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Introduction

In a book published in 1981 ( [START_REF] Zelevinsky | Representations of finite classical groups, a Hopf algebra approach[END_REF]), Andrei Zelevinsky categorified an infinite-rank PSH-algebra in terms of representations of the collection of all GL(n, F) where F is a finite field. He did this using a pair of adjoint functors, the parabolic induction and its adjoint.

We intend, in this paper, to apply the same set of ideas to the categorification of a infinite Clifford algebra acting on the Fock space of semi-infinite forms, in terms of representations of the collection of all classical supergroups SOSP (2m + 1, 2n), using the geometric induction functor and its adjoint called geometric restriction.

Let us start with the preliminary example of classical groups. Let (G n ) n≥1 be a family of complex classical Lie groups, G n of rank n, together with inclusions

G 1 ⊂ G 2 ⊂ . . . ⊂ G n ⊂ .
. . in such a way that G n-1 × C * is the reductive part of a maximal parabolic subgroup denoted P n of G n , and we denote the maximal unipotent subgroup of P n by U n . For instance, consider G n = GL(n, C). We use gothic letters for the corresponding Lie algebras. We denote F n the category of finite-dimensional G n -modules, it is a semi-simple category and we denote K n its Grothendieck group.

We use the functors Γ a i and H j b defined as follows: Γ a i : F n → F n+1 , Γ a i (M ) := H i (G n+1 /P n+1 , L(C a+n M ) * ) * where C a is the one-dimensional representation of C * with character a ∈ Z; we assume that U n acts trivially and L(C a M ) * is the induced vector bundle G n × P n+1 (C a M ) * .

H j b : F n → F n-1 , H j b (M ) := Hom C * (C b+n , H j (u n , M )). At the level of Grothendieck groups we obtain linear maps

γ a : K n → K n+1 [M ] → i (-1) i [H i (G n+1 /P n+1 , L(C a+n M ) * ) * ], η b : K n → K n-1 [M ] → j (-1) j [Hom C * (C b+n , H j (u n , M ))].
We set K := ⊕ n K n and extend those maps to K. Then, applying Borel-Weil-Bott theorem, we obtain the following relations, for all a and b in Z:

(1)

γ a γ b + γ b γ a = 0, (2) 
η a η b + η b η a = 0, (3) 
γ a η b + η b γ a = δ a,b Id.
We recognise those relations as the ones of the infinite dimensional Clifford algebra C. Furthermore, we see K as an irreducible representation of C which is induced by the trivial representation of the subalgebra of C generated by (η b ) b∈Z .

This provides a categorification of the Clifford algebra C by the family of classical groups (G n ) n≥1 .

We follow the same scheme for the family of classical Lie supergroups SOSP (2m+ 1, 2n) when m and n vary, in this case we categorify the representation of the infinite Clifford algebra in the Fock space of semi-infinite forms. In the last section, we explain how our previous categorification work on orthosymplectic Lie superagebras ( [START_REF] Gruson | Bernstein-Gel'fand-Gel'fand reciprocity and indecomposable projective modules for classical algebraic supergroups[END_REF]) can be understood in this context.

We would also like to mention the work of Michael Ehrig and Catharina Stroppel [START_REF] Ehrig | On the category of finite dimensional representations of OSp(r|2n): part 1[END_REF], who used quantized symmetric pairs in order to refine our previous results on the category of finite dimensional modules over orthosymplectic Lie superalgebras and obtain a diagrammatic description of the endomorphism algebras of projective generators.

It would be very interesting now to construct a canonical basis in the Fock space of semi-infinite forms.

Finally, we would like to emphasize that what we do here can easily be done for all series of classical Lie supergroups, with minor changes only.

We are grateful to A. Sergeev who suggested to look at Fock spaces, in relation to orthosymplectic groups. The second author acknowledegs support of the NSF grant DMS1303301.

Basic setting

We work over the field of complex numbers in the category of Z/2Z-graded spaces. The reader should keep it in mind when we consider symmetric and exterior powers.

We denote by g m,n the Lie superalgebra osp(2m + 1, 2n) and

g ∞,∞ = lim -→ m,n→∞ g m,n .
Further more, we fix an embedding g m,n ⊂ g ∞,∞ .

