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THE HOUSE OF AN ALGEBRAIC INTEGER ALL OF WHOSE CONJUGATES LIE IN A SECTOR

Let α be a nonzero algebraic integer of degree d, all of whose conjugates α i lie in a sector | arg z| ≤ θ, 0 ≤ θ < π. The house of α is the largest modulus of its conjugates. We treat here the notion of house using the method of explicit auxiliary functions. This work seems to be the first of this kind. For 0 < θ < π, we compute the greatest lower bound h(θ) of the house of all such α, for θ belonging to nine subintervals of [0, π). Moreover, among these subintervals, six are consecutive and complete. The polynomials involved in the auxiliary functions are found by our recursive algorithm.

Introduction

Let α be a nonzero algebraic integer of degree d, with conjugates α 1 = α,. . ., α d and minimal polynomial P . The house of α (and of P ) is defined by:

α = max 1≤i≤d |α i |.
The Mahler measure of α is M (α) = d i=1 max(1, |α i |) and its absolute Mahler measure is Ω(α) = M (α) 1/d . We have the inequality: α ≥ Ω(α). It is clear that α ≥ 1 and, from a classical theorem of L. Kronecker [K], it follows that α = 1 if and only if α is a root of unity. In 1965, A. Schinzel and H. Zassenhaus [SZ] conjectured that there exists a constant c > 0 such that if α is not a root of unity then α ≥ 1 + c/d. In 1985, a result of C.J. Smyth [S1] led D. Boyd [B] to conjecture that c should be equal to 3/2 log θ 0 where θ 0 = 1.324717 . . . is the smallest Pisot number, the real root of the polynomial x 3 -x -1. P. Voutier [V] proved that, if α is an algebraic integer of degree d ≥ 3, not a root of unity, then

α ≥ 1 + 1 2d (log log d/ log d) 3
In 1991, E.M. Matveev [M] proved that, if α is an algebraic integer of degree d ≥ 2, not a root of unity, then α ≥ exp(log(d + 0.5)/d 2 ). The best-known asymptotic result was given by A.

Dubickas [D]:

α > 1 + 1 d (64/π 2 -)(log log d/ log d) 3 ) for d > d 0 ( ).
More recently, in 2007, G. Rhin and Q. Wu [RW2] verified the conjecture of Schinzel and Zassenhaus with the constant of Boyd up to degree 28. They also established that, if α is an algebraic integer of degree d ≥ 4, not a root of unity, then, if d ≤ 12, α ≥ exp(3 log(d/3)/d 2 ) and if d ≥ 13, α ≥ exp(3 log(d/2)/d 2 ). It appears that the result of [START_REF] Rhin | On the smallest value of the maximal modulus of an algebraic integer[END_REF] improves Matveev for d ≥ 6. Let 0 ≤ θ < π and S θ be the sector of the complex plane such that | arg z| ≤ θ. Let α be an algebraic integer, not a root of 1 and having all its conjugates in S θ . The spectrum of the house of totally positive algebraic integers i.e., the θ = 0 case, is well known. A result of L. Kronecker [K] tells us that all totally positive algebraic integers with house less than 4 have house of the form 2 + 2 cos(2π/n) for some positive integer n. Moreover, from a result of R. M. Robinson [RO], this spectrum is dense in the interval [4, ∞). Thus, we consider the case 0 < θ < π. We follow here the work of M. Langevin [L1] on the absolute Mahler measure of algebraic integers α having all their conjugates in a sector. He proved that there exists a function c(θ) on [0, π), always > 1, which is the greatest lower bound of the absolute Mahler measure of α = 0, not a root of unity, all of whose conjugates lie in S θ , i.e., Ω(α) ≥ c(θ). G. Rhin and C. Smyth [RS] succeeded in finding the exact value of c(θ) for θ in nine subintervals of [0, 2π/3] and conjectured that c(θ) is a "staircase" function of θ, which is constant except for finitely many left discontinuities in any closed subinterval of [0, π). The polynomials involved in their auxiliary functions were found by heuristic methods. In 2004, thanks to Wu's algorithm [Wu], G. Rhin and Q. Wu [START_REF] Rhin | On the absolute Mahler measure of polynomials having all zeros in a sector II[END_REF] gave the exact value of c(θ) for four new subintervals of [0, π) and extended four existing subintervals. In 2013, the author and G. Rhin [FR] found for the first time a complete subinterval and a fourteenth subinterval. A complete interval is an interval on which the function c(θ) is constant, with jump discontinuities at each end. These improvements are due to our recursive algorithm.

