All
these results can be seen as a first step in order to improve the result of Theorem 2. Indeed, if we can prove
that every tree (resp. forest) can be colored with the optimal number of colors, then using Lemma 3, we
can prove that any connected (resp. any) graph can be colored with at most dlog2(|V (G)|+ 1)e colors since
every connected graph admits a spanning tree (resp. forest).

In Section 3.1, we prove that paths can be optimally colored, in Section 3.2, we focus on cycles, and
finally, we consider the case of complete binary trees in Section 3.3

3.1. Paths

This section is devoted to prove that paths can be optimally colored. We actually prove a slightly larger
statement that will be useful for the cycle case (see Section 3.2).

Theorem 8. For n ≥ 3, the path Pn can be optimally colored. Moreover, there exists an optimal union
vertex-distinguishing m-coloring of Pn such that:

(i) id(u1) = {1};
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(ii) id(un) = {m};

(iii) the only vertex that can satisfy id(uj) = {1,m} is un−1;

where u1,...,un are the vertices of Pn.

Proof. We prove the result by induction on n. The case n = 3 is given by Figure 3.

{1} {2}

Figure 3: A union vertex-distinguishing coloring of P3.

Let n = 2k + ` with 0 ≤ ` < 2k and k ≥ 2. By induction, there exists a union vertex-distinguishing
coloring αk of P2k−1 using k colors and satisfying Conditions (i) to (iii). Using αk, we will construct a union
vertex-distinguishing coloring β of Pn with k+ 1 colors and satisfying Conditions (i) to (iii). The vertices of
P2k−1 are denoted v1,...,v2k−1. Conditions (i) and (ii) will be trivially satisfied so we do not explicitly check
them.

Case 1: ` = 0 (n = 2k)
We define the following coloring β of Pn:

• β(ui, ui+1) = αk(vi, vi+1) for 1 ≤ i ≤ 2k − 2

• β(u2k−1, u2k) = {k + 1}

. . .
{1} {k}

{k + 1}

P2k−1

Figure 4: The coloring of P2k using the coloring α2k−1.

The construction is illustrated on Figure 4. The coloring β is union vertex-distinguishing. Indeed the
vertices u1, . . . , u2k−2 are pairwise distinguished by definition of αk. Moreover, we have idβ(u2k−1) = {k, k+
1} and idβ(u2k) = {k+ 1}. Thus these vertices can be distinguished from the others since for all i ≤ 2k − 2,
idβ(ui) does not contain k + 1. Finally, Condition (iii) is satisfied since there is no vertex with idβ(ui) =
{1, k + 1}.
Case 2: ` = 1

We define the following coloring β of Pn:

• β(ui, ui+1) = αk(vi, vi+1) for 1 ≤ i ≤ 2k − 2

• β(u2k−1, u2k) = {k}

• β(u2k , u2k+1) = {k + 1}
This construction is illustrated on Figure 5. The coloring β is union vertex-distinguishing. Indeed, the

vertices u1, . . . , u2k−1 are pairwise distinguished since αk is union vertex-distinguishing (note that, unlike
the previous case, we have idβ(u2k−1) = {k} = idαk

(v2k−1)). Moreover, we have idβ(u2k+1) = {k+1}. Thus
u2k+1 can be distinguished from the other vertices since for all 1 ≤ i ≤ 2k−1, idβ(ui) does not contain k+1.
Finally, there is no vertex with idβ(ui) = {1, k + 1}.
Case 3: ` = 2

We define the following coloring β of Pn:
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P2k−1

{1}
. . .

{k} {k}
{k + 1}

Figure 5: The coloring of P2k+1 using the coloring αk.

• β(ui, ui+1) = αk(vi, vi+1) for 1 ≤ i ≤ 2k − 2

• β(u2k−1, u2k) = {k}

• β(u2k , u2k+1) = {1, k + 1}

• β(u2k+1, u2k+2) = {k + 1}

P2k−1

{1}
. . .

{k} {k}

{1, k + 1}
{k + 1}

Figure 6: The coloring of P2k+2 using the coloring αk.

This construction is illustrated on Figure 6. The coloring β is union vertex-distinguishing. Indeed,
the vertices u1, . . . , u2k−1 are pairwise distinguished since αk is union vertex-distinguishing. Moreover, we
have idβ(u2k) = {1, k, k + 1}, idβ(u2k+1) = {1, k + 1} and idβ(u2k+2) = {k + 1}. Thus these vertices are
distinguished from the other vertices since for all 1 ≤ i ≤ 2k − 1, idβ(ui) does not contain k+ 1. Finally, the
vertex with idβ(ui) = {1, k + 1} is un−1.