We also fix a Cartan subalgebra h ⊂ g ∞,∞ and the standard basis {ε i , δ j } i,j∈Z >0 . The roots of g ∞,∞ in this basis are: (±ε i ), (±δ j ), (±ε i ± δ j ), (±2δ j ), (±ε i ± ε j ), (±δ i ± δ j ), where i, j vary from 1 to ∞, and in the last line, i = j.

Then the roots of g m,n lie in the subspace generated by (ε i ) 1≤i≤m and (δ j ) 1≤j≤n . We fix a Borel subalgebra b 0 of (g ∞,∞ ) 0 with the set of positive roots

{ε i , 2δ j , (i, j > 0), ε i ± ε j , δ i ± δ j (i > j > 0)}.
Inside g m,n , we denote by p m,n (resp p m,n ) the unique parabolic subalgebra containing b 0 with semi-simple part g m-1,n (resp g m,n-1 ).

We denote by G m,n the supergroup SOSP (2m + 1, 2n) and by T m,n the maximal torus of G m,n with Lie algebra h ∩ g m,n .

For fixed m and n, we denote by F m,n the category of finite dimensional G m,nmodules and by K m,n its Grothendieck group.

Let: F := ⊕ m,n F m,n and K := ⊕ m,n K m,n . Let B be a Borel subgroup of G m,n with Lie superalgebra b containing b 0 ∩ g m,n and let ∆ + 1 (resp. ∆ + 0 ) be the set of odd (resp.) even positive roots of g m,n . Set

ρ B = 1 2 α∈∆ + 0 α - 1 2 α∈∆ + 1 α.
Let Λ m,n be the set of weights λ such that λ -ρ B is a character of T m,n . Independently of the choice of B we have

Λ m,n := {λ = a 1 ε 1 + • • • + a m ε m + b 1 δ 1 + • • • + b n δ n | a i , b j ∈ 1 2 + Z}.
We set

Λ + m,n := {λ ∈ Λ m,n | a i , b j ∈ 1 2 + N, a 1 < • • • < a m , b 1 < • • • < b n }.
Let ν be a character of T m,n . We denote by L ν the corresponding line bundle over G m,n /B.

Recall the definition of the Euler characteristic. For every λ ∈ Λ m,n we set

E(λ) := i≥0 (-1) i H i (G m,n /B, L * λ-ρ B ) * ∈ K m,n .
Recall also that the character of this virtual module is easy to compute, namely

Ch(E(λ)) = D 0 D 1 w∈Wm,n ε(w)e w(λ) ,
where W m,n is the Weyl group of SO(2m + 1) × SP (2n), D 0 = Π α∈∆ + 0 (e α/2 -e -α/2 ), D 1 = Π α∈∆ + 1 (e α/2 + e -α/2 ). (Remark: We avoided indexes m and n in this formula since one can easily recover them from the shape of λ).

Note that if we change our choice of B containing B 0 ∩ G m,n , the character of E(λ) doesn't change, thus the class in K m,n remains the same, see [START_REF] Gruson | Bernstein-Gel'fand-Gel'fand reciprocity and indecomposable projective modules for classical algebraic supergroups[END_REF].

For w ∈ W m,n , notice that ( 4)

E(w(λ)) = ε(w)E(λ).
Proposition 1. (see [START_REF] Gruson | Bernstein-Gel'fand-Gel'fand reciprocity and indecomposable projective modules for classical algebraic supergroups[END_REF]) The set

{E(λ), λ ∈ Λ + m,n
} gives a linearly independant family in K m,n , and we denote by K(E) m,n the subgroup generated by this family. We also set K(E) := ⊕ m,n K(E) m,n .

Fock space

Let V be a countable dimensional vector space together with a basis (v i ) i∈ 1 2 +Z and similarly W with a basis (w i ) i∈ 1 2 +Z with a non-degenerate pairing such that (v i ) and (w i ) are dual bases.