Definition 1. Let us define h(θ) = inf α α where the infimum is taken over all nonzero algebraic integers α that are not = 2 or roots of unity and having all conjugates, including α itself, in the sector S θ .

Using the polynomials x 2n+1 -2, when n → ∞ it is clear that c(θ) and h(θ) → 1 when θ → π. We define the spectrum Spec(θ) = { α : α has all its conjugates in the sector S θ }. Then, as a consequence of a result of Mignotte [Mi], for δ > 0 the smallest limit point of the set Spec(π -δ) is at least 1 + cδ 3 , for an effective positive constant c.

Remark 1. Now, we write the angles in degrees.

We give in Table 4 a list of 20 polynomials Q i with θ i = ϕ(Q i ). Now we define two functions f and g on [0, 180). The function g(θ) is the decreasing staircase function having left discontinuities at the angles θ i given in Table 4 and such that g(θ i ) = Q i . It gives the smallest known value of α for α ∈ S θ then h(θ) ≤ g(θ). For 1 ≤ i ≤ 9, we define 9 non-increasing functions f i for θ ∈ [θ i , θ i+1 ] as follows:

f i (θ) = min z∈S θ   log max(B i , |z|) - 1≤j≤J c ij log |Q ij (z)|   ,
where B i = Q i can be read off from Table 4. The polynomials Q ij and the coefficients c ij can be read off from Table 2 andTable 3

. The function f is such that f (θ) = f i (θ) when θ ∈ [θ i , θ i+1 ) for 1 ≤ i ≤ 9. Since the functions f i are continuous we have f (θ) → f i (θ i+1 ) when θ → θ - i+1 .
We do not find any function f i such that f i (θ i ) > g(θ i ) for the other intervals [θ i , θ i+1 ), by Kronecker's theorem we may define f (θ) = 1 for θ ≥ θ 10 . Then the function f is non-increasing on [0, 180).

Theorem 1. The non-increasing functions f, g, h satisfy the following inequalities:

min(f (θ), g(θ)) ≤ h(θ) ≤ g(θ) (0 ≤ θ < 180).
Moreover, the exact value of h(θ) is known on nine subintervals of [0, 180).

These intervals are given in Table 1. One can read off the five intervals [θ i , θ i ) for 1 ≤ i ≤ 5 and the four intervals [θ i , θ i ] for 6 ≤ i ≤ 9 where h(θ) is known exactly. For θ in each of these intervals, we have f (θ) > g(θ) so that h(θ) = h(θ i ). Outside these intervals we have h(θ) ≤ g(θ).

Table 1: The 9 intervals where h(θ) is known. The polynomials in the last column are the minimal polynomial of an algebraic integer belonging to S θ i and they are also listed in Table 4. 

i h(θ) θ i θ i Q 1 2.618033 0 14.066992 z 2 -3z + 1 2 2.
z 3 -z 2 + 2z -1 9 1.227949 87.978495 92.18 z 4 -2z 3 + 3z 2 -3z + 2
Remark 2. Since Langevin proved the existence of functions with the same properties as c(θ) for house, absolute trace and absolute length in the sector [0, 90), we may extend the conjecture of G. Rhin and C.J. Smyth [RS] on the nature of the function c(θ) to all these functions. Finding consecutive and complete subintervals appears here for the first time.

