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Abstract

Many problems in Machine Learning can be cast into vector-valued functions approximation.
Operator-Valued Kernels Operator-Valued Kernels and vector-valued Reproducing Kernel
Hilbert Spaces provide a theoretical and versatile framework to address that issue, extending
nicely the well-known setting of scalar-valued kernels. However large scale applications
are usually not affordable with these tools that require an important computational power
along with a large memory capacity. In this paper, we aim at providing scalable methods
that enable efficient regression with Operator-Valued Kernels. To achieve this goal, we
extend Random Fourier Features, an approximation technique originally introduced for
translation-invariant scalar-valued kernels, to translation-invariant Operator-Valued Kernels.
We develop all the machinery in the general context of Locally Compact Abelian groups,
allowing for coping with Operator-Valued Kernels. Eventually, the provided approximated
operator-valued feature map converts the nonparametric kernel-based model into a linear
model in a finite-dimensional space.

Keywords: Random Fourier Feature, Operator-Valued Kernel

1. Introduction

Learning vector-valued functions is key to numerous tasks in Machine Learning such as
multi-label classification, multi-task regression, vector field learning. Among the different
families of tools that currently allow to address multiple output prediction, Operator-Valued
Kernel methods (Micchelli and Pontil, 2005; Carmeli et al., 2010; Kadri et al., 2010; Brouard
et al., 2011; Álvarez et al., 2012) benefit from a well founded theoretical background while
being flexible enough to handle a large variety of problems. In a few words, Operator-
Valued Kernels extend the classic scalar-valued kernels to functions with values in output
Hilbert spaces. As in the scalar case, Operator-Valued Kernels (OVKs) are used to build
Reproducing Kernel Hilbert Spaces (RKHS) in which representer theorems apply as for
ridge regression or other appropriate loss functional. In these cases, learning a model in
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the RKHS boils down to learning a function of the form 𝑓(𝑥) =
∑︀𝑁

𝑖=1𝐾(𝑥, 𝑥𝑖)𝛼𝑖 where
𝑥1, . . . , 𝑥𝑁 are the training input data and each 𝛼𝑖, 𝑖 = 1, . . . , 𝑁 is a vector of the output
space 𝒴, and each 𝐾(𝑥, 𝑥𝑖) is an operator on 𝒴.

However, OVKs suffer from the same drawbacks as classic (scalar-valued) kernel machines:
they scale poorly to large datasets because they are exceedingly demanding in terms of
memory and computations.

In this paper, we propose to keep the theoretical benefits of working with OVKss while
providing efficient implementations of learning algorithms. To achieve this goal, we study
feature map approximations ̃︀𝜑 of OVKs that allow for shallow architectures, namely the
product of a (nonlinear) operator-valued feature ̃︀𝜑(𝑥) and a parameter vector 𝜃 such that̃︀𝑓(𝑥) = ̃︀𝜑(𝑥)*𝜃.
To approximate OVKs, we extend the well-known methodology called Random Fourier

Features (RFFs) (Rahimi and Recht, 2007; Le et al., 2013; Yang et al., 2015b; Sriperumbudur
and Szabo, 2015; Bach, 2015; Sutherland and Schneider, 2015; Rudi et al., 2016) so far
developed to speed up scalar-valued kernel machines. The RFF approach linearizes a
shift-invariant kernel model by generating explicitly an approximated feature map 𝜙. RFFs
has been shown to be efficient on large datasets (Rudi et al., 2016). Additionally, it has been
further improved by efficient matrix computations such as (Le et al., 2013, “FastFood”) and
(Felix et al., 2016, “SORF”), that are considered as the best large scale implementations of
kernel methods, along with Nyström approaches proposed in Drineas and Mahoney (2005).
Moreover thanks to RFFs, kernel methods have been proved to be competitive with deep
architectures (Lu et al., 2014; Dai et al., 2014; Yang et al., 2015a).

1.1 Outline and contributions

The paper is structured as follow. In Section 2 we recall briefly how to obtain RFFs for
scalar-valued kernels and list the state of the art implementation of RFFs for large scale
kernel learning. Then we define properly Operator-Valued Kernels, give some important
theorems and properties used throughout this paper before given a non exhaustive list of
problem tackled with OVKs.

Then we move on to our contributions. In Section 3 we propose an RFF construction
from 𝒴-Mercer shift invariant OVK that we call Operator-valued Random Fourier Feature
(ORFF). Then we study the structure of a random feature corresponding to an OVK
(without having to specify the target kernel). Eventually we use the framework used to
construct ORFFs to study the regularization properties of OVKs in terms of Fourier
Transform.

In Section 4 we assess theoretically the quality of our ORFF: we show that the stochastic
ORFF estimator converges with high probability toward the target kernel and derive
convergence rates. We also give a bound on the variance of the approximated OVK
constructed from the corresponding ORFF.

In Section 5 we focus on Ridge regression with OVKs. First we study the relationship
between finding a minimizer in the VV-RKHS induce by a given OVK and the feature
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induced by the corresponding ORFF. Then we define a gradient based algorithm to tackle
Ridge regression with ORFF, show how to obtain an efficient implementation and study its
complexity.

Eventually we end this paper by some numerical experiments in Section 6 on toy and real
datasets before giving a general conclusion in Section 7.

2. Background

Notations used throughout this paper are summarized in Table 1.

2.1 Random Fourier Feature maps

The Random Fourier Features methodology introduced by Rahimi and Recht (2007) provides
a way to scale up kernel methods when kernels are Mercer and translation-invariant. We
view the input space 𝒳 as the group R𝑑 endowed with the addition law. Extensions to other
group laws such as Li et al. (2010) are described in Subsection 3.2.2 within the general
framework of operator-valued kernels.

Denote 𝑘 : R𝑑 × R𝑑 → R a positive definite kernel (Aronszajn, 1950) on R𝑑. A kernel 𝑘 is

said to be shift-invariant or translation-invariant for the addition if for all (𝑥, 𝑧, 𝑡) ∈
(︀
R𝑑
)︀3

we have 𝑘(𝑥 + 𝑡, 𝑧 + 𝑡) = 𝑘(𝑥, 𝑧). Then, we define 𝑘0 : R𝑑 → R the function such that
𝑘(𝑥, 𝑧) = 𝑘0(𝑥− 𝑧). The function 𝑘0 is called the signature of kernel 𝑘. If 𝑘0 is a continuous
function we call the kernel “Mercer”. Then, Bochner’s theorem (Folland, 1994) is the
theoretical result that leads to the Random Fourier Features.

Theorem 1 (Bochner’s theorem)

Any continuous positive-definite function (e. g. a Mercer kernel) is the Fourier Transform
of a bounded non-negative Borel measure.

It implies that any positive-definite, continuous and shift-invariant kernel 𝑘, have a continuous
and positive-definite signature 𝑘0, which is the Fourier Transform ℱ of a non-negative measure
𝜇. We therefore have the 𝑘(𝑥, 𝑧) = 𝑘0(𝑥 − 𝑧) =

∫︀
R𝑑 exp(−i⟨𝜔, 𝑥 − 𝑧⟩)𝑑𝜇(𝜔) = ℱ [𝑘0] (𝜔).

Moreover 𝜇 = ℱ−1 [𝑘0]. Without loss of generality, we assume that 𝜇 is a probability measure,
i. e.

∫︀
R𝑑 𝑑𝜇(𝜔) = 1 by renormalizing the kernel since

∫︀
R𝑑 𝑑𝜇(𝜔) =

∫︀
R𝑑 exp(−i⟨𝜔, 0⟩)𝑑𝜇(𝜔) =

𝑘0(0). and we can write the kernel as an expectation over a probability measure 𝜇. For all
𝑥, 𝑧 ∈ R𝑑

𝑘0(𝑥− 𝑧) = E𝜔∼𝜇 [exp(−i⟨𝜔, 𝑥− 𝑧⟩)] .

Eventually, if 𝑘 is real valued we only write the real part, 𝑘(𝑥, 𝑧) = E𝜔∼𝜇[cos⟨𝜔, 𝑥− 𝑧⟩] =
E𝜔∼𝜇[cos⟨𝜔, 𝑧⟩ cos⟨𝜔, 𝑥⟩ + sin⟨𝜔, 𝑧⟩ sin⟨𝜔, 𝑥⟩]. Let

⨁︀𝐷
𝑗=1 𝑥𝑗 denote the 𝐷𝑑-length column

vector obtained by stacking vectors 𝑥𝑗 ∈ R𝑑. The feature map ̃︀𝜙 : R𝑑 → R2𝐷 defined as

(1)̃︀𝜙(𝑥) = 1√
𝐷

𝐷⨁︁
𝑗=1

(︃
cos ⟨𝑥, 𝜔𝑗⟩
sin ⟨𝑥, 𝜔𝑗⟩

)︃
, 𝜔𝑗 ∼ ℱ−1 [𝑘0] i. i. d.

is called a Random Fourier Feature (map). Each 𝜔𝑗 , 𝑗 = 1, . . . , 𝐷 is independently and
identically sampled from the inverse Fourier transform 𝜇 of 𝑘0. This Random Fourier Feature
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Table 1: Mathematical symbols and their signification (part 1).

Symbol Meaning

𝑒 ∈ 𝒳 The neutral element of the group 𝒳 .
𝛿𝑖𝑗 Kronecker delta function. 𝛿𝑖𝑗 = 0 if 𝑖 ̸= 𝑗, 1 otherwise.̂︀𝒳 The Pontryagin dual of 𝒳 when 𝒳 is a LCA group.

⟨·, ·⟩𝒴 The canonical inner product of the Hilbert space 𝒴.
‖·‖𝒴 The canonical norm induced by the inner product of the Hilbert space 𝒴.
ℱ(𝒳 ;𝒴) Topological vector space of functions from 𝒳 to 𝒴.
𝒞(𝒳 ;𝒴) The topological vector subspace of ℱ of continuous functions from 𝒳 to 𝒴 .
ℒ(ℋ;𝒴) The space bounded linear operator from a Hilbert space ℋ to a Hilbert

space 𝒴.
‖·‖𝒴,𝒴 ′ The operator norm ‖Γ‖𝒴,𝒴 ′ = sup‖𝑦‖𝒴=1‖Γ𝑦‖𝒴 ′ for all Γ ∈ ℒ(𝒴,𝒴 ′)

ℳ𝑚,𝑛(K) The space of matrices of size (𝑚,𝑛).

ℒ(𝒴) The space of bounded linear operator from a Hilbert space 𝒴 to itself.

ℒ+(𝒴) The space of non-negative bounded linear operator from a Hilbert space ℋ
to itself.

ℬ(𝒳 ) Borel 𝜎-algebra on a topological space 𝒳 .
Leb(𝒳 ) The Lebesgue measure of 𝒳 .
Haar(𝒳 ) A Haar measure of 𝒳 .
Pr𝜇,𝜌(𝒳 ) A probability measure of 𝒳 whose Radon-Nikodym derivative (density)

with respect to the measure 𝜇 is 𝜌.

ℱ [·] The Fourier Transform operator.

𝐿𝑝(𝒳 , 𝜇;𝒴) The Banach space of ‖·‖𝑝𝒴 (Bochner)-integrable function from (𝒳 ,ℬ(𝒳 ), 𝜇)
to 𝒴 for 𝑝 ∈ R+. 𝐿

𝑝(𝒳 , 𝜇,R) := 𝐿𝑝(𝒳 , 𝜇) and 𝐿𝑝(𝒳 , 𝜇,R) = 𝐿𝑝(𝒳 , 𝜇).⨁︀𝐷
𝑗=1 𝑥𝑖 The direct sum of 𝐷 ∈ N vectors 𝑥𝑖’s in the Hilbert spaces ℋ𝑖. By definition

⟨
⨁︀𝐷

𝑗=1 𝑥𝑗 ,
⨁︀𝐷

𝑗=1 𝑧𝑗⟩ =
∑︀𝐷

𝑗=1⟨𝑥𝑗 , 𝑧𝑗⟩ℋ𝑖
.

‖·‖𝑝 The 𝐿𝑝(𝒳 , 𝜇,𝒴) norm. ‖𝑓‖𝑝𝑝 :=
∫︀
𝒳 ‖𝑓(𝑥)‖

𝑝
𝒴𝑑𝜇(𝑥). When 𝒳 = N*, 𝒴 ⊆ R

and 𝜇 is the counting measure and 𝑝 = 2 it coincide with the Euclidean
norm ‖·‖2 for finite dimensional vectors.

‖·‖∞ The uniform norm ‖𝑓‖∞ = ess sup { ‖𝑓(𝑥)‖𝒴 | 𝑥 ∈ 𝒳 } = lim𝑝→∞‖𝑓‖𝑝.
|Γ| The absolute value of the linear operator Γ ∈ ℒ(𝒴), i. e. |Γ|2 = Γ*Γ.

Tr [Γ] The trace of a linear operator Γ ∈ ℒ(𝒴).
‖·‖𝜎,𝑝 The Schatten 𝑝-norm, ‖Γ‖𝑝𝜎,𝑝 = Tr [|Γ|𝑝] for Γ ∈ ℒ(𝒴), where 𝒴 is a Hilbert

space. Note that ‖Γ‖𝜎,∞ = 𝜌(Γ) ≤ ‖Γ‖𝒴,𝒴 .
< “Greater than” in the Loewner partial order of operators. Γ1 < Γ2 if

𝜎(Γ1 − Γ2) ⊆ R+.
∼= Given two sets 𝒳 and 𝒴 , 𝒳 ∼= 𝒴 if there exists an isomorphism 𝜙 : 𝒳 → 𝒴 .
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map provides the following Monte-Carlo estimator of the kernel: ̃︀𝑘(𝑥, 𝑧) = ̃︀𝜙(𝑥)* ̃︀𝜙(𝑧). Using
trigonometric identities, Rahimi and Recht (2007) showed that the same feature map can
also be written

(2)𝜙(𝑥) =

√︂
2

𝐷

𝐷⨁︁
𝑗=1

(︁
cos(⟨𝑥, 𝜔𝑗⟩+ 𝑏𝑗)

)︁
,

where 𝜔𝑗 ∼ ℱ−1 [𝑘0], 𝑏𝑗 ∼ 𝒰(0, 2𝜋) i. i. d.. The feature map defined by Equation 1 and
Equation 2 have been compared in Sutherland and Schneider (2015) where they give the
condition under wich Equation 1 has lower variance than Equation 2. For instance for the
Gaussian kernel, Equation 1 has always lower variance. In practice, Equation 2 is easier to
program. In this paper we focus on random Fourier feature of the form given in Equation 1.

The dimension 𝐷 governs the precision of this approximation, whose uniform convergence
towards the target kernel can be found in Rahimi and Recht (2007) and in more recent papers
with some refinements proposed in Sutherland and Schneider (2015) and Sriperumbudur
and Szabo (2015). Finally, it is important to notice that Random Fourier Feature approach
only requires two steps before the application of a learning algorithm: (1) define the inverse
Fourier transform of the given shift-invariant kernel, (2) compute the randomized feature
map using the spectral distribution 𝜇. Rahimi and Recht (2007) show that for the Gaussian
kernel 𝑘0(𝑥− 𝑧) = exp(−𝛾‖𝑥− 𝑧‖22), the spectral distribution 𝜇 is a Gaussian distribution.
For the Laplacian kernel 𝑘0(𝑥− 𝑧) = exp(−𝛾‖𝑥− 𝑧‖1), the spectral distribution is a Cauchy
distribution.

2.1.1 Extensions of the RFF method

The seminal idea of Rahimi and Recht (2007) has opened a large literature on random
features. Nowadays, many classes of kernels other than translation invariant are now proved
to have an efficient random feature representation. Kar and Karnick (2012) proposed random
feature maps for dot product kernels (rotation invariant) and Hamid et al. (2014) improved
the rate of convergence of the approximation error for such kernels by noticing that feature
maps for dot product kernels are usually low rank and may not utilize the capacity of the
projected feature space efficiently. Pham and Pagh (2013) proposed fast random feature
maps for polynomial kernels.

Li et al. (2010) generalized the original RFF of Rahimi and Recht (2007). Instead of
computing feature maps for shift-invariant kernels on the additive group (R𝑑,+), they used
the generalized Fourier transform on any locally compact abelian group to derive random
features on the multiplicative group (R𝑑, *). In the same spirit Yang et al. (2014b) noticed
that an theorem equivalent to Bochner’s theorem exists on the semi-group (R𝑑>0,+). From
this they derived “Random Laplace” features and used them to approximate kernels adapted
to learn on histograms.

To speed-up the convergence rate of the random features approximation, Yang et al.
(2014a) proposed to sample the random variable from a quasi Monte-Carlo sequence instead
of i. i. d. random variables. Le et al. (2013) proposed the “Fastfood” algorithm to reduce the
complexity of computing a RFF –using structured matrices and a fast Walsh-Hadarmard
transform– from 𝑂𝑡(𝐷𝑑) to 𝑂𝑡(𝐷 log(𝑑)). More recently Felix et al. (2016) proposed also an
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algorithm “SORF” to compute Gaussian RFF in 𝑂𝑡(𝐷 log(𝑑)) but with better convergence
rates than “Fastfood” (Le et al., 2013). Mukuta and Harada (2016) proposed a data
dependent feature map (comparable to the Nystrom̈ method) by estimating the distribution
of the input data, and then finding the eigenfunction decomposition of Mercer’s integral
operator associated to the kernel.

In the context of large scale learning and deep learning, Lu et al. (2014) showed that
RFFs can achieve performances comparable to deep-learning methods by combining multiple
kernel learning and composition of kernels along with a scalable parallel implementation.
Dai et al. (2014) and Xie et al. (2015) combined RFFs and stochastic gradient descent to
define an online learning algorithm called “Doubly stochastic gradient descent” adapted to
large scale learning. Yang et al. (2015a) proposed and studied the idea of replacing the last
fully interconnected layer of a deep convolutional neural network (LeCun et al., 1995) by
the “Fastfood” implementation of RFFs.

Eventually Yang et al. (2015b) introduced the algorithm “À la Carte”, based on “Fastfood”
which is able to learn the spectral distribution

2.2 On Operator-Valued Kernels

We now introduce the theory of Vector Valued Reproducing Kernel Hilbert Space (VV-
RKHS) that provides a flexible framework to study and learn vector-valued functions. The
fundations of the general theory of scalar kernels is mostly due to Aronszajn (1950) and
provides a unifying point of view for the study of an important class of Hilbert spaces of real
or complex valued functions. It has been first applied in the theory of partial differential
equation. The theory of Operator-Valued Kernels (OVKs) which extends the scalar-valued
kernel was first developped by Pedrick (1957) in his Ph. D Thesis. Since then it has been
successfully applied to machine learning by many authors. In particular we introduce the
notion of Operator-Valued Kernels following the propositions of Micchelli and Pontil (2005);
Carmeli et al. (2006, 2010).

2.3 Definitions and properties

In machine learning the goal is often to find a function 𝑓 belonging to a class of functions
ℱ(𝒳 ;𝒴) that minimizes a criterion called the true risk. The class of functions we consider
are functions living in a Hilbert space ℋ ⊂ ℱ(𝒳 ;𝒴). The completeness allows to consider
sequences of functions 𝑓𝑛 ∈ ℋ where the limit 𝑓𝑛 → 𝑓 is in ℋ. Moreover the existence of an
inner product gives rise to a norm and also makes ℋ a metric space.

Among all these functions 𝑓 ∈ ℋ, we consider a subset of functions 𝑓 ∈ ℋ𝐾 ⊂ ℋ such that
the evaluation map ev𝑥 : 𝑓 ↦→ 𝑓(𝑥) is bounded for all 𝑥. i. e. such that ‖ev𝑥‖𝐾 ≤ 𝐶𝑥 ∈ R
for all 𝑥, where ‖·‖2𝐾 = ⟨·, ·⟩𝐾 := ⟨·, ·⟩ℋ𝐾

. For scalar valued kernels the evaluation map is a
linear functional. Thus by Riesz’s representation theorem there is an isomorphism between
evaluating a function at a point and an inner product: 𝑓(𝑥) = ev𝑥𝑓 = ⟨𝐾𝑥, 𝑓⟩𝐾 . From
this we deduce the reproducing property 𝐾(𝑥, 𝑧) = ⟨𝐾𝑥,𝐾𝑧⟩𝐾 which is the cornerstone of
many proofs in machine learning and functional analysis. When dealing with vector-valued
functions, the evaluation map ev𝑥 is no longer a linear functional, since it is vector-valued.
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However, inspired by the theory of scalar valued kernel, many authors showed that if the
evaluation map of functions with values in a Hilbert space 𝒴 is bounded, a similar reproducing
property can be obtained; namely ⟨𝑦′,𝐾(𝑥, 𝑧)𝑦⟩ = ⟨𝐾𝑥𝑦

′,𝐾𝑧𝑦⟩𝐾 for all 𝑦, 𝑦′ ∈ 𝒴. This
motivates the following definition of a Vector Valued Reproducing Kernel Hilbert Space
(VV-RKHS).

Definition 2 (Vector Valued Reproducing Kernel Hilbert Space (Carmeli et al., 2006;
Micchelli and Pontil, 2005))

Let 𝒴 be a (real or complex) Hilbert space. A Vector Valued Reproducing Kernel Hilbert
Space on a locally compact second countable topological space 𝒳 is a Hilbert space ℋ such
that

1. the elements of ℋ are functions from 𝒳 to 𝒴 (i. e. ℋ ⊂ ℱ(𝒳 ,𝒴));

2. for all 𝑥 ∈ 𝒳 , there exists a positive constant 𝐶𝑥 such that for all 𝑓 ∈ ℋ ‖𝑓(𝑥)‖𝒴 ≤
𝐶𝑥‖𝑓‖ℋ.

Throughout this section we show that a VV-RKHS defines a unique positive-definite
function called Operator-Valued Kernel (OVK) and conversely an OVK uniquely defines a
VV-RKHS. The bijection between OVKs and VV-RKHSs has been first proved by Senkene
and Tempel’man (1973) in 1973. In this introduction to OVKs we follow the definitions and
most recent proofs of Carmeli et al. (2010).

Definition 3 (Positive-definite Operator-Valued Kernel)

Given 𝒳 a locally compact second countable topological space and 𝒴 a real Hilbert Space,
a map 𝐾 : 𝒳 × 𝒳 → ℒ(𝒴) is called a positive-definite Operator-Valued Kernel kernel if
𝐾(𝑥, 𝑧) = 𝐾(𝑧, 𝑥)* and

(3 )
𝑁∑︁

𝑖,𝑗 =1

⟨𝐾(𝑥𝑖, 𝑥𝑗)𝑦𝑗 , 𝑦𝑖⟩𝒴 ≥ 0,

for all 𝑁 ∈ N, for all sequences of points (𝑥𝑖)
𝑁
𝑖=1 in 𝒳𝑁 , and all sequences of points (𝑦𝑖)

𝑁
𝑖=1

in 𝒴𝑁 .

As in the scalar case any Vector Valued Reproducing Kernel Hilbert Space defines a unique
positive-definite Operator-Valued Kernel and conversely a positive-definite Operator-Valued
Kernel defines a unique Vector Valued Reproducing Kernel Hilbert Space.

Proposition 4 ((Carmeli et al., 2006))

Given a Vector Valued Reproducing Kernel Hilbert Space there is a unique positive-definite
Operator-Valued Kernel 𝐾 : 𝒳 × 𝒳 → ℒ(𝒴).

iven 𝑥 ∈ 𝒳 , 𝐾𝑥 : 𝒴 → ℱ(𝒳 ;𝒴) denotes the linear operator whose action on a vector 𝑦 is the
function 𝐾𝑥𝑦 ∈ ℱ(𝒳 ;𝒴) defined for all 𝑧 ∈ 𝒳 by 𝐾𝑥 = ev*𝑥. As a consequence we have that

(4)𝐾(𝑥, 𝑧)𝑦 = ev𝑥ev
*
𝑧𝑦 = 𝐾*

𝑥𝐾𝑧𝑦 = (𝐾𝑧𝑦)(𝑥).

Some direct consequences follow from the definition.
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1. The kernel reproduces the value of a function 𝑓 ∈ ℋ at a point 𝑥 ∈ 𝒳 since for all 𝑦 ∈ 𝒴
and 𝑥 ∈ 𝒳 , ev*𝑥𝑦 = 𝐾𝑥𝑦 = 𝐾(·, 𝑥)𝑦 such that ⟨𝑓(𝑥), 𝑦⟩𝒴 = ⟨𝑓,𝐾(·, 𝑥)𝑦⟩ℋ = ⟨𝐾*

𝑥𝑓, 𝑦⟩𝒴 .

2. For all 𝑥 ∈ 𝒳 and all 𝑓 ∈ ℋ, ‖𝑓(𝑥)‖𝒴 ≤
√︁
‖𝐾(𝑥, 𝑥)‖𝒴,𝒴‖𝑓‖ℋ. This comes from

the fact that ‖𝐾𝑥‖𝒴,ℋ = ‖𝐾*
𝑥‖ℋ,𝒴 =

√︁
‖𝐾(𝑥, 𝑥)‖𝒴,𝒴 and the operator norm is sub-

multiplicative.

Additionally given a positive-definite Operator-Valued Kernel, it defines a unique VV-RKHS.

Proposition 5 ((Carmeli et al., 2006))

Given a positive-definite Operator-Valued Kernel 𝐾 : 𝒳 × 𝒳 → ℒ(𝒴), there is a unique
Vector Valued Reproducing Kernel Hilbert Space ℋ on 𝒳 with reproducing kernel 𝐾.

Since an positive-definite Operator-Valued Kernel defines a unique Vector Valued Repro-
ducing Kernel Hilbert Space (VV-RKHS) and conversely a VV-RKHS defines a unique
Operator-Valued Kernel, we denote the Hilbert space ℋ endowed with the scalar product ⟨·, ·⟩
respectively ℋ𝐾 and ⟨·, ·⟩𝐾 . From now we refer to positive-definite Operator-Valued Kernels
or reproducing Operator-Valued Kernels as Operator-Valued Kernels. As a consequence,
given 𝐾 an Operator-Valued Kernel, define 𝐾𝑥 = 𝐾(·, 𝑥) we have

(5a)𝐾(𝑥, 𝑧) = 𝐾*
𝑥𝐾𝑧 ∀𝑥, 𝑧 ∈ 𝒳 ,

(5b)ℋ𝐾 = span {𝐾𝑥𝑦 | ∀𝑥 ∈ 𝒳 , ∀𝑦 ∈ 𝒴 } .

Where span is the closed span of a given set. Another way to describe functions of ℋ𝐾
consists in using a suitable feature map.

Proposition 6 (Feature Operator (Carmeli et al., 2010))

Let ℋ be any Hilbert space and 𝜑 : 𝒳 → ℒ(𝒴;ℋ), with 𝜑𝑥 := 𝜑(𝑥). Then the operator
𝑊 : ℋ → ℱ(𝒳 ;𝒴) defined for all 𝑔 ∈ ℋ, and for all 𝑥 ∈ 𝒳 by (𝑊𝑔)(𝑥) = 𝜑*𝑥𝑔 is a partial
isometry from ℋ onto the VV-RKHS ℋ𝐾 with reproducing kernel 𝐾(𝑥, 𝑧) = 𝜑*𝑥𝜑𝑧, ∀𝑥, 𝑧 ∈
𝒳 . 𝑊 *𝑊 is the orthogonal projection onto (Ker 𝑊 )⊥ = span { 𝜑𝑥𝑦 | ∀𝑥 ∈ 𝒳 , ∀𝑦 ∈ 𝒴 }.
Then ‖𝑓‖𝐾 = inf { ‖𝑔‖ℋ | ∀𝑔 ∈ ℋ, 𝑊𝑔 = 𝑓 }.

In this work we mainly focus on the kernel functions inducing a VV-RKHS of continuous
functions. Such kernel are named 𝒴-Mercer kernels and generalize Mercer kernels.

Definition 7 (𝒴-Mercer kernel Carmeli et al. (2010))

A positive definite OVK 𝐾 : 𝒳 ×𝒳 → ℒ(𝒴) is called 𝒴-Mercer if the associated VV-RKHS
ℋ𝐾 is a subspace of the space of continuous functions 𝒞(𝒳 ;𝒴).

2.4 Examples of Operator-Valued Kernels

In this subsection we list some Operator-Valued Kernels (OVKs) that have been used
successfully in the litterature. We do not recall the proof that the following kernels are well
defined are refer the interrested reader to the respective authors original work.

8
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OVKs have been first introduced in Machine Learning to solve multi-task regression
problems. Multi-task regression is encountered in many fields such as structured classification
when classes belong to a hierarchy for instance. Instead of solving independently 𝑝 single
output regression task, one would like to take advantage of the relationships between output
variables when learning and making a decision.

Proposition 8 (Decomposable kernel (Micheli and Glaunes, 2013))

Let Γ be a non-negative operator of ℒ+(𝒴). 𝐾 is said to be a decomposable kernel1 if for
all (𝑥, 𝑧) ∈ 𝒳 2, 𝐾(𝑥, 𝑧) := 𝑘(𝑥, 𝑧)Γ, where 𝑘 is a scalar kernel.

When 𝒴 = R𝑝, the operator Γ can be represented by a matrix which can be interpreted
as encoding the relationships between the outputs coordinates. If a graph coding for the
proximity between tasks is known, then Evgeniou et al. (2005); Baldassarre et al. (2010);
Álvarez et al. (2012) showed that Γ can be chosen equal to the pseudo inverse 𝐿† of the
graph Laplacian, such that the norm in ℋ𝐾 is a graph-regularizing penalty for the outputs
(tasks). When no prior knowledge is available, Γ can learned with one of the algorithms
proposed in the literature (Dinuzzo et al., 2011; Sindhwani et al., 2013; Lim et al., 2015a).
Another interesting property of the decomposable kernel is its universality (a kernel which
may approximate an arbitrary continuous target function uniformly on any compact subset
of the input space). A reproducing kernel 𝐾 is said universal if the associated VV-RKHS
ℋ𝐾 is dense in the space of continuous functions 𝒞(𝒳 ,𝒴). The conditions for a kernel to
be universal have been discussed in Caponnetto et al. (2008); Carmeli et al. (2010). In
particular they show that a decomposable kernel is universal provided that the scalar kernel
𝑘 is universal and the operator Γ is injective. Given (𝑒𝑘)

𝑝
𝑘=1 a basis of 𝒴 , we recall here how

the matrix Γ act as a regularizer between the components of the outputs 𝑓𝑘 = ⟨𝑓(·), 𝑒𝑘⟩𝒴 of
a function 𝑓 ∈ ℋ𝐾 . We prove a generalized version of Proposition 9 to any Operator-Valued
Kernel in Subsection 3.6.