Case 4: 3 ≤ ` ≤ 2k − 1
We denote the vertices of P` by w1, . . . , w`. By induction, there exists a union vertex-distinguishing

coloring α` of P` satisfying satisfying Conditions (i) to (iii). Let m be the number of colors in α`. We define
the following coloring β of Pn:

• β(ui, ui+1) = αk(vi, vi+1) for 1 ≤ i ≤ 2k − 2

• β(u2k−1, u2k) = {k}

• β(u2k+i, u2k+i+1) = α`(w`−i, w`−i−1) ∪ {k + 1} for 0 ≤ i ≤ `− 2

• β(un−2, un−1) = {1, k + 1}

• β(un−1, un) = {k + 1}

This construction of the coloring is illustrated on Figure 7. The vertices u1, . . . , u2k−1 are pairwise
distinguished by definition of αk. The same holds for the vertices of u2k , . . . , un−1 by definition of α`.
Indeed, idβ(u2k+i) ∩ {1, ...,m} = idα`

(w`−i) for i ∈ 0, ...`− 1.
Besides, for 0 ≤ i ≤ 2k − 1 and 2k ≤ i′ ≤ n, idβ(ui) 6= idβ(ui′), since {k + 1} ∈ idβ(ui′) and {k + 1} /∈

idβ(ui). The vertex un is also identified since no other vertex can have the label {k+1}. Finally, the coloring
is optimal since it uses k + 1 colors on a path of length 2k + ` with 0 ≤ ` ≤ 2k.
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P2k−1

{1}
. . .

{k} {k}

reversed P` with color
k + 1 added to every edge

. . .

{m, k + 1} {1, k + 1}
{k + 1}

Figure 7: The coloring of P2k+` using the ones of P2k−1 and P`.

3.2. Cycles

In this section, we prove that cycles of length different from 3 or 7 can be optimally colored. First note
that every cycle can be colored with dlog2(|G|+ 1)e or dlog2(|G|+ 1)e+ 1 colors. Indeed, the path Pn is an
edge-subgraph of the cycle Cn. By Theorem 8, the path Pn can be optimally colored. Thus by Lemma 3,
the graph Cn can be colored with dlog2(|G|+1)e+1 colors. The remaining of this section is devoted to show
that the plus one fact can be dropped in all but two cases.

Lemma 9. χ∪(C3) = 3 and χ∪(C7) = 4

Proof. We mentioned in the introduction that no clique of size 2k − 1 can be colored with only k colors.
Since C3 = K3, the result holds for C3.

We now concentrate on the graph C7. Let u1, . . . , u7 be the seven vertices in C7. We know by Theorem
2 that at least three colors are required. We will prove that three colors are not enough. We proceed by
contradiction: assume C7 is distinguished with a coloring α using only three colors. Thus, there are three
vertices v1, v2 and v3 such that id(vi) = {i}. Since all the edges incident to vi are labeled with i, v1, v2 and
v3 are pairwise non incident. Without loss of generality, we can assume that id(u1) = {1}, id(u3) = {2} and
id(u5) = {3}. Thus we have id(u2) = {1, 2} and id(u4) = {2, 3}. Now, we need to have the labels {1, 3} and
{1, 2, 3} on the vertices u6 and u7. However, since 2 6∈ α(u7, u1), α(u5, u6), we have 2 ∈ α(u6, u7), which is
a contradiction with the fact that either u6 or u7 has the label {1, 3}. Thus we need at least four colors to
distinguish C7.

Theorem 10. For n ≥ 4, n 6= 7, Cn can be optimally colored.

We first prove the case n 6= 2k − 1.

Lemma 11. Let n ≥ 4 such that n 6= 2k − 1 for any k. Then χ∪(Cn) = dlog2(n+ 1)e.
Proof. Let k ≥ 2 and n such that 2k ≤ n < 2k+1− 1. We denote the vertices of Cn as u1, . . . , un. We denote
by v1, . . . , vn+1 the vertices of Pn+1. Since dlog2(n + 2)e = k + 1, Theorem 8 ensures that there exists a
union vertex-distinguishing coloring α of Pn+1 using k + 1 colors with idα(v1) = {1}, idα(vn+1) = {k + 1}
and where the only vertex of Pn+1 that can be identify by {1, k + 1} is vn.

We define the following coloring β of Cn using k + 1 = dlog2(n+ 1)e colors:

• β(ui, ui+1) = α(vi, vi+1) for 1 ≤ i ≤ n− 1

• β(u1, un) =

{
{1} if 1 ∈ idα(vn)
{k + 1} otherwise

This construction is shown on Figure 8.
We now prove that β is union vertex-distinguishing. For every vertex ui with 2 ≤ i ≤ n − 1, idβ(ui) =

idα(vi). These vertices are distinguished since the corresponding vertices are pairwise distinguished in α.
Thus, we only need to study u1 and un. Since α satisfies the conclusion of Theorem 8, if a vertex is identified
by {1, k + 1} in Pn+1, it must be vn. In this case, we have idβ(u1) = idα(v1) = {1} and idβ(un) =
idα(vn) = {1, k + 1}, and those vertices are distinguished. Otherwise, we have idβ(un) = idα(vn) and
idβ(u1) = {1, k + 1} 6= idα(vi) (for 2 ≤ i ≤ n) and those vertices are distinguished.
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Pn+1

{1}
. . .