In Section 2 we describe the method of explicit auxiliary functions. In Section 3, we link these functions with the classical integer transfinite diameter. In Section 4, we detail how our recursive algorithm [F] enables us to prove Theorem 1. All the computations were done on a MacBookPro with the languages Pascal and Pari [Pari].

The explicit auxiliary functions

In this section we assume that α is an algebraic integer in S θ with minimal polynomial P of degree d. We let α 1 = α, . . . , α d denote the conjugates of α. The auxiliary functions f i , 1 ≤ i ≤ 9, are of the following type:

∀z ∈ S θ , f (z) = log max(B, |z|) - 1≤j≤J c j log |Q j (z)|, (2.1)
where B and the coefficients c j are positive real numbers and the polynomials Q j are nonzero in Z, not necessarily irreducible, but not divisible by P . The main point is to choose the numbers c j and the polynomials Q j in order to maximize the minimum m of f on S θ .

If we have

d i=1 f (α i ) ≥ md and B ≤ α then log α d ≥ d i=1 log max(B, |α i |) ≥ md + J j=1 c j log | d i=1 Q j (α i )|. Since P does not divide any Q j , d i=1 Q j (α i
) is a nonzero integer because it is the resultant of P and Q j . Therefore, we have α ≥ e m .

The main difficulty in this procedure is to find a good list of polynomials Q j which gives a value of m as large as possible. For this purpose, we link the auxiliary function to the integer transfinite diameter in order to find our polynomials by the recursive algorithm.

Auxiliary functions and integer transfinite diameter

In this section, we will need the following definition: Let K be a compact subset of C. We define the integer transfinite diameter of K by

t Z (K) = lim inf inf |P | 1 n ∞,K , n ≥ 1 P ∈ Z[z] n → ∞ deg(P ) = n where |P | ∞,K = sup z∈K |P (z)|. If ϕ is a positive function defined on K, the ϕ-integer transfinite diameter of K is defined as t Z,ϕ (K) = lim inf inf sup |P (z)| 1 n ϕ(z) . n ≥ 1 P ∈ Z[z] z ∈ K n → ∞ deg(P ) = n
This weighted version of the integer transfinite diameter was introduced by F. Amoroso [A]. It is an important tool in the study of rational approximations of logarithms of rational numbers. Inside the auxiliary function (2.1), we replace the numbers c j by rational numbers a j /q where q is a common denominator of the c j for 1 ≤ j ≤ J. Then we can write:

for z ∈ S θ , f (z) = log max(B, |z|) - t r log |Q(z)| ≥ m (3.1)
where

Q = J j=1 Q a j j ∈ Z[z] is of degree r = J i=1 a j deg Q j and t = J j=1 c j deg Q j .
We want to get a function whose minimum m in the sector S θ is as large as possible. Thus we search for a polynomial

Q ∈ Z[z] such that sup z∈S θ |Q(z)| t/r (max(B, |z|)) -1 ≤ e -m .
If we suppose that t is fixed, it is clear that we need an effective upper bound for the quantity

t Z,ϕ (S θ ) = lim inf inf sup |P (z)| t r ϕ(z) r ≥ 1 P ∈ Z[z] z ∈ S θ r → +∞ deg(P ) = r .
where we use the weight ϕ(z) = (max(B, |z|)) -1 .

Construction of the auxiliary functions

The polynomials involved in the auxiliary function are found by our recursive algorithm developed in [F] from Wu's algorithm [Wu]. It replaces a heuristic search for suitable polynomials by a systematic inductive search. Suppose that we have already found a list Q 1 , Q 2 , ..., Q J of suitable polynomials. Then we use semi-infinite linear programming (introduced into number theory by C.J. Smyth [S2]) to optimize f for this set of polynomials (i.e., to get the greatest possible m). We obtain the real positive numbers c 1 , c 2 , ..., c J and then f in the form (3.1) as above. The function f is invariant under complex conjugation so we can limit ourselves to the sector S θ = {z ∈ C such that 0 ≤ arg z ≤ θ}. Since the function f is harmonic in S θ outside the union of arbitrarily small disks around the roots of the polynomials Q j , the minimum is taken on the boundary of S θ . Thus, it is sufficient to consider the minimum of f on the arc A θ = {z = Be ix , 0 ≤ x ≤ θ} and on the half line R θ = {z = se iθ , s ≥ 0}.