Proposition 9 (Kernels and Regularizers (Álvarez et al., 2012))

Let 𝐾(𝑥, 𝑧) := 𝑘(𝑥, 𝑧)Γ for all 𝑥, 𝑧 ∈ 𝒳 be a decomposable kernel where Γ is a matrix of size
𝑝 × 𝑝. Then for all 𝑓 ∈ ℋ𝐾 , ‖𝑓‖𝐾 =

∑︀𝑝
𝑖,𝑗=1

(︀
Γ†)︀

𝑖𝑗
⟨𝑓𝑖, 𝑓𝑗⟩𝑘 where 𝑓𝑖(·) = ⟨𝑓(·), 𝑒𝑖⟩𝒴 (resp

𝑓𝑗 = ⟨𝑓(·), 𝑒𝑗⟩𝒴), denotes the 𝑖-th (resp 𝑗-th) component of 𝑓 .

Curl-free and divergence-free kernels provide an interesting application of operator-valued
kernels (Macedo and Castro, 2008; Baldassarre et al., 2012; Micheli and Glaunes, 2013)
to vector field learning, for which input and output spaces have the same dimensions
(𝑑 = 𝑝). Applications cover shape deformation analysis (Micheli and Glaunes, 2013) and
magnetic fields approximations (Wahlström et al., 2013). These kernels discussed in (Fuselier,
2006) allow encoding input-dependent similarities between vector-fields. An illustration
of a synthetic 2𝐷 curl-free and divergence free fields are given respectively in Figure 1
and Figure 2. To obain the curl-free field we took the gradient of a mixture of five two
dimensional Gaussians (since the gradient of a potential is always curl-free). We generated
the divergence-free field by taking the orthogonal of the curl-free field.

Proposition 10 (Curl-free and Div-free kernel (Macedo and Castro, 2008))

1. Some authors also refer to as separable kernels.

9
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Figure 1: Synthetic 2𝐷 curl-free field .
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Figure 2: Synthetic 2𝐷 divergence-free field .

Assume 𝒳 = (R𝑑,+) and 𝒴 = R𝑝 with 𝑑 = 𝑝. The divergence-free kernel is defined
as 𝐾𝑑𝑖𝑣(𝑥, 𝑧) = 𝐾𝑑𝑖𝑣

0 (𝛿) = (∇∇T − Δ𝐼)𝑘0(𝛿) and the curl-free kernel as 𝐾𝑐𝑢𝑟𝑙(𝑥, 𝑧) =
𝐾𝑐𝑢𝑟𝑙

0 (𝛿) = −∇∇T𝑘0(𝛿), where ∇ is the gradient operator , ∇∇T is the Hessian operator
and Δ is the Laplacian operator.

2.5 Shift-Invariant OVK on LCA groups

The main subjects of interest of the present paper are shift-invariant Operator-Valued Kernel.
When referring to a shift-invariant OVK 𝐾 : 𝒳 × 𝒳 → ℒ(𝒴) we assume that 𝒳 is a locally
compact second countable topological group with identity 𝑒.

Definition 11 (Shift-invariant OVK)

A reproducing Operator-Valued Kernel 𝐾 : 𝒳 × 𝒳 → ℒ(𝒴) is called shift-invariant if for all
𝑥, 𝑧, 𝑡 ∈ 𝒳 , 𝐾(𝑥 ⋆ 𝑡, 𝑧 ⋆ 𝑡) = 𝐾(𝑥, 𝑧).

A shift-invariant kernel can be characterized by a function of one variable 𝐾𝑒 called the
signature of 𝐾. Here 𝑒 denotes the neutral element of the LCA group 𝒳 endowed with the
binary group operation ⋆.

Proposition 12 (Kernel signature (Carmeli et al., 2010))

Let 𝐾 : 𝒳 × 𝒳 → ℒ(𝒴) be a reproducing kernel. The following conditions are equivalents.

1. 𝐾 is a positive-definite shift-invariant Operator-Valued Kernel.

2. There is a positive-definite function 𝐾𝑒 : 𝒳 → ℒ(𝒴) such that 𝐾(𝑥, 𝑧) = 𝐾𝑒(𝑧
−1 ⋆ 𝑥).

If one of the above conditions is satisfied, then ‖𝐾(𝑥, 𝑥)‖𝒴 = ‖𝐾𝑒(𝑒)‖𝒴 , ∀𝑥 ∈ 𝒳 .

We recall that if 𝐾 is a 𝒴-Mercer kernel, there is a function 𝐾𝑒 such that for all 𝑥 and
𝑧 ∈ 𝒳 , 𝐾(𝑥, 𝑧) = 𝐾𝑒(𝑥 ⋆ 𝑧

−1). Then an OVK 𝐾 is 𝒴-Mercer if and only if for all 𝑦 ∈ 𝒴,
𝐾𝑒(·)𝑦 ∈ 𝒞(𝒳 ;𝒴). In other words a 𝒴-Mercer kernel is nothing but a functions whose
signature is continuous and positive definite (Carmeli et al., 2010), which fulfil the conditions
required for the “operator-valued” Bochner theorem to apply. Note that if 𝐾 is a shift
invariant 𝒴-Mercer kernel, then ℋ𝐾 contains continuous bounded functions (Carmeli et al.,
2010).
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2.6 Some applications of Operator-valued kernels

We give here a non exhaustive list of works concerning Operator-Valued Kernels. A good
review of Operator-Valued Kernels has been conducted in Álvarez et al. (2012). For a
theoretical introduction to OVKs the interested reader can refer to the papers Carmeli et al.
(2006); Caponnetto et al. (2008); Carmeli et al. (2010). Generalization bounds for OVK have
been studied in Sindhwani et al. (2013); Kadri et al. (2015); Sangnier et al. (2016); Maurer
(2016). Operator-valued Kernel Regression has first been studied in the context of Ridge
Regression and Multi-task learning by Micchelli and Pontil (2005). Multi-task regression
(Micchelli and Pontil, 2004) and structured multi-class classification (Dinuzzo et al., 2011;
Minh et al., 2013b; Mroueh et al., 2012) are undoubtedly the first target applications for
working in Vector Valued Reproducing Kernel Hilbert Space. Operator-Valued Kernels
have been shown useful to provide a general framework for structured output prediction
(Brouard et al., 2011, 2016a) with a link to Output Kernel Regression (Kadri et al., 2013).
Beyond structured classification, other various applications such as link prediction, drug
activity prediction or recently metabolite identification (Brouard et al., 2016b) and image
colorization (Ha Quang et al., 2010) have been developed.

Macedo and Castro (2008); Baldassarre et al. (2012) showed the interest of spectral
algorithms in Ridge regression and introduced vector field learning as a new multiple output
task in Machine Learning community. Wahlström et al. (2013) applied vector field learning
with OVK-based Gaussian processes to the reconstruction of magnetic fields (which are
curl-free). The works of Kadri et al. (2010, 2015) have been the precursors of regression with
functional values, opening a new avenue of applications. Appropriate algorithms devoted
to online learning have been also derived by Audiffren and Kadri (2015). Kernel learning
was addressed at least in two ways: first with using Multiple Kernel Learning in Kadri
et al. (2012) and second, using various penalties, smooth ones in Dinuzzo et al. (2011);
Ciliberto et al. (2015) for decomposable kernels and non smooth ones in Lim et al. (2015b)
using proximal methods in the case of decomposable and transformable kernels. Dynamical
modeling was tackled in the context of multivariate time series modelling in Lim et al.
(2013); Sindhwani et al. (2013); Lim et al. (2015b) and as a generalization of Recursive Least
Square Algorithm in Amblard and Kadri (2015). Sangnier et al. (2016) recently explored
the minimization of a pinball loss under regularizing constraints induced by a well chosen
decomposable kernel in order to handle joint quantile regression.

3. Main contribution: Operator Random Fourier Features

We present in this section a construction methodology devoted to shift-invariant 𝒴-Mercer
operator-valued kernels defined on any Locally Compact Abelian (LCA) group, noted (𝒳 , ⋆),
for some operation noted ⋆. This allows us to use the general context of Pontryagin duality
for Fourier Transform of functions on LCA groups. Building upon a generalization of the
celebrated Bochner’s theorem for operator-valued measures, an operator-valued kernel is
seen as the Fourier Transform of an operator-valued positive measure. From that result, we
extend the principle of RFF for scalar-valued kernels and derive a general methodology to
build Operator-valued Random Fourier Feature (ORFF) when operator-valued kernels are

11
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shift-invariant according to the chosen group operation. Elements of this paper have been
developped in Brault et al. (2016).

We present a construction of feature maps called Operator-valued Random Fourier Feature
(ORFF), such that 𝑓 : 𝑥 ↦→ ̃︀𝜑(𝑥)*𝜃 is a continuous function that maps an arbitrary LCA
group 𝒳 as input space to an arbitrary output Hilbert space 𝒴 . First we define a functional
Fourier feature map, and then propose a Monte-Carlo sampling from this feature map
to construct an approximation of a shift-invariant 𝒴-Mercer kernel. Then, we prove the
convergence of the kernel approximation �̃�(𝑥, 𝑧) = ̃︀𝜑(𝑥)*̃︀𝜑(𝑧) with high probability on
compact subsets of the LCA 𝒳 . Eventually we conclude with some numerical experiments.

3.1 Theoretical study

The following proposition of Zhang et al. (2012); Neeb (1998) extends Bochner’s theorem
to any shift-invariant 𝒴-Mercer kernel. We give a short intoduction to LCA groups and
abstract harmonic analysis in appendix A. For the sake of simplicity, the reader can take
(𝑥, 𝜔) = exp(i⟨𝑥, 𝜔⟩2) = exp(−i⟨𝑥, 𝜔⟩2), when 𝑥 ∈ 𝒳 = (R𝑑,+).

Proposition 13 (Operator-valued Bochner’s theorem (Zhang et al., 2012; Neeb, 1998))

If a function 𝐾 from 𝒳 × 𝒳 to 𝒴 is a shift-invariant 𝒴-Mercer kernel on 𝒳 , then there
exists a unique positive projection-valued measure ̂︀𝑄 : ℬ(𝒳 ) → ℒ+(𝒴) such that for all 𝑥,
𝑧 ∈ 𝒳 ,

(6 )𝐾(𝑥, 𝑧) =

∫︁
̂︀𝒳 (𝑥 ⋆ 𝑧−1, 𝜔)𝑑 ̂︀𝑄(𝜔),

where ̂︀𝑄 belongs to the set of all the projection-valued measures of bounded variation on the
𝜎-algebra of Borel subsets of ̂︀𝒳 . Conversely, from any positive operator-valued measure ̂︀𝑄, a
shift-invariant kernel 𝐾 can be defined by Equation 6.

Although this theorem is central to the spectral decomposition of shift-invariant 𝒴-Mercer
OVK, the following results proved by Carmeli et al. (2010) provides insights about this
decomposition that are more relevant in practice. It first gives the necessary conditions
to build shift-invariant 𝒴-Mercer kernel with a pair (𝐴, ̂︀𝜇) where 𝐴 is an operator-valued
function on ̂︀𝒳 and ̂︀𝜇 is a real-valued positive measure on ̂︀𝒳 . Note that obviously such a pair
is not unique and the choice of this paper may have an impact on theoretical properties as
well as practical computations. Secondly it also states that any OVK have such a spectral
decomposition when 𝒴 is finite dimensional or 𝒳 .

Proposition 14 (Carmeli et al. (2010))

Let ̂︀𝜇 be a positive measure on ℬ( ̂︀𝒳 ) and 𝐴 : ̂︀𝒳 → ℒ(𝒴) such that ⟨𝐴(·)𝑦, 𝑦′⟩ ∈ 𝐿1(𝒳 , ̂︀𝜇) for
all 𝑦, 𝑦′ ∈ 𝒴 and 𝐴(𝜔) < 0 for ̂︀𝜇-almost all 𝜔 ∈ ̂︀𝒳 . Then, for all 𝛿 ∈ 𝒳 ,

(7 )𝐾𝑒(𝛿) =

∫︁
̂︀𝒳 (𝛿, 𝜔)𝐴(𝜔)𝑑̂︀𝜇(𝜔)

is the kernel signature of a shift-invariant 𝒴-Mercer kernel 𝐾 such that 𝐾(𝑥, 𝑧) = 𝐾𝑒(𝑥⋆𝑧
−1).

The VV-RKHS ℋ𝐾 is embed in 𝐿2( ̂︀𝒳 , ̂︀𝜇;𝒴 ′) by means of the feature operator

(8 )(𝑊𝑔)(𝑥) =

∫︁
̂︀𝒳 (𝑥, 𝜔)𝐵(𝜔)𝑔(𝜔)𝑑̂︀𝜇(𝜔),
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Where 𝐵(𝜔)𝐵(𝜔)* = 𝐴(𝜔) and both integrals converge in the weak sense. If 𝒴 is finite
dimensional or 𝒳 is compact, any shift-invariant kernel is of the above form for some pair
(𝐴, ̂︀𝜇).

When 𝑝 = 1 one can always assume 𝐴 is reduced to the scalar 1, ̂︀𝜇 is still a bounded
positive measure and we retrieve the Bochner theorem applied to the scalar case (Theorem 1).

Proposition 14 shows that a pair (𝐴, ̂︀𝜇) entirely characterizes an OVK. Namely a given
measure ̂︀𝜇 and a function 𝐴 such that ⟨𝑦′, 𝐴(𝑐)̇𝑦⟩𝒴 ∈ 𝐿1(𝒳 , ̂︀𝜇) for all 𝑦, 𝑦′ ∈ 𝒴 and 𝐴(𝜔) < 0
for ̂︀𝜇-almost all 𝜔, give rise to an OVK. Since (𝐴, ̂︀𝜇) determine a unique kernel we can write
ℋ(𝐴,̂︀𝜇) =⇒ℋ𝐾 where 𝐾 is defined as in Equation 7. However the converse is not true: Given
a 𝒴-Mercer shift invariant Operator-Valued Kernel, there exist infinitely many pairs (𝐴, ̂︀𝜇)
that characterize an OVK.

The main difference between Equation 6 and Equation 7 is that the first one characterizes
an OVK by a unique Positive Operator-Valued Measure (POVM), while the second one
shows that the POVM that uniquely characterizes a 𝒴-Mercer OVK has an operator-valued
density with respect to a scalar measure ̂︀𝜇; and that this operator-valued density is not
unique. Notice that obtaining a scalar-valued density from the POVM implies the addition
of a (weak) 𝐿1 condition on 𝐾𝑒.

Finally Proposition 14 does not provide any constructive way to obtain the pair (𝐴, ̂︀𝜇)
that characterizes an OVK. The following Subsection 3.1.1 is based on another proposition
of Carmeli et al. and shows that if the kernel signature 𝐾𝑒(𝛿) of an OVK is in 𝐿1 then

it is possible to construct explicitly a pair (𝐶, Ĥaar) from it. Additionally, we show that
we can always extract a scalar-valued probability density function from 𝐶 such that we
obtain a pair (𝐴,Pr̂︀𝜇,𝜌) where Pr̂︀𝜇,𝜌 is a probability distribution absolutely continuous
with respect to ̂︀𝜇 and with associated probibility density function (p. d. f) 𝜌. Thus for
all 𝒵 ⊂ ℬ( ̂︀𝒳 ), Pr̂︀𝜇,𝜌(𝒵) = ∫︀𝒵 𝜌(𝜔)𝑑̂︀𝜇(𝜔). When the reference measure ̂︀𝜇 is the Lebesgue

measure, we note Pr̂︀𝜇,𝜌 = Pr𝜌. For any function 𝑓 : 𝒳 × ̂︀𝒳 × 𝒴 → R, we also use
the notation E

Ĥaar,𝜌
[𝑓(𝑥, 𝜔, 𝑦)] = E𝜔∼Pr

Ĥaar,𝜌
[𝑓(𝑥, 𝜔, 𝑦)] =

∫︀ ̂︀𝒳 𝑓(𝑥, 𝜔, 𝑦)𝑑Pr
Ĥaar,𝜌

(𝜔) =∫︀ ̂︀𝒳 𝑓(𝑥, 𝜔, 𝑦)𝜌(𝜔)𝑑Ĥaar(𝜔). where the two last equalities hold by the “law of the unconscious
statistician” (change of variable formula) and the fact that Pr

Ĥaar,𝜌
has density 𝜌. Hence

depending on the context, with mild abuse of notation, we view 𝜔 either as a variable in the
probability space ( ̂︀𝒳 ,Pr

Ĥaar,𝜌
) or as a random variable with values in ̂︀𝒳 and distributed as

Pr
Ĥaar,𝜌

.

3.1.1 Sufficient conditions of existence

While Proposition 14 gives some insights on how to build an approximation of a 𝒴-Mercer
kernel, we need a theorem that provides an explicit construction of the pair (𝐴,Pr̂︀𝜇,𝜌) from
the kernel signature 𝐾𝑒. Proposition 14 in Carmeli et al. (2010) gives the solution, and also
provides a sufficient condition for Proposition 14 to apply.

Proposition 15 (Carmeli et al. (2010))

Let 𝐾 be a shift-invariant 𝒴-Mercer kernel of signature 𝐾𝑒. Suppose that for all 𝑧 ∈ 𝒳 and
for all 𝑦, 𝑦′ ∈ 𝒴, the function ⟨𝐾𝑒(.)𝑦, 𝑦

′⟩𝒴 ∈ 𝐿1(𝒳 ,Haar) where 𝒳 is endowed with the
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group law ⋆. Denote 𝐶 : ̂︀𝑋 → ℒ(𝑌 ), the function defined for all 𝜔 ∈ ̂︀𝒳 that satisfies for all
𝑦, 𝑦′ in 𝒴:

(9 )⟨𝑦′, 𝐶(𝜔)𝑦⟩𝒴 =

∫︁
𝒳
(𝛿, 𝜔)⟨𝑦′,𝐾𝑒(𝛿)𝑦⟩𝒴𝑑Haar(𝛿) = ℱ−1

[︀
⟨𝑦′,𝐾𝑒(·)𝑦⟩𝒴

]︀
(𝜔).

Then

1. 𝐶(𝜔) is a bounded non-negative operator for all 𝜔 ∈ ̂︀𝒳 ,
2. ⟨𝑦, 𝐶(·)𝑦′⟩𝒴 ∈ 𝐿1

(︁ ̂︀𝒳 , Ĥaar
)︁
for all 𝑦, 𝑦′ ∈ 𝒳 ,

3. for all 𝛿 ∈ 𝒳 and for all 𝑦, 𝑦′ in 𝒴, ⟨𝑦′,𝐾𝑒(𝛿)𝑦⟩𝒴 =
∫︀ ̂︀𝒳 (𝛿, 𝜔)⟨𝑦′, 𝐶(𝜔)𝑦⟩𝒴𝑑Ĥaar(𝜔) =

ℱ
[︀
⟨𝑦′, 𝐶(·)𝑦⟩𝒴

]︀
(𝛿).

We found some confusion in the literature whether a kernel is the Fourier Transform or
Inverse Fourier Transform of a measure. However Lemma 16 clarifies the relation between
the Fourier Transform and Inverse Fourier Transform for a translation invariant Operator-
Valued Kernel. Notice that in the real scalar case the Fourier Transform and Inverse Fourier
Transform of a shift-invariant kernel are the same, while the difference is significant for
OVK. The following lemma is a direct consequence of the definition of 𝐶(𝜔) as the Fourier
Transform of the adjoint of 𝐾𝑒 and also helps to simplify the definition of ORFF.

Lemma 16

Let 𝐾𝑒 be the signature of a shift-invariant 𝒴-Mercer kernel such that for all 𝑦, 𝑦′ ∈ 𝒴,
⟨𝑦′,𝐾𝑒(·)𝑦⟩𝒴 ∈ 𝐿1(𝒳 ,Haar) and let ⟨𝑦′, 𝐶(·)𝑦⟩𝒴 = ℱ−1

[︀
⟨𝑦′,𝐾𝑒(·)𝑦⟩𝒴

]︀
. Then

1. 𝐶(𝜔) is self-adjoint and 𝐶 is even.

2. ℱ−1
[︀
⟨𝑦′,𝐾𝑒(·)𝑦⟩𝒴

]︀
= ℱ

[︀
⟨𝑦′,𝐾𝑒(·)𝑦⟩𝒴

]︀
.

3. 𝐾𝑒(𝛿) is self-adjoint and 𝐾𝑒 is even.

While Proposition 15 gives an explicit form of the operator 𝐶(𝜔) defined as the Fourier

Transform of the kernel 𝐾, it is not really convenient to work with the Haar measure Ĥaar

on ℬ( ̂︀𝒳 ). However it is easily possible to turn Ĥaar into a probability measure to allow
efficient integration over an infinite domain.

The following proposition allows to build a spectral decomposition of a shift-invariant
𝒴-Mercer kernel on a LCA group 𝒳 endowed with the group law ⋆ with respect to a scalar
probability measure, by extracting a scalar probability density function from 𝐶.

Proposition 17 (Shift-invariant 𝒴-Mercer kernel spectral decomposition)

Let 𝐾𝑒 be the signature of a shift-invariant 𝒴-Mercer kernel. If for all 𝑦, 𝑦′ ∈ 𝒴, ⟨𝐾𝑒(.)𝑦, 𝑦
′⟩ ∈

𝐿1(𝒳 ,Haar) then there exists a positive probability measure Pr
Ĥaar,𝜌

and an operator-valued

function 𝐴 an such that for all 𝑦, 𝑦′ ∈ 𝒴,

(10 )⟨𝑦′,𝐾𝑒(𝛿)𝑦⟩𝒴 = E
Ĥaar,𝜌

[︁
(𝛿, 𝜔)⟨𝑦′, 𝐴(𝜔)𝑦⟩𝒴

]︁
,

with ⟨𝑦′, 𝐴(𝜔)𝑦⟩𝒴𝜌(𝜔) = ℱ [⟨𝑦′,𝐾𝑒(·)𝑦⟩]𝒴 (𝜔). Moreover

14
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1. for all 𝑦, 𝑦′ ∈ 𝒴, ⟨𝐴(·)𝑦, 𝑦′⟩𝒴 ∈ 𝐿1( ̂︀𝒳 ,Pr
Ĥaar,𝜌

),

2. 𝐴(𝜔) is non-negative for Pr
Ĥaar,𝜌

-almost all 𝜔 ∈ ̂︀𝒳 ,
3. 𝐴(·) and 𝜌(·) are even functions.

3.2 Examples of spectral decomposition

In this section we give examples of spectral decomposition for various 𝒴-Mercer kernels,
based on Proposition 17.

3.2.1 Gaussian decomposable kernel

Recall that a decomposable R𝑝-Mercer introduced in Proposition 8 has the form 𝐾(𝑥, 𝑧) =
𝑘(𝑥, 𝑧)Γ, where 𝑘(𝑥, 𝑧) is a scalar Mercer kernel and Γ ∈ ℒ(R𝑝) is a non-negative operator.

Let us focus on𝐾𝑑𝑒𝑐,𝑔𝑎𝑢𝑠𝑠
𝑒 (·) = 𝑘𝑔𝑎𝑢𝑠𝑠𝑒 (·)Γ, the Gaussian decomposable kernel where𝐾𝑑𝑒𝑐,𝑔𝑎𝑢𝑠𝑠

𝑒

and 𝑘𝑔𝑎𝑢𝑠𝑠𝑒 are respectively the signature of 𝐾 and 𝑘 on the additive group 𝒳 = (R𝑑,+) –
𝑖. 𝑒. 𝛿 = 𝑥− 𝑧 and 𝑒 = 0. The well known Gaussian kernel is defined for all 𝛿 ∈ R𝑑 as follows
𝑘gauss0 (𝛿) = exp

(︁
−𝜎−2‖𝛿‖22

)︁
/2 where 𝜎 ∈ R>0 is an hyperparameter corresponding to the

bandwith of the kernel. The –Pontryagin– dual group of 𝒳 = (R𝑑,+) is ̂︀𝒳 ∼= (R𝑑,+) with
the pairing (𝛿, 𝜔) = exp (i⟨𝛿, 𝜔⟩2) where 𝛿 and 𝜔 ∈ R𝑑. In this case the Haar measures on 𝒳
and ̂︀𝒳 are in both cases the Lebesgue measure. However in order to have the property that

ℱ−1 [ℱ [𝑓 ]] = 𝑓 and ℱ−1 [𝑓 ] = ℛℱ [𝑓 ] one must normalize both measures by
√
2𝜋

−𝑑
, i. e. for

all 𝒵 ∈ ℬ
(︀
R𝑑
)︀
,
√
2𝜋

𝑑
Haar(𝒵) = Leb(𝒵) and

√
2𝜋

𝑑
Ĥaar(𝒵) = Leb(𝒵). Then the Fourier

Transform on (R𝑑,+) is

ℱ [𝑓 ] (𝜔) =

∫︁
R𝑑

exp (−i⟨𝛿, 𝜔⟩2) 𝑓(𝛿)𝑑Haar(𝛿) =

∫︁
R𝑑

exp (−i⟨𝛿, 𝜔⟩2) 𝑓(𝛿)
𝑑Leb(𝛿)
√
2𝜋

𝑑
.

Since 𝑘gauss0 ∈ 𝐿1 and Γ is bounded, it is possible to apply Proposition 17, and obtain for all
𝑦 and 𝑦′ ∈ 𝒴,⟨

𝑦′, 𝐶𝑑𝑒𝑐,𝑔𝑎𝑢𝑠𝑠(𝜔)𝑦
⟩
2
= ℱ

[︁⟨
𝑦′,𝐾𝑑𝑒𝑐,𝑔𝑎𝑢𝑠𝑠

0 (·)𝑦
⟩
2

]︁
(𝜔) = ℱ [𝑘𝑔𝑎𝑢𝑠𝑠0 ] (𝜔)

⟨︀
𝑦′,Γ𝑦

⟩︀
2
.

Thus

𝐶𝑑𝑒𝑐,𝑔𝑎𝑢𝑠𝑠(𝜔) =

∫︁
R𝑑

exp

(︃
−i⟨𝜔, 𝛿⟩2 −

‖𝛿‖22
2𝜎2

)︃
𝑑Leb(𝛿)
√
2𝜋

𝑑
Γ.

Hence

𝐶𝑑𝑒𝑐,𝑔𝑎𝑢𝑠𝑠(𝜔) =
1√︁

2𝜋 1
𝜎2

𝑑
exp

(︂
−𝜎

2

2
‖𝜔‖22

)︂√
2𝜋

𝑑

⏟  ⏞  
𝜌(·)=𝒩 (0,𝜎−2𝐼𝑑)

√
2𝜋

𝑑

Γ⏟ ⏞ 
𝐴(·)=Γ

.

Therefore the canonical decomposition of 𝐶𝑑𝑒𝑐,𝑔𝑎𝑢𝑠𝑠 is 𝐴𝑑𝑒𝑐,𝑔𝑎𝑢𝑠𝑠(𝜔) = Γ and 𝜌𝑑𝑒𝑐,𝑔𝑎𝑢𝑠𝑠 =

𝒩 (0, 𝜎−2𝐼𝑑)
√
2𝜋

𝑑
, where 𝒩 is the Gaussian probability distribution. Note that this decom-

position is done with respect to the normalized Lebesgue measure Ĥaar, meaning that for

15
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all 𝒵 ∈ ℬ( ̂︀𝒳 ),
Pr

Ĥaar,𝒩 (0,𝜎−2𝐼𝑑)
√
2𝜋

𝑑(𝒵) =
∫︁
𝒵
𝒩 (0, 𝜎−2𝐼𝑑)

√
2𝜋

𝑑
𝑑Ĥaar(𝜔)

=

∫︁
̂︀𝒳 𝒩 (0, 𝜎−2𝐼𝑑)𝑑Leb(𝜔) = Pr𝒩 (0,𝜎−2𝐼𝑑)(𝒵).

Thus, the same decomposition with respect to the usual –non-normalized– Lebesgue measure
Leb yields

(11a)𝐴𝑑𝑒𝑐,𝑔𝑎𝑢𝑠𝑠(·) = Γ

(11b)𝜌𝑑𝑒𝑐,𝑔𝑎𝑢𝑠𝑠 = 𝒩 (0, 𝜎−2𝐼𝑑).

3.2.2 Skewed-𝜒2 decomposable kernel

The skewed-𝜒2 scalar kernel (Li et al., 2010), useful for image processing, is defined on the
LCA group 𝒳 = (−𝑐𝑘; +∞)𝑑𝑘=1, with 𝑐𝑘 ∈ R>0 and endowed with the group operation ⊙.
Let (𝑒𝑘)

𝑑
𝑘=1 be the standard basis of 𝒳 . The operator ⊙ : 𝒳 ×𝒳 → 𝒳 is defined by 𝑥⊙ 𝑧 =

((𝑥𝑘 + 𝑐𝑘)(𝑧𝑘 + 𝑐𝑘)− 𝑐𝑘)𝑑𝑘=1. The identity element 𝑒 is (1− 𝑐𝑘)𝑑𝑘=1 since (1 − 𝑐) ⊙ 𝑥 = 𝑥.
Thus the inverse element 𝑥−1 is ((𝑥𝑘 + 𝑐𝑘)

−1 − 𝑐𝑘)𝑑𝑘=1. The skewed-𝜒2 scalar kernel reads

(12)𝑘𝑠𝑘𝑒𝑤𝑒𝑑1−𝑐 (𝛿) =

𝑑∏︁
𝑘=1

2
√
𝛿𝑘 + 𝑐𝑘 +

√︁
1

𝛿𝑘+𝑐𝑘

.

The dual of 𝒳 is ̂︀𝒳 ∼= R𝑑 with the pairing (𝛿, 𝜔) =
∏︀𝑑
𝑘=1 exp (i log(𝛿𝑘 + 𝑐𝑘)𝜔𝑘). The Haar

measure are defined for all 𝒵 ∈ ℬ((−𝑐; +∞)𝑑) and all ̂︀𝒵 ∈ ℬ(R𝑑) by
√
2𝜋

𝑑
Haar(𝒵) =∫︀

𝒵
∏︀𝑑
𝑘=1

1
𝑧𝑘+𝑐𝑘

𝑑Leb(𝑧) and
√
2𝜋

𝑑
Ĥaar( ̂︀𝒵) = Leb( ̂︀𝒵). Thus the Fourier Transform is

ℱ [𝑓 ] (𝜔) =

∫︁
(−𝑐;+∞)𝑑

𝑑∏︁
𝑘=1

exp (−i log(𝛿𝑘 + 𝑐𝑘)𝜔𝑘)

𝛿𝑘 + 𝑐𝑘
𝑓(𝛿)

𝑑Leb(𝛿)
√
2𝜋

𝑑
.