Let Cl(V ⊕W ) be the Clifford algebra of V ⊕W , namely if we denote by T (V ⊕W ) the tensor algebra of V ⊕ W ,

Cl(V ⊕ W ) = = T (V ⊕W )/(v⊗v +v ⊗v, w⊗w +w ⊗w, v⊗w+w⊗v-(v, w), v, v ∈ V, w, w ∈ W ).
The Fock space of semi-infinite forms, F, is the vector space generated by

v i 1 ∧ . . . ∧ v i k ∧ . . . , for i 1 > . . . ... > i k > ... such that, for n large enough, i n = i n-1 -1.
There is a natural linear action of Cl(V ⊕ W ) on F given by:

∀v ∈ V, v • v i 1 ∧ . . . ∧ v i k ∧ v i k+1 . . . = v ∧ v i 1 ∧ . . . ∧ v i k ∧ v i k+1 . . . ∀w ∈ W, w • v i 1 ∧ . . . ∧ v i k ∧ v i k+1 . . . = j (-1) j-1 (w, v i j )v i 1 ∧ . . . ∧ vi j ∧ . . .

Define the vacuum vector in F as

| >:= v -1 2 ∧ v -3 2 ∧ . . .
then, for i < 0, v i acts on | > by 0 as w j for j > 0.

We can also see F as an induced module the following way. Denote by Cl + (V ⊕W ) the subalgebra generated by {v i , i < 0, w j , j > 0}, consider its trivial module and induce to the whole Cl(V ⊕ W ): this gives another construction of F.

Let λ = 1≤i≤m,1≤j≤n a i ε i +b j δ j ∈ Λ + m,n . We define a Z-linear map f :

K(E) -→ F such that for any E(λ) ∈ K(E) m,n : E(λ) → v am ∧ . . . ∧ v a 1 ∧ . . . ∧ v-b 1 ∧ . . . ∧ v-bn ∧ . . .

Duality between geometric induction and restriction

In this section we will consider 3 different Grothendieck groups for G m,n namely K(P ) m,n generated by the indecomposable projective modules, K(E) m,n which we already met and K(L) m,n := K m,n generated by the simple modules. After tensoring by the rational numbers Q, K(P ) m,n ⊗Q and K(E) m,n ⊗Q coincide (see [START_REF] Gruson | Bernstein-Gel'fand-Gel'fand reciprocity and indecomposable projective modules for classical algebraic supergroups[END_REF]). We consider the natural pairing between K(P ) m,n and K(L) m,n , [P ], [L] := dim Hom(P, L). The restriction of this pairing to K(P ) m,n × K(P ) m,n is symmetric (and therefore it is a scalar product): indeed dim Hom(P 1 , P 2 ) = dim Hom(P * 2 , P * 1 ) and in this case projective modules happen to be self-dual (see [START_REF] Serganova | Quasireductive supergroups[END_REF]).

Proposition 2. Let us extend the scalar product from K(P ) m,n to K(P ) m,n ⊗ Q. Then the set of E(λ), when λ varies in Λ + m,n , form an orthonormal basis of K(P ) m,n ⊗ Q.

Proof. Let L(λ) denote the simple module with highest weight λ and P (λ) denote its projective cover. Consider the decompositions

[P (λ)] = µ b λ,µ E(µ), E(µ) = ν a µ,ν [L(ν)].
By the weak BGG reciprocity, [START_REF] Gruson | Bernstein-Gel'fand-Gel'fand reciprocity and indecomposable projective modules for classical algebraic supergroups[END_REF], we have b λ,µ = a µ,λ . Now, we write

E(µ) = λ c µ,λ [P (λ)].
Then, clearly, we have the following relation

λ c µ,λ b λ,ν = λ c µ,λ a ν,λ = δ µ,ν . On the other hand, [P (λ)], [L(κ)] = δ λ,κ .
Therefore

E(µ), E(ν) = λ,κ c µ,λ a ν,κ [P (λ)], [L(κ)] = λ c µ,λ a ν,λ = δ µ,ν .
Let G be a quasireductive algebraic supergroup, which is an algebraic supergroup with reductive even part (see [START_REF] Serganova | Quasireductive supergroups[END_REF] for information on their representation theory). Let Q ⊂ G be a parabolic subgroup with quasireductive part K. Let g, q, k denote the respective Lie superalgebras, and let r denote the nil-radical of q. Consider the following derived functors Γ i : K -mod -→ G-mod and

H i : G-mod -→ K -mod defined by Γ i (M ) := H i (G/Q, L(M * )) * , H i (N ) := H i (r, N ).
Here we denote by L(M * ) the vector bundle on G/Q induced from M * . The collection of functors Γ i is referred to as geometric induction while that of H i is referred to as geometric restriction.