E

{1} if 1 ∈ E,
{k + 1} otherwise

Figure 8: The construction of Cn from Pn+1.

To conclude the proof of Theorem 10, we now deal with the case n = 2k − 1.

Lemma 12. Let k ≥ 4 and n = 2k − 1. Then χ∪(C2k−1) = k.

Proof. We denote the vertices of Cn by u1,...,un. We prove by induction on k ≥ 4 that there is a union
vertex-distinguishing coloring αk of C2k−1 with k colors such that idαk

(u1) = {1} and 1 ∈ αk(u2, u3).
The base case is k = 4 (giving us C15), that can be optimally colored as shown on Figure 9.

u1

u2

u3

u4
u5

u6

u7

u8

u9

u10

u11

u12
u13

u14

u15

{2}

{1, 2}

{3}
{3}{1, 3}

{1, 4}

{1}

{1}

{1, 2, 4}

{3}
{2} {4}

{4}

{3, 4}

{2}

Figure 9: A vertex-distinguishing coloring of C15.

Let k ≥ 4 and n = 2k − 1. Assume there exists a union vertex-distinguishing k-coloring αk for Cn that
satisfies idαk

(u1) = {1} and 1 ∈ αk(u2, u3). We will construct a union vertex-distinguishing (k+ 1)-coloring
β of C2n+1 using αk.

First, we create C ′n, a copy of Cn: every vertex ui in Cn has a copy u′i in C ′n. We define the coloring α′k
on C ′n by α′k(u′i, u

′
i+1) = αk(ui, ui+1) ∪ {k + 1} for all 1 ≤ i ≤ n− 1 and α′k(u′1, u

′
n) = αk(u1, un) ∪ {k + 1},

meaning that α′k is a union vertex-distinguishing coloring for C ′n. Thus, we have:

n⋃
i=1

(idαk
(ui) ∪ idα′

k
(u′i)) = P∗({1, . . . , k + 1}) \ {k + 1}

(where P∗(S) denotes the powerset of S short of the empty set).
We now create the following graph G, isomorphic to C2n+1:

• V (G) = V (Cn) ∪ V (C ′n) ∪ {v}

• E(G) = (E(Cn) \ {(u1, un)}) ∪ (E(C ′n) \ {(u′1, u′n)}) ∪ {(u1, v), (u′1, v), (un, u
′
n)}

We define the following coloring β on G, which uses k + 1 colors:

• β(ui, ui+1) = αk(ui, ui+1) for 0 ≤ i ≤ n− 1,
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• β(u′i, u
′
i+1) = α′k(u′i, u

′
i+1) for 0 ≤ i ≤ n− 1,

• β(u′1, u
′
2) = {k + 1}

• β(u1, v) = {1}

• β(u′1, v) = {k + 1}

• β(un, u
′
n) = {1} ∪ αk(un−1, un)

This construction is shown on Figure 10.

Cn C ′n

v

un u′n

u1 u′1

u′2

un−1

{1} ∪ E

E

{1}
{k + 1}

Figure 10: The construction of G and β from Cn, C
′
n, α and α′.

We now prove that β is union vertex-distinguishing. First, we can see that every vertex ui (resp. u′i)
satisfies idβ(ui) = idαk

(ui) (resp. idβ(u′i) = idα′
k
(u′i)), except u′1. Indeed, this is clear for all the vertices

but u1, un, u′2, u′n since the colors of their incident edges do not change. Since αk(u1, un) = {1} and
α′k(u′1, u

′
n) = {1, k + 1} it is true for u1, un and u′n. Finally, 1 has been removed from the edge (u′1, u

′
2) but

by induction hypothesis, 1 ∈ α′k(u′2, u
′
3) hence we also have idβ(u′2) = idα′

k
(u′2). Thus all these vertices are

pairwise distinguished.

For the two last vertices, idβ(u′1) = {k + 1} does not appear in

n⋃
i=1

(idαk
(ui) ∪ idα′

k
(u′i)) and idβ(v) =

{1, k + 1} = idα′(u′1). So these two vertices are distinguished from the other.
In conclusion, β is a union vertex-distinguishing coloring of C2k+1−1 using k + 1 colors. Furthermore,

choosing for the first vertices u1, u2, u3, . . . we have idβ(u1) = {1} and still 1 ∈ β(u2, u3). Hence the extra
condition of the induction is still satisfied, which completes the proof.