Then, applying Fubini’s theorem over product space, and the fact that each dimension is
independent

ℱ
[︁
𝑘𝑠𝑘𝑒𝑤𝑒𝑑0

]︁
(𝜔) =

𝑑∏︁
𝑘=1

∫︁ +∞

−𝑐𝑘

2 exp (−i log(𝛿𝑘 + 𝑐𝑘)𝜔𝑘)

(𝛿𝑘 + 𝑐𝑘)
(︁√

𝛿𝑘 + 𝑐𝑘 +
√︁

1
𝛿𝑘+𝑐𝑘

)︁ 𝑑Leb(𝛿𝑘)√
2𝜋

𝑑
.

Making the change of variable 𝑡𝑘 = (𝛿𝑘 + 𝑐𝑘)
−1 yields

ℱ
[︁
𝑘𝑠𝑘𝑒𝑤𝑒𝑑0

]︁
(𝜔) =

𝑑∏︁
𝑘=1

∫︁ +∞

−∞

2 exp (−i𝑡𝑘𝜔𝑘)
exp

(︀
1
2 𝑡𝑘
)︀
+ exp

(︀
−1

2 𝑡𝑘
)︀ 𝑑Leb(𝑡𝑘)√

2𝜋
𝑑

=
√
2𝜋

𝑑
𝑑∏︁

𝑘=1

sech(𝜋𝜔𝑘).

Since 𝑘skewed1−𝑐 ∈ 𝐿1 and Γ is bounded, it is possible to apply Proposition 17, and obtain

𝐶𝑑𝑒𝑐,𝑠𝑘𝑒𝑤𝑒𝑑(𝜔) = ℱ
[︁
𝑘𝑠𝑘𝑒𝑤𝑒𝑑1−𝑐

]︁
(𝜔)Γ =

√
2𝜋

𝑑
𝑑∏︁

𝑘=1

sech(𝜋𝜔𝑘)⏟  ⏞  
𝜌(·)=𝒮(0,2−1)𝑑

√
2𝜋

𝑑

Γ⏟ ⏞ 
𝐴(·)

.
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Hence the decomposition with respect to the usual –non-normalized– Lebesgue measure
Leb yields

(13a)𝐴𝑑𝑒𝑐,𝑠𝑘𝑒𝑤𝑒𝑑(·) = Γ

(13b)𝜌𝑑𝑒𝑐,𝑠𝑘𝑒𝑤𝑒𝑑 = 𝒮
(︀
0, 2−1

)︀𝑑
.

3.2.3 Curl-free Gaussian kernel

The curl-free Gaussian kernel is defined as 𝐾𝑐𝑢𝑟𝑙,𝑔𝑎𝑢𝑠𝑠
0 = −∇∇T𝑘𝑔𝑎𝑢𝑠𝑠0 . Here 𝒳 = (R𝑑,+) so

the setting is the same than Subsection 3.2.1.

𝐶𝑐𝑢𝑟𝑙,𝑔𝑎𝑢𝑠𝑠(𝜔)𝑖𝑗 = ℱ
[︁
𝐾𝑐𝑢𝑟𝑙,𝑔𝑎𝑢𝑠𝑠

1−𝑐 (·)𝑖𝑗
]︁
(𝜔)

=

√︂
2𝜋

1

𝜎2

𝑑

exp

(︂
−𝜎

2

2
‖𝜔‖22

)︂√
2𝜋

𝑑
𝜔𝑖𝜔𝑗 .

Hence

𝐶𝑐𝑢𝑟𝑙,𝑔𝑎𝑢𝑠𝑠(𝜔) =
1√︁

2𝜋 1
𝜎2

𝑑
exp

(︂
−𝜎

2

2
‖𝜔‖22

)︂√
2𝜋

𝑑

⏟  ⏞  
𝜇(·)=𝒩 (0,𝜎−2𝐼𝑑)

√
2𝜋

𝑑

𝜔𝜔T⏟ ⏞ 
𝐴(𝜔)=𝜔𝜔T

.

Here a canonical decomposition is 𝐴𝑐𝑢𝑟𝑙,𝑔𝑎𝑢𝑠𝑠(𝜔) = 𝜔𝜔T for all 𝜔 ∈ R𝑑 and 𝜇𝑐𝑢𝑟𝑙,𝑔𝑎𝑢𝑠𝑠 =

𝒩 (0, 𝜎−2𝐼𝑑)
√
2𝜋

𝑑
with respect to the normalized Lebesgue measure 𝑑𝜔. Again the decom-

position with respect to the usual –non-normalized– Lebesgue measure is for all 𝜔 ∈ R𝑑

(14a)𝐴𝑐𝑢𝑟𝑙,𝑔𝑎𝑢𝑠𝑠(𝜔) = 𝜔𝜔T

(14b)𝜇𝑐𝑢𝑟𝑙,𝑔𝑎𝑢𝑠𝑠 = 𝒩 (0, 𝜎−2𝐼𝑑).

3.2.4 Divergence-free kernel

The divergence-free Gaussian kernel is defined as 𝐾𝑑𝑖𝑣,𝑔𝑎𝑢𝑠𝑠
0 = (∇∇T−Δ)𝑘𝑔𝑎𝑢𝑠𝑠0 on the group

𝒳 = (R𝑑,+). The setting is the same than Subsection 3.2.1. Hence

𝐶𝑑𝑖𝑣,𝑔𝑎𝑢𝑠𝑠(𝜔)𝑖𝑗 = ℱ
[︁
𝐾𝑑𝑖𝑣,𝑔𝑎𝑢𝑠𝑠

0 (·)𝑖𝑗
]︁
(𝜔) =

(︃
𝛿𝑖=𝑗

𝑑∑︁
𝑘=1

𝜔2
𝑘 − 𝜔𝑖𝜔𝑗

)︃
ℱ [𝑘𝑔𝑎𝑢𝑠𝑠0 ] (𝜔).

Hence

𝐶𝑑𝑖𝑣,𝑔𝑎𝑢𝑠𝑠(𝜔) =
1√︁

2𝜋 1
𝜎2

𝑑
exp

(︂
−𝜎

2

2
‖𝜔‖22

)︂√
2𝜋

𝑑

⏟  ⏞  
𝜌(·)=𝒩 (0,𝜎−2𝐼𝑑)

√
2𝜋

𝑑

(︁
𝐼𝑑‖𝜔‖22 − 𝜔𝜔

T
)︁

⏟  ⏞  
𝐴(𝜔)=𝐼𝑑‖𝜔‖22−𝜔𝜔T

.

Thus the canonical decomposition with respect to the normalized Lebesgue measure is

𝐴𝑑𝑖𝑣,𝑔𝑎𝑢𝑠𝑠(𝜔) = 𝐼𝑑‖𝜔‖22−𝜔𝜔T and the measure 𝜌𝑑𝑖𝑣,𝑔𝑎𝑢𝑠𝑠 = 𝒩 (0, 𝜎−2𝐼𝑑)
√
2𝜋

𝑑
. The canonical

decomposition with respect to the usual Lebesgue measure is

(15a)𝐴𝑑𝑖𝑣,𝑔𝑎𝑢𝑠𝑠(𝜔) = 𝐼𝑑‖𝜔‖22 − 𝜔𝜔
T

(15b)𝜌𝑑𝑖𝑣,𝑔𝑎𝑢𝑠𝑠 = 𝒩 (0, 𝜎−2𝐼𝑑).
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3.3 Operator-valued Random Fourier Features (ORFF)

3.3.1 Building Operator-valued Random Fourier Features

As shown in Proposition 17 it is always possible to find a pair (𝐴,Pr
Ĥaar,𝜌

) from a shift

invariant 𝒴-Mercer Operator-Valued Kernel 𝐾𝑒 such that Pr
Ĥaar,𝜌

is a probability measure,

i. e.
∫︀ ̂︀𝒳 𝜌𝑑Ĥaar = 1 where 𝜌 is the density of Pr

Ĥaar,𝜌
and 𝐾𝑒(𝛿) = E

Ĥaar,𝜌
(𝛿, 𝜔)𝐴(𝜔). In

order to obtain an approximation of 𝐾 from a decomposition (𝐴,Pr
Ĥaar,𝜌

) we turn our

attention to a Monte-Carlo estimation of the expectation in Equation 10 characterizing a
𝒴-Mercer shift-invariant Operator-Valued Kernel.

Proposition 18

Let 𝐾(𝑥, 𝑧) be a shift-invariant 𝒴-Mercer kernel with signature 𝐾𝑒 such that for all 𝑦,
𝑦′ ∈ 𝒴, ⟨𝑦′,𝐾𝑒(·)𝑦⟩𝒴 ∈ 𝐿1(𝒳 ,Haar). Then one can find a pair (𝐴,Pr

Ĥaar,𝜌
) that satisfies

Proposition 17. i. e. for Pr
Ĥaar,𝜌

-almost all 𝜔, and all 𝑦, 𝑦′ ∈ 𝒴, ⟨𝑦,𝐴(𝜔)𝑦′⟩𝜌(𝜔) =

ℱ [⟨𝑦′,𝐾𝑒(·)𝑦⟩] (𝜔). If (𝜔𝑗)
𝐷
𝑗=1 be a sequence of 𝐷 ∈ N* i. i. d. random variables following

the law Pr
Ĥaar,𝜌

then the operator-valued function �̃� defined for (𝑥, 𝑧) ∈ 𝒳 × 𝒳 as

�̃�(𝑥, 𝑧) =
1

𝐷

𝐷∑︁
𝑗=1

(𝑥 ⋆ 𝑧−1, 𝜔𝑗)𝐴(𝜔𝑗)

is an approximation of 𝐾. i. e. it satisfies for all 𝑥, 𝑧 ∈ 𝒳 , �̃�(𝑥, 𝑧)
a. s.−−−−→
𝐷→∞

𝐾(𝑥, 𝑧) in the

weak operator topology, where 𝐾 is a 𝒴-Mercer OVK.

Now, for efficient computations as motivated in the introduction, we are interested in finding
an approximated feature map instead of a kernel approximation. Indeed, an approximated
feature map will allow to build linear models in regression tasks. The following proposition
deals with the feature map construction.

Proposition 19

Assume the same conditions as Proposition 18. Moreover, if one can define 𝐵 : ̂︀𝒳 →
ℒ(𝒴 ′,𝒴) such that for Pr

Ĥaar,𝜌
-almost all 𝜔, and all 𝑦, 𝑦′ ∈ 𝒴, ⟨𝑦,𝐵(𝜔)𝐵(𝜔)*𝑦′⟩𝒴𝜌(𝜔) =

⟨𝑦,𝐴(𝜔)𝑦′⟩𝜌(𝜔) = ℱ
[︀
⟨𝑦,𝐾𝑒(·)𝑦′⟩𝒴

]︀
(𝜔), then the function ̃︀𝜑 : ̂︀𝒳 → ℒ(𝒴,⨁︀𝐷

𝑗=1 𝒴 ′) defined
for all 𝑦 ∈ 𝒴 as follows:

̃︀𝜑(𝑥)𝑦 =
1√
𝐷

𝐷⨁︁
𝑗=1

(𝑥, 𝜔𝑗)𝐵(𝜔𝑗)
*𝑦, 𝜔𝑗 ∼ Pr

Ĥaar,𝜌
i. i. d.,

is an approximated feature map2 for the kernel 𝐾.

Remark 20

2. i. e. it satisfies for all 𝑥, 𝑧 ∈ 𝒳 , ̃︀𝜑(𝑥)*̃︀𝜑(𝑧) a. s.−−−−→
𝐷→∞

𝐾(𝑥, 𝑧) in the weak operator topology, where 𝐾 is a

𝒴-Mercer OVK.
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Algorithm 1: Construction of ORFF from OVK

Input :𝐾(𝑥, 𝑧) = 𝐾𝑒(𝛿) a shift-invariant 𝒴-Mercer kernel on (𝒳 , ⋆) such that
∀𝑦, 𝑦′ ∈ 𝒴, ⟨𝑦′,𝐾𝑒(·)𝑦⟩𝒴 ∈ 𝐿1(R𝑑,Haar) and 𝐷 the number of features.

Output :A random feature ̃︀𝜑(𝑥) such that ̃︀𝜑(𝑥)*̃︀𝜑(𝑧) ≈ 𝐾(𝑥, 𝑧)

1 Define the pairing (𝑥, 𝜔) from the LCA group (𝒳 , ⋆);
2 Find a decomposition (𝐴,Pr

Ĥaar,𝜌
) and 𝐵 such that

𝐵(𝜔)𝐵(𝜔)*𝜌(𝜔) = 𝐴(𝜔)𝜌(𝜔) = ℱ−1 [𝐾𝑒] (𝜔);
44 Draw 𝐷 i. i. d. realizations (𝜔𝑗)

𝐷
𝑗=1 from the probability distribution Pr

Ĥaar,𝜌
;

66 return

⎧⎨⎩̃︀𝜑(𝑥) ∈ ℒ(𝒴, ̃︀ℋ) : 𝑦 ↦→ 1√
𝐷

⨁︀𝐷
𝑗=1(𝑥, 𝜔𝑗)𝐵(𝜔𝑗)

*𝑦̃︀𝜑(𝑥)* ∈ ℒ( ̃︀ℋ,𝒴) : 𝜃 ↦→ 1√
𝐷

∑︀𝐷
𝑗=1(𝑥, 𝜔𝑗)𝐵(𝜔𝑗)𝜃𝑗

;

We find a decomposition such that 𝐴(𝜔𝑗) = 𝐵(𝜔𝑗)𝐵(𝜔𝑗)
* for all 𝑗 ∈ N*

𝐷 either by exhibiting
a closed-form or using a numerical decomposition. Such a decomposition always exists since
𝐴(𝜔) is positive semi-definite for all 𝜔 ∈ ̂︀𝒳 .
Notice that an ORFF map as defined in Proposition 19 is also the Monte-Carlo sampling
of the corresponding functional Fourier feature map 𝜑𝑥 : 𝒴 → 𝐿2( ̂︀𝒳 ,Pr

Ĥaar,𝜌
;𝒴 ′) as

defined in Proposition 21. Indeed, for all 𝑦 ∈ 𝒴 and all 𝑥 ∈ 𝒳 , ̃︀𝜑(𝑥)𝑦 =
⨁︀𝐷

𝑗=1(𝜑𝑥𝑦)(𝜔𝑗),
𝜔𝑗 ∼ Pr

Ĥaar,𝜌
i. i. d. Proposition 19 allows us to define Algorithm 1 for constructing ORFF

from an operator valued kernel.

We give a numerical illustration of different �̃� built from different i. i. d. realization (𝜔𝑗)
𝐷
𝑗=1,

𝜔𝑗 ∼ Pr
Ĥaar,𝜌

. In Figure 3, we represent the approximation of a reference function (black

line) defined as (𝑦1, 𝑦2)
T = 𝑓(𝑥𝑖) =

∑︀250
𝑗=1K𝑖𝑗𝑢𝑗 where 𝑢𝑗 ∼ 𝒩 (0, 𝐼2) and 𝐾 is a Gaussian

decomposable kernel. We took Γ = .5𝐼2 + .512 such that the outputs 𝑦1 and 𝑦2 share some
similarities. We generated 250 points equally separated on the segment (−1; 1). The Gram

matrix is then K𝑖𝑗 = exp
(︁
− (𝑥𝑖−𝑥𝑗)2

2(0.1)2

)︁
Γ, for 𝑖, 𝑗 ∈ N*

250. We took Γ = .5𝐼2 + .512 such that

the outputs 𝑦1 and 𝑦2 share some similarities. We generated 250 points equally separated
on the segment (−1; 1). Then we computed an approximate kernel matrix K̃ ≈ K for 25
increasing values of𝐷 ranging from 1 to 104. The two graphs in Figure 3 on the top row shows
that the more the number of features increases the closer the model ̃︀𝑓(𝑥𝑖) =∑︀250

𝑗=1 K̃𝑖𝑗𝑢𝑗 is

to 𝑓 . The bottom row shows the same experiment but for a different realization of K̃. When
𝐷 is small the curves of the bottom and top rows are very dissimilar –and sine wave like–
while they both converge to 𝑓 when 𝐷 increase. We introduce a functional feature map, we
call Fourier Feature map, defined by the following proposition as a direct consequence of
Proposition 14.

Proposition 21 (Functional Fourier feature map)

Let 𝒴 and 𝒴 ′ be two Hilbert spaces. If there exists an operator-valued function 𝐵 : ̂︀𝒳 →
ℒ(𝒴,𝒴 ′) such that for all 𝑦, 𝑦′ ∈ 𝒴, ⟨𝑦,𝐵(𝜔)𝐵(𝜔)*𝑦′⟩𝒴 = ⟨𝑦′, 𝐴(𝜔)𝑦⟩𝒴 ̂︀𝜇-almost everywhere
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−20

−10

0

10

20

30

𝑦 1

̃︀𝐾𝑢 ≈ 𝐾𝑢, realization 1

K

𝑦 2

K

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
𝑥

−20

−10

0

10

20

30

𝑦 1

̃︀𝐾𝑢 ≈ 𝐾𝑢, realization 2

K

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
𝑥

𝑦 2
K

100

101

102

103

104

D
=

̃︀𝐾

Figure 3: Approximation of a function in a VV-RKHS using different realizations of Operator
Random Fourier Feature. Top row and bottom row correspond to two different realizations
of ̃︀𝐾, which are different Operator-Valued Kernel. However when 𝐷 tends to infinity, the
different realizations of ̃︀𝐾 yield the same OVK.

and ⟨𝑦′, 𝐴(·)𝑦⟩ ∈ 𝐿1( ̂︀𝒳 , ̂︀𝜇) then the operator 𝜑𝑥 defined for all 𝑦 in 𝒴 by (𝜑𝑥𝑦)(𝜔) =
(𝑥, 𝜔)𝐵(𝜔)*𝑦, is a feature map3 of some shift-invariant 𝒴-Mercer kernel 𝐾.

With this notation we have 𝜑 : 𝒳 → ℒ(𝒴;𝐿2( ̂︀𝒳 , ̂︀𝜇;𝒴 ′)) such that 𝜑𝑥 ∈ ℒ(𝒴;𝐿2( ̂︀𝒳 , ̂︀𝜇;𝒴 ′))
where 𝜑𝑥 := 𝜑(𝑥). Notice that an ORFF map as defined in Proposition 19 is also the
Monte-Carlo sampling of the corresponding functional Fourier feature map 𝜑𝑥 : 𝒴 →
𝐿2( ̂︀𝒳 ,Pr

Ĥaar,𝜌
;𝒴 ′) as defined in Proposition 21. Indeed, for all 𝑦 ∈ 𝒴 and all 𝑥 ∈ 𝒳 ,

̃︀𝜑(𝑥)𝑦 =
𝐷⨁︁
𝑗=1

(𝜑𝑥𝑦)(𝜔𝑗), 𝜔𝑗 ∼ Pr
Ĥaar,𝜌

i. i. d.

3.4 From Operator Random Fourier Feature maps to OVKs

It is also interesting to notice that we can go the other way and define from the general form
of an Operator-valued Random Fourier Feature, an operator-valued kernel.

Proposition 22 (Operator Random Fourier Feature map)

Let 𝒴 and 𝒴 ′ be two Hilbert spaces. If one defines an operator-valued function on the dual
of a LCA group 𝒳 , 𝐵 : ̂︀𝒳 → ℒ(𝒴,𝒴 ′), and a probability measure Pr

Ĥaar,𝜌
on ℬ( ̂︀𝒳 ), such

3. i. e. it satisfies for all 𝑥, 𝑧 ∈ 𝒳 , 𝜑*
𝑥𝜑𝑧 = 𝐾(𝑥, 𝑧) where 𝐾 is a 𝒴-Mercer OVK.
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𝜑𝑥 ∈ ℒ(𝒴 ;ℋ) 𝒴 𝜑𝑥 ∈ ℒ
(︁
𝒴 ;𝐿2

(︁ ̂︀𝒳 ,Pr
Ĥaar,𝜌

;𝒴 ′
)︁)︁

𝒴 ̃︀𝜑(𝑥) ∈ ℒ(︁𝒴 ; ̃︀ℋ)︁ 𝒴

𝑥 ∈ 𝒳 𝑥 ∈ 𝒳 𝑥 ∈ 𝒳

𝜑*𝑥𝑔

𝑓𝜑

𝜑*𝑥𝑔

𝑓𝜑

̃︀𝜑(𝑥)*𝜃
̃︀𝑓̃︀𝜑

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭ ⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ ⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

𝜑*𝑥𝜑𝑧 = 𝐾(𝑥, 𝑧) 𝐾𝑒
(︀
𝑥 ⋆ 𝑧−1

)︀ ̃︀𝐾𝑒
(︀
𝑥 ⋆ 𝑧−1

)︀
= ̃︀𝜑(𝑥)*̃︀𝜑(𝑥)= ≈

Fourier,

𝜑𝑥(𝜔)𝑦 = (𝑥, 𝜔)𝐵(𝜔)*𝑦.

Monte-Carlo,̃︀𝜑(𝑥)𝑦 = 1√
𝐷

⨁︀𝐷
𝑗=1(𝜑𝑥𝑦)(𝜔𝑗), 𝜔𝑗 ∼ Pr

Ĥaar,𝜌

i. i. d.

Figure 4: Relationships between feature-maps. For any realization of 𝜔𝑗 ∼ Pr
Ĥaar,𝜌

i. i. d.,̃︀ℋ =
⨁︀𝐷

𝑗=1 𝒴 ′.

that for all 𝑦 ∈ 𝒴 and all 𝑦′ ∈ 𝒴 ′, ⟨𝑦,𝐵(·)𝑦′⟩ ∈ 𝐿2( ̂︀𝒳 ,Pr
Ĥaar,𝜌

), then the operator-valued

function ̃︀𝜑 : 𝒳 → ℒ
(︁
𝒴,
⨁︀𝐷

𝑗=1 𝒴 ′
)︁
defined for all 𝑥 ∈ 𝒳 and for all 𝑦 ∈ 𝒴 by

(16 )̃︀𝜑(𝑥)𝑦 =
1√
𝐷

𝐷⨁︁
𝑗=1

(𝑥, 𝜔𝑗)𝐵(𝜔𝑗)
*𝑦, 𝜔𝑗 ∼ Pr

Ĥaar,𝜌
, i. i. d.,

is an approximated feature map of some 𝒴-Mercer operator-valued kernel4.

The difference between Proposition 22 and Proposition 19 is that in Proposition 22 we do
not assume that 𝐴(𝜔) and Pr

𝐻𝑎𝑎𝑟,𝜌
have been obtained from Proposition 17. We conclude

by showing that any realization of an approximate feature map gives a proper operator
valued kernel. Hence we can always view �̃�(𝑥, 𝑧) = ̃︀𝜑(𝑥)*̃︀𝜑(𝑧) —where ̃︀𝜑 is defined as in
Proposition 18 (construction from an OVK) or Proposition 22— as a 𝒴-Mercer and thus
apply all the classic results of the Operator-Valued Kernel theory on �̃�.

Proposition 23

Let 𝜔 ∈ ̂︀𝒳𝐷. If for all 𝑦, 𝑦′ ∈ 𝒴 ⟨𝑦′, ̃︀𝐾𝑒

(︀
𝑥 ⋆ 𝑧−1

)︀
𝑦⟩𝒴 = ⟨̃︀𝜑(𝑥)𝑦′, ̃︀𝜑(𝑧)𝑦⟩ ̃︀ℋ =⟨

𝑦′, 1
𝐷

∑︀𝐷
𝑗=1 (𝑥 ⋆ 𝑧

−1, 𝜔𝑗)𝐵(𝜔𝑗)𝐵(𝜔𝑗)
*𝑦
⟩
𝒴
, for all 𝑥, 𝑧 ∈ 𝒳 , then ̃︀𝐾 is a shift-invariant

𝒴-Mercer Operator-Valued Kernel.

Note that the above theorem does not consider the 𝜔𝑗 ’s as random variables and therefore

does not shows the convergence of the kernel ̃︀𝐾 to some target kernel 𝐾. However is
shows that any realization of ̃︀𝐾 when 𝜔𝑗 ’s are random variables yields a valid 𝒴-Mercer
operator-valued kernel. Note that the above theorem does not considers the 𝜔𝑗 ’s as random

variables and therefore does not shows the convergence of the kernel ̃︀𝐾 to some target kernel
𝐾. However is shows that any realization of ̃︀𝐾 when 𝜔𝑗 ’s are random variables yields a

4. i. e. it satisfies ̃︀𝜑(𝑥)*̃︀𝜑(𝑧) a. s.−−−−→
𝐷→∞

𝐾(𝑥, 𝑧) in the weak operator topology, where 𝐾 is a 𝒴-Mercer OVK
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valid 𝒴-Mercer operator-valued kernel. Indeed, as a result of Proposition 23, in the same
way we defined an ORFF, we can define an approximate feature operator ̃︁𝑊 which maps ̃︀ℋ
onto ℋ ̃︀𝐾 , where ̃︀𝐾(𝑥, 𝑧) = ̃︀𝜑(𝑥)*̃︀𝜑(𝑧), for all 𝑥, 𝑧 ∈ 𝒳 .
Definition 24 (Random Fourier feature operator)

Let 𝜔 = (𝜔𝑗)
𝐷
𝑗=1 ∈ ̂︀𝒳𝐷 and let ̃︀𝐾𝑒 =

1
𝐷

∑︀𝐷
𝑗=1 (·, 𝜔𝑗)𝐵(𝜔𝑗)𝐵(𝜔𝑗)

*. We call random Fourier

feature operator the linear application ̃︁𝑊 : ̃︀ℋ → ℋ ̃︀𝐾 defined as

(︁̃︁𝑊𝜃
)︁
(𝑥) : = ̃︀𝜑(𝑥)*𝜃 = 1√

𝐷

𝐷∑︁
𝑗=1

(𝑥, 𝜔𝑗)𝐵(𝜔𝑗)𝜃𝑗

where 𝜃 =
⨁︀𝐷

𝑗=1 𝜃𝑗 ∈ ̃︀ℋ. Then from Proposition 6,
(︁
Ker ̃︁𝑊)︁⊥ =

span
{︁ ̃︀𝜑(𝑥)𝑦 ⃒⃒⃒ ∀𝑥 ∈ 𝒳 , ∀𝑦 ∈ 𝒴 }︁ ⊆ ̃︀ℋ.

The random Fourier feature operator is useful to show the relations between the random
Fourier feature map with the functional feature map defined in Proposition 21. The
relationship between the generic feature map (defined for all Operator-Valued Kernel) the
functional feature map (defining a shift-invariant 𝒴-Mercer Operator-Valued Kernel) and
the random Fourier feature map is presented in Figure 4.

Proposition 25

For any 𝑔 ∈ ℋ = 𝐿2( ̂︀𝒳 ,Pr
Ĥaar,𝜌

;𝒴 ′), let 𝜃 := 1√
𝐷

⨁︀𝐷
𝑗=1 𝑔(𝜔𝑗), 𝜔𝑗 ∼ Pr

Ĥaar,𝜌
i. i. d. Then

1.
(︁̃︁𝑊𝜃

)︁
(𝑥) = ̃︀𝜑(𝑥)*𝜃 a. s.−−−−→

𝐷→∞
𝜑*𝑥𝑔 = (𝑊𝑔)(𝑥),

2. ‖𝜃‖2̃︀ℋ a. s.−−−−→
𝐷→∞

‖𝑔‖2ℋ,

We write ̃︀𝜑(𝑥)*̃︀𝜑(𝑥) ≈ 𝐾(𝑥, 𝑧) when ̃︀𝜑(𝑥)*̃︀𝜑(𝑥) a. s.−−→ 𝐾(𝑥, 𝑧) in the weak operator topology
when 𝐷 tends to infinity. With mild abuse of notation we say that ̃︀𝜑(𝑥) is an approximate
feature map of the functional feature map 𝜑𝑥 i. e. ̃︀𝜑(𝑥) ≈ 𝜑𝑥, when for all 𝑦′, 𝑦 ∈ 𝒴,

⟨𝑦,𝐾(𝑥, 𝑧)𝑦′⟩𝒴 = ⟨𝜑𝑥𝑦, 𝜑𝑧𝑦′⟩𝐿2( ̂︀𝒳 ,Pr
Ĥaar,𝜌

;𝒴 ′) ≈ ⟨̃︀𝜑(𝑥)𝑦, ̃︀𝜑(𝑥)𝑦′⟩ ̃︀ℋ := ⟨𝑦, �̃�(𝑥, 𝑧)𝑦′⟩𝒴

where 𝜑𝑥 is defined in the sense of Proposition 21.

3.5 Examples of Operator Random Fourier Feature maps

We now give two examples of operator-valued random Fourier feature map. First we introduce
the general form of an approximated feature map for a matrix-valued kernel on the additive
group (R𝑑,+).

Example 1 (Matrix-valued kernel on the additive group)
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In the following let 𝐾(𝑥, 𝑧) = 𝐾0(𝑥 − 𝑧) be a 𝒴-Mercer matrix-valued kernel on 𝒳 = R𝑑,
invariant w. r. t. the group operation +. Then the function ̃︀𝜑 defined as follow is an Opera-
tor-valued Random Fourier Feature of 𝐾0. For all 𝑦 ∈ 𝒴,

̃︀𝜑(𝑥)𝑦 =
1√
𝐷

𝐷⨁︁
𝑗=1

(︃
cos ⟨𝑥, 𝜔𝑗⟩2𝐵(𝜔𝑗)

*𝑦

sin ⟨𝑥, 𝜔𝑗⟩2𝐵(𝜔𝑗)
*𝑦

)︃
, 𝜔𝑗 ∼ Pr

Ĥaar,𝜌
i. i. d..

In particular we deduce the following features maps for the kernels proposed in Subsection 3.2.

∙ For the decomposable Gaussian kernel 𝐾𝑑𝑒𝑐,𝑔𝑎𝑢𝑠𝑠
0 (𝛿) = 𝑘𝑔𝑎𝑢𝑠𝑠0 (𝛿)Γ for all 𝛿 ∈ R𝑑, let

𝐵𝐵* = Γ. A bounded –and unbounded– ORFF map is

̃︀𝜑(𝑥)𝑦 =
1√
𝐷

𝐷⨁︁
𝑗=1

(︃
cos ⟨𝑥, 𝜔𝑗⟩2𝐵*𝑦

sin ⟨𝑥, 𝜔𝑗⟩2𝐵*𝑦

)︃
= (̃︀𝜙(𝑥)⊗𝐵*)𝑦,

where 𝜔𝑗 ∼ Pr𝒩 (0,𝜎−2𝐼𝑑) i. i. d. and ̃︀𝜙(𝑥) = 1√
𝐷

⨁︀𝐷
𝑗=1

(︃
cos ⟨𝑥, 𝜔𝑗⟩2
sin ⟨𝑥, 𝜔𝑗⟩2

)︃
is a scalar RFF

map (Rahimi and Recht, 2007).