The auxiliary function on the arc is:

f (z) = log B - 1≤j≤J c j log |Q j (z)| ≥ m 1 ,
while we have on the half line:

f (z) = log max(B, s) - 1≤j≤J c j log |Q j (z)| ≥ m 2 .
Thus, by our algorithm, we seek a polynomial R(z) = The x n are suitable points in [0, θ], including the points where f 1 has its least local minima. The s n are suitable points in (0, ∞), including the points where f 2 has its least local minima. All these linear forms define a real lattice on Z Z k+1 . We use algorithm LLL to obtain a small vector in this lattice.

Then, we get a polynomial R whose factors R j are good candidates to enlarge the set of polynomials (Q 1 , Q 2 , . . . , Q J ). We only keep the polynomials R j which have a nonzero coefficient c j in the newly optimized auxiliary function f . After optimization, some previous polynomials Q j may have a zero coefficient c j and so are removed. The polynomials in Table 4 are found during all these computations.

The Computations.

We give here some explanations about the computations of the functions f i .

A complete interval.

For the first interval, we start with the four polynomials z, z -1, z -2 and z 2 -3z + 1. Then we introduce the unknown polynomials R of degree growing from 10 to 20. The final function f 1 (θ) decreases from 2.623674 at θ = 0 to 2.618837 at θ = 14.066992. Then the function f 1 (θ) is greater than g(θ) in the whole interval [θ 1 , θ 2 ) so the value of h(θ) in this range is Q 1 = 2.61803399. A non-complete interval. For the sixth interval, we start with the polynomials z, z -1, z 2 -z + 1 (which is cyclotomic) and z 2 -2z + 2 which has a root on the half-line θ = 45. We proceed as above and obtain the function f 6 (θ). For 45 ≤ θ ≤ 71.65, we have f 6 (θ) ≥ 1.414338 ≥ 1.414213 = g(θ) so that h(θ) = g(θ) = 1.414213 and we get the non-complete interval [45, 71.65]. 1.22794984 87.9784953 z 4 -2z 3 + 3z 2 -3z + 2 10 1.21060779 106.368385 z 3 + z -1 11 1.18920712 112.500000 z 4 + 2z 2 + 2 12 1.15096393 116.481702 z 6 -z 5 + 2z 4 -2z 3 + 2z 2 -2z + 1 13 1.14150997 120.702429 z 5 -z 4 + z 3 -z 2 + 2z -1 14 1.13925030 130.049673 z 5 + z 3 + z -1 15 1.13635300 132.505907 z 7 + z 5 -z 4 + z 3 -z 2 + z -1 16 1.12246205 135.000000 z 6 -2z 3 + 2 17 1.10452431 141.700857 z 7 + z 5 + z 3 + z -1 18 1.10027624 143.184193 z 6 + z 2 + 1 19 1.09373169 155.927080 z 6 + z 5 -z 3 -z 2 + 1 20 1.07282987 159.835962 z 6 -z 4 + 1