3.3. Complete Binary Trees

In this section we show that complete binary trees can be optimally colored. In what follows, all the
complete binary trees will be rooted in their unique vertex of degree 2. Recall that for such a tree T , the
height of T is the length (in terms of number of edges) of a path from the root to a leaf. Given a positive
integer h, we will denote by Th and rh, respectively, the complete binary tree of height h and its root. Hence
Th+1 can be inductively built from two copies of Th, say Th and T ′h, as follows:

V (Th+1) = V (Th) ∪ V (T ′h) ∪ {rh+1} (2)

E(Th+1) = E(Th) ∪ E(T ′h) ∪ {(rh, rh+1), (r′h, rh+1)} (3)

Theorem 13. For all h ≥ 1, the complete binary tree Th can be optimally colored.
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Proof. We proceed by induction on h. Given h ≥ 1, our induction hypothesis claims there exists a union
vertex-distinguishing (h+ 1)-coloring αh of Th such that:

idαh
(rh) = {h, h+ 1} (4)

∀e ∈ E(T ′h−1), h+ 1 ∈ αh(e). (5)

Note that such an (h+ 1)-coloring is an optimal coloring, since the complete binary tree of height h has
2h+1 − 1 vertices.

This property holds for h = 1, as shown by the coloring depicted on Figure 3 (with rh = u2).
Now assume the property holds for some h ≥ 1, and consider Th+1 as defined in (2) and (3). By induction

hypothesis, there exists an (h+ 1)-coloring αh of Th (and also of T ′h) satisfying Conditions (4) and (5). We
now define an (h+ 2)-coloring αh+1 of Th+1 as follows:

∀e ∈ E(Th), αh+1(e) = αh(e),

∀e ∈ E(T ′h), αh+1(e) = αh(e) ∪ {h+ 2},
αh+1(rh, rh+1) = {h+ 1},
αh+1(r′h, rh+1) = {h+ 1, h+ 2}.

Figure 11 illustrates this coloring.

Figure 11: Optimal coloring of Th+1

With the above definition, we have:

∀v ∈ V (Th) \ {rh}, idαh+1
(v) = idαh

(v),

∀v ∈ V (T ′h) \ {r′h}, idαh+1
(v) = idαh

(v) ∪ {h+ 2},
idαh+1

(rh+1) = {h+ 1, h+ 2}.

Moreover, since rh and r′h both satisfy Condition (4), we also have that idαh+1
(rh) = idαh

(rh) and idαh+1
(r′h) =

idαh
(rh) ∪ {h + 2}. Hence, by induction hypothesis, all the vertices of Th are identified by αh+1 with all

non-empty subsets of {1, . . . , h+ 1}, and all the vertices of T ′h are identified with all subsets of {1, . . . , h+ 2}
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containing h + 2. In particular, there exists a unique vertex u of T ′h such that idαh+1
(u) = {h + 1, h + 2}.

Since idαh
(u) = {h + 1} and since T ′h satisfies (5), it implies that u ∈ T ′h−1. Remark that u cannot be

adjacent to a leaf, otherwise they would not be identified by αh as having the same code {h+ 1}.
Up to now, the coloring αh+1 is not vertex-distinguishing since idαh+1

(u) = idαh+1
(rh+1) = {h + 1, h + 2}

and since {h + 2} has not been assigned yet to a vertex. For every edge e incident to u, remove the value
h + 1 from the set αh+1(e). Hence idαh+1

(u) = {h + 2}. In addition, since u is in T ′h−1 and if it is not the
root of T ′h−1, all the vertices adjacent to u have their code unchanged since they are of degree 3 and, by
(5), are incident to at least an edge with the color h + 1. Otherwise, if u is the root of T ′h−1, then r′h has
still h+ 1 in its code since αh+1(r′h, rh+1) = {h+ 1, h+ 2} (see Figure 11). Therefore, the coloring αh+1 is
vertex-distinguishing and Conditions (4) and (5) are satisfied for Th+1, which completes the proof.

4. Open questions

Question 14. Do we have, for any graph G, χ∪(G) ≤ dlog2(|V (G)|+ 1)e+ 1 ?

In order to prove such a result, Lemma 3 might be really helpful. Indeed, if one can find an edge-subgraph
of G for which there exists a coloring using the optimal number of colors, then one can prove that the graph
itself can be colored using at most the optimal number of colors plus one. In particular, showing that one of
the two following properties holds would ensure that any graph can be colored using the optimal number of
colors plus one:

• Any tree can be optimally colored.

• Any forest of stars subdivided at most one time can be optimally colored.

More generally, it would also be interesting to understand which properties on the graph ensure that it can
be optimally colored. The sparsity of the graph may be an interesting parameter to look at.

In addition, it may be interesting to consider several usual variations of the distinguishing problem such
as the variant where the coloring is proper or where only adjacent vertices must be distinguished.
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