∙ For the curl-free Gaussian kernel, 𝐾𝑐𝑢𝑟𝑙,𝑔𝑎𝑢𝑠𝑠
0 = −∇∇T𝑘𝑔𝑎𝑢𝑠𝑠0 an unbounded ORFF

map is

(17)̃︀𝜑(𝑥)𝑦 =
1√
𝐷

𝐷⨁︁
𝑗=1

(︃
𝑔 cos ⟨𝑥, 𝜔𝑗⟩2𝜔T𝑗 𝑦
sin ⟨𝑥, 𝜔𝑗⟩2𝜔T𝑗 𝑦

)︃
,

𝜔𝑗 ∼ Pr𝒩 (0,𝜎−2𝐼𝑑) i. i. d. and a bounded ORFF map is

̃︀𝜑(𝑥)𝑦 =
1√
𝐷

𝐷⨁︁
𝑗=1

⎛⎝cos ⟨𝑥, 𝜔𝑗⟩2
𝜔T𝑗
‖𝜔𝑗‖𝑦

sin ⟨𝑥, 𝜔𝑗⟩2
𝜔T𝑗
‖𝜔𝑗‖𝑦

⎞⎠ , 𝜔𝑗 ∼ Pr𝜌 i. i. d..

where 𝜌(𝜔) = 𝜎2‖𝜔‖2
𝑑 𝒩 (0, 𝜎−2𝐼𝑑)(𝜔) for all 𝜔 ∈ R𝑑.

∙ For the divergence-free Gaussian kernel 𝐾𝑑𝑖𝑣,𝑔𝑎𝑢𝑠𝑠
0 (𝑥, 𝑧) = (∇∇T −Δ𝐼𝑑)𝑘

𝑔𝑎𝑢𝑠𝑠
0 (𝑥, 𝑧) an

unbounded ORFF map is

(18)̃︀𝜑(𝑥)𝑦 =
1√
𝐷

𝐷⨁︁
𝑗=1

(︃
cos ⟨𝑥, 𝜔𝑗⟩2𝐵(𝜔𝑗)

T𝑦

sin ⟨𝑥, 𝜔𝑗⟩2𝐵(𝜔𝑗)
T𝑦

)︃

where 𝜔𝑗 ∼ Pr𝜌 i. i. d. and 𝐵(𝜔) =
(︀
‖𝜔‖𝐼𝑑 − 𝜔𝜔T

)︀
and 𝜌 = 𝒩 (0, 𝜎−2𝐼𝑑) for all 𝜔 ∈ R𝑑.

A bounded ORFF map is

̃︀𝜑(𝑥)𝑦 =
1√
𝐷

𝐷⨁︁
𝑗=1

𝑔

(︃
cos ⟨𝑥, 𝜔𝑗⟩2𝐵(𝜔𝑗)

T𝑦

sin ⟨𝑥, 𝜔𝑗⟩2𝐵(𝜔𝑗)
T𝑦

)︃
, 𝜔𝑗 ∼ Pr𝜌 i. i. d.,

where 𝐵(𝜔) =
(︁
𝐼𝑑 − 𝜔𝜔T

‖𝜔‖2

)︁
and 𝜌(𝜔) = 𝜎2‖𝜔‖2

𝑑 𝒩 (0, 𝜎−2𝐼𝑑) for allg 𝜔 ∈ R𝑑.
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The second example extends scalar-valued Random Fourier Features on the skewed multi-
plicative group –described in appendix A.3 and Subsection 3.2.2– to the operator-valued
case.

Example 2 (Matrix-valued kernel on the skewed multiplicative group)

In the following, 𝐾(𝑥, 𝑧) = 𝐾1−𝑐(𝑥 ⊙ 𝑧−1) is a 𝒴-Mercer matrix-valued kernel on 𝒳 =
(−𝑐; +∞)𝑑 invariant w. r. t. the group operation5 ⊙. Then the function ̃︀𝜑 defined as follow
is an Operator-valued Random Fourier Feature of 𝐾1−𝑐. For all 𝑦 ∈ 𝒴,

̃︀𝜑(𝑥)𝑦 =
1√
𝐷

𝐷⨁︁
𝑗=1

(︃
cos ⟨log(𝑥+ 𝑐), 𝜔𝑗⟩2𝐵(𝜔𝑗)

*𝑦

sin ⟨log(𝑥+ 𝑐), 𝜔𝑗⟩2𝐵(𝜔𝑗)
*𝑦

)︃
, 𝜔𝑗 ∼ Pr

Ĥaar,𝜌
i. i. d..

3.6 Regularization property

We have shown so far that it is always possible to construct a feature map that allows to
approximate a shift-invariant 𝒴-Mercer kernel. However we could also propose a construction
of such map by studying the regularization induced with respect to the Fourier Transform

of a target function 𝑓 ∈ ℋ𝐾 . In other words, what is the norm in 𝐿2( ̂︀𝒳 , Ĥaar;𝒴 ′) induced
by ‖·‖𝐾?

Proposition 26

Let 𝐾 be a shift-invariant 𝒴-Mercer Kernel such that for all 𝑦, 𝑦′ in 𝒴, ⟨𝑦′,𝐾𝑒(·)𝑦⟩𝒴 ∈
𝐿1(𝒳 ,Haar). Then for all 𝑓 ∈ ℋ𝐾

(19 )‖𝑓‖2𝐾 =

∫︁
̂︀𝒳
⟨
ℱ [𝑓 ] (𝜔), 𝐴 (𝜔)†ℱ [𝑓 ] (𝜔)

⟩
𝒴

𝜌(𝜔)
𝑑Ĥaar(𝜔).

where ⟨𝑦′, 𝐴(𝜔)𝑦⟩𝒴𝜌(𝜔) := ℱ [⟨𝑦′,𝐾𝑒(·)𝑦⟩] (𝜔).

Note that if 𝐾(𝑥, 𝑧) = 𝑘(𝑥, 𝑧) is a scalar kernel then for all 𝜔 in ̂︀𝒳 , 𝐴(𝜔) = 1. Therefore
we recover the well known result for kernels that is for any 𝑓 ∈ ℋ𝑘 we have ‖𝑓‖𝑘 =∫︀ ̂︀𝒳 ℱ [𝑘𝑒] (𝜔)

−1ℱ [𝑓 ] (𝜔)2𝑑Ĥaar(𝜔) (Yang et al., 2012; Vert; Smola et al., 1998). Eventually
from this last equation we also recover Proposition 9 for decomposable kernels. If 𝐴(𝜔) =
Γ ∈ ℒ+(R𝑝), ‖𝑓‖𝐾 =

∑︀𝑝
𝑖,𝑗=1

(︀
Γ†)︀

𝑖𝑗
⟨𝑓𝑖, 𝑓𝑗⟩𝑘 We also note that the regularization property

in ℋ𝐾 does not depends (as expected) on the decomposition of 𝐴(𝜔) into 𝐵(𝜔)𝐵(𝜔)*.
Therefore the decomposition should be chosen such that it optimizes the computation cost.
For instance if 𝐴(𝜔) ∈ ℒ(R𝑝) has rank 𝑟, one could find an operator 𝐵(𝜔) ∈ ℒ(R𝑝,R𝑟) such
that 𝐴(𝜔) = 𝐵(𝜔)𝐵(𝜔)*. Moreover, in light of Equation 19 the regularization property of
the kernel with respect to the Fourier Transform, it is also possible to define an approximate
feature map of an Operator-Valued Kernel from its regularization properties in the VV-
RKHS as proposed in Algorithm 2.

5. The group operation ⊙ is defined in Subsection 3.2.2.
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Algorithm 2: Construction of ORFF

Input :

∙ The pairing (𝑥, 𝜔) of the LCA group (𝒳 , ⋆).

∙ A probability measure Pr
Ĥaar,𝜌

with density 𝜌 w. r. t. the haar measure Ĥaar on ̂︀𝒳 .
∙ An operator-valued function 𝐵 : ̂︀𝒳 → ℒ(𝒴,𝒴 ′) such that for all 𝑦 𝑦′ ∈ 𝒴,
⟨𝑦′, 𝐵(·)𝐵(·)*𝑦⟩ ∈ 𝐿1( ̂︀𝒳 ,Pr

Ĥaar,𝜌
).

∙ 𝐷 the number of features.
Output :A random feature ̃︀𝜑(𝑥) such that ̃︀𝜑(𝑥)*̃︀𝜑(𝑧) ≈ 𝐾(𝑥, 𝑧).

1 Draw 𝐷 random vectors (𝜔𝑗)
𝐷
𝑗=1 i. i. d. from the probability law Pr

Ĥaar,𝜌
;

2 return

⎧⎨⎩̃︀𝜑(𝑥) ∈ ℒ(𝒴, ̃︀ℋ) : 𝑦 ↦→ 1√
𝐷

⨁︀𝐷
𝑗=1(𝑥, 𝜔𝑗)𝐵(𝜔𝑗)

*𝑦̃︀𝜑(𝑥)* ∈ ℒ( ̃︀ℋ,𝒴) : 𝜃 ↦→ 1√
𝐷

∑︀𝐷
𝑗=1(𝑥, 𝜔𝑗)𝐵(𝜔𝑗)𝜃𝑗

;

4. Main contribution: convergence with high probability of the ORFF
estimator

We are now interested in a non-asymptotic analysis of the ORFF approximation of shift-
invariant 𝒴-Mercer kernels on LCA group 𝒳 endowed with the operation group ⋆ where 𝒳 is
a Banach space (The more general case where 𝒳 is a Polish space is discussed in the appendix
appendix B.2). For a given 𝐷, we study how close is the approximation �̃�(𝑥, 𝑧) = ̃︀𝜑(𝑥)*̃︀𝜑(𝑧)
to the target kernel 𝐾(𝑥, 𝑧) for any 𝑥, 𝑧 in 𝒳 .

If 𝐴 ∈ ℒ+(𝒴) we denote ‖𝐴‖𝒴,𝒴 its operator norm (the induced norm). For 𝑥 and 𝑧

in some non-empty compact 𝒞 ⊂ R𝑑, we consider: 𝐹 (𝑥 ⋆ 𝑧−1) = �̃�(𝑥, 𝑧) − 𝐾(𝑥, 𝑧) and

study how the uniform norm
⃦⃦⃦
�̃� −𝐾

⃦⃦⃦
𝒞×𝒞

:= sup(𝑥,𝑧)∈𝒞×𝒞

⃦⃦⃦
�̃�(𝑥, 𝑧)−𝐾(𝑥, 𝑧)

⃦⃦⃦
𝒴,𝒴

behaves

according to 𝐷. All along this document we denote 𝛿 = 𝑥⋆ 𝑧−1 for all 𝑥 and 𝑧 ∈ 𝒳 . Figure 5
empirically shows convergence of three different OVK approximations for 𝑥, 𝑧 sampled from
the compact [−1, 1]4 and using an increasing number of sample points 𝐷. The log-log plot
shows that all three kernels have the same convergence rate, up to a multiplicative factor.

A typical application is the study of the deviation of the empirical mean of independent
identically distributed random variables to their expectation. This means that given an error
𝜖 between the kernel approximation ̃︀𝐾 and the true kernel 𝐾, if we are given enough samples
to construct ̃︀𝐾, the probability of measuring an error greater than 𝜖 is essentially zero (it
drops at an exponential rate with respect to the number of samples 𝐷). To measure the
error between the kernel approximation and the true kernel at a given point many metrics
are possible. e. g. any matrix norm such as the Hilbert-Schmidt norm, trace norm, the
operator norm or Schatten norms. In this work we focus on measuring the error in terms of
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operator norm. For all 𝑥, 𝑧 ∈ 𝒳 we look for a bound on

Pr𝜌

{︂
(𝜔𝑗)

𝐷
𝑗=1

⃒⃒⃒⃒ ⃦⃦⃦ ̃︀𝐾(𝑥, 𝑧)−𝐾(𝑥, 𝑧)
⃦⃦⃦
𝒴,𝒴
≥ 𝜖

}︂

= Pr𝜌

⎧⎪⎨⎪⎩ (𝜔𝑗)
𝐷
𝑗=1

⃒⃒⃒⃒
⃒⃒⃒ sup
0̸=𝑦∈𝒴

⃦⃦⃦
( ̃︀𝐾(𝑥, 𝑧)−𝐾(𝑥, 𝑧))𝑦

⃦⃦⃦
𝒴

‖𝑦‖𝒴
≥ 𝜖

⎫⎪⎬⎪⎭
In other words, given any vector 𝑦 ∈ 𝒴 we study how the residual operator ̃︀𝐾 − 𝐾 is
able to send 𝑦 to zero. We believe that this way of measuring the “error” to be more
intuitive. Moreover, on contrary to an error measure with the Hilbert-Schmidt norm, the
operator norm error does not grows linearly with the dimension of the output space as the
Hilbert-Schmidt norm does. On the other hand the Hilbert-schmidt norm makes the studied
random variables Hilbert space valued, for which it is much easier to derive concentration
inequalities (Smale and Zhou, 2007; Pinelis, 1994; Naor, 2012). Note that in the scalar
case (𝐴(𝜔) = 1) the Hilbert-Schmidt norm error and the operator norm are the same and
measure the deviation between ̃︀𝐾 and 𝐾 as the absolute value of their difference.

A raw concentration inequality of the kernel estimator gives the error on one point. If one
is interesting in bounding the maximum error over 𝑁 points, applying a union bound on all
the point would yield a bound that grows linearly with 𝑁 . This would suggest that when
the number of points increase, even if all of them are concentrated in a small subset of 𝒳 ,
we should draw increasingly more features to have an error below 𝜖 with high probability.
However if we restrict ourselves to study the error on a compact subset of 𝒳 (and in practice
data points lies often in a closed bounded subset of R𝑑), we can cover this compact subset
by a finite number of closed balls and apply the concentration inequality and the union

bound only on the center of each ball. Then if the function
⃦⃦⃦ ̃︀𝐾𝑒 −𝐾𝑒

⃦⃦⃦
is smooth enough on

each ball (i. e. Lipschitz) we can guarantee with high probability that the error between
the centers of the balls will not be too high. Eventually we obtain a bound in the worst
case scenario on all the points in a subset 𝒞 of 𝒳 . This bound depends on the covering
number 𝒩 (𝒞, 𝑟) of 𝒳 with ball of radius 𝑟. When 𝒳 is a Banach space, the covering number
is proportional to the diameter of the diameter of 𝒞 ⊆ 𝒳 .

Prior to the presentation of general results, we briefly recall the uniform convergence of
RFF approximation for a scalar shift invariant kernel on the additive LCA group R𝑑 and
introduce a direct corollary about decomposable shift-invariant OVK on the LCA group
(R𝑑,+).

4.1 Random Fourier Features in the scalar case and decomposable OVK

Rahimi and Recht (2007) proved the uniform convergence of Random Fourier Feature (RFF)
approximation for a scalar shift-invariant kernel on the LCA group R𝑑 endowed with the
group operation ⋆ = +. In the case of the shift-invariant decomposable OVK, an upper
bound on the error can be obtained as a direct consequence of the result in the scalar case
obtained by Rahimi and Recht (2007) and other authors (Sutherland and Schneider, 2015;
Sriperumbudur and Szabo, 2015).
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Figure 5: Error reconstructing the target operator-valued kernel 𝐾 with ORFF approxima-
tion �̃� for the decomposable, curl-free and divergence-free kernel.

Theorem 27 (Uniform error bound for RFF, Rahimi and Recht (2007))

Let 𝒞 be a compact of subset of R𝑑 of diameter |𝒞|. Let 𝑘 be a shift invariant kernel,
differentiable with a bounded second derivative and Pr𝜌 its normalized Inverse Fourier Trans-

form such that it defines a probability measure. Let ̃︀𝑘 =
∑︀𝐷

𝑗=1 cos ⟨·, 𝜔𝑗⟩ ≈ 𝑘(𝑥, 𝑧) and 𝜎2 =

E𝜌‖𝜔‖22. Then we have

Pr𝜌

{︂
(𝜔𝑗)

𝐷
𝑗=1

⃒⃒⃒⃒ ⃦⃦⃦
𝑘 − 𝑘

⃦⃦⃦
𝒞×𝒞
≥ 𝜖

}︂
≤ 28

(︂
𝜎|𝒞|
𝜖

)︂2

exp

(︂
− 𝜖2𝐷

4(𝑑+ 2)

)︂
From Theorem 27, we can deduce the following corollary about the uniform convergence of
the ORFF approximation of the decomposable kernel. We recall that for a given pair 𝑥, 𝑧
in 𝒞, �̃�(𝑥, 𝑧) = ̃︀𝜑(𝑥)*̃︀𝜑(𝑧) = Γ𝑘(𝑥, 𝑧) and 𝐾0(𝑥− 𝑧) = ΓE

Ĥaar,𝜌
[𝑘(𝑥, 𝑧)].

Corollary 28 (Uniform error bound for decomposable ORFF)

Let 𝒞 be a compact of subset of R𝑑 of diameter |𝒞|. Let 𝐾 be a decomposable kernel built
from a positive operator self-adjoint Γ, and 𝑘 a shift invariant kernel with bounded second
derivative such that ̃︀𝐾 =

∑︀𝐷
𝑗=1 cos ⟨·, 𝜔𝑗⟩Γ ≈ 𝐾 and 𝜎2 = E𝜌‖𝜔‖22. Then

Pr𝜌

{︂
(𝜔𝑗)

𝐷
𝑗=1

⃒⃒⃒⃒ ⃦⃦⃦ ̃︀𝐾 −𝐾 ⃦⃦⃦
𝒞×𝒞
≥ 𝜖

}︂
≤ 28

(︂
𝜎‖Γ‖𝒴,𝒴 |𝒞|

𝜖

)︂2

exp

(︃
− 𝜖2𝐷

4‖Γ‖22(𝑑+ 2)

)︃
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Note that a similar corollary could have been obtained for the recent result of Sutherland and
Schneider (2015) who refined the bound proposed by Rahimi and Recht by using a Bernstein
concentration inequality instead of the Hoeffding inequality. More recently Sriperumbudur
and Szabo (2015) showed an optimal bound for Random Fourier Feature. The improvement
of Sriperumbudur and Szabo (2015) is mainly in the constant factors where the bound
does not depend linearly on the diameter |𝒞| of 𝒞 but exhibit a logarithmic dependency
log (|𝒞|), hence requiring significantly less random features to reach a desired uniform error
with high probability. Moreover, Sutherland and Schneider (2015) also considered a bound

on the expected max error E
Ĥaar,𝜌

⃦⃦⃦ ̃︀𝐾 −𝐾 ⃦⃦⃦
∞
, which is obtained using Dudley’s entropy

integral (Dudley, 1967; Boucheron et al., 2013) as a bound on the supremum of an empirical
process by the covering number of the indexing set. This useful theorem is also part of the
proof of Sriperumbudur and Szabo (2015).

4.2 Uniform convergence of ORFF approximation on LCA groups

Before introducing the new theorem, we give the definition of the Orlicz norm which gives a
proxy-bound on the norm of subexponential random variables.

Definition 29 (Orlicz norm (Van Der Vaart and Wellner, 1996))

Let 𝜓 : R+ → R+ be a non-decreasing convex function with 𝜓(0) = 0. For a random variable
𝑋 on a measured space (Ω, 𝒯 (Ω), 𝜇), the quantity ‖𝑋‖𝜓 = inf { 𝐶 > 0 | E𝜇[𝜓 (|𝑋|/𝐶)] ≤ 1 }.
is called the Orlicz norm of 𝑋.

Here, the function 𝜓 is chosen as 𝜓(𝑢) = 𝜓𝛼(𝑢) where 𝜓𝛼(𝑢) := 𝑒𝑢
𝛼 − 1. When 𝛼 = 1, a

random variable with finite Orlicz norm is called a subexponential variable because its tails
decrease at an exponential rate. Let 𝑋 be a self-adjoint random operator. Given a scalar-
valued measure 𝜇, we call variance of an operator 𝑋 the quantity Var𝜇[𝑋] = E𝜇[𝑋−E𝜇[𝑋]]2.
Among the possible concentration inequalities adapted to random operators (Tropp et al.,
2015; Minsker, 2011; Ledoux and Talagrand, 2013; Pinelis, 1994; Koltchinskii et al., 2013),
we focus on the results of Tropp et al. (2015); Minsker (2011), for their robustness to high
or potentially infinite dimension of the output space 𝒴. To guarantee a good scaling with
the dimension of 𝒴 we introduce the notion of intrinsic dimension (or effective rank) of an
operator.

Definition 30

Let 𝐴 be a trace class operator acting on a Hilbert space 𝒴. We call intrinsic dimension the
quantity: IntDim(𝐴) = ‖𝐴‖−1

𝒴,𝒴 Tr [𝐴].

Indeed the bound proposed in our first publication at ACML (Brault et al., 2016) based on
Koltchinskii et al. (2013) depends on 𝑝 while the present bound depends on the intrinsic
dimension of the variance of 𝐴(𝜔) which is always smaller than 𝑝 when the operator 𝐴(𝜔) is
Hilbert-Schmidt (𝑝 ≤ ∞).

Corollary 31

Let 𝐾 : 𝒳 ×𝒳 → ℒ(𝒴) be a shift-invariant 𝒴-Mercer kernel, where 𝒴 is a finite dimensional
Hilbert space of dimension 𝑝 and 𝒳 a finite dimensional Banach space of dimension 𝑑.
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Moreover, let 𝒞 be a closed ball of 𝒳 centred at the origin of diameter |𝒞|, 𝐴 : ̂︀𝒳 → ℒ(𝒴)
and Pr

Ĥaar,𝜌
a pair such that

�̃�𝑒 =

𝐷∑︁
𝑗=1

cos (·, 𝜔𝑗)𝐴(𝜔𝑗) ≈ 𝐾𝑒, 𝜔𝑗 ∼ Pr
Ĥaar,𝜌

i. i. d...

Let 𝒟𝒞 = 𝒞 ⋆ 𝒞−1 and 𝑉 (𝛿) < Var
Ĥaar,𝜌

�̃�𝑒(𝛿) for all 𝛿 ∈ 𝒟𝒞 and 𝐻𝜔 be the Lipschitz

constant of the function ℎ : 𝑥 ↦→ (𝑥, 𝜔). If the three following constants exist

𝑚 ≥
∫︁

̂︀𝒳 𝐻𝜔‖𝐴(𝜔)‖𝒴,𝒴𝑑Pr
Ĥaar,𝜌

(𝜔) <∞

and

𝑢 ≥ 4

(︃⃦⃦⃦
‖𝐴(𝜔)‖𝒴,𝒴

⃦⃦⃦
𝜓1

+ sup
𝛿∈𝒟𝒞

‖𝐾𝑒(𝛿)‖𝒴,𝒴

)︃
<∞

and
𝑣 ≥ sup

𝛿∈𝒟𝒞

𝐷‖𝑉 (𝛿)‖𝒴,𝒴 <∞.

Define 𝑝𝑖𝑛𝑡 ≥ sup𝛿∈𝒟𝒞 IntDim(𝑉 (𝛿)), then for all 0 < 𝜖 ≤ 𝑚|𝐶|,

Pr
Ĥaar,𝜌

{︂
(𝜔𝑗)

𝐷
𝑗=1

⃒⃒⃒⃒ ⃦⃦⃦
�̃� −𝐾

⃦⃦⃦
𝒞×𝒞
≥ 𝜖

}︂

≤ 8
√
2

(︂
𝑚|𝒞|
𝜖

)︂(︀
𝑝𝑖𝑛𝑡𝑟𝑣/𝐷(𝜖)

)︀ 1
𝑑+1

⎧⎪⎪⎨⎪⎪⎩
exp

(︃
−𝐷 𝜖2

8𝑣(𝑑+1)
(︁
1+ 1

𝑝

)︁
)︃
, 𝜖 ≤ 𝑣

𝑢
1+1/𝑝
𝐾(𝑣,𝑝)

exp
(︁
−𝐷 𝜖

8𝑢(𝑑+1)𝐾(𝑣,𝑝)

)︁
, otherwise,

where 𝐾(𝑣, 𝑝) = log
(︀
16
√
2𝑝
)︀
+ log

(︁
𝑢2

𝑣

)︁
and 𝑟𝑣/𝐷(𝜖) = 1 + 3

𝜖2 log2(1+𝐷𝜖/𝑣)
.

We give a comprehensive full proof of the theorem in appendix B.2. It follows the usual
scheme derived in Rahimi and Recht (2007) and Sutherland and Schneider (2015) and involves
Bernstein concentration inequality for unbounded symmetric matrices (Theorem 45).

4.3 Dealing with infinite dimensional operators

We studied the concentration of ORFFs under the assumption that 𝒴 is finite dimensional.
Indeed a 𝑑 term characterizing the dimension of the input space 𝒳 appears in the bound
proposed in Corollary 31, and when 𝑑 tends to infinity, the exponential part goes to zero so
that the probability is bounded by a constant greater than one. Unfortunately, considering
unbounded random operators Minsker (2011) doesn’t give any tighter solution.

In our first bound presented at ACML, we presented a bound based on a matrix con-
centration inequality for unbounded random variable. Compared to this previous bound,
Corollary 31 does not depend on the dimensionality 𝑝 of the output space 𝒴 but on the
intrinsic dimension of the operator 𝐴(𝜔). However to remove the dependency in 𝑝 in the
exponential part, we must turn our attention to operator concentration inequalities for
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bounded random variable. To the best of our knowledge we are not aware of concentration
inequalities working for “unbounded” operator- valued random variables. Following the
same proof than Corollary 31 we obtain Corollary 32.

Corollary 32

Let 𝐾 : 𝒳 ×𝒳 → ℒ(𝒴) be a shift-invariant 𝒴-Mercer kernel, where 𝒴 is a Hilbert space and
𝒳 a finite dimensional Banach space of dimension 𝐷. Moreover, let 𝒞 be a closed ball of 𝒳
centered at the origin of diameter |𝒞|, subset of 𝒳 , 𝐴 : ̂︀𝒳 → ℒ(𝒴) and Pr

Ĥaar,𝜌
a pair such

that

�̃�𝑒 =
𝐷∑︁
𝑗=1

cos (·, 𝜔𝑗)𝐴(𝜔𝑗) ≈ 𝐾𝑒, 𝜔𝑗 ∼ Pr
Ĥaar,𝜌

i. i. d..

where 𝐴(𝜔𝑗) is a Hilbert-Schmidt operator for all 𝑗 ∈ N*
𝐷. Let 𝒟𝒞 = 𝒞 ⋆ 𝒞−1 and 𝑉 (𝛿) <

Var
Ĥaar,𝜌

�̃�𝑒(𝛿) for all 𝛿 ∈ 𝒟𝒞 and 𝐻𝜔 be the Lipschitz constant of the function ℎ : 𝑥 ↦→ (𝑥, 𝜔).

If the three following constants exists

𝑚 ≥
∫︁

̂︀𝒳 𝐻𝜔‖𝐴(𝜔)‖𝒴,𝒴𝑑Pr
Ĥaar,𝜌

(𝜔) <∞

and
𝑢 ≥ ess sup

𝜔∈ ̂︀𝒳 ‖𝐴(𝜔)‖𝒴,𝒴 + sup
𝛿∈𝒟𝒞

‖𝐾𝑒(𝛿)‖𝒴,𝒴 <∞

and
𝑣 ≥ sup

𝛿∈𝒟𝒞

𝐷‖𝑉 (𝛿)‖𝒴,𝒴 <∞.

define 𝑝𝑖𝑛𝑡 ≥ sup𝛿∈𝒟𝒞 IntDim (𝑉 (𝛿)) then for all
√︀

𝑣
𝐷 + 𝑢

3𝐷 < 𝜖 < 𝑚|𝒞|,

Pr
Ĥaar,𝜌

{︃
(𝜔𝑗)

𝐷
𝑗=1

⃒⃒⃒⃒
⃒ sup
𝛿∈𝒟𝒞

‖𝐹 (𝛿)‖𝒴,𝒴 ≥ 𝜖

}︃
≤ 8

√
2

(︂
𝑚|𝒞|
𝜖

)︂
𝑝

1
𝑑+1

𝑖𝑛𝑡 exp (−𝐷𝜓𝑣,𝑑,𝑢(𝜖))

where 𝜓𝑣,𝑑,𝑢(𝜖) =
𝜖2

2(𝑑+1)(𝑣+𝑢𝜖/3) .

Again a full comprehensive proof is given in appendix B.2 of the appendix. Notice that in
this result, The dimension 𝑝 = dim𝒴 does not appear. Only the intrinsic dimension of the

variance of the estimator. Moreover when 𝑑 is large, the term 𝑝
1

𝑑+1

𝑖𝑛𝑡 goes to one, so that the
impact of the intrinsic dimension on the bound vanish when the dimension of the input
space is large. subsectionVariance of the ORFF approximation We now provide a bound on
the norm of the variance of �̃�, required to apply Corollaries 31 and 32. This is an extension
of the proof of Sutherland and Schneider (2015) to the operator-valued case, and we recover
their results in the scalar case when 𝐴(𝜔) = 1. An illustration of the bound is provided in
Figure 6 for the decomposable and the curl-free OVK.

Proposition 33 (Bounding the variance of �̃�𝑒)

Let 𝐾 be a shift invariant 𝒴-Mercer kernel on a second countable LCA topological space
𝒳 . Let 𝐴 : ̂︀𝒳 → ℒ(𝒴) and Pr

Ĥaar,𝜌
a pair such that �̃�𝑒 =

∑︀𝐷
𝑗=1 cos (·, 𝜔𝑗)𝐴(𝜔𝑗) ≈ 𝐾𝑒,

𝜔𝑗 ∼ Pr
Ĥaar,𝜌

i. i. d. Then,

Var
Ĥaar,𝜌

[︁
�̃�𝑒(𝛿)

]︁
4

1

2𝐷

(︁
(𝐾𝑒(2𝛿) +𝐾𝑒(𝑒))EĤaar,𝜌

[𝐴(𝜔)]− 2𝐾𝑒(𝛿)
2 +Var

Ĥaar,𝜌
[𝐴(𝜔)]

)︁
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Figure 6: Comparison between an empirical bound on the norm of the variance of the de-
composable (left) and curl-free (right) ORFF obtained and the theoretical bound proposed
in Proposition 33 versus 𝐷.