f i , 1 ≤ i ≤ 9, involved in Theorem 1 i Q j c j 1 Q 1 Q 2 Q 3 Q 4 Q 5 0.018506 0.034524 0.097738 0.003427 0.035709 Q 6 Q 13 0.001583 0.014710 2 Q 1 Q 2 Q 3 Q 5 Q 7 0.020139 0.043439 0.086792 0.017384 0.024384 Q 8 Q 9 Q 10 Q 16 0.003915 0.000425 0.006998 0.008772 3 Q 1 Q 2 Q 3 Q 7 Q 9 0.025456 0.042125 0.086111 0.033529 0.019139 Q 11 Q 12 Q 15 Q 18 Q 34 0.017640 0.000161 0.000490 0.000859 0.003452 4 Q 1 Q 2 Q 3 Q 9 Q 14 0.017777 0.082418 0.029814 0.016027 0.039697 Q 17 Q 19 Q 23 0.010587 0.023249 0.001665 5 Q 1 Q 2 Q 14 Q 20 Q 21 Q 22 0.044136 0.184437 0.023350 0.027677 0.041457 0.042631 6 Q 1 Q 2 Q 21 Q 24 Q 25 Q 26 0.
(Q) = max{| arg z| such that Q(z) = 0} j Q j ϕ(Q j ) Q j Q 1 0 0 z Q 2 1 0 z -1 Q 3 2 0 z -2 Q 4 2.61803399 0 z 2 -3z + 1 Q 5 2.
-5z 3 + 10z 2 -8z + 1 Q 20 1.77423196 40.8948445 z 3 -3z 2 + 4z -1 Q 21 1.41421356 45 z 2 -2z + 2 Q 22 1.78466730 47.0903760 z 3 -4z 2 + 7z -5 Q 23 2.01980089 58.1255013 z 6 -6z 5 + 16z 4 -22z 3 + 16z 2 -5z + 1 Q 24 1.52470258 59.0157696 z 3 -2z 2 + 3z -1 Q 25 1 60 z 2 -z + 1 Q 26 1.41421356 69.2951889 z 2 -z + 2 Q 27 1.64015200 74.7163425 z 5 -3z 4 + 5z 3 -6z 2 + 3z -1 Q 28 1.36362651 75.1794810 z 4 -3z 3 + 5z 2 -5z + 3 Q 29 1.

a

  l z l ∈ Z Z[z], where k is varying from 4 to 15 successively, such that sup 0≤x≤θ |Q(Be ix )R(Be ix )| t r+k B -1 ≤ e -m 1 and sup s≥0 |Q(se iθ )R(se iθ )| t r+k max(B, s) -1 ≤ e -m 2 , i.e., such that sup 0≤x≤θ |Q(Be ix )R(Be ix )|B -r+k t and sup s≥0 |Q(se iθ )R(se iθ )| max(B, s) -r+k t are as small as possible. But, here, R(Be ix ) and R(se iθ ) are now linear forms in the unknown coefficients a l of R. We replace them by their real parts and their imaginary parts. Then, we get the following real linear forms |Q(Be ixn )|.Re(R(Be ixn ))B -r+k t and |Q(Be ixn )|. Im(R(Be ixn ))B -r+k t , |Q(s n e iθ )|.Re(R(s n e iθ )) max(B, s n ) -r+k t and |Q(s n e iθ )|.Im(R(s n e iθ )) max(B, s n ) -r+k t .

  494446 14.066992 19.542882 z 3 -5z 2 + 7z -1 3 2.369276 19.542882 21.640384 z 3 -5z 2 + 8z -3

	4 2.019800 21.640384	30	z 3 -4z 2 + 5z -1
	5 1.732050	30	45	z 2 -3z + 3
	6 1.414213	45	71.65	z 2 -2z + 2
	7 1.363626 75.179481	79.75	z 4 -3z 3 + 5z 2 -5z + 3
	8 1.324717 80.656153	82.97	

Table 2 :

 2 The auxiliary functions

Table 3 :