The following observation is due to Penkov [START_REF] Penkov | Borel-Weil-Bott theory for classical supergroups[END_REF].

Proposition 3. For any K-module M we have i (-1) i [Γ i (M )] = i (-1) i [H i (G 0 /Q 0 , L(S • (r) ⊗ M * )) * ].
Proposition 4. For every projective G-module P , every K-module M and i ≥ 0 there is a canonical isomorphism

Hom G (Γ i (M ), P ) Hom K (M, H i (P )).
Proof. This result is a slight generalization of Proposition 1 in [START_REF] Gruson | Bernstein-Gel'fand-Gel'fand reciprocity and indecomposable projective modules for classical algebraic supergroups[END_REF]. We consider an injective resolution 0 → R 0 → R 1 → . . . of M in the category of Q-modules.

Since Hom G (P, •) is an exact functor, Hom G (P, H i (G/Q, M )) is given by the i-th cohomology group of the complex

0 → Hom G (P, H 0 (G/Q, R 0 )) → Hom G (P, H 0 (G/Q, R 1 )) → . . . .

The Frobenius reciprocity implies

Hom

G (P, H 0 (G/Q, R j )) Hom Q (P, R j ).
Thus, we obtain the isomorphism Hom G (P, H i (G/Q, M )) Ext i Q (P, M ). We now need the following lemma.

Lemma 1. The restricted module Res K P is projective in the category K -mod.

Proof. Note that P is a direct summand of the induced module Ind g g 0 S for some semisimple g 0 -module S. Using the isomorphism Res K Ind g g 0 S Ind k k 0 S ⊗ S • (g 1 /k 1 ), we obtain that P is a direct summand of some module induced from a semisimple k 0 -module. Therefore P is projective as a K-module.

Applying the above lemma we can use the Koszul complex Λ i (r)⊗U(r)⊗P (where U(r) is the universal enveloping algebra of r) and thus obtain an isomorphism Ext i Q (P, M ) Hom K (H i (r, P ), M ). Now we use the double dualization and the fact that P * is also projective:

Hom G (Γ i (M ), P ) Hom G (P * , H i (G/Q, M * )) Hom K (H i (r, P * ), M * )
Hom K (M, H i (P )). Hence the statement.

Recall that for any quasireductive supergroup every projective module is injective and vice versa, [START_REF] Serganova | Quasireductive supergroups[END_REF].

Corollary 1. If P is an injective (equivalently, projective) G-module, then H i (P ) is an injective and projective K-module.

Two functors on F

We choose a parabolic subalgebra p which can be either p m,n or p m,n in g m,n , where:

p m,n = g m-1,n ⊕ Cz ⊕ r m,n , g m,n = p m,n ⊕ r - m,n p m,n = g m,n-1 ⊕ Cz ⊕ r m,n
, and g m,n = p m,n ⊕ r - m,n . Denote by Z the center of the reductive part of the parabolic subgroup P corresponding to the parabolic subalgebra we chose above (the Lie algebra of Z is Cz). For any a ∈ Z we denote by C a the corresponding character of Z. Since Z is a one-parameter subgroup of the torus T m,n , if is the corresponding weight in the dual, we denote by C a the associated T m,n -module (in our case, is either ε n or δ n ). Now, if M ∈ F m-1,n or F m,n-1 , denote C a M the P -module with trivial action of the corresponding nilradical R and the given action of Z × G m-1,n , or Z × G m,n-1 depending on the way the parabolic is chosen. Definition 1. We define the following functors:

Γ a i : F → F, a ∈ 1 2 + Z if a > 0, if M ∈ F m-1,n , Γ a i (M ) := H i (G m,n /P m,n , L(C (a-(m-n-1 2 ))εm M ) * ) * , if a < 0, if M ∈ F m,n-1 , Γ a i (M ) := H i (G m,n /P m,n , L(C (-a-(n-m-1 2 ))δn M ) * ) * . H j b : F → F, b ∈ 1 2 + Z if b > 0, if M ∈ F m,n , H j b (M ) := Hom Z (C (b-(m-n-1 2 ))εm , H j (r m,n , M )) ∈ F m-1,n if b < 0, if M ∈ F m,n , H j b (M ) := Hom Z (C (-b-(n-m-1 2 
))δn , H j (r m,n , M )) ∈ F m,n-1 . Now, we consider the following operators in K: if M ∈ F m,n , denoting the sign of a half-integer x by sgn(x):

γ a ([M ]) := sgn(a) m i≥0 (-1) i [Γ a i (M )] η b ([M ]) := sgn(b) m j≥0 (-1) j [H j b (M )].
Applying the results of the previous section, we get: Let us restrict those linear operators to K(E). Then for every a ∈ 1 2 + Z, the linear operators γ a and η a are mutually adjoint.

We can identify the Grothendieck ring with the ring of characters of finite dimensional modules (cf [START_REF] Gruson | Bernstein-Gel'fand-Gel'fand reciprocity and indecomposable projective modules for classical algebraic supergroups[END_REF]) and so we will check the relations we need at the level of characters.

We recall the following formula ([2], prop. 1): for P ⊂ G a parabolic subgroup of a quasireductive supergroup with Levi part L,

i (-1) i Ch(H i (G/P, L(M * )) * ) = D w∈W ε(w)w e ρ Ch(M ) Π α∈∆ + 1,l (1 + e -α )
,

where

D := D 0 D 1 , D 0 = Π α∈∆ + 0 (e α/2 -e -α/2 ), D 1 = Π α∈∆ + 1 (e α/2 + e -α/2
), and the various ∆ have the obvious composition (roots of g if no other index, roots corresponding to a subalgebra if the subalgebra appears as index).

Proposition 6. Let ν = (a m , . . . , a 1 |b 1 , . . . , b n ) ∈ Λ + m,n . Then one has: (1) a > 0, if ∃i s.t. a i+1 > a > a i , γ a (E(ν)) = (-1) m-i E(a m , . . . , a i+1 , a, a i , . . . a 1 |b 1 , . . . , b n ), and γ a (E(ν)) = 0 if ∃i, a = a i . (2) a < 0, if ∃i s.t. b i < -a < b i+1 , γ a (E(ν)) = (-1) n-i E(a m , . . . a 1 |b 1 , . . . , b i , -a, b i+1 , . . . , b n ), and γ a (E(ν)) = 0 if ∃i, a = -b i . (3) b > 0, if ∃i s.t. b = a i η b (E(ν)) = (-1) m-i E(a m , . . . , a i+1 , a i-1 , . . . , a 1 |b 1 , . . . , b n ) if b = a i ∀i, η b (E(ν)) = 0. (4) b < 0, if ∃i s.t. b = -b i η b (E(ν)) = (-1) n-i E(a m , . . . , a 1 |b 1 , . . . , b i-1 , b i+1 , . . . , b n ) if b = -b i ∀i, η b (E(ν)) = 0.
Proof We will only prove (1), since ( 2) is analogous and then (3) and ( 4) follow by adjointness. Let us use [START_REF] Gruson | Cohomology of generalized supergrassmannians and character formulae for basic classical Lie superalgebras[END_REF], Theorem 1: one has, if M is a B-module, i,j

(-1) i+j [H i (G m,n /P m,n , L(H j (P m,n /B, L(M * ))) * ] = k (-1) k [H k (G m,n /B, L(M * )) * ].
We take for M the 1-dimensional representation C λ with λ+ρ B = (a, a m , . . . , a 1 |b 1 , . . . , b n ). Then, using the equation ( 4), and the definition of γ a , we get

γ a (E(ν)) = E(λ) = (-1) m-i (a m , . . . , a i+1 , a, a i , . . . , a 1 |b 1 , . . . b n )
for the index i of the statement. Hence the proposition. 2

Link with the Clifford algebra

Let us now interpret the map f of section 2 in terms of the functors described in the previous section. The proposition 6 has the following immediate corollary:

Corollary 2. One has: f • γ a = v a • f for a > 0, f • γ a = w a • f for a < 0, f • η b = w b • f for b > 0, f • η b = v b • f for b < 0
, where v a , w b stand for the action on the Fock space of the corresponding elements of the Clifford algebra. This gives us an action of the Clifford algebra on the Grothendieck group K(E).