4.4 Application on decomposable, curl-free and divergence-free OVK

First, the two following examples discuss the form of 𝐻𝜔 for the additive group and the
skewed-multiplicative group. Here we view 𝒳 = R𝑑 as a Banach space endowed with the
Euclidean norm. Thus the Lipschitz constant 𝐻𝜔 is bounded by the supremum of the norm
of the gradient of ℎ𝜔.

Example 3 (Additive group)

On the additive group, ℎ𝜔(𝛿) = ⟨𝜔, 𝛿⟩. Hence 𝐻𝜔 = ‖𝜔‖2.

Example 4 (Skewed-multiplicative group)

On the skewed multiplicative group, ℎ𝜔(𝛿) = ⟨𝜔, log(𝛿 + 𝑐)⟩. Therefore sup𝛿∈𝒞‖∇ℎ𝜔(𝛿)‖2 =
sup𝛿∈𝒞‖𝜔/(𝛿 + 𝑐)‖2. Eventually 𝒞 is compact subset of 𝒳 and finite dimensional thus 𝒞 is
closed and bounded. Thus 𝐻𝜔 = ‖𝜔‖2/(min𝛿∈𝒞‖𝛿‖2 + 𝑐).

Now we compute upper bounds on the norm of the variance and Orlicz norm of the three
ORFFs we took as examples.

4.4.1 Decomposable kernel

notice that in the case of the Gaussian decomposable kernel, i. e. 𝐴(𝜔) = 𝐴, 𝑒 = 0,
𝐾0(𝛿) = 𝐴𝑘0(𝛿), 𝑘0(𝛿) ≥ 0 and 𝑘0(𝛿) = 1, then we have

𝐷
⃦⃦⃦
Var𝜇

[︁
�̃�0(𝛿)

]︁⃦⃦⃦
𝒴,𝒴
≤ (1 + 𝑘0(2𝛿))‖𝐴‖𝒴,𝒴/2 + 𝑘0(𝛿)

2.

4.4.2 Curl-free and divergence-free kernels:

recall that in this case 𝑝 = 𝑑. For the (Gaussian) curl-free kernel, 𝐴(𝜔) = 𝜔𝜔* where
𝜔 ∈ R𝑑 ∼ 𝒩 (0, 𝜎−2𝐼𝑑) thus E𝜇[𝐴(𝜔)] = 𝐼𝑑/𝜎

2 and Var𝜇[𝐴(𝜔)] = (𝑑+ 1)𝐼𝑑/𝜎
4. Hence,

𝐷
⃦⃦⃦
Var𝜇

[︁
�̃�0(𝛿)

]︁⃦⃦⃦
𝒴,𝒴
≤ 1

2

⃦⃦⃦⃦
1

𝜎2
𝐾0(2𝛿)− 2𝐾0(𝛿)

2

⃦⃦⃦⃦
𝒴,𝒴

+
(𝑑+ 1)

𝜎4
.
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This bound is illustrated by Figure 5 B, for a given datapoint. Eventually for the Gaussian
divergence-free kernel, 𝐴(𝜔) = 𝐼‖𝜔‖22−𝜔𝜔*, thus E𝜇[𝐴(𝜔)] = 𝐼𝑑(𝑑−1)/𝜎2 andVar𝜇[𝐴(𝜔)] =
𝑑(4𝑑− 3)𝐼𝑑/𝜎

4. Hence,

𝐷
⃦⃦⃦
Var𝜇

[︁
�̃�0(𝛿)

]︁⃦⃦⃦
𝒴,𝒴
≤ 1

2

⃦⃦⃦⃦
(𝑑− 1)

𝜎2
𝐾0(2𝛿)− 2𝐾0(𝛿)

2

⃦⃦⃦⃦
𝒴,𝒴

+
𝑑(4𝑑− 3)

𝜎4
.

To conclude, we ensure that the random variable ‖𝐴(𝜔)‖𝒴,𝒴 has a finite Orlicz norm with
𝜓 = 𝜓1 in these three cases.

4.4.3 Computing the Orlicz norm

for a random variable with strictly monotonic moment generating function (MGF), one
can characterize its inverse 𝜓1 Orlicz norm by taking the functional inverse of the MGF
evaluated at 2 (see Lemma 43 of the appendix). In other words ‖𝑋‖−1

𝜓1
= MGF(𝑥)−1

𝑋 (2).
For the Gaussian curl-free and divergence-free kernel,⃦⃦⃦

𝐴𝑑𝑖𝑣(𝜔)
⃦⃦⃦
𝒴,𝒴

=
⃦⃦⃦
𝐴𝑐𝑢𝑟𝑙(𝜔)

⃦⃦⃦
𝒴,𝒴

= ‖𝜔‖22,

where 𝜔 ∼ 𝒩 (0, 𝐼𝑑/𝜎
2), hence ‖𝐴(𝜔)‖2 ∼ Γ(𝑝/2, 2/𝜎2). The MGF of this gamma distribution

is MGF(𝑥)(𝑡) = (1− 2𝑡/𝜎2)−(𝑝/2). Eventually⃦⃦⃦⃦⃦⃦⃦
𝐴𝑑𝑖𝑣(𝜔)

⃦⃦⃦
𝒴,𝒴

⃦⃦⃦⃦−1

𝜓1

=

⃦⃦⃦⃦⃦⃦⃦
𝐴𝑐𝑢𝑟𝑙(𝜔)

⃦⃦⃦
𝒴,𝒴

⃦⃦⃦⃦−1

𝜓1

=
𝜎2

2

(︁
1− 4

− 1
𝑝

)︁
.

5. Learning with ORFF

Before focusing on learning function with an ORFF model, we briefly review the context of
supervised learning in VV-RKHS. model.

5.1 Supervised learning within VV-RKHS

Let 𝑠 = (𝑥𝑖, 𝑦𝑖)
𝑁
𝑖=1 ∈ (𝒳 × 𝒴)𝑁 be a sequence of training samples. Given a local loss function

𝐿 : 𝒳 × ℱ × 𝒴 → R such that 𝐿 is proper, convex and lower semi-continuous in ℱ , we are
interested in finding a vector-valued function 𝑓𝑠 : 𝒳 → 𝒴, that lives in a VV-RKHS and
minimize a tradeoff between a data fitting term 𝐿 and a regularization term to prevent from
overfitting. Namely finding 𝑓𝑠 ∈ ℋ𝐾 such that

(20)𝑓𝑠 = argmin
𝑓∈ℋ𝐾

1

𝑁

𝑁∑︁
𝑖=1

𝐿(𝑥𝑖, 𝑓, 𝑦𝑖) +
𝜆

2
‖𝑓‖2𝐾

where 𝜆 ∈ R+ is a (Tychonov) regularization hyperparameter. We call the quantity

ℛ𝜆(𝑓, 𝑠) =
1

𝑁

𝑁∑︁
𝑖=1

𝐿(𝑥𝑖, 𝑓, 𝑦𝑖) +
𝜆

2
‖𝑓‖2𝐾 , ∀𝑓 ∈ ℋ𝐾 , ∀𝑠 ∈ (𝒳 × 𝒴)𝑁 .

the (Tychonov) regularized risk of the model 𝑓 ∈ ℋ𝐾 according the local loss 𝐿. A
common choice for 𝐿 is the squared error loss 𝐿 : (𝑥, 𝑓, 𝑦) ↦→ ‖𝑓(𝑥)− 𝑦‖2𝒴 which yields the
vector-valued ridge regression problem.
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5.1.1 Representer theorem and Feature equivalence

Regression in Vector Valued Reproducing Kernel Hilbert Space has been well studied (Álvarez
et al., 2012; Argyriou et al., 2009; Minh et al., 2013a, 2016; Sangnier et al., 2016; Kadri
et al., 2015; Micchelli and Pontil, 2005; Brouard et al., 2016a), and a cornerstone of learning
in VV-RKHS is the representer theorem6, which allows to replace the search of a minimizer
in a infinite dimensional VV-RKHS by a finite number of parameters (𝑢𝑖)

𝑁
𝑖=1, 𝑢𝑖 ∈ 𝒴.

In the following we suppose we are given a cost function 𝑐 : 𝒴 × 𝒴 → R, such that
𝑐(𝑓(𝑥), 𝑦) returns the error of the prediction 𝑓(𝑥) w. r. t. the ground truth 𝑦. A loss function
of a model 𝑓 with respect to an example (𝑥, 𝑦) ∈ 𝒳 × 𝒴 can be naturally defined from a
cost function as 𝐿(𝑥, 𝑓, 𝑦) = 𝑐(𝑓(𝑥), 𝑦). Conceptually the function 𝑐 evaluates the quality of
the prediction versus its ground truth 𝑦 ∈ 𝒴 while the loss function 𝐿 evaluates the quality
of the model 𝑓 at a training point (𝑥, 𝑦) ∈ 𝒳 × 𝒴.

Theorem 34 (Representer theorem)

Let 𝐾 be a 𝒴-Mercer Operator-Valued Kernel and ℋ𝐾 its corresponding 𝒴-Reproducing
Kernel Hilbert space. Let 𝑐 : 𝒴×𝒴 → R be a cost function such that 𝐿(𝑥, 𝑓, 𝑦) = 𝑐(𝑉 𝑓(𝑥), 𝑦) is
a proper convex lower semi-continuous function in 𝑓 for all 𝑥 ∈ 𝒳 and all 𝑦 ∈ 𝒴. Eventually
let 𝜆 ∈ R>0 be the Tychonov regularization hyperparameters The solution 𝑓𝑠 ∈ ℋ𝐾 of the
regularized optimization problem

(21)𝑓𝑠 = argmin
𝑓∈ℋ𝐾

1

𝑁

𝑁∑︁
𝑖=1

𝑐(𝑓(𝑥𝑖), 𝑦𝑖) +
𝜆

2
‖𝑓‖2𝐾

has the form 𝑓𝑠 =
∑︀𝑁

𝑗=1𝐾(·, 𝑥𝑗)𝑢𝑠,𝑗 where 𝑢𝑠,𝑗 ∈ 𝒴 and

(22)𝑢𝑠 = argmin
𝑢∈

⨁︀𝑁
𝑖=1 𝒴

1

𝑁

𝑁∑︁
𝑖=1

𝑐

⎛⎝ 𝑁∑︁
𝑗=1

𝐾(𝑥𝑖, 𝑥𝑗)𝑢𝑗 , 𝑦𝑖

⎞⎠+
𝜆

2

𝑁∑︁
𝑗=1

𝑢*𝑗𝐾(𝑥𝑖, 𝑥𝑗)𝑢𝑗 .

The first representer theorem was introduced by Wahba (1990) in the case where 𝒴 =
R. The extension to an arbitrary Hilbert space 𝒴 has been proved by many authors
in different forms (Brouard et al., 2011; Kadri et al., 2015; Micchelli and Pontil, 2005).
The idea behind the representer theorem is that even though we minimize over the whole
space ℋ𝐾 , when 𝜆 > 0, the solution of Equation 21 falls inevitably into the set ℋ𝐾,𝑠 ={︁∑︀𝑁

𝑗=1𝐾𝑥𝑗𝑢𝑗

⃒⃒⃒
∀(𝑢𝑖)𝑁𝑖=1 ∈ 𝒴𝑁

}︁
. Therefore the result can be expressed as a finite linear

combination of basis functions of the form 𝐾(·, 𝑥𝑘). Notice that we can perform the kernel
expansion of 𝑓𝑠 =

∑︀𝑁
𝑗=1𝐾(·, 𝑥𝑗)𝑢𝑠,𝑗 even though 𝜆 = 0. However 𝑓𝑠 is no longer the solution

of Equation 21 over the whole space ℋ𝐾 but a projection on the subspace ℋ𝐾,𝑠. The
representer theorem show that minimizing a functional in a VV-RKHS yields a solution
which depends on all the points in the training set. Assuming that for all 𝑥𝑖 and 𝑥 ∈ 𝒳
and for all 𝑢𝑖 ∈ 𝒴 it takes time 𝑂(𝑃 ) to compute 𝐾(𝑥𝑖, 𝑥)𝑢𝑖, making a prediction using the
representer theorem takes 𝑂(𝑁𝑃 ). Obviously If 𝒴 = R𝑝, Then 𝑃 = 𝑂(𝑝2) thus making a
prediction cost 𝑂(𝑁𝑝2) operations.

6. Sometimes referred to as minimal norm interpolation theorem.

33



Brault and d’Alché-Buc

5.2 Learning with Operator Random Fourier Feature maps

Instead of learning a model 𝑓 that depends on all the points of the training set, we would
like to learn a parametric model of the form ̃︀𝑓(𝑥) = ̃︀𝜑(𝑥)*𝜃, where 𝜃 lives in some space ̃︀ℋ.
We are interested in finding a parameter vector 𝜃𝑠 such that

(23)𝜃𝑠 = argmin
𝜃∈ ̃︀ℋ R𝜆(𝜃, 𝑠) = argmin

𝜃∈ ̃︀ℋ
1

𝑁

𝑁∑︁
𝑖=1

𝑐
(︁̃︀𝜑(𝑥𝑖)*𝜃, 𝑦𝑖)︁+ 𝜆

2
‖𝜃‖2̃︀ℋ

The following theorem states that when 𝜆 > 0 then learning with a feature map is equivalent
to learn with a kernel. Moreover if 𝑓𝑠 ∈ ℋ𝐾 is a solution of Equation 21 and 𝜃𝑠 ∈ ℋ is the
solution of Equation 24, then 𝑓𝑠 = 𝜑(·)*𝜃𝑠. This equivalence could have been obtained by
means of Lagrange duality. However in this proof we do not use such tool: we only focus on
the representer theorem and the fact that there exists a partial isometry 𝑊 between the
VV-RKHS and a feature space ℋ. We show that if 𝜃𝑠 is a solution of 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 23, then
theta belongs to (Ker𝑊 )⊥, thus there is an isometry between 𝜃𝑠 ∈ ℋ̃ and ℋ ̃︀𝐾 : namely 𝑊 .

Theorem 35 (Feature equivalence)

Let ̃︀𝐾 be an Operator-Valued Kernel such that for all 𝑥, 𝑧 ∈ 𝒳 , ̃︀𝜑(𝑥)*̃︀𝜑(𝑧) = ̃︀𝐾(𝑥, 𝑧) wherẽ︀𝐾 is a 𝒴-Mercer OVK and ℋ ̃︀𝐾 its corresponding 𝒴-Reproducing kernel Hilbert space. Let

𝑐 : 𝒴 ×𝒴 → R be a cost function such that 𝐿
(︁
𝑥, ̃︀𝑓, 𝑦)︁ = 𝑐

(︁ ̃︀𝑓(𝑥), 𝑦)︁ is a proper convex lower

semi-continuous function in ̃︀𝑓 ∈ ℋ ̃︀𝐾 for all 𝑥 ∈ 𝒳 and all 𝑦 ∈ 𝒴. Eventually let 𝜆 ∈ R>0R+

be the Tychonov regularization hyperparameter. The solution 𝑓𝑠 ∈ ℋ ̃︀𝐾 of the regularized
optimization problem

(24)̃︀𝑓𝑠 = argmiñ︀𝑓∈ℋ ̃︀𝐾
1

𝑁

𝑁∑︁
𝑖=1

𝑐
(︁ ̃︀𝑓(𝑥𝑖), 𝑦𝑖)︁+ 𝜆

2

⃦⃦⃦ ̃︀𝑓 ⃦⃦⃦2̃︀𝐾
has the form ̃︀𝑓𝑠 = ̃︀𝜑(·)*𝜃𝑠, where 𝜃𝑠 ∈ (Ker ̃︁𝑊 )⊥ and

(25)𝜃𝑠 = argmin
𝜃∈ ̃︀ℋ

1

𝑁

𝑁∑︁
𝑖=1

𝑐
(︁̃︀𝜑(𝑥𝑖)*𝜃, 𝑦𝑖)︁+ 𝜆

2
‖𝜃‖2̃︀ℋ

In the aforementioned theorem, we use the notation ̃︀𝐾 and ̃︀𝜑 because our main subject of
interest is the ORFF map. However this theorem works for any feature maps 𝜑(𝑥) ∈ ℒ(𝒴,ℋ)
even whenℋ is infinite dimensional.7. This shows that when 𝜆 > 0 the solution of Equation 22
with the approximated kernel 𝐾(𝑥, 𝑧) ≈ ̃︀𝐾(𝑥, 𝑧) = ̃︀𝜑(𝑥)*̃︀𝜑(𝑧) is the same than the solution
of Equation 25 up to an isometric isomorphism (see appendix B.3.2). Namely, if 𝑢𝑠 is the
solution of Equation 22, 𝜃𝑠 is the solution of Equation 25 and 𝜆 > 0 we have

𝜃𝑠 =
𝑁∑︁
𝑖=1

̃︀𝜑(𝑥𝑖)(𝑢𝑠)𝑖 ∈ (Ker𝑊 )⊥ ⊆ ̃︀ℋ.
7. If 𝜑(𝑥) : ℒ(𝒴,ℋ) and dim(ℋ) = ∞, the decomposition ℋ = (Ker 𝑊 ) ⊕ (Ker 𝑊 )⊥ holds since ℋ is a

Hilbert space and 𝑊 is a bounded operator.
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If 𝜆𝐾 = 0 we can still find a solution 𝑢𝑠 of Equation 22. By construction of the kernel
expansion, we have 𝑢𝑠 ∈ (Ker 𝑊 )⊥. However looking at the proof of Theorem 35 we
see that 𝜃𝑠 might not belong to (Ker 𝑊 )⊥. We can compute a residual vector 𝑟𝑠 =∑︀𝑁

𝑖=1
̃︀𝜑(𝑥𝑖)(𝑢𝑠)𝑖 − 𝜃𝑠. Since

∑︀𝑁
𝑗=1

̃︀𝜑(𝑥𝑗) ∈ (Ker 𝑊 )⊥ by construction, if 𝑟𝑠 = 0, it means
that 𝜆𝐾 is large enough for both representer theorem and ORFF representer theorem to
apply. If 𝑟𝑠 ̸= 0 but ̃︀𝜑(·)*𝑟𝑠 = 0 it means that both 𝜃𝑠 and

∑︀𝑁
𝑗=1

̃︀𝜑(𝑥𝑗)𝑢𝑠 are in (Ker𝑊 )⊥,
thus the representer theorem fails to find the “true” solution over the whole space ℋ ̃︀𝐾
but returns a projection onto ℋ ̃︀𝐾,𝑠 of the solution. If 𝑟𝑠 ̸= 0 and ̃︀𝜑(·)*𝑟𝑠 ̸= 0 means

that 𝜃𝑠 is not in (Ker 𝑊 )⊥, thus the feature equivalence theorem fails to apply. Since

𝑟𝑠 =
∑︀𝑁

𝑖=1
̃︀𝜑(𝑥𝑖)(𝑢𝑠)𝑖 − 𝜃⊥𝑠 − 𝜃‖𝑠 and

∑︀𝑁
𝑖=1
̃︀𝜑(𝑥𝑖)(𝑢𝑠)𝑖 is in (Ker 𝑊 )⊥, with mild abuse of

notation we write 𝑟𝑠 = 𝜃‖. This remark is illustrated in Figure 7.

In Figure 7, we generated the data from a since wave to which we add some Gaussian
noise. We learned a Gaussian kernel based RFF model (blue curve) and a kernel model
(yellow curve) where the kernel is obtained from the RFF map. The left column represents
the fit of the model to the points for four different valued of 𝜆 (top to bottom: 10−2, 10−5,
10𝑒10, 0). The middle column shows if the RFF solution 𝜃𝑠 is in (Ker �̃� )⊥. This is true for
all values of 𝜆. The right column shows that even though 𝜃𝑠 is in (Ker �̃� )⊥, when 𝜆→ 0
learning with RFF is different from learning with the kernel constructed from the RFF
maps since the coefficients of 𝜃‖ are all different from 0.

5.3 Solving ORFF-based regression

In order to find a solution to Equation 23, we turn our attention to gradient descent methods.
We define an algorithm (Algorithm 3) to find efficiently a solution to Equation 23 when
𝑐(𝑦, 𝑦′) = ‖𝑦 = 𝑦′‖2𝒴 and study its complexity.

5.3.1 Gradient methods

Since the solution of Equation 23 is unique when 𝜆 > 0, a sufficient and necessary condition
is that the gradient of R𝜆 at the minimizer 𝜃𝑠 is zero. We use the Frechet derivative, the
strongest notion of derivative in Banach spaces (Conway, 2013; Kurdila and Zabarankin,
2006) which directly generalizes the notion of gradient to Banach spaces. The chain rule is
valid in this context (Kurdila and Zabarankin, 2006, theorem 4.1.1 page 140). Hence

∇𝜃𝑐
(︁̃︀𝜑(𝑥𝑖)*𝜃, 𝑦𝑖)︁ = ̃︀𝜑(𝑥𝑖)(︃ 𝜕

𝜕𝑦
𝑐 (𝑦, 𝑦𝑖)

⃒⃒⃒⃒
𝑦=̃︀𝜑(𝑥𝑖)*𝜃

)︃*

, and ∇𝜃‖𝜃‖
2̃︀ℋ = 2𝜃.

Provided that 𝑐(𝑦, 𝑦𝑖) is Frechet differentiable w. r. t. 𝑦, for all 𝑦 and 𝑦𝑖 ∈ 𝒴 we have
∇𝜃R𝜆(𝜃, 𝑠) ∈ ̃︀ℋ and

(26)∇𝜃R𝜆(𝜃, 𝑠) =
1

𝑁

𝑁∑︁
𝑖=1

̃︀𝜑(𝑥𝑖)(︃ 𝜕

𝜕𝑦
𝑐 (𝑦, 𝑦𝑖)

⃒⃒⃒⃒
𝑦=̃︀𝜑(𝑥𝑖)*𝜃

)︃*

+ 𝜆𝜃

Example 5 (Naive closed form for the squared error cost)

35



B
r
a
u
lt

a
n
d

d
’A

l
c
h
é
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Figure 7: ORFF equivalence theorem.
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Algorithm 3: Naive closed form for the squared error cost.

Input :

∙ 𝑠 = (𝑥𝑖, 𝑦𝑖)
𝑁
𝑖=1 ∈ (𝒳 × R𝑝)𝑁 a sequence of supervised training points,

∙ ̃︀𝜑(𝑥𝑖) ∈ ℒ (R𝑝,R𝑟) a feature map defined for all 𝑥𝑖 ∈ 𝒳 ,

∙ 𝜆 ∈ R>0 the Tychonov regularization term,
Output :A model ℎ : 𝒳 → R𝑝, ℎ(𝑥) = ̃︀𝜑(𝑥)T𝜃𝑠. such that 𝜃𝑠 minimize Equation 23,

where 𝑐(𝑦, 𝑦′) = ‖𝑦 − 𝑦′‖22 and R𝑟 and R𝑝

1 P← 1
𝑁

∑︀𝑁
𝑖=1
̃︀𝜑(𝑥𝑖)̃︀𝜑(𝑥𝑖)T ∈ ℒ(R𝑟,R𝑟);

2 Y ← 1
𝑁

∑︀𝑁
𝑖=1
̃︀𝜑(𝑥𝑖)𝑦𝑖 ∈ R𝑟;

3 𝜃𝑠 ← solve𝜃 ((P+ 𝜆𝐼𝑟)𝜃 = Y) ;

4 return ℎ : 𝑥 ↦→ ̃︀𝜑(𝑥)T𝜃𝑠;
Consider the cost function defined for all 𝑦, 𝑦′ ∈ 𝒴 by 𝑐(𝑦, 𝑦′) = 1

2‖𝑦 − 𝑦‖
2
𝒴 . Then(︂

𝜕
𝜕𝑦 𝑐 (𝑦, 𝑦𝑖)

⃒⃒⃒
𝑦=̃︀𝜑(𝑥𝑖)*𝜃

)︂*
=
(︁̃︀𝜑(𝑥𝑖)*𝜃 − 𝑦𝑖)︁. Thus, since the optimal solution 𝜃𝑠 verifies

∇𝜃𝑠R𝜆(𝜃𝑠, 𝑠) = 0 we have 1
𝑁

∑︀𝑁
𝑖=1
̃︀𝜑(𝑥𝑖)(︁̃︀𝜑(𝑥𝑖)*𝜃𝑠 − 𝑦𝑖)︁+ 𝜆𝜃𝑠 = 0. Therefore,

(27 )

(︃
1

𝑁

𝑁∑︁
𝑖=1

̃︀𝜑(𝑥𝑖)̃︀𝜑(𝑥𝑖)* + 𝜆𝐼 ̃︀ℋ
)︃
𝜃𝑠 =

1

𝑁

𝑁∑︁
𝑖=1

̃︀𝜑(𝑥𝑖)𝑦𝑖.
Suppose that 𝒴 ⊆ R𝑝, and for all 𝑥 ∈ 𝒳 , ̃︀𝜑(𝑥) : R𝑟 → R𝑝 where all spaces are endowed with
the Euclidean inner product. From this we can derive Algorithm 3 which returns the closed
form solution of Equation 23 for 𝑐(𝑦, 𝑦′) = 1

2‖𝑦 − 𝑦
′‖22.

5.3.2 Complexity analysis

Algorithm 3 constitutes our first step toward large-scale learning with Operator-Valued
Kernels. We can easily compute the time complexity of Algorithm 3 when all the operators
act on finite dimensional Hilbert spaces. Suppose that 𝑝 = dim(𝒴) < ∞ and for all
𝑥 ∈ 𝒳 , ̃︀𝜑(𝑥) : 𝒴 → ̃︀ℋ where 𝑟 = dim( ̃︀ℋ) < ∞ is the dimension of the redescription spacẽ︀ℋ = R𝑟. Since 𝑝 and 𝑟 <∞, we view the operators ̃︀𝜑(𝑥) and 𝐼 ̃︀ℋ as matrices. Step 1 costs
𝑂𝑡(𝑁𝑟

2𝑝). Steps 2 costs 𝑂𝑡(𝑁𝑟𝑝). For step 3, the naive inversion of the operator costs
𝑂𝑡(𝑟

3). Eventually the overall complexity of Algorithm 3 is 𝑂𝑡
(︀
𝑟2(𝑁𝑝+ 𝑟)

)︀
, while the space

complexity is 𝑂𝑠(𝑟
2).

This complexity is to compare with the kernelized solution. Let

K :

⎧⎨⎩𝒴𝑁 → 𝒴𝑁𝑢 ↦→
⨁︀𝑁+𝑈

𝑖=1

∑︀𝑁+𝑈
𝑗=1 𝐾(𝑥𝑖, 𝑥𝑗)𝑢𝑗
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When 𝒴 = R,

K =

⎛⎜⎜⎝
𝐾(𝑥1, 𝑥1) . . . 𝐾(𝑥1, 𝑥𝑁+𝑈 )

...
. . .

...

𝐾(𝑥𝑁+𝑈 , 𝑥1) . . . 𝐾(𝑥𝑁+𝑈 , 𝑥𝑁+𝑈 )

⎞⎟⎟⎠
is called the Gram matrix of 𝐾. When 𝒴 = R𝑝, K is a matrix-valued Gram matrix of size
𝑝𝑁 × 𝑝𝑁 where each entry K𝑖𝑗 ∈ℳ𝑝,𝑝(R). Then the equivalent kernelized solution 𝑢𝑠 of
Theorem 34 is (︂

1

𝑁
K+ 𝜆𝐼⨁︀𝑁

𝑖=1 𝒴

)︂
𝑢𝑠 =

𝑁⨁︁
𝑖=1

𝑦𝑖.

which has time complexity 𝑂𝑡
(︀
𝑁3𝑝3

)︀
and space complexity 𝑂𝑠

(︀
𝑁2𝑝2

)︀
. Suppose we are

given a generic ORFF map (see Subsection 3.5). Then 𝑟 = 2𝐷𝑝, where 𝐷 is the number
of samples. Hence Algorithm 3 is better that its kernelized counterpart when 𝑟 = 2𝐷𝑝
is small compared to 𝑁𝑝. Thus, roughly speaking it is better to use Algorithm 3 when
the number of features, 𝑟, required is small compared to the number of training points.
Notice that Algorithm 3 has a linear complexity with respect to the number of supervised
training points 𝑁 so it is better suited to large scale learning provided that 𝐷 does not
grows linearly with 𝑁 . Yet naive learning with Algorithm 3 by viewing all the operators as
matrices is still problematic. Indeed learning 𝑝 independent models with scalar Random
Fourier Features would cost 𝑂𝑡

(︀
𝐷2𝑝3(𝑁 +𝐷)

)︀
since 𝑟 = 2𝐷𝑝. This Means that learning

vector-valued function has increased the (expected) complexity from 𝑝 to 𝑝3. However in
some cases we can drastically reduce the complexity by viewing the feature-maps as linear
operators rather than matrices.