 3 Polynomials used in the auxiliary functions f i , 1 ≤ i ≤ 9, where ϕ

			024507 0.175057 0.032525 0.004751 0.079304 0.050438
	7	Q 1 Q 2 Q 25 Q 26 Q 28	0.008444 0.0575607 0.065330 0.0004682 0.016565
		Q 29 Q 30 Q 32 Q 33 Q 34	0.001730 0.000014 0.000423 0.004915 0.001592
		Q 35 Q 36 Q 37 Q 45 Q 47	0.015610 0.001888 0.001414 0.002149 0.000687
	8	Q 1 Q 2 Q 25 Q 28 Q 30 Q 31	0.006904 0.0975367 0.117138 0.007135 0.042038 0.015259
	9	Q 1 Q 2 Q 25 Q 38 Q 39	0.019950 0.074188 0.055458 0.019050 0.049961
		Q 40 Q 41 Q 42	0.001051 0.011188 0.006327

Table 4 :

 4 -4z 8 + 10z 7 -18z 6 + 25z 5 -27z 4 + 22z 3 -14z 2 + 5z -1 Q 42 1.27375339 96.0500257 z 7 -3z 6 + 6z 5 -9z 4 + 10z 3 -8z 2 + 5z -1 -5z 7 + 14z 6 -26z 5 + 34z 4 -31z 3 + 18z 2 -5z -1 Q 46 3.23814583 180 z 9 -2z 7 + 14z 6 -28z 5 + 38z 4 -35z 3 + 18z 2 -4z + 1 Q 471.40815538 180 z 17 -10z 16 + 52z 15 -183z 14 + 481z 13 -990z 12 + 1633z 11 -2175z 10 + 2323z 9 -1935z 8 + 1165z 7 -379z 6 -109z 5 + 238z 4 -164z 3 + 66z 2 -17z + 4 Polynomials used in the function g(θ)where ϕ(Q) = max{| arg z| such that Q(z) = 0}

		46916905 75.8507515 z 6 -4z 5 + 9z 4 -13z 3 + 12z 2 -7z + 1
	Q 30	1.41372670 77.3596055 z 8 -5z 7 + 14z 6 -26z 5 + 34z 4 -31z 3 + 19z 2 -6z + 1
	Q 31	1.73491605 78.3230933 z 8 -4z 7 + 12z 6 -21z 5 + 30z 4 -25z 3 + 18z 2 -3z + 1
	Q 32	1.46807570 79.7313691 z 11 -7z 10 + 27z 9 -71z 8 + 139z 7 -210z 6 + 248z 5 -227z 4 + 157z 3 -76z 2
				+22z -1
	Q 33	1.41425545 80.3585322 z 10 -6z 9 + 20z 8 -45z 7 + 74z 6 -91z 5 + 83z 4 -54z 3 + 23z 2 -5z + 1
	Q 34	1.44038921 80.5418045 z 12 -8z 11 + 34z 10 -98z 9 + 210z 8 -349z 7 + 458z 6 -476z 5 + 388z 4 -242z 3
				+111z 2 -35z + 7
	Q 35	1.32471796 80.6561536 z 3 -z 2 + 2z -1
	Q 36	1.41711530 81.7436262 z 6 -3z 5 + 6z 4 -7z 3 + 6z 2 -2z + 1
	Q 37	1.42267845 87.5431247 z 15 -9z 14 + 43z 13 -141z 12 + 349z 11 -684z 10 + 1089z 9 -1427z 8 + 1546z 7
				-1380z 6 + 1003z 5 -579z 4 + 253z 3 -76z 2 + 12z -1
	Q 38	1.22794984 87.9784953 z 4 -2z 3 + 3z 2 -3z + 2
	Q 39	1	90	z 2 + 1
	Q 40	1.27230966 92.1291431 z 5 -2z 4 + 4z 3 -5z 2 + 4z -3
	Q 41 1.35321020 94.0044886 z 9 Q 43 1.41817747 180 z 5 -2z 4 + 4z 3 -3z 2 + 2z + 1
	Q 44	2.29649166	180	z 5 -7z 4 + 19z 3 -23z 2 + 10z + 1
	Q 45	1.37594383	180	z 8
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