Theorem 1. The operators γ a and η b (a, b ∈ 1 2 + Z) in the Grothendieck group K satisfy the Clifford relations:

η a η b + η b η a = 0, γ a γ b + γ b γ a = 0, γ a η b + η b γ a = δ a,b .
Proof Let a and b be half-integers. We first show that

η a η b + η b η a = 0.
The arguments involved in the proof depend on the signs of a and b, we will take care of the cases a, b > 0 and a > 0, b < 0, leaving a < 0, b < 0 to the reader.

Assume first that a > 0, b > 0, let M be a g m,n module, we consider the following increasing chain of Lie superalgebras:

g m-2,n ⊂ p m-1,n ⊂ g m-1,n ⊂ p m,n ⊂ g m,n .
Let q be the parabolic subalgebra with reductive part equal to the direct sum of g m-2,n and the two-dimensional center Z q , and the nilradical r = r m,n +r m-1,n . Then using the Hochschild-Serre spectral sequence for the pair r m-1,n ⊂ r we obtain

η a η b [M ] = i (-1) i [Hom Zq (C (b-(n-m-1/2))εm+(a-(n-m+1/2))ε m-1 , H i (r, M ))],
and

η b η a [M ] = i (-1) i [Hom Zq (C (a-(n-m-1/2))εm+(b-(n-m+1/2))ε m-1 , H i (r, M ))].
Now we consider the one-dimensional root subalgebra s := g β ⊂ r for the root β = ε m -ε m-1 . Note that s is the nilradical of a Borel subalgebra of the sl(2) generated by g β and g -β . Hence by the Kostant theorem we have for any sl(2)module N

[Hom Zq (C (a-(n-m-1/2))εm+(b-(n-m+1/2))ε m-1 , H p (s, N ))] = [Hom Zq (C (b-(n-m-1/2))εm+(a-(n-m+1/2))ε m-1 , H q (s, N ))]
for (p, q) = (0, 1) or (1, 0). Once again we apply the Hochschild-Serre spectral sequence for the pair s ⊂ r to get Let Z ⊂ T m,n be the centralizer of g m-1,n-1 . Using Hochschild-Serre spectral sequence we obtain

η a η b [M ] = i (-1) i+j [Hom Zq (C (b-(n-m-1/2))εm+(a-(n-m+1/2))ε m-1 , H i (s, Λ j (r/s) * ⊗M ))], η b η a [M ] = i (-1) i+j [Hom Zq (C (a-(n-m-1/2))εm+(b-(n-m+1/2))ε m-1 , H i (s, Λ j (r/s) * ⊗M ))].
η b η a [M ] = i (-1) m-1+i [Hom Z (C (a-(m-n-1/2))εm-(b+n-m+1/2)δn , H i (r, M ))]
and

η a η b [M ] = i (-1) m+i [Hom Z (C (a-(m-n+1/2))εm-(b+n-m-1/2)δn , H i (r , M ))].
Let α = ε m -δ n . Consider the root subalgebras g α , g -α ⊂ g m,n . Note that s := r ∩ r is an ideal of coduimension 1 in both r and r and that r = s + g α , r = s + g -α .

Therefore by Hochschild-Serre spectral sequence we have

η b η a = i,j (-1) i+j+m-1 [Hom Z (C (a-(m-n-1/2))εm-(b+n-m+1/2)δn , Λ j (g -α ) ⊗ H i (s, M ))], η a η b [M ] = i,j (-1) i+j+m [Hom Z (C (a-(m-n+1/2))εm-(b+n-m-1/2)δn , Λ j (g α )⊗H i (s, M ))].
Taking into account that Let us now show that if a > 0 and b < 0, then

j (-1) j Ch(Λ j (g α )) = 1 1 + e α = e -α 1 + e -α = e -α j (-1) j Ch(Λ j (g -α )) we obtain j (-1) j Ch(Λ j (g α ) ⊗ H i (s, M )) = e -α j (-1) j Ch(Λ j (g -α ) ⊗ H i (s, M )) .
γ a η b + η b γ a = 0.
The case a < 0 and b > 0 is similar and we leave it to the reader. One should keep in mind the following diagram