5.4 Efficient learning with ORFF

When developping Algorithm 3 we considered that the feature map ̃︀𝜑(𝑥) was a matrix from
R𝑝 to R𝑟 for all 𝑥 ∈ 𝒳 , and therefore that computing ̃︀𝜑(𝑥)̃︀𝜑(𝑧)T has a time complexity of
𝑂(𝑟2𝑝). While this holds true in the most generic senario, in many cases the feature maps
present some structure or sparsity allowing to reduce the computational cost of evaluating
the feature map. We focus on the Operator-valued Random Fourier Feature given by
Algorithm 1, developped in Subsection 3.3 and Subsection 3.5 and treat the decomposable
kernel, the curl-free kernel and the divergence-free kernel as an example. We recall that if
𝒴 ′ = R𝑝′ and 𝒴 = R𝑝, then ̃︀ℋ = R2𝐷𝑝′ thus the Operator-valued Random Fourier Features
given in Section 3 have the form⎧⎪⎨⎪⎩

̃︀𝜑(𝑥) ∈ ℒ(︁R𝑝,R2𝐷𝑝′
)︁

: 𝑦 ↦→ 1√
𝐷

⨁︀𝐷
𝑗=1(𝑥, 𝜔𝑗)𝐵(𝜔𝑗)

T𝑦̃︀𝜑(𝑥)T ∈ ℒ(︁R2𝐷𝑝′ ,R𝑝
)︁

: 𝜃 ↦→ 1√
𝐷

∑︀𝐷
𝑗=1(𝑥, 𝜔𝑗)𝐵(𝜔𝑗)𝜃𝑗

,

where 𝜔𝑗 ∼ Pr
Ĥaar,𝜌

i. i. d. and 𝐵(𝜔𝑗) ∈ ℒ
(︁
R𝑝,R𝑝′

)︁
for all 𝜔𝑗 ∈ ̂︀𝒳 . Hence the Operator-va-

lued Random Fourier Feature can be seen as the block matrix ∈ℳ2𝐷𝑝′,𝑝 (R)̃︀𝜑(𝑥) = (︁cos⟨𝑥, 𝜔1⟩𝐵(𝜔1) sin⟨𝑥, 𝜔1⟩𝐵(𝜔1) . . . cos⟨𝑥, 𝜔𝐷⟩𝐵(𝜔𝐷) sin⟨𝑥, 𝜔𝐷⟩𝐵(𝜔𝐷)
)︁
T

(28)
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5.4.1 Case of study: the decomposable kernel

Throughout this section we show how the mathematical formulation relates to a concrete
(Python) implementation. We propose a Python implementation based on NumPy (Oliphant,
2006), SciPy (Jones et al., 2014) and Scikit-learn (Pedregosa et al., 2011). Following
Equation 28, the feature map associated to the decomposable kernel would be

̃︀𝜑(𝑥) = 1√
𝐷

(︁
cos⟨𝑥, 𝜔1⟩𝐵 sin⟨𝑥, 𝜔1⟩𝐵 . . . cos⟨𝑥, 𝜔𝐷⟩𝐵 sin⟨𝑥, 𝜔𝐷⟩𝐵

)︁
T

=

T
1√
𝐷

(︁
cos⟨𝑥, 𝜔1⟩ sin⟨𝑥, 𝜔1⟩ . . . cos⟨𝑥, 𝜔𝐷⟩ sin⟨𝑥, 𝜔𝐷⟩

)︁
⏟  ⏞  ̃︀𝜙(𝑥)

⊗𝐵T,

𝜔𝑗 ∼ Pr
Ĥaar,𝜌

i. i. d., which would lead to the following naive python implementation

for the Gaussian (RBF) kernel of parameter 𝛾, whose associated spectral distribution is
Pr𝜌 = 𝒩 (0, 2𝛾). Let 𝜃 ∈ R2𝐷𝑝′ and 𝑦 ∈ Rp. With such implementation evaluating a matrix

vector product such as ̃︀𝜑(𝑥)T𝜃 or ̃︀𝜑(𝑥)𝑦 have 𝑂𝑡(2𝐷𝑝
′𝑝) time complexity and 𝑂𝑠(2𝐷𝑝

′𝑝)

of space complexity, which is utterly inefficient. Indeed, recall that if 𝐵 ∈ ℳ𝑝,𝑝′

(︁
R𝑝′
)︁
is

matrix, the operator ̃︀𝜑(𝑥) corresponding to the decomposable kernel is

(29)̃︀𝜑(𝑥)𝑦 =
1√
𝐷

𝐷⨁︁
𝑗=1

(︃
cos⟨𝑥, 𝜔𝑗⟩𝐵T𝑦

sin⟨𝑥, 𝜔𝑗⟩𝐵T𝑦

)︃
=

⎛⎝ 1√
𝐷

𝐷⨁︁
𝑗=1

(︃
cos⟨𝑥, 𝜔𝑗⟩
sin⟨𝑥, 𝜔𝑗⟩

)︃⎞⎠⊗ (𝐵T𝑦)

and

̃︀𝜑(𝑥)T𝜃 = 1√
𝐷

𝐷∑︁
𝑗=1

cos⟨𝑥, 𝜔𝑗⟩𝐵𝜃𝑗+sin⟨𝑥, 𝜔𝑗⟩𝐵𝜃𝑗 =𝐵

⎛⎝ 1√
𝐷

𝐷∑︁
𝑗=1

(cos⟨𝑥, 𝜔𝑗⟩+sin⟨𝑥, 𝜔𝑗⟩) 𝜃𝑗

⎞⎠ .

(30)

Which requires only evaluation of 𝐵 on 𝑦 and can be implemented easily in Python thanks
to SciPy’s LinearOperator. Note that the computation of these expressions can be fully
vectorized8 using the vectorization property of the Kronecker product. In the following we
consider Θ ∈ℳ2𝐷,𝑢′(R) and the operator vec :ℳ𝑝′,2𝐷(R)→ R2𝐷𝑝′ which turns a matrix

into a vector (i. e. 𝜃𝑝′𝑖+𝑗 = vec(Θ𝑖𝑗), 𝑖 ∈ N(2𝐷−1) and 𝑗 ∈ N*
𝑝′). Then

(︀̃︀𝜙(𝑥)⊗𝐵T
)︀T
𝜃 =(︀̃︀𝜙(𝑥)T ⊗𝐵)︀vec(Θ) = vec (𝐵Θ̃︀𝜙(𝑥)). with this trick, many authors (Sindhwani et al., 2013;

Brault et al., 2016; Rosasco et al., 2010; Carmeli et al., 2010) notice that the decomposable
kernel usually yields a Stein equation (Penzl, 1998). Indeed rewriting step 3 of Algorithm 3
gives a system to solve of the form

̃︀𝜙(𝑋)̃︀𝜙(𝑋)TΘ𝐵T𝐵 + 𝜆Θ− 𝑌 = 0⇔
(︁̃︀𝜙(𝑋)̃︀𝜙(𝑋)T ⊗ 𝐵T𝐵 + 𝜆𝐼2𝐷𝑝′

)︁
𝜃 − 𝑌 = 0

Many solvers exists to solve efficiently this kind of systems9, but most of them share the
particularity that they are not just restricted to handle Stein equations. Broadly speaking,

8. See Walt et al. (2011).
9. For instance Sleijpen et al. (2010).
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iterative solvers (or matrix free solvers) are designed to solve any systems of equation of
ther form 𝑃𝑋 = 𝐶, where 𝑃 is a linear operator (not a matrix). This is exacly our case
where ̃︀𝜙(𝑥)⊗𝐵𝑇 is the matrix form of the operator Θ ↦→ vec(𝐵Θ̃︀𝜙𝑋).

This leads us to the following (more efficient) Python implementation of the Decomposable
ORFF “operator” to be feed to a matrix-free solvers.

def EfficientDecomposableGaussianORFF(X, A, gamma=1.,

D=100, eps=1e-5, random_state=0):

r"""Return the efficient ORFF map associated with the data X.

Parameters

----------

X : {array-like}, shape = [n_samples, n_features]

Samples.

A : {array-like}, shape = [n_targets, n_targets]

Operator of the Decomposable kernel (positive semi-definite)

gamma : {float},

Gamma parameter of the RBF kernel.

D : {integer}

Number of random features.

eps : {float}

Cutoff threshold for the singular values of A.

random_state : {integer}

Seed of the generator.

Returns

-------

\tilde{\Phi}(X) : Linear Operator, callable

"""

# Decompose A=BB^\transpose

u, s, v = svd(A, full_matrices=False, compute_uv=True)

B = dot(diag(sqrt(s[s > eps])), v[s > eps, :])

# Sample a RFF from the scalar Gaussian kernel

phi_s = RBFSampler(gamma=gamma, n_components=D, random_state=random_state)

phiX = phi_s.fit_transform(X)

# Create the ORFF linear operator

return LinearOperator((phiX.shape[0] * B.shape[1], D * B.shape[0]),

matvec=lambda b: dot(phiX, dot(b.reshape((D, B.shape[0])), B)),

rmatvec=lambda r: dot(phiX.T, dot(r.reshape((X.shape[0], B.shape[1])), B.T)))

It is worth mentioning that the same strategy can be applied in many different language.
For instance in C++, the library Eigen (Guennebaud et al., 2010) allows to wrap a sparse
matrix with a custom type, where the user overloads the transpose and dot product
operator (as in Python). Then the custom user operator behaves as a (sparse) matrix –
see https://eigen.tuxfamily.org/dox/group__MatrixfreeSolverExample.html. With
this implementation the time complexity of ̃︀𝜑(𝑥)T𝜃 and ̃︀𝜑(𝑥)𝑦 falls down to 𝑂𝑡((𝐷 + 𝑝)𝑝′)
and the same holds for space complexity.

A quick experiment shows the advantage of seeing the decomposable kernel as a linear
operator rather than a matrix. We draw 𝑁 = 100 points (𝑥𝑖)

𝑁
𝑖=1 in the interval (0, 1)20 and

use a decomposable kernel with matrix Γ = 𝐵𝐵T ∈ℳ𝑝,𝑝(R) where 𝐵 ∈ℳ𝑝,𝑝(R) is a random

matrix with coefficients drawn uniformly in (0, 1). We compute ̃︀𝜑(𝑥)T𝜃 for all 𝑥𝑖’s, where
𝜃 ∈ℳ2𝐷,1(R), 𝐷 = 100, with the implementation EfficientDecomposableGaussianORFF,
Equation 30. The coefficients of 𝜃 were drawn at random uniformly in (0, 1). We report the
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Figure 8: Efficient decomposable Gaussian ORFF (lower is better).
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Figure 9: Efficient curl-free Gaussian ORFF (lower is better).

execution time in Figure 8 for different values of 𝑝, 1 ≤ 𝑝 ≤ 100. The left plot reports the
execution time in seconds of the construction of the feature. The middle plot reports the
execution time of ̃︀𝜑(𝑥)T𝜃, and the right plot the memory used in bytes to store ̃︀𝜑(𝑥) for all
𝑥𝑖’s. We averaged the results over ten runs.

Curl-free kernel. We use the unbounded ORFF map presented in Equation 17. We
draw 𝑁 = 1000 points (𝑥𝑖)

𝑁
𝑖=1 in the interval (0, 1)𝑝 and use a curl-free kernel. We computẽ︀𝜑(𝑥)T𝜃 for all 𝑥𝑖’s, where 𝜃 ∈ℳ2𝐷,1(R), 𝐷 = 500, with the matrix implementation and the

LinearOperator implementation. The coefficients of 𝜃 were drawn at random uniformly
in (0, 1). We report the execution time in Figure 9 for different values of 𝑝, 1 ≤ 𝑝 ≤ 100.
The left plot reports the execution time in seconds of the construction of the features. The
middle plot reports the execution time of ̃︀𝜑(𝑥)T𝜃, and the right plot the memory used in
bytes to store ̃︀𝜑(𝑥) for all 𝑥𝑖’s. We averaged the results over fifty runs. As we can see the
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Figure 10: Efficient divergence-free Gaussian ORFF (lower is better).

linear-operator implementation is one order of magnitude slower than its matrix counterpart.
However it uses considerably less memory.

Divergence-free kernel. We use the unbounded ORFF map presented in Equation 18.
We draw 𝑁 = 100 points (𝑥𝑖)

𝑁
𝑖=1 in the interval (0, 1)𝑝 and use a curl-free kernel. We computẽ︀𝜑(𝑥)T𝜃 for all 𝑥𝑖’s, where 𝜃 ∈ ℳ2𝐷𝑝,1(R), 𝐷 = 100, with the matrix implementation and

the LinearOperator implementation. The coefficients of 𝜃 were drawn at random uniformly
in (0, 1). We report the execution time in Figure 9 for different values of 𝑝, 1 ≤ 𝑝 ≤ 100.
The left plot reports the execution time in seconds of the construction of the feature. The
middle plot reports the execution time of ̃︀𝜑(𝑥)T𝜃, and the right plot the memory used in
bytes to store ̃︀𝜑(𝑥) for all 𝑥𝑖’s. We averaged the results over ten runs. We draw the same
conclusions as the curl-free kernel.

6. Numerical experiments

We present a set of experiments to complete the theoretical contribution and illustrate
the behavior of ORFF-regression. First we study how well the ORFF regression recover
the result of operator-valued kernel regression. Second we show the advantages of ORFF
regression over independent RFF regression. A code implementing ORFF is available at
https://github.com/operalib/operalib a framework for OVK Learning.

6.1 Learning with ORFF vs learning with OVK

6.1.1 Datasets

The first dataset considered is the handwritten digits recognition dataset MNIST10. We
select a training set of 12, 000 images and a test set of 10, 000 images. The inputs are images
represented as a vector 𝑥𝑖 ∈ [0, 255]784 and the targets 𝑦𝑖 ∈ N9 are integers between 0 and
9. First we scaled the inputs such that they take values in [−1, 1]784. Then we binarize

10. available at http://yann.lecun.com/exdb/mnist
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the targets such that each number is represented by a unique binary vector of dimension
10. The vector 𝑦𝑖 is zero everywhere except on the dimension corresponding to the class

where it is one. For instance the class 4 is encoded
(︁
0 0 0 0 1 0 0 0 0 0

)︁T
. To

predict classes, we use the simplex coding method presented in Mroueh et al. (2012). The
intuition behind simplex coding is to project the binarized labels of dimension 𝑝 onto the
most separated vectors on the hypersphere of dimension 𝑝− 1. For ORFF we can encode
directly this projection in the 𝐵 matrix of the decomposable kernel 𝐾0(𝛿) = 𝐵𝐵*𝑘0(𝛿)
where 𝑘0 is a Gaussian kernel. The matrix 𝐵 is computed via the recursion

𝐵𝑝+1 =

(︃
1 𝑢𝑇

0𝑝−1

√︀
1− 𝑝−2𝐵𝑝

)︃
, 𝐵2 =

(︁
1 −1

)︁
,

where 𝑢 =
(︁
−𝑝−2 . . . −𝑝−2

)︁𝑇
∈ R𝑝−1 and 0𝑝−1 =

(︁
0 . . . 0

)︁𝑇
∈ R𝑝−1. For Operator-

Valued Kernels we project the binarized targets on the simplex as a preprocessing step,
before learning with the decomposable 𝐾0(𝛿) = 𝐼𝑝𝑘0(𝛿), where 𝑘0 is a scalar Gaussian kernel.

The second dataset is a simulated five dimensional (5𝐷) vector field with structure. We
generate a scalar field as a random function 𝑓 : [−1, 1]5 → R, where ̃︀𝑓(𝑥) = ̃︀𝜙(𝑥)*𝜃 where 𝜃
is a random matrix with each entry following a standard normal distribution, ̃︀𝜙 is a scalar
Gaussian RFF with bandwidth 𝜎 = 0.4. The input data 𝑥 are generated from a uniform
probability distribution. We take the gradient of ̃︀𝑓 to generate the curl-free 5𝐷 vector field.

The third dataset is a synthetic of data from R20 → R4 as described in Audiffren
and Kadri (2015). In this dataset, inputs (𝑥1, . . . , 𝑥20) are generated independently
and uniformly over [0, 1] and the different outputs are computed as follows. Let
𝜙(𝑥) = (𝑥21, 𝑥

2
4, 𝑥1𝑥2, 𝑥3𝑥5, 𝑥2, 𝑥4, 1) and (𝑤𝑖) denotes the i. i. d. copies of a seven dimen-

sional Gaussian distribution with zero mean and covariance Σ ∈ ℳ7,7(R) such that(︁
0.5 0.25 0.1 0.05 0.15 0.1 0.15

)︁
Then, the outputs of the different tasks are gener-

ated as 𝑦𝑖 = 𝑤𝑖𝜙(𝑥). We use this dataset with 𝑝 = 4, 105 instances and for the train set and
also 105 instances for the test set.

6.1.2 Results

Performance of ORFF regression on the first dataset. We trained both ORFF
and OVK models on MNIST dataset with a decomposable Gaussian kernel with signature
𝐾0(𝛿) = exp

(︀
−‖𝛿‖/(2𝜎2)

)︀
Γ. To apply 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 3 after noticing that in the case of the

decomposable kernel with 𝜆𝑀 = 0, it boilds down to a Stein equation (Brault et al., 2016,
section 5.1), we use an off-the-shelf solver11 able to handle Stein’s equation. For both
methods we choose 𝜎 = 20 and use a 2-fold cross validation on the training set to select the
optimal 𝜆. First, Figure 11 compares the running time between OVK and ORFF models
using 𝐷 = 1000 Fourier features against the number of datapoints 𝑁 . The log-log plot shows
ORFF scaling better than the OVK w. r. t. the number of points. Second, Figure 11 shows
the test prediction error versus the number of ORFFs 𝐷, when using 𝑁 = 1000 training

11. Available at http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html
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Figure 11: Empirical comparison of ORFF and OVK regression on MNIST dataset and
empirical behavior of ORFF regression versus 𝐷 and 𝑁 .

points. As expected, the ORFF model converges toward the OVK model when the number
of features increases.

Performance of ORFF regression on the second dataset. We perform a similar
experiment on the second dataset (5D-vector field with structure). We use a Gaussian
curl-free kernel with bandwidth equal to the median of the pairwise distances and tune
the hyperparameter 𝜆 on a grid. Here we optimize Equation 23, where 𝑐 is the squared
error cost, using Scipy’s L-BFGS-B (Byrd et al., 1995) solver12 with the gradients given in
Equation 26 and the efficient linear operator described in Subsection 5.4 (e. g. Equations 29
and 30). Figure 12 (bottom row) reports the 𝑅2 (coefficient of determination) score on the
test set versus the number of curl-ORFF 𝐷 with a comparison with curl-OVK. In this
experiment, we see that curl-ORFF can even be better than curl-OVK, suggesting that
ORFF might play an additional regularizing role. It also shows the computation time of
curl-ORFF and curl-OVK. We see that OVK regression does not scale with large datasets,
while ORFF regression does. When 𝑁 > 104, OVK regression exceeds memory capacity.

Structured prediction vs Independent (RFF) prediction. On the second dataset,
Figure 12 (top row) compares 𝑅2 score and time of ORFF regression using the trivial identity
decomposable kernel, e. g. independent RFFs, to curl-free ORFF regression. Curl-free
ORFF outperforms independent RFFs, as expected, since the dataset involves structured
outputs.

Impact of the number of random features (𝐷). In this setting we solved the optimi-
sation problem for both ORFF and OVK using a L-BFGS-B. Figure 13 top row shows
that for a fixed number of instance in the train set, OVK performs better than ORFF in
terms of accuracy (𝑅2). However ORFF scales better than OVK w. r. t. the number of
data. ORFF is able to process more data than OVK in the same time and thus reach a
better accuracy for a given amount of time. Bottom row shows that ORFF tends to reach
OVK’s accuracy for a fixed number of data when the number of features increase.

Multitask learning. In this experiment we are interested in multitask learning with
operator-valued random Fourier features, and see whether the approximation of a joint OVK
performs better than an independent OVK. In this setting we assume that for each entry
𝑥𝑖 ∈ R𝑑 we only have access to one observation 𝑦𝑖 ∈ R corresponding to a task 𝑡𝑖. We used

12. Available at http://docs.scipy.org/doc/scipy/reference/optimize.html
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Figure 12: Empirical comparison between curl-free ORFF, curl-free OVK, independent
ORFF, independent OVK on a synthetic vector field regression task.

the SARCOS dataset, taken from http://www.gaussianprocess.org/gpml/data/ website.
This is an inverse dynamics problem, i. e. we have to predict the 7 joint torques given the
joint positions, velocities and accelerations. Hence, we have to solve a regression problem
with 21 inputs and 7 outputs which is a very nonlinear function. It has 45𝐾 inputs data.
Suppose that we are given a collection of inputs data 𝑥1, . . . , 𝑥𝑁 ∈ R21 and a collection
of output data ((𝑦1, 𝑡1) . . . , (𝑦𝑁 , 𝑡𝑁 )) ∈ (R× N𝑇 )𝑁 where 𝑇 is the number of tasks. We
consider the following multitask loss function 𝐿(ℎ(𝑥), (𝑦, 𝑡)) = 1

2 (⟨ℎ(𝑥), 𝑒𝑡⟩2 − 𝑦)
2, This loss

function is adapted to datasets where the number of data per tasks is unbalanced (i. e. for
one input data we observe the value of only one task and not all the tasks.). We optimise
the regularized risk

1

𝑁

𝑁∑︁
𝑖 =1

𝐿 (ℎ(𝑥𝑖), (𝑦𝑖, 𝑡𝑖)) +
𝜆

2𝑁
||ℎ||2ℋ =

1

2𝑁

𝑁∑︁
𝑖=1

(⟨ℎ(𝑥𝑖), 𝑒𝑡𝑖⟩ − 𝑦𝑖)
2 +

𝜆

2𝑁
||ℎ||2ℋ

We used a model ℎ based on the decomposable kernel ℎ(𝑥) = (𝜙(𝑥)𝑇 ⊗𝐵)𝜃 we chose 𝐵 such
that 𝐵𝐵𝑇 = 𝐴, where 𝐴 is the inverse graph Laplacian 𝐿 of the similarities between the

tasks, parametrized by an hyperparameter 𝛾 ∈ R+. 𝐿𝑘𝑙 = exp

(︂
−𝛾
√︁∑︀𝑁

𝑖=1

(︀
𝑦𝑘𝑖 − 𝑦𝑙𝑖

)︀2)︂
. We

draw 𝑁 data randomly for each task, hence creating a dataset of 𝑁 × 7 data and computed
the nMSE on the proposed test set (4.5K points). We repeated the experiments 80 times

to avoid randomness. We choose 𝐷 = max(𝑁,500)
2 features, and optimized the problem with

a second order batch gradient. Table 3 shows that using the ORFF approximation of an
operator-valued kernel with a good prior on the data improves the performances w. r. t.
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Figure 13: Decomposable kernel on the third dataset: 𝑅2 score vs number of data in the
train set (𝑁)

N Independant (%) Laplacian (%) p-value T

50× 7 23.138± 0.577 22.254± 0.536 2.68% 4(s)

100× 7 16.191± 0.221 15.568± 0.187 < 0.1% 16(s)

200× 7 12.713± 0.0978 12.554± 0.0838 1.52% 12(s)

400× 7 10.785± 0.0579 10.651± 0.0466 < 0.1% 10(s)

800× 7 7.512± 0.0344 7.512± 0.0344 100% 15(s)

3200× 7 5.658± 0.0187 5.658± 0.0187 100% 20(s)

Table 3: Error (% of nMSE) on SARCOS dataset.

the independent ORFF. However the advantage seems to be less important more data are
available.

7. Conclusion

OVKs naturally extend the celebrated kernel method used to learn scalar-valued functions,
to the case of learning vector-valued functions. Although OVKs are appealing from a
theoretical aspect, these methods scale poorly in terms of computation time when the
number of data is high. Indeed, to evaluate the value of function with an Operator-Valued
Kernel, it requires to evaluate an Operator-Valued Kernel on all the point in the given
dataset. Hence naive learning with kernels usually scales cubicly in time with the number
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Figure 14: Decomposable kernel on the third dataset: 𝑅2 score vs number of data in the
train set (𝑁) for different number for different number of random samples (𝐷).

of data. In the context of large-scale learning such scaling is not acceptable. Through this
work we propose a methodology to tackle this difficulty.

Enlightened by the literature on large-scale learning with scalar -valued kernel, in particular
the work of Rahimi and Recht (Rahimi and Recht, 2007), we propose to replace an OVK
by a random feature map that we called Operator-valued Random Fourier Feature. Our
contribution starts with the formal mathematical construction of this feature from an OVK.
Then we show that it is also possible to obtain a kernel from an ORFF. Eventually we
analyse the regularization properties in terms of Fourier Transform of 𝒴-Mercer kernels.
Then we moved on giving a bound on the error due to the random approximation of the
OVK with high probability. We showed that it is possible to bound the error even though
the ORFF estimator of an OVK is not a bounded random variable. Moreover we also give
a bound when the dimension of the output data infinite.

After ensuring that an ORFF is a good approximation of a kernel, we moved on giving a
framework for supervised learning with Operator-Valued Kernels. We showed that learning
with a feature map is equivalent to learn with the reconstructed OVK under some mild
conditions. Then we focused on an efficient implementation of ORFF by viewing them as
linear operators rather than matrices and using matrix-free (iterative) solvers and concluded
with some numerical experiments.

Following Rahimi and Recht a generalization bound for ORFF kernel ridge would probably
suggest that the number of feature to draw is proportional to the number of data. However
new results of Rudi et al. (2016) suggest that the number of feature should be proportional
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to the square root of the number of data. In a future work, we shall investigate this results
and extend it to ORFF.

Since the construction of ORFF is valid for infinite dimensional Hilbert spaces such as
function spaces, we would also like to investigate learning function valued functions in an
efficient manner.
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Appendix A. Reminder on Abstract Harmonic Analysis

A.1 Locally compact Abelian groups

Definition 36 (Locally Compact Abelian (LCA) group.)

A group 𝒳 endowed with a binary operation ⋆ is said to be a Locally Compact Abelian
group if 𝒳 is a topological commutative group w. r. t. ⋆ for which every point has a compact
neighborhood and is Hausdorff (T2).

Moreover given a element 𝑧 of a LCA group 𝒳 , we define the set 𝑧 ⋆ 𝒳 = 𝒳 ⋆ 𝑧 =
{ 𝑧 ⋆ 𝑥 | ∀𝑥 ∈ 𝒳 } and the set 𝒳−1 =

{︀
𝑥−1

⃒⃒
∀𝑥 ∈ 𝒳

}︀
. We also note 𝑒 the neutral element

of 𝒳 such that 𝑥 ⋆ 𝑒 = 𝑒 ⋆ 𝑥 = 𝑒 for all 𝑥 ∈ 𝒳 . Throughout this paper we focus on positive
definite function. Let 𝒴 be a complex separable Hilbert space. A function 𝑓 : 𝒳 → 𝒴 is
positive definite if for all 𝑁 ∈ N and all 𝑦 ∈ 𝒴,

(31)
𝑁∑︁

𝑖,𝑗 =1

⟨
𝑦𝑖, 𝑓

(︁
𝑥−1
𝑗 ⋆ 𝑥𝑖

)︁
𝑦𝑗

⟩
𝒴
≥ 0

for all sequences (𝑦𝑖)𝑖∈N*
𝑁
∈ 𝒴𝑁 and all sequences (𝑥𝑖)𝑖∈N*

𝑁
∈ 𝒳𝑁 . If 𝒴 is real we add the

assumption that 𝑓(𝑥−1) = 𝑓(𝑥)* for all 𝑥 ∈ 𝒳

A.2 Even and odd functions

Let 𝒳 be a LCA group and K be a field viewed as an additive group. We say that a function
𝑓 : 𝒳 → K is even if for all 𝑥 ∈ 𝒳 , 𝑓(𝑥) = 𝑓

(︀
𝑥−1

)︀
and odd if 𝑓(𝑥) = −𝑓

(︀
𝑥−1

)︀
. The

definition can be extended to operator-valued functions.

Definition 37 (Even and odd operator-valued function on a LCA group)

Let 𝒳 be a measured LCA group and 𝒴 be a Hilbert space, and ℒ(𝒴) the space of bounded
linear operators from 𝒴 to itself viewed as an additive group. A function 𝑓 : 𝒳 → ℒ(𝒴) is
(weakly) even if for all 𝑥 ∈ 𝒳 and all 𝑦, 𝑦′ ∈ 𝒴, ⟨𝑦, 𝑓

(︀
𝑥−1

)︀
𝑦′⟩𝒴 = ⟨𝑦, 𝑓(𝑥)𝑦′⟩𝒴 and (weakly)

odd if ⟨𝑦, 𝑓
(︀
𝑥−1

)︀
𝑦′⟩𝒴 = −⟨𝑦, 𝑓(𝑥)𝑦′⟩𝒴 .
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Table 4: Classification of Fourier Transforms in terms of their domain and transform do-
main.

𝒳 = ̂︀𝒳 ∼= Operation Pairing

R𝑑 R𝑑 + (𝑥, 𝜔) = exp (i⟨𝑥, 𝜔⟩2)
R𝑑*,+ R𝑑 · (𝑥, 𝜔) = exp (i⟨log(𝑥), 𝜔⟩2)

(−𝑐; +∞)𝑑 R𝑑 ⊙ (𝑥, 𝜔) = exp (i⟨log(𝑥+ 𝑐), 𝜔⟩2)

It is easy to check that if 𝑓 is odd then
∫︀
𝒳 ⟨𝑦, 𝑓(𝑥)𝑦

′⟩𝒴𝑑Haar(𝑥) = 0. Besides the product of
an even and an odd function is odd. Indeed for all 𝑓 , 𝑔 ∈ ℱ(𝒳 ;ℒ(𝒴)), where 𝑓 is even and
𝑔 odd. Define ℎ(𝑥) = ⟨𝑦, 𝑓(𝑥)𝑔(𝑥)𝑦′⟩. Then we have ℎ

(︀
𝑥−1

)︀
= ⟨𝑦, 𝑓

(︀
𝑥−1

)︀
𝑔
(︀
𝑥−1

)︀
𝑦′⟩𝒴 =

⟨𝑦, 𝑓(𝑥) (−𝑔(𝑥)) 𝑦′⟩𝒴 = −ℎ(𝑥).

A.3 Characters

LCA groups are central to the general definition of Fourier Transform which is related to the
concept of Pontryagin duality (Folland, 1994). Let (𝒳 , ⋆) be a LCA group with 𝑒 its neutral
element and the notation, 𝑥−1, for the inverse of 𝑥 ∈ 𝒳 . A character is a complex continuous
homomorphism 𝜔 : 𝒳 → U from 𝒳 to the set of complex numbers of unit module U. The set
of all characters of 𝒳 forms the Pontryagin dual group ̂︀𝒳 . The dual group of an LCA group

is an LCA group so that we can endow ̂︀𝒳 with a “dual” Haar measure noted Ĥaar. Then
the dual group operation is defined by (𝜔1 ⋆

′ 𝜔2)(𝑥) = 𝜔1(𝑥)𝜔2(𝑥) ∈ U. The Pontryagin

duality theorem states that
̂︀̂︀𝒳 ∼= 𝒳 . i. e. there is a canonical isomorphism between any

LCA group and its double dual. To emphasize this duality the following notation is usually

adopted: 𝜔(𝑥) = (𝑥, 𝜔) = (𝜔, 𝑥) = 𝑥(𝜔), where 𝑥 ∈ 𝒳 ∼= ̂︀̂︀𝒳 and 𝜔 ∈ ̂︀𝒳 . The form (·, ·)
defined in appendix A.3 is called (duality) pairing. Another important property involves
the complex conjugate of the pairing which is defined as (𝑥, 𝜔) =

(︀
𝑥−1, 𝜔

)︀
=
(︀
𝑥, 𝜔−1

)︀
.