η b F m,n → F m,n-1 γ a ↓ ↓ γ a F m+1,n → F m+1,n-1
η b because we follow it to keep tracks of the weights. Let us denote ChM γ the character of Hom Z (C γ , M ). Then one has:

γ a η b Ch(M ) = = i,j (-1) i+j+m Ch(Γ j (G m+1,n-1 /P m+1,n-1 , (C (a-(m-n+1/2))ε m+1 Λ i (r * m,n )⊗M ) (-b-(n-m-1/2))δn )), η b γ a Ch(M ) = = i,j (-1) i+j+m+1 Ch((Λ i (r * m+1,n )⊗Γ j (G m+1,n /P m+1,n , C (a-(m-n-1/2))ε m+1 M )) (-b-(n-m-3/2))δn ).
We use Proposition 3. For any G m,k -module N , the following holds: j (-1) j Γ j (G m+1,k /P m+1,k , N ) = j (-1) j Γ j (G m+1,0 /P m+1,0 , N ⊗ S • ((r * m+1,k ) 1 ).

Then if we set:

X := i (-1) i Λ i (r * m,n ) ⊗ S • ((r * m+1,n-1 ) 1 )
and

Y := i (-1) i Λ i (r * m+1,n ) ⊗ S • ((r * m+1,n ) 1 ), we get γ a η b (Ch(M )) = = j (-1) j+m Ch(Γ j (G m+1,0 /P m+1,0 , C (a-(m-n+1/2))ε m+1 X ⊗ M ) (-b-(n-m-1/2))δn ) and η b γ a (Ch(M )) = = j (-1) j+m+1 Ch(Γ j (G m+1,0 /P m+1,0 , C (a-(m-n-1/2))ε m+1 Y ⊗M ) (-b-(n-m-3/2))δn ).
Next we compute the quotient Ch(X)/Ch(Y ). One has Now we note that the action of G m,0 on U is trivial, hence multiplication with its exterior and symmetric powers commute with γ a and η b . Thus, we have

R(γ a η b [M ]) = k,l (-1) k [S l (U )][Λ k (U )]γ n+a-l η b+n+k (R[M ]), R(η b γ a [M ]) = k (-1) k ([Λ k (U )][S l (U )]η b+n+k γ n+a-l (R[M ]).
Since F m,0 is the category of representations of a purely even reductive group, we have K(E) m,0 = K(L) m,0 . Therefore Proposition 6 implies that for any N ∈ F m,0

γ a η b [N ] + η b γ a [N ] = δ a,b [N ]. Hence, (γ a η b + η b γ a )(R[M ]) = l,k (-1) k [S l (U )][Λ k (U )]δ a+n-k,b+n+l R[M ],
and hence

(γ a η b + η b γ a )(R[M ]) = k+l=a-b (-1) k [S l (U )][Λ k (U )]R[M ].
Since the Koszul complex is acyclic except in the zero degree we have the identity

k+l=p (-1) k [Λ k (U )][S l (U )] = 1 if p = 0 0 otherwise .
Hence, the sum we compute has only one non-zero term, namely we get:

(γ a η b + η b γ a )(R[M ]) = δ a,b R[M ].
Since the map R is injective this proves the result for γ a η b + η b γ a , a, b > 0. The case a, b < 0 is similar and we leave it to the reader. 2

Translation functors

We would like to link this approach with the results on translation functors in [START_REF] Gruson | Bernstein-Gel'fand-Gel'fand reciprocity and indecomposable projective modules for classical algebraic supergroups[END_REF].

Recall the Lie algebra gl(∞) which is embedded in Cl(V ⊕W ) as the span of

v a w b , a, b ∈ 1 2 + Z. The subalgebra gl( ∞ 2 ) is generated by v a w b + v -a w -b , a, b ∈ 1 2 + N.
Inside the Fock space F, we consider the subspace F m,n which is the image of K(E) m,n under the map f , defined at the end of section 2.

Remark 1. The space F m,n is stable under the action of gl( ∞ 2 ). Furthermore, it is not difficult to see that F m,n is isomorphic to Λ m (V + )⊗Λ n (W + ) as an sl( ∞ 2 )-module, where V + and W + are respectively the standard and costandard module of gl( ∞ 2 ). Consider the Cartan subagebra t of gl( ∞ 2 ) with basis t a := v a w a + v -a w -a for all a ∈ 1 2 + N , then F is a semi-simple t-module. We denote by ω the t-weight of the vacuum vector: ω(t a ) = 1 for all a ∈ 1 2 + N. Let β a ∈ t * be such that β a (t b ) = δ a,b . If λ = (a m , . . . , a 1 |b 1 , . . . , b n ), then the t-weight of f (E(λ)) equals

β(λ) := ω + β a 1 + • • • + β am -β b 1 -• • • -β bn .
Lemma 2. Let E(λ), E(µ) ∈ K(E) m,n . Then E(λ) and E(µ) are in the same block of F m,n if and only if the t-weights of f (E(λ)) and f (E(µ)) coincide.

Proof. The statement follows from the remark 1 after comparing with the weights denoted by γ(λ) in [START_REF] Gruson | Bernstein-Gel'fand-Gel'fand reciprocity and indecomposable projective modules for classical algebraic supergroups[END_REF] (we do not keep this notation here because we have introduced a γ a which is not related). The relation between those t-weights is β(λ) = ω + γ(λ).

Consider now the Chevalley generators of gl( ∞

2 ), E a,a+1 and E a+1,a for all a ∈ 1 2 + N. As it was shown in [START_REF] Gruson | Bernstein-Gel'fand-Gel'fand reciprocity and indecomposable projective modules for classical algebraic supergroups[END_REF], the categorification of the action of these generators in Λ m (V + ) ⊗ Λ n (W + ) is given by the translation functors: where E is the standard g m,n -module, we assume that the g m,n -module-M belongs to the block corresponding to the t-weight β, and by (N ) β we denote the projection of the g m,n -module N onto the block corresponding to the t-weight β . By abuse of notations we denote also by T a+1,a and T a,a+1 the corresponding linear operators in K(E) m,n .

The following statement is an immediate consequence of the remark 1 and Lemma 4 in [START_REF] Gruson | Bernstein-Gel'fand-Gel'fand reciprocity and indecomposable projective modules for classical algebraic supergroups[END_REF]. Proposition 7. For all a ∈ 1 2 + N we have f • T a+1,a = E a+1,a • f, f • T a,a+1 = E a,a+1 • f.

Proposition 5 .

 5 Consider the pairing K(L) × K(P ) → Z defined by [M ], [P ] := dim Hom Gm,n (M, P ) for every projective P ∈ F m,n and every M ∈ F m,n . Then for any a ∈ 1 2 + Z we have M, η a [P ] = γ a [M ], [P ] .

  This implies the relation. Now let a > 0, b < 0. Let M be a G m,n -module. Set r := r m,n + r m-1,n , r := r m,n + r m,n-1 .

Therefore

  Ch(η a η b [M ]) = -Ch(η b η a [M ]), which proves the relation. Note that the relation γ a γ b + γ b γ a = 0. follows from the relation for η a , η b by Proposition 5.

T

  a+1,a (M ) := (M ⊗ E) β+β a+1 -βa , T a,a+1 (M ) := (M ⊗ E) β+βa-β a+1 ,

Ch(X) =

(1 -e -2δn ) n-1 i=1 (1 -e -δn±δ i ) n-1 j=1 (1 + e ±δ j -ε m+1 ) (1 + e -δn ) m j=1 (1 + e -δn±ε j )

,

, and the quotient turns out to be

The result follows.

Let us show finally that for a, b > 0 one has

where δ a,b stands for the Kronecker symbol. The proof we provide lacks functoriality at the moment, but we intend to improve it. Let R : F m,n → F m,0 be the restriction functor and denote by the same letter the corresponding map of the Grothendieck groups. Then it follows from Proposition 3 that for any

). On the other hand, for any Lie superalgebra r and r-module M we have

Therefore for M ∈ F m,n we have

Let us denote by U the standard representation of sp(2n) ⊂ osp(2m + 1, 2n) and consider it as purely odd superspace. Then