We notice that for any pairing depending of 𝜔, there exists a function ℎ𝜔 : 𝒳 → R
such that (𝑥, 𝜔) = exp(iℎ𝜔(𝑥)) since any pairing maps into U. Moreover,

(︀
𝑥 ⋆ 𝑧−1, 𝜔

)︀
=

𝜔(𝑥)𝜔
(︀
𝑧−1
)︀
= exp (+iℎ𝜔 (𝑥)) exp

(︀
+iℎ𝜔

(︀
𝑧−1
)︀)︀

= exp (+iℎ𝜔 (𝑥)) exp (−iℎ𝜔 (𝑧)). Table 4
provides an explicit list of pairings for various groups based on R𝑑 or its subsets. The
interested reader can refer to Folland (1994) for a more detailed construction of LCA,
Pontryagin duality and Fourier Transforms on LCA.

A.4 The Fourier Transform

For a function with values in a separable Hilbert space, 𝑓 ∈ 𝐿1(𝒳 ,Haar;𝒴), we denote
ℱ [𝑓 ] its Fourier Transform (FT) which is defined by

∀𝜔 ∈ ̂︀𝒳 , ℱ [𝑓 ] (𝜔) =

∫︁
𝒳
(𝑥, 𝜔)𝑓(𝑥)𝑑Haar(𝑥).
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The Inverse Fourier Transform (IFT) of a function 𝑔 ∈ 𝐿1( ̂︀𝒳 , Ĥaar;𝒴) is noted ℱ−1 [𝑔]

defined by ∀𝑥 ∈ 𝒳 , ℱ−1 [𝑔] (𝑥) =
∫︀ ̂︀𝒳 (𝑥, 𝜔)𝑔(𝜔)𝑑Ĥaar(𝜔), We also define the flip operator

ℛ by (ℛ𝑓)(𝑥) := 𝑓
(︀
𝑥−1

)︀
.

Theorem 38 (Fourier inversion)

Given a measure Haar defined on 𝒳 , there exists a unique suitably normalized dual measure

Ĥaar on ̂︀𝒳 such that for all 𝑓 ∈ 𝐿1(𝒳 ,Haar;𝒴) and if ℱ [𝑓 ] ∈ 𝐿1( ̂︀𝒳 , Ĥaar;𝒴) we have

(32 )𝑓(𝑥) =

∫︁
̂︀𝒳 (𝑥, 𝜔)ℱ [𝑓 ] (𝜔)𝑑Ĥaar(𝜔), for Haar-almost all 𝑥 ∈ 𝒳 .

i. e. such that (ℛℱℱ [𝑓 ])(𝑥) = ℱ−1ℱ [𝑓 ] (𝑥) = 𝑓(𝑥) for Haar-almost all 𝑥 ∈ 𝒳 . If 𝑓 is
continuous this relation holds for all 𝑥 ∈ 𝒳 .

Thus when a Haar measure Haar on 𝒳 is given, the measure on ̂︀𝒳 that makes Theorem 38

true is called the dual measure of Haar, noted Ĥaar. Let 𝑐 ∈ R* If 𝑐Haar is the measure

on 𝒳 , then 𝑐−1Ĥaar is the dual measure on ̂︀𝒳 . Hence one must replace Ĥaar by 𝑐−1Ĥaar

in the inversion formula to compensate. Whenever Ĥaar = Haar we say that the Haar
measure is self-dual. For the familiar case of a scalar-valued function 𝑓 on the LCA group
(R𝑑,+), we have for all 𝜔 ∈ ̂︀𝒳 = R𝑑

(33)ℱ [𝑓 ] (𝜔) =

∫︁
𝒳
(𝑥, 𝜔)𝑓(𝑥)𝑑Haar(𝑥) =

∫︁
R𝑑

exp(−i⟨𝑥, 𝜔⟩2)𝑓(𝑥)𝑑Leb(𝑥),

the Haar measure being here the Lebesgue measure. Notice that the normalization factor of

Ĥaar on ̂︀𝒳 depends on the measure Haar on 𝒳 and the duality pairing. For instance let
𝒳 = (R𝑑,+). If one endow 𝒳 with the Lebesgue measure as the Haar measure, the Haar
measure on the dual is defined for all 𝒵 ∈ ℬ(R𝑑) by

Haar(𝒵) = Leb(𝒵), and Ĥaar(𝒵) = 1

(2𝜋)𝑑
Leb(𝒵),

in order to have ℱ−1ℱ [𝑓 ] = 𝑓 . If one use the cleaner equivalent pairing (𝑥, 𝜔) =

exp(2i𝜋⟨𝑥, 𝜔⟩2) rather than (𝑥, 𝜔) = exp(i⟨𝑥, 𝜔⟩2), then Ĥaar(𝒵) = Leb(𝒵). The pairing
(𝑥, 𝜔) = exp(2i𝜋⟨𝑥, 𝜔⟩2) looks more attractive in theory since it limits the messy factor out-
side the integral sign and make the Haar measure self-dual. However it is of lesser use in prac-
tice since it yields additional unnecessary computation when evaluating the pairing. Hence
for symmetry reason on (R𝑑,+) and reduce computations we settle with the Haar measure on

R𝑑 groups (additive and multiplicative) defined as Ĥaar(𝒵) = Haar(𝒵) =
√
2𝜋

−𝑑
Leb(𝒵).

We conclude this subsection by recalling the injectevity property of the Fourier Transform.

Corollary 39 (Fourier Transform injectivity)

Given 𝜇 and 𝜈 two measures, if ℱ [𝜇] = ℱ [𝜈] then 𝜇 = 𝜈. Moreover given two functions 𝑓
and 𝑔 ∈ 𝐿1(𝒳 ,Haar;𝒴) if ℱ [𝑓 ] = ℱ [𝑔] then 𝑓 = 𝑔

Appendix B. Proofs

In this section we give the proofs of our contributions stated in the main body of the paper.
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B.1 Construction

B.1.1 Proof of Lemma 16

Proof For any function 𝑓 on (𝒳 , ⋆) define the flip operator ℛ by (ℛ𝑓)(𝑥) := 𝑓
(︀
𝑥−1

)︀
. For

any shift invariant 𝒴-Mercer kernel and for all 𝛿 ∈ 𝒳 , 𝐾𝑒(𝛿) = 𝐾𝑒

(︀
𝛿−1
)︀*
. Indeed from the

definition of a shift-invariant kernel, 𝐾𝑒

(︀
𝛿−1
)︀
= 𝐾

(︀
𝛿−1, 𝑒

)︀
= 𝐾 (𝑒, 𝛿) = 𝐾 (𝛿, 𝑒)* = 𝐾𝑒 (𝛿)

*.

Item 1: taking the Fourier Transform yields, ⟨𝑦′, 𝐶(𝜔)𝑦⟩𝒴 = ℱ−1
[︀
⟨𝑦′,𝐾𝑒(·)𝑦⟩𝒴

]︀
(𝜔) =

ℛℱ−1
[︀
⟨𝐾𝑒(·)𝑦′, 𝑦⟩𝒴

]︀
(𝜔) = ℛ⟨𝐶(·)𝑦′, 𝑦⟩𝒴(𝜔) =

⟨︀
𝑦′, 𝐶

(︀
𝜔−1

)︀*
𝑦
⟩︀
𝒴 . Hence 𝐶(𝜔) = 𝐶

(︀
𝜔−1

)︀*
.

Suppose that 𝒴 is a complex Hilbert space. Since for all 𝜔 ∈ ̂︀𝒳 , 𝐶(𝜔) is bounded and
non-negative so 𝐶(𝜔) is self-adjoint. Besides we have 𝐶(𝜔) = 𝐶

(︀
𝜔−1

)︀*
so 𝐶 must be

even. Suppose that 𝒴 is a real Hilbert space. The Fourier Transform of a real valued
function obeys ℱ [𝑓 ] (𝜔) = ℱ [𝑓 ] (𝜔−1). Therefore since 𝐶(𝜔) is non-negative for all 𝜔 ∈ ̂︀𝒳 ,
⟨𝑦′, 𝐶(𝜔)𝑦⟩ = ⟨𝑦′, 𝐶 (𝜔−1) 𝑦⟩ = ⟨𝑦, 𝐶

(︀
𝜔−1

)︀*
𝑦′⟩ = ⟨𝑦, 𝐶 (𝜔) 𝑦′⟩. Hence 𝐶(𝜔) is self-adjoint

and thus 𝐶 is even.

Item 2: simply, for all 𝑦, 𝑦′ ∈ 𝒴 , ⟨𝑦, 𝐶(𝜔−1)𝑦′⟩= ⟨𝑦′, 𝐶(𝜔)𝑦⟩ thus ℱ−1
[︀
⟨𝑦′,𝐾𝑒(·)𝑦⟩𝒴

]︀
(𝜔) =

⟨𝑦′, 𝐶(𝜔)𝑦⟩ = ℛ⟨𝑦′, 𝐶(·)𝑦⟩(𝜔) = ℛℱ−1
[︀
⟨𝑦′,𝐾𝑒(·)𝑦⟩𝒴

]︀
(𝜔) = ℱ

[︀
⟨𝑦′,𝐾𝑒(·)𝑦⟩𝒴

]︀
(𝜔).

Item 3: from Item 2 we have ℱ−1 [⟨𝑦′,𝐾𝑒(·)𝑦⟩] = ℱ−1ℛ⟨𝑦′,𝐾𝑒(·)𝑦⟩. By injectivity of
the Fourier Transform,𝐾𝑒 is even. Since𝐾𝑒(𝛿) = 𝐾𝑒(𝛿

−1)*, we must have𝐾𝑒(𝛿) = 𝐾𝑒(𝛿)
*.

B.1.2 Proof of Proposition 17

Proof This is a simple consequence of Proposition 15 and Lemma 16. By taking
⟨𝑦′, 𝐶(𝜔)𝑦⟩ = ℱ−1 [⟨𝑦′,𝐾𝑒(·)𝑦⟩] (𝜔) = ℱ [⟨𝑦′,𝐾𝑒(·)𝑦⟩] (𝜔) we can write the following equal-

ity concerning the OVK signature 𝐾𝑒: ⟨𝑦′,𝐾𝑒(𝛿)𝑦⟩(𝜔) =
∫︀ ̂︀𝒳 (𝛿, 𝜔)⟨𝑦′, 𝐶(𝜔)𝑦⟩𝑑Ĥaar(𝜔) =∫︀ ̂︀𝒳 (𝛿, 𝜔)

⟨
𝑦′, 1

𝜌(𝜔)𝐶(𝜔)𝑦
⟩
𝜌(𝜔)𝑑Ĥaar(𝜔). It is always possible to choose 𝜌(𝜔) such that∫︀ ̂︀𝒳 𝜌(𝜔)𝑑Ĥaar(𝜔) = 1. For instance choose

𝜌(𝜔) =
‖𝐶(𝜔)‖𝒴,𝒴∫︀ ̂︀𝒳 ‖𝐶(𝜔)‖𝒴,𝒴𝑑Ĥaar(𝜔)

Since for all 𝑦, 𝑦′ ∈ 𝒴, ⟨𝑦′, 𝐶(·)𝑦⟩ ∈ 𝐿1( ̂︀𝒳 , Ĥaar) and 𝒴 is a separable Hilbert space, by

Pettis measurability theorem,
∫︀ ̂︀𝒳 ‖𝐶(𝜔)‖𝒴,𝒴𝑑Ĥaar(𝜔) is finite and so is ‖𝐶(𝜔)‖𝒴,𝒴 for all

𝜔 ∈ ̂︀𝒳 . Therefore 𝜌(𝜔) is the density of a probability measure Pr
Ĥaar,𝜌

, i. e. conclude by

taking Pr
Ĥaar,𝜌

(𝒵) =
∫︀
𝒵 𝜌(𝜔)𝑑Ĥaar(𝜔), for all 𝒵 ∈ ℬ( ̂︀𝒳 ).

B.1.3 Proof of Proposition 18

Proof Suppose that for all 𝑦, 𝑦′ ∈ 𝒴, ⟨𝑦′, 𝐴(𝜔)𝑦⟩𝜌(𝜔) = ℱ−1 [⟨𝑦′,𝐾𝑒(·)𝑦⟩] (𝜔) where 𝜌 is
a probability distribution (see Proposition 17). From the strong law of large numbers
1
𝐷

∑︀𝐷
𝑗=1 (𝑥 ⋆ 𝑧

−1, 𝜔𝑗)𝐴(𝜔𝑗)
a. s.−−−−→
𝐷→∞

E
Ĥaar,𝜌

[(𝑥 ⋆ 𝑧−1, 𝜔𝑗)𝐴(𝜔)] where the integral converges
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in the weak operator topology. Then by Proposition 17 we recover 𝐾𝑒 when 𝐷 →∞ since,
E

Ĥaar,𝜌
[(𝑥 ⋆ 𝑧−1, 𝜔𝑗)𝐴(𝜔)] = 𝐾𝑒(𝑥 ⋆ 𝑧

−1).

B.1.4 Proof of Proposition 19

Proof Let (𝜔𝑗)
𝐷
𝑗=1 be a sequence of 𝐷 ∈ N* i. i. d. random variables following the law

Pr
Ĥaar,𝜌

. For all 𝑥, 𝑧 ∈ 𝒳 and all 𝑦, 𝑦′ ∈ 𝒴,

⟨̃︀𝜑(𝑥)𝑦, ̃︀𝜑(𝑧)𝑦′⟩⨁︀𝐷
𝑗=1 𝒴 ′

=
1

𝐷

⟨
𝐷⨁︁
𝑗=1

((𝑥, 𝜔𝑗)𝐵(𝜔𝑗)
*𝑦) ,

𝐷⨁︁
𝑗=1

(︀
(𝑧, 𝜔𝑗)𝐵(𝜔𝑗)

*𝑦′
)︀⟩

By definition of the inner product in direct sum of Hilbert spaces,

1

𝐷

⟨
𝐷⨁︁
𝑗=1

((𝑥, 𝜔𝑗)𝐵(𝜔𝑗)
*𝑦) ,

𝐷⨁︁
𝑗=1

(︀
(𝑧, 𝜔𝑗)𝐵(𝜔𝑗)

*𝑦′
)︀⟩

=
1

𝐷

𝐷∑︁
𝑗=1

⟨
𝑦, (𝑥, 𝜔𝑗)𝐵(𝜔𝑗)(𝑧, 𝜔𝑗)𝐵(𝜔𝑗)

*𝑦′
⟩
𝒴
=

⟨
𝑦,

⎛⎝ 1

𝐷

𝐷∑︁
𝑗=1

(𝑥 ⋆ 𝑧−1, 𝜔𝑗)𝐴(𝜔𝑗)

⎞⎠ 𝑦′

⟩
𝒴

,

Eventually apply Proposition 18 to obtain the convergence of the Monte-Carlo plug-in
estimator to the true kernel 𝐾.

B.1.5 Proof of Proposition 21

Proof For all 𝑦, 𝑦′ ∈ 𝒴 and 𝑥, 𝑧 ∈ 𝒳 ,

⟨𝑦, 𝜑*𝑥𝜑𝑧𝑦′⟩𝒴 = ⟨𝜑𝑥𝑦, 𝜑𝑧𝑦′⟩𝐿2( ̂︀𝒳 ,̂︀𝜇;𝒴 ′) =

∫︁
̂︀𝒳 (𝑥, 𝜔)⟨𝑦,𝐵(𝜔)(𝑧, 𝜔)𝐵(𝜔)*𝑦′⟩𝑑̂︀𝜇(𝜔)

=

∫︁
̂︀𝒳 (𝑥 ⋆ 𝑧−1, 𝜔)⟨𝑦,𝐵(𝜔)𝐵(𝜔)*𝑦′⟩𝑑̂︀𝜇(𝜔) = ∫︁ ̂︀𝒳 (𝑥 ⋆ 𝑧−1, 𝜔)⟨𝑦,𝐴(𝜔)𝑦′⟩𝑑̂︀𝜇(𝜔),

which defines a 𝒴-Mercer according to Proposition 14 of Carmeli et al. (2010).

B.1.6 Proof of Proposition 22

Proof From the strong law of large numbers 1
𝐷

∑︀𝐷
𝑗=1 (𝑥 ⋆ 𝑧

−1, 𝜔𝑗)𝐴(𝜔𝑗)
a. s.−−−−→
𝐷→∞

E
Ĥaar,𝜌

[(𝑥 ⋆ 𝑧−1, 𝜔𝑗)𝐴(𝜔)] where the integral converges in the weak operator topol-

ogy. Then by Proposition 14, E
Ĥaar,𝜌

[(𝑥 ⋆ 𝑧−1, 𝜔𝑗)𝐴(𝜔)] = 𝐾𝑒(𝑥 ⋆ 𝑧
−1).
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B.1.7 Proof of Proposition 23

Proof Apply Proposition 6 to ̃︀𝜑 considering the Hilbert space ̃︀ℋ to show that ̃︀𝐾 is an
OVK. Then Proposition 12 shows that ̃︀𝐾 is shift-invariant since ̃︀𝐾(𝑥, 𝑧) = ̃︀𝐾𝑒

(︀
𝑥 ⋆ 𝑧−1

)︀
.

Since 𝐵(𝜔) is a bounded operator, ̃︀𝐾 is 𝒴-Mercer because all the functions in the sum are
continuous.

B.1.8 Proof of Proposition 25

Proof [of item 1] Since (𝜔𝑗)
𝐷
𝑗=1 are i. i. d. random vectors, for all 𝑦 ∈ 𝒴 and for all 𝑦′ ∈ 𝒴 ′,

⟨𝑦,𝐵(·)𝑦′⟩ ∈ 𝐿2( ̂︀𝒳 ,Pr
Ĥaar,𝜌

) and 𝑔 ∈ 𝐿2( ̂︀𝒳 ,Pr
Ĥaar,𝜌

;𝒴 ′),

(̃︁𝑊𝜃)(𝑥) = ̃︀𝜑(𝑥)*𝜃 = 1

𝐷

𝐷∑︁
𝑗=1

(𝑥, 𝜔𝑗)𝐵(𝜔𝑗)𝑔(𝜔𝑗), 𝜔𝑗 ∼ Pr
Ĥaar,𝜌

i. i. d.

a. s.−−−−→
𝐷→∞

∫︁
̂︀𝒳 (𝑥, 𝜔)𝐵(𝜔)𝑔(𝜔)𝑑Pr

Ĥaar,𝜌
(𝜔) = (𝑊𝑔)(𝑥) := 𝜑*𝑥𝑔.

from the strong law of large numbers.

Proof [of item 2] Again, since (𝜔𝑗)
𝐷
𝑗−1 are i. i. d. random vectors and 𝑔 ∈ 𝐿2( ̂︀𝒳 ,Pr

Ĥaar,𝜌
;𝒴 ′),

‖𝜃‖2̃︀ℋ =
1

𝐷

𝐷∑︁
𝑗=1

‖𝑔(𝜔𝑗)‖2𝒴 ′ , 𝜔𝑗 ∼ Pr
Ĥaar,𝜌

i. i. d.

a. s.−−−−→
𝐷→∞

∫︁
̂︀𝒳 ‖𝑔(𝜔)‖

2
𝒴 ′𝑑Pr

Ĥaar,𝜌
(𝜔) = ‖𝑔‖

2

𝐿2
(︁ ̂︀𝒳 ,Pr

Ĥaar,𝜌
;𝒴 ′

)︁
.

from the strong law of large numbers.

B.1.9 Proof of Proposition 26

Proof We first show how the Fourier Transform relates to the feature operator. Since ℋ𝐾
is embedded into ℋ = 𝐿2( ̂︀𝒳 ,Pr

Ĥaar,𝜌
;𝒴 ′) by means of the feature operator 𝑊 , we have for

all 𝑓 ∈ ℋ𝑘, for all 𝑓 ∈ ℋ and for all 𝑥 ∈ 𝒳

ℱ
[︀
ℱ−1 [𝑓 ]

]︀
(𝑥) =

∫︁
̂︀𝒳 (𝑥, 𝜔)ℱ−1 [𝑓 ] (𝜔)𝑑Ĥaar(𝜔) = 𝑓(𝑥)

(𝑊𝑔)(𝑥) =

∫︁
̂︀𝒳 (𝑥, 𝜔)𝜌(𝜔)𝐵(𝜔)𝑔(𝜔)𝑑Ĥaar(𝜔) = 𝑓(𝑥).

By injectivity of the Fourier Transform, ℱ−1 [𝑓 ] (𝜔) = 𝜌(𝜔)𝐵(𝜔)𝑔(𝜔). From Proposition 6
we have

‖𝑓‖2𝐾 = inf
{︁
‖𝑔‖2ℋ

⃒⃒⃒
∀𝑔 ∈ ℋ, 𝑊𝑔 = 𝑓

}︁
= inf

{︂ ∫︁
̂︀𝒳 ‖𝑔(𝜔)‖

2
𝒴 ′𝑑Pr

Ĥaar,𝜌
(𝜔)

⃒⃒⃒⃒
∀𝑔 ∈ ℋ, ℱ−1 [𝑓 ] = 𝜌(·)𝐵(·)𝑔(·)

}︂
.
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The pseudo inverse of the operator 𝐵(𝜔) – noted 𝐵(𝜔)† – is the unique solution of the
system ℱ−1 [𝑓 ] (𝜔) = 𝜌(𝜔)𝐵(𝜔)𝑔(𝜔) w. r. t. 𝑔(𝜔) with minimal norm13. Eventually, ‖𝑓‖2𝐾 =∫︀ ̂︀𝒳 ‖𝐵(𝜔)†ℱ−1[𝑓 ](𝜔)‖2𝒴

𝜌(𝜔)2
𝑑Pr

Ĥaar,𝜌
(𝜔) Using the fact that ℱ−1 [·] = ℱℛ[·] and ℱ2[·] = ℛ[·],

‖𝑓‖2𝐾 =

∫︁
̂︀𝒳
⃦⃦
ℛ
[︀
𝐵(·)†𝜌(·)

]︀
(𝜔)ℱ [𝑓 ] (𝜔)

⃦⃦2
𝒴

𝜌(𝜔)2
𝑑Ĥaar(𝜔)

=

∫︁
̂︀𝒳
⟨𝐵(𝜔)†ℱ [𝑓 ] (𝜔), 𝐵(𝜔)†ℱ [𝑓 ] (𝜔)⟩𝒴

𝜌(𝜔)
𝑑Ĥaar(𝜔)

=

∫︁
̂︀𝒳
⟨ℱ [𝑓 ] (𝜔), 𝐴(𝜔)†ℱ [𝑓 ] (𝜔)⟩𝒴

𝜌(𝜔)
𝑑Ĥaar(𝜔).

B.2 Convergence with high probability of the ORFF estimator

We recall the notations 𝛿 = 𝑥 ⋆ 𝑧−1, for all 𝑥, 𝑧 ∈ 𝒳 , �̃�(𝑥, 𝑧) = ̃︀𝜑(𝑥)*̃︀𝜑(𝑧), �̃�𝑗(𝑥, 𝑧) =
𝜑𝑥(𝜔𝑗)

*𝜑𝑧(𝜔𝑗), where 𝜔𝑗 ∼ Pr
Ĥaar,𝜌

and 𝐾𝑒(𝛿) = 𝐾(𝑥, 𝑧) and �̃�𝑒(𝛿) = �̃�(𝑥, 𝑧). For the

sake of readabilty, we use throughout the proof the quantities: 𝐹 (𝛿) := �̃�(𝑥, 𝑧)−𝐾(𝑥, 𝑧)

and 𝐹 𝑗(𝛿) := 1
𝐷

(︁
�̃�𝑗(𝑥, 𝑧)−𝐾(𝑥, 𝑧)

)︁
. We also view 𝒳 as a metric space endowed with

the distance 𝑑𝒳 : 𝒳 × 𝒳 → R+. Compared to the scalar case, the proof follows the same
scheme as the one described in (Rahimi and Recht, 2007; Sutherland and Schneider, 2015),
but we consider an operator norm as measure of the error and therefore concentration
inequality dealing with these operator norm. The main feature of Proposition 46 is that it
covers the case of bounded ORFF as well as unbounded ORFF. In the case of bounded
ORFF, a Bernstein inequality for matrix concentration such that the one proved in Mackey
et al. (2014, Corollary 5.2) or the formulation of Tropp (2012) recalled in Koltchinskii et al.
(2013) is suitable. However some kernels like the curl and the divergence-free kernels do
not have obvious bounded

⃦⃦
𝐹 𝑗
⃦⃦
𝒴,𝒴 but exhibit 𝐹 𝑗 with subexponential tails. Therefore,

we use an operator Bernstein concentration inequality adapted for random matrices with
subexponential norms.

B.2.1 Epsilon-net

Let 𝒞 ⊆ 𝒳 be a compact subset of 𝒳 . Let 𝒟𝒞 =
{︀
𝑥 ⋆ 𝑧−1

⃒⃒
𝑥, 𝑧 ∈ 𝒞

}︀
with diameter at most

2|𝒞| where |𝒞| is the diameter of 𝒞. Since 𝒞 is supposed compact, so is 𝒟𝒞 . Since 𝒟𝒞 is also
a metric space it is well known that a compact metric space is totally bounded. Thus it is
possible to find a finite 𝜖-net covering 𝒟𝒞 . We call 𝑇 = 𝒩 (𝒟𝒞 , 𝑟) the number of closed balls
of radius 𝑟 required to cover 𝒟𝒞 . For instance if 𝒟𝒞 is a subspace finite dimensional Banach
space with diameter at most 2|𝒞| it is possible to cover the space with at most 𝑇 = (4|𝒞|/𝑟)𝑑
balls of radius 𝑟 (see Cucker and Smale (2001, proposition 5)). Let us call 𝛿𝑖, 𝑖 = 1, . . . , 𝑇
the center of the 𝑖-th ball, also called anchor of the 𝜖-net. Denote 𝐿𝐹 the Lipschitz constant

13. Note that since 𝐵(𝜔) is bounded the pseudo inverse of 𝐵(𝜔) is well defined for Ĥaar-almost all 𝜔.
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of 𝐹 . Let ‖·‖𝒴,𝒴 be the operator norm on ℒ(𝒴) (largest eigenvalue). We introduce the
following technical lemma.

Lemma 40

∀𝛿 ∈ 𝒟𝒞, if

(34 )𝐿𝐹 ≤
𝜖

2𝑟

and
(35)‖𝐹 (𝛿𝑖)‖𝒴,𝒴 ≤

𝜖

2
, for all 𝑖 ∈ N*

𝑇

then ‖𝐹 (𝛿)‖𝒴,𝒴 ≤ 𝜖.

Proof ‖𝐹 (𝛿)‖𝒴,𝒴 = ‖𝐹 (𝛿)− 𝐹 (𝛿𝑖) + 𝐹 (𝛿𝑖)‖𝒴,𝒴 ≤ ‖𝐹 (𝛿)− 𝐹 (𝛿𝑖)‖𝒴,𝒴 + ‖𝐹 (𝛿𝑖)‖𝒴,𝒴 for all
0 < 𝑖 < 𝑇 . Using the Lipschitz continuity of 𝐹 we have ‖𝐹 (𝛿)− 𝐹 (𝛿𝑖)‖𝒴,𝒴 ≤ 𝑑𝒳 (𝛿, 𝛿𝑖)𝐿𝐹 ≤
𝑟𝐿𝐹 hence ‖𝐹 (𝛿)‖𝒴,𝒴 ≤ 𝑟𝐿𝐹 + ‖𝐹 (𝛿𝑖)‖𝒴,𝒴 = 𝑟𝜖

2𝑟 +
𝜖
2 = 𝜖.

To apply the lemma, we must bound the Lipschitz constant of the operator-valued function
𝐹 (Equation 34) and ‖𝐹 (𝛿𝑖)‖𝒴,𝒴 , for all 𝑖 = 1, . . . , 𝑇 as well (Equation 35).

B.2.2 Bounding the Lipschitz constant

This proof is a slight generalization of Minh (2016) to arbitrary metric spaces. It differ from
our first approach (Brault et al., 2016), based on the proof of Sutherland and Schneider
(2015) which was only valid for a finite dimensional input space 𝒳 and imposed a twice
differentiability condition on the considered kernel.

Lemma 41

Let 𝐻𝜔 ∈ R+ be the Lipschitz constant of ℎ𝜔(·) and assume that∫︀ ̂︀𝒳 𝐻𝜔‖𝐴(𝜔)‖𝒴,𝒴𝑑Pr
Ĥaar,𝜌

(𝜔) <∞. Then the operator-valued function 𝐾𝑒 : 𝒳 → ℒ(𝒴) is
Lipschitz with

(36 )‖𝐾𝑒(𝑥)−𝐾𝑒(𝑧)‖𝒴,𝒴 ≤ 𝑑𝒳 (𝑥, 𝑧)
∫︁

̂︀𝒳 𝐻𝜔‖𝐴(𝜔)‖𝒴,𝒴𝑑Pr
Ĥaar,𝜌

(𝜔).

Proof We use the fact that the cosine function is Lipschitz with constant 1 and ℎ𝜔 Lipschitz
with constant 𝐻𝜔. For all 𝑥, 𝑧 ∈ 𝒳 we have⃦⃦⃦

�̃�𝑒(𝑥)−𝐾𝑒(𝑧)
⃦⃦⃦
𝒴,𝒴

=

⃦⃦⃦⃦∫︁
̂︀𝒳 (cosℎ𝜔(𝑥)− cosℎ𝜔(𝑧))𝐴(𝜔)𝑑Pr

Ĥaar,𝜌

⃦⃦⃦⃦
𝒴,𝒴

≤
∫︁

̂︀𝒳 |cosℎ𝜔(𝑥)− cosℎ𝜔(𝑧)|‖𝐴(𝜔)‖𝒴,𝒴𝑑Pr
Ĥaar,𝜌

≤
∫︁

̂︀𝒳 |ℎ𝜔(𝑥)− ℎ𝜔(𝑧)|‖𝐴(𝜔)‖𝒴,𝒴𝑑Pr
Ĥaar,𝜌

≤ 𝑑𝒳 (𝑥, 𝑧)
∫︁

̂︀𝒳 𝐻𝜔‖𝐴(𝜔)‖𝒴,𝒴𝑑Pr
Ĥaar,𝜌

In the same way, considering �̃�𝑒(𝛿) =
1
𝐷

∑︀𝐷
𝑗=1 cosℎ𝜔𝑗 (𝛿)𝐴(𝜔𝑗), where 𝜔𝑗 ∼ Pr

Ĥaar,𝜌
, we
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can show that �̃�𝑒 is Lipschitz with
⃦⃦⃦
�̃�𝑒(𝑥)− �̃�𝑒(𝑧)

⃦⃦⃦
𝒴,𝒴
≤ 𝑑𝒳 (𝑥, 𝑧) 1

𝐷

∑︀𝐷
𝑗=1𝐻𝜔𝑗‖𝐴(𝜔𝑗)‖𝒴,𝒴 .

Combining the Lipschitz continuity of �̃�𝑒 and �̃� (Lemma 41) we obtain

‖𝐹 (𝑥)− 𝐹 (𝑧)‖𝒴,𝒴 =
⃦⃦⃦
�̃�𝑒(𝑥)− �̃�𝑒(𝑥)− �̃�𝑒(𝑧) +𝐾𝑒(𝑧)

⃦⃦⃦
𝒴,𝒴

≤
⃦⃦⃦
�̃�𝑒(𝑥)− �̃�𝑒(𝑧)

⃦⃦⃦
𝒴,𝒴

+ ‖𝐾𝑒(𝑥)−𝐾𝑒(𝑧)‖𝒴,𝒴

≤ 𝑑𝒳 (𝑥, 𝑧)

⎛⎝∫︁ ̂︀𝒳 𝐻𝜔‖𝐴(𝜔)‖𝒴,𝒴𝑑Pr
Ĥaar,𝜌

+
1

𝐷

𝐷∑︁
𝑗=1

𝐻𝜔𝑗‖𝐴(𝜔𝑗)‖𝒴,𝒴

⎞⎠
Taking the expectation yields E

Ĥaar,𝜌
[𝐿𝐹 ] = 2

∫︀ ̂︀𝒳 𝐻𝜔‖𝐴(𝜔)‖𝒴,𝒴𝑑Pr
Ĥaar,𝜌

(𝜔) Thus by

Markov’s inequality,

(37)Pr
Ĥaar,𝜌

{ (𝜔𝑗)𝐷𝑗=1 | 𝐿𝐹 ≥ 𝜖 } ≤
E

Ĥaar,𝜌
[𝐿𝐹 ]

𝜖
≤ 2

𝜖

∫︁
̂︀𝒳 𝐻𝜔‖𝐴(𝜔)‖𝒴,𝒴𝑑Pr

Ĥaar,𝜌
.

B.2.3 Bounding 𝐹 on a given anchor point 𝛿𝑖

To bound ‖𝐹 (𝛿𝑖)‖𝒴,𝒴 , Hoeffding inequality devoted to matrix concentration (Mackey et al.,
2014) can be applied. We prefer here to turn to tighter and refined inequalities such as
Matrix Bernstein inequalities (Sutherland and Schneider (2015) also pointed that for the
scalar case). The first non-commutative (matrix) concentration inequalities are due to
the pioneer work of Ahlswede and Winter (2002), using bound on the moment generating
function. This gave rise to many applications Tropp (2012); Oliveira (2009); Koltchinskii et al.
(2013) ranging from analysis of randomized optimization algorithm to analysis of random
graphs and generalization bounds usefull in machine learning. The concentration inequatilty
of Koltchinskii et al. (2013) we used in our original paper (Brault et al., 2016) has the default
to grow linearly with the dimension 𝑝 of the output space 𝒴. However if the evaluation
of the operator-valued kernel at two points yields a low-rank matrix, this bound could be
improved since only a few principal dimensions are relevant. Moreover this bound cannot be
used when dealing with operator-valued kernel acting on infinite dimensional Hilbert spaces.
Recent results of Minsker (2011) consider the notion of intrinsic dimension to avoid this
“curse of dimensionality” (see definition 30 for the definition). When 𝐴 is approximately
low-rank (i. e. many eigenvalues are small), or go quickly to zero, the intrinsic dimension
can be much lower than the dimensionality. Indeed, 1 ≤ IntDim(𝐴) ≤ Rank(𝐴) ≤ dim(𝐴).

Theorem 42 (Bounded non-commutative Bernstein with intrinsic dimension (Minsker,
2011; Tropp et al., 2015))

Consider a sequence (𝑋𝑗)
𝐷
𝑗=1 of 𝐷 independent Hilbert-Schmidt self-adjoint random operators

acting on a separable Hilbert 𝒴 space that satisfy E𝑋𝑗 = 0 for all 𝑗 ∈ N*
𝐷. Suppose that

there exist some constant 𝑈 ≥ 2‖𝑋𝑗‖𝒴,𝒴 almost surely for all 𝑗 ∈ N*
𝐷. Define a semi-

definite upper bound for the the operator-valued variance 𝑉 <
∑︀𝐷

𝑗=1E𝑋
2
𝑗 . Then for all

𝜖 ≥
√︁
‖𝑉 ‖𝒴,𝒴 + 𝑈/3,

Pr

⎧⎨⎩
⃦⃦⃦⃦
⃦⃦ 𝐷∑︁
𝑗=1

𝑋𝑗

⃦⃦⃦⃦
⃦⃦
𝒴,𝒴

≥ 𝜖

⎫⎬⎭ ≤ 4 IntDim(𝑉 ) exp (−𝜓𝑉,𝑈 (𝜖))
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where 𝜓𝑉,𝑈 (𝜖) =
𝜖2

2‖𝑉 ‖𝒴,𝒴+2𝑈𝜖/3

he concentration inequality is restricted to the case where 𝜖 ≥
√︁
‖𝑉 ‖𝒴,𝒴 + 𝑈/3 since the

probability is vacuous on the contrary. The assumption that 𝑋𝑗 ’s are Hilbert-Schmidt
operators comes from the fact that the product of two such operator yields a trace-class
operator, for which the intrinsic dimension is well defined.

However, to cover the general case including unbounded ORFFs like curl and divergence-
free ORFFs, we choose a version of Bernstein matrix concentration inequality proposed
in Koltchinskii et al. (2013) that allows to consider matrices that are not uniformly bounded
but have subexponential tails. In the following we use the notion of Orlicz norm to bound
random variable by their tail behavior rather than their value (see definition 29). For the
sake of simplicity, we now fix 𝜓(𝑡) = 𝜓1(𝑡) = exp(𝑡)− 1. Although the Orlicz norm should
be adapted to the tail of the distribution of the random operator we want to quantify to
obtain the sharpest bounds. We also introduce two technical lemmas related to Orlicz norm.
The first one relates the 𝜓1-Orlicz norm to the moment generating function (MGF).

Lemma 43

Let 𝑋 be a random variable with a strictly monotonic moment-generating function. We have
‖𝑋‖−1

𝜓1
= MGF−1

|𝑋|(2).

Proof We have

‖𝑋‖𝜓1
= inf { 𝐶 > 0 | E[exp (|𝑋|/𝐶)] ≤ 2 } = 1

sup
{︀
𝐶 > 0

⃒⃒
MGF|𝑋|(𝐶) ≤ 2

}︀ .
𝑋 has strictly monotonic moment-generating thus 𝐶−1 = MGF−1

|𝑋|(2). Hence ‖𝑋‖−1
𝜓1

=

MGF−1
|𝑋|(2).

The second lemma gives the Orlicz norm of a positive constant.

Lemma 44

If 𝑎 ∈ R+ then ‖𝑎‖𝜓1
= 𝑎

ln(2) < 2𝑎.

Proof We consider 𝑎 as a positive constant random variable, whose Moment Generating
Function (MGF) is MGF𝑎(𝑡) = exp(𝑎𝑡). From Lemma 43, ‖𝑎‖𝜓1

= 1

MGF−1
𝑋 (2)

. Then

MGF−1
|𝑎| (2) = ln(2)

|𝑎| , 𝑎 ̸= 0. If 𝑎 = 0 then ‖𝑎‖𝜓1
= 0 by definition of a norm. Thus

‖𝑎‖𝜓1
= 𝑎

ln(2) .

We now turn our attention to Minsker (2011)’s theorem to for unbounded random variables.

Theorem 45 (Unbounded non-commutative Bernstein with intrinsic dimension)

Consider a sequence (𝑋𝑗)
𝐷
𝑗=1 of 𝐷 independent self-adjoint random operators acting on a

finite dimensional Hilbert space 𝒴 of dimension 𝑝 that satisfy E𝑋𝑗 = 0 for all 𝑗 ∈ N*
𝐷.

Suppose that there exist some constant 𝑈 ≥
⃦⃦⃦
‖𝑋𝑗‖𝒴,𝒴

⃦⃦⃦
𝜓
for all 𝑗 ∈ N*

𝐷. Define a semi-

definite upper bound for the the operator-valued variance 𝑉 <
∑︀𝐷

𝑗=1E𝑋
2
𝑗 . Then for all
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𝜖 > 0,

Pr

⎧⎨⎩
⃦⃦⃦⃦
⃦⃦ 𝐷∑︁
𝑗=1

𝑋𝑗

⃦⃦⃦⃦
⃦⃦
𝒴,𝒴

≥ 𝜖

⎫⎬⎭≤
⎧⎪⎪⎨⎪⎪⎩
2 IntDim(𝑉 ) exp

(︃
− 𝜖2

2‖𝑉 ‖𝒴,𝒴

(︁
1+ 1

𝑝

)︁
)︃
𝑟𝑉 (𝜖), 𝜖 ≤ ‖𝑉 ‖𝒴,𝒴

2𝑈
1+1/𝑝
𝐾(𝑉,𝑝)

2 IntDim(𝑉 ) exp
(︁
− 𝜖

4𝑈𝐾(𝑉,𝑝)

)︁
𝑟𝑉 (𝜖), otherwise.

where 𝐾(𝑉, 𝑝) = log
(︀
16
√
2𝑝
)︀
+ log

(︁
𝐷𝑈2

‖𝑉 ‖𝒴,𝒴

)︁
and 𝑟𝑉 (𝜖) = 1 + 3

𝜖2 log2(1+𝜖/‖𝑉 ‖𝒴,𝒴 )

Let 𝜓 = 𝜓1. To use Theorem 45, we set 𝑋𝑗 = 𝐹 𝑗(𝛿𝑖). We have indeed E
Ĥaar,𝜌

[𝐹 𝑗(𝛿𝑖)] = 0

since �̃�(𝛿𝑖) is the Monte-Carlo approximation of 𝐾𝑒(𝛿𝑖) and the matrices 𝐹 𝑗(𝛿𝑖) are self-
adjoint. We assume we can bound all the Orlicz norms of the 𝐹 𝑗(𝛿𝑖) =

1
𝐷 (�̃�𝑗(𝛿𝑖)−𝐾𝑒(𝛿𝑖)). In

the following we use constants 𝑢𝑖 such that 𝑢𝑖 = 𝐷𝑈 . Using Lemma 44 and the sub-additivity
of the ‖·‖𝒴,𝒴 and ‖·‖𝜓1

norm,

𝑢𝑖 = 2𝐷 max
1≤𝑗≤𝐷

⃦⃦⃦⃦⃦
𝐹 𝑗(𝛿𝑖)

⃦⃦
𝒴,𝒴

⃦⃦⃦
𝜓1

≤ 2 max
1≤𝑗≤𝐷

⃦⃦⃦⃦⃦⃦⃦
�̃�𝑗(𝛿𝑖)

⃦⃦⃦
𝒴,𝒴

⃦⃦⃦⃦
𝜓1

+ 2
⃦⃦⃦
‖𝐾𝑒(𝛿𝑖)‖𝒴,𝒴

⃦⃦⃦
𝜓1

< 4 max
1≤𝑗≤𝐷

⃦⃦⃦
‖𝐴(𝜔𝑗)‖𝒴,𝒴

⃦⃦⃦
𝜓1

+ 4‖𝐾𝑒(𝛿𝑖)‖𝒴,𝒴 = 4

(︂⃦⃦⃦
‖𝐴(𝜔)‖𝒴,𝒴

⃦⃦⃦
𝜓1

+ ‖𝐾𝑒(𝛿𝑖)‖𝒴,𝒴
)︂

In the same way we defined the constants 𝑣𝑖 = 𝐷𝑉 , 𝑣𝑖 = 𝐷
∑︀𝐷

𝑗=1EĤaar,𝜌
𝐹 𝑗(𝛿𝑖)

2 =

𝐷Var
Ĥaar,𝜌

[︁
�̃�(𝛿𝑖)

]︁
Then applying Theorem 45, we get for all 𝑖 ∈ N*

𝒩 (𝒟𝒞 ,𝑟)
(𝑖 is the

index of each anchor)

Pr
Ĥaar,𝜌

{︁
(𝜔𝑗)

𝐷
𝑗=1

⃒⃒⃒
‖𝐹 (𝛿𝑖)‖𝒴,𝒴 ≥ 𝜖

}︁

≤

⎧⎪⎪⎨⎪⎪⎩
4 IntDim(𝑣𝑖) exp

(︃
−𝐷 𝜖2

2‖𝑣𝑖‖𝒴,𝒴

(︁
1+ 1

𝑝

)︁
)︃
𝑟𝑣𝑖/𝐷(𝜖), 𝜖 ≤ ‖𝑣𝑖‖𝒴,𝒴

2𝑢𝑖

1+1/𝑝
𝐾(𝑣𝑖,𝑝)

4 IntDim(𝑣𝑖) exp
(︁
−𝐷 𝜖

4𝑢𝑖𝐾(𝑣𝑖,𝑝)

)︁
𝑟𝑣𝑖/𝐷(𝜖), otherwise.

with

𝐾(𝑣𝑖, 𝑝) = log
(︁
16
√
2𝑝
)︁
+ log

(︃
𝑢2𝑖

‖𝑣𝑖‖𝒴,𝒴

)︃

and

𝑟𝑣𝑖/𝐷 = 1 +
3

𝜖2 log2(1 +𝐷𝜖/‖𝑣𝑖‖𝒴,𝒴)
.

To unify the bound on each anchor we define two constant

𝑢 = 4

(︃⃦⃦⃦
‖𝐴(𝜔)‖𝒴,𝒴

⃦⃦⃦
𝜓1

+ sup
𝛿∈𝒟𝒞

‖𝐾𝑒(𝛿)‖𝒴,𝒴

)︃
≥ max

𝑖=1,...𝑇
𝑢𝑖

and
𝑣 = sup

𝛿∈𝒟𝒞

𝐷Var
Ĥaar,𝜌

[︁
�̃�𝑒(𝛿)

]︁
≥ max

𝑖=1,...𝑇
𝑣𝑖.
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B.2.4 Union Bound and examples

Taking the union bound over the anchors yields

(38)

Pr
Ĥaar,𝜌

⎧⎨⎩ (𝜔𝑗)
𝐷
𝑗=1

⃒⃒⃒⃒
⃒⃒ 𝒩 (𝒟𝒞 ,𝑟)⋃︁

𝑖=1

‖𝐹 (𝛿𝑖)‖𝒴,𝒴 ≥ 𝜖

⎫⎬⎭
≤ 4𝒩 (𝒟𝒞 , 𝑟)𝑟𝑣/𝐷(𝜖) IntDim(𝑣)

⎧⎪⎪⎨⎪⎪⎩
exp

(︃
−𝐷 𝜖2

2‖𝑣‖𝒴,𝒴

(︁
1+ 1

𝑝

)︁
)︃
, 𝜖 ≤ ‖𝑣‖𝒴,𝒴

2𝑢
1+1/𝑝
𝐾(𝑣,𝑝)

exp
(︁
−𝐷 𝜖

4𝑢𝐾(𝑣,𝑝)

)︁
, otherwise.

Hence combining Equation 37 and Equation 38 gives and summing up the hypothesis yields
the following proposition

Proposition 46

Let 𝐾 : 𝒳 ×𝒳 → ℒ(𝒴) be a shift-invariant 𝒴-Mercer kernel, where 𝒴 is a finite dimensional
Hilbert space of dimension 𝑝 and 𝒳 a metric space. Moreover, let 𝒞 be a compact subset
of 𝒳 , 𝐴 : ̂︀𝒳 → ℒ(𝒴) and Pr

Ĥaar,𝜌
a pair such that �̃�𝑒 =

∑︀𝐷
𝑗=1 cos (·, 𝜔𝑗)𝐴(𝜔𝑗) ≈ 𝐾𝑒

𝜔𝑗 ∼ Pr
Ĥaar,𝜌

i. i. d.. Let 𝑉 (𝛿) < Var
Ĥaar,𝜌

�̃�𝑒(𝛿), for all 𝛿 ∈ 𝒟𝒞 and 𝐻𝜔 be the Lipschitz

constant of the function ℎ : 𝑥 ↦→ (𝑥, 𝜔). If the three following constant exists

𝑚 ≥
∫︁

̂︀𝒳 𝐻𝜔‖𝐴(𝜔)‖𝒴,𝒴𝑑Pr
Ĥaar,𝜌

<∞

and

𝑢 ≥ 4

(︃⃦⃦⃦
‖𝐴(𝜔)‖𝒴,𝒴

⃦⃦⃦
𝜓1

+ sup
𝛿∈𝒟𝒞

‖𝐾𝑒(𝛿)‖𝒴,𝒴

)︃
<∞

and
𝑣 ≥ sup

𝛿∈𝒟𝒞

𝐷‖𝑉 (𝛿)‖𝒴,𝒴 <∞.

Define 𝑝𝑖𝑛𝑡 ≥ sup𝛿∈𝒟𝒞 IntDim(𝑉 (𝛿)) then for all 𝑟 ∈ R*
+ and all 𝜖 ∈ R*

+,

Pr
Ĥaar,𝜌

{︂
(𝜔𝑗)

𝐷
𝑗=1

⃒⃒⃒⃒ ⃦⃦⃦
�̃� −𝐾

⃦⃦⃦
𝒞×𝒞
≥ 𝜖

}︂
≤ 4

⎛⎜⎜⎝𝑟𝑚𝜖 + 𝑝𝑖𝑛𝑡𝒩 (𝒟𝒞 , 𝑟)𝑟𝑣/𝐷(𝜖)

⎧⎪⎪⎨⎪⎪⎩
exp

(︃
−𝐷 𝜖2

8𝑣
(︁
1+ 1

𝑝

)︁
)︃
, 𝜖 ≤ 𝑣

𝑢
1+1/𝑝
𝐾(𝑣,𝑝)

exp
(︁
−𝐷 𝜖

8𝑢𝐾(𝑣,𝑝)

)︁
, otherwise.

⎞⎟⎟⎠
where

𝐾(𝑣, 𝑝) = log
(︁
16
√
2𝑝
)︁
+ log

(︃
𝑢2

‖𝑣‖𝒴,𝒴

)︃
and

𝑟𝑣/𝐷(𝜖) = 1 +
3

𝜖2 log2(1 +𝐷𝜖/‖𝑣‖𝒴,𝒴)
.
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Proof Let 𝑚 =
∫︀ ̂︀𝒳 𝐻𝜔‖𝐴(𝜔)‖𝒴,𝒴𝑑Pr

Ĥaar,𝜌
. From Lemma 41,

Pr
Ĥaar,𝜌

{︁
(𝜔𝑗)

𝐷
𝑗=1

⃒⃒⃒
𝐿𝐹 ≥ 𝜖

2𝑟

}︁
≤ 4𝑟𝑚

𝜖 . Thus from Lemma 40, for all 𝑟 ∈ R*
+,

Pr
Ĥaar,𝜌

{︃
(𝜔𝑗)

𝐷
𝑗=1

⃒⃒⃒⃒
⃒ sup
𝛿∈𝒟𝒞

‖𝐹 (𝛿)‖𝒴,𝒴 ≥ 𝜖

}︃
≤

Pr
Ĥaar,𝜌

{︁
(𝜔𝑗)

𝐷
𝑗=1

⃒⃒⃒
𝐿𝐹 ≥

𝜖

2𝑟

}︁
+Pr

Ĥaar,𝜌

⎧⎨⎩ (𝜔𝑗)
𝐷
𝑗=1

⃒⃒⃒⃒
⃒⃒ 𝒩 (𝒟𝒞 ,𝑟)⋃︁

𝑖=1

‖𝐹 (𝛿𝑖)‖𝒴,𝒴 ≥ 𝜖

⎫⎬⎭ = 4
𝑟𝑚

𝜖

+ 4𝒩 (𝒟𝒞 , 𝑟)𝑟𝑣/𝐷(𝜖) IntDim(𝑣)

⎧⎪⎪⎨⎪⎪⎩
exp

(︃
−𝐷 𝜖2

8‖𝑣‖𝒴,𝒴

(︁
1+ 1

𝑝

)︁
)︃
, 𝜖 ≤ ‖𝑣‖𝒴,𝒴

𝑢
1+1/𝑝
𝐾(𝑣,𝑝)

exp
(︁
−𝐷 𝜖

8𝑢𝐾(𝑣,𝑝)

)︁
, otherwise.

With minor modifications we can obtain a second inequality for the case where the random
operators 𝐴(𝜔𝑗) are bounded almost surely. This second bound with more restrictions on 𝐴
has the advantage of working in infinite dimension as long as 𝐴(𝜔𝑗) is a Hilbert-Schmidt
operator.

Proposition 47

Let 𝐾 : 𝒳 ×𝒳 → ℒ(𝒴) be a shift-invariant 𝒴-Mercer kernel, where 𝒴 is a Hilbert space and
𝒳 a metric space. Moreover, let 𝒞 be a compact subset of 𝒳 , 𝐴 : ̂︀𝒳 → ℒ(𝒴) and Pr

Ĥaar,𝜌

a pair such that �̃�𝑒 =
∑︀𝐷

𝑗=1 cos (·, 𝜔𝑗)𝐴(𝜔𝑗) ≈ 𝐾𝑒, 𝜔𝑗 ∼ Pr
Ĥaar,𝜌

i. i. d.. where 𝐴(𝜔𝑗) is

a Hilbert-Schmidt operator for all 𝑗 ∈ N*
𝐷. Let 𝒟𝒞 = 𝒞 ⋆ 𝒞−1 and 𝑉 (𝛿) < Var

Ĥaar,𝜌
�̃�𝑒(𝛿),

for all 𝛿 ∈ 𝒟𝒞 and 𝐻𝜔 be the Lipschitz constant of the function ℎ : 𝑥 ↦→ (𝑥, 𝜔). If the three
following constant exists

𝑚 ≥
∫︁

̂︀𝒳 𝐻𝜔‖𝐴(𝜔)‖𝒴,𝒴𝑑Pr
Ĥaar,𝜌

<∞

and
𝑢 ≥ ess sup

𝜔∈ ̂︀𝒳 ‖𝐴(𝜔)‖𝒴,𝒴 + sup
𝛿∈𝒟𝒞

‖𝐾𝑒(𝛿)‖𝒴,𝒴 <∞

and
𝑣 ≥ sup

𝛿∈𝒟𝒞

𝐷‖𝑉 (𝛿)‖𝒴,𝒴 <∞.

define 𝑝𝑖𝑛𝑡 ≥ sup𝛿∈𝒟𝒞 IntDim (𝑉 (𝛿)) then for all 𝑟 ∈ R*
+ and all 𝜖 >

√︀
𝑣
𝐷 + 1

3𝐷𝑢,

Pr
Ĥaar,𝜌

{︃
(𝜔𝑗)

𝐷
𝑗=1

⃒⃒⃒⃒
⃒ sup
𝛿∈𝒟𝒞

‖𝐹 (𝛿)‖𝒴,𝒴 ≥ 𝜖

}︃
≤ 4

(︁𝑟𝑚
𝜖

+ 𝑝𝑖𝑛𝑡𝒩 (𝒟𝒞 , 𝑟) exp (−𝐷𝜓𝑣,𝑢(𝜖))
)︁

where 𝜓𝑣,𝑢(𝜖) =
𝜖2

2(𝑣+𝑢𝜖/3) .
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When the covering number 𝒩 (𝒟𝒞 , 𝑟) of the metric space 𝒟𝒞 has an analytical form, it is
possible to optimize the bound over the radius 𝑟 of the covering balls. As an example, we
refine Proposition 46 and Proposition 47 in the case where 𝒞 is a finite dimensional Banach
space.

Corollary 48

Let 𝐾 : 𝒳 ×𝒳 → ℒ(𝒴) be a shift-invariant 𝒴-Mercer kernel, where 𝒴 is a finite dimensional
Hilbert space of dimension 𝑝 and 𝒳 a finite dimensional Banach space of dimension 𝑑.
Moreover, let 𝒞 be a closed ball of 𝒳 centered at the origin of diameter |𝒞|, 𝐴 : ̂︀𝒳 → ℒ(𝒴)
and Pr

Ĥaar,𝜌
a pair such that �̃�𝑒 =

∑︀𝐷
𝑗=1 cos(·, 𝜔𝑗)𝐴(𝜔𝑗) ≈ 𝐾𝑒, 𝜔𝑗 ∼ Pr

Ĥaar,𝜌
i. i. d.. Let

𝒟𝒞 = 𝒞 ⋆ 𝒞−1 and 𝑉 (𝛿) < Var
Ĥaar,𝜌

�̃�𝑒(𝛿), for all 𝛿 ∈ 𝒟𝒞 Let 𝐻𝜔 be the Lipschitz constant

of ℎ𝜔 : 𝑥 ↦→ (𝑥, 𝜔). If the three following constant exists

𝑚 ≥
∫︁

̂︀𝒳 𝐻𝜔‖𝐴(𝜔)‖𝒴,𝒴𝑑Pr
Ĥaar,𝜌

<∞

and

𝑢 ≥ 4

(︃⃦⃦⃦
‖𝐴(𝜔)‖𝒴,𝒴

⃦⃦⃦
𝜓1

+ sup
𝛿∈𝒟𝒞

‖𝐾𝑒(𝛿)‖𝒴,𝒴

)︃
<∞

and

𝑣 ≥ sup
𝛿∈𝒟𝒞

𝐷‖𝑉 (𝛿)‖𝒴,𝒴 <∞.

Define 𝑝𝑖𝑛𝑡 ≥ sup𝛿∈𝒟𝒞 IntDim(𝑉 (𝛿)), then for all 0 < 𝜖 ≤ 𝑚|𝐶|,

Pr
Ĥaar,𝜌

{︂
(𝜔𝑗)

𝐷
𝑗=1

⃒⃒⃒⃒ ⃦⃦⃦
�̃� −𝐾

⃦⃦⃦
𝒞×𝒞
≥ 𝜖

}︂

≤ 8
√
2

(︂
𝑚|𝒞|
𝜖

)︂(︀
𝑝𝑖𝑛𝑡𝑟𝑣/𝐷(𝜖)

)︀ 1
𝑑+1

⎧⎪⎪⎨⎪⎪⎩
exp

(︃
−𝐷 𝜖2

8𝑣(𝑑+1)
(︁
1+ 1

𝑝

)︁
)︃
, 𝜖 ≤ 𝑣

𝑢
1+1/𝑝
𝐾(𝑣,𝑝)

exp
(︁
−𝐷 𝜖

8𝑢(𝑑+1)𝐾(𝑣,𝑝)

)︁
, otherwise,

where 𝐾(𝑣, 𝑝) = log
(︀
16
√
2𝑝
)︀
+ log

(︁
𝑢2

𝑣

)︁
and 𝑟𝑣/𝐷(𝜖) = 1 + 3

𝜖2 log2(1+𝐷𝜖/𝑣)
.

Proof As we have seen in appendix B.2.1, suppose that 𝒳 is a finite dimensional Banach
space. Let 𝒞 ⊂ 𝒳 be a closed ball centered at the origin of diameter |𝒞| = 𝐶 then the
difference ball centered at the origin

𝒟𝒞 = 𝒞 ⋆ 𝒞−1 =
{︀
𝑥 ⋆ 𝑧−1

⃒⃒
‖𝑥‖𝒳 ≤ 𝐶/2, ‖𝑧‖𝒳 ≤ 𝐶/2, (𝑥, 𝑧) ∈ 𝒳

2
}︀
⊂ 𝒳
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is closed and bounded, so compact and has diameter |𝐶| = 2𝐶. It is possible to cover it with

log(𝒩 (𝒟𝒞 , 𝑟)) = 𝑑 log
(︁
2|𝐶|
𝑟

)︁
closed balls of radius 𝑟. Pluging back into Equation yields

Pr
Ĥaar,𝜌

{︂
(𝜔𝑗)

𝐷
𝑗=1

⃒⃒⃒⃒ ⃦⃦⃦
�̃� −𝐾

⃦⃦⃦
𝒞×𝒞
≥ 𝜖

}︂
≤ 4

⎛⎜⎜⎝𝑟𝑚𝜖 + 𝑝𝑖𝑛𝑡

(︂
2|𝐶|
𝑟

)︂𝑑
𝑟𝑣/𝐷(𝜖)

⎧⎪⎪⎨⎪⎪⎩
exp

(︃
−𝐷 𝜖2

8𝑣
(︁
1+ 1

𝑝

)︁
)︃
, 𝜖 ≤ 𝑣

𝑢
1+1/𝑝
𝐾(𝑣,𝑝)

exp
(︁
−𝐷 𝜖

8𝑢𝐾(𝑣,𝑝)

)︁
, otherwise.

⎞⎟⎟⎠
The right hand side of the equation has the form 𝑎𝑟 + 𝑏𝑟−𝑑 with 𝑎 = 𝑚

𝜖 and

𝑏 = 𝑝𝑖𝑛𝑡(2|𝒞|)𝑑𝑟𝑣/𝐷(𝜖)

⎧⎪⎪⎨⎪⎪⎩
exp

(︃
−𝐷 𝜖2

8𝑣
(︁
1+ 1

𝑝

)︁
)︃
, 𝜖 ≤ 𝑣

𝑢
1+1/𝑝
𝐾(𝑣,𝑝)

exp
(︁
−𝐷 𝜖

8𝑢𝐾(𝑣,𝑝)

)︁
, otherwise.

Following Rahimi and Recht (2007); Sutherland and Schneider (2015); Minh (2016), we
optimize over 𝑟. It is a convex continuous function on R+ and achieve minimum at

𝑟 =
(︀
𝑏𝑑
𝑎

)︀ 1
𝑑+1 and the minimum value is 𝑟* = 𝑎

𝑑
𝑑+1 𝑏

1
𝑑+1

(︁
𝑑

1
𝑑+1 + 𝑑−

𝑑
𝑑+1

)︁
, hence

Pr
Ĥaar,𝜌

{︂
(𝜔𝑗)

𝐷
𝑗=1

⃒⃒⃒⃒ ⃦⃦⃦
�̃� −𝐾

⃦⃦⃦
𝒞×𝒞
≥ 𝜖

}︂

≤ 𝐶𝑑
(︂
2𝑚|𝒞|
𝜖

)︂ 𝑑
𝑑+1 (︀

𝑝𝑖𝑛𝑡𝑟𝑣/𝐷(𝜖)
)︀ 1

𝑑+1

⎧⎪⎪⎨⎪⎪⎩
exp

(︃
−𝐷 𝜖2

8𝑣(𝑑+1)
(︁
1+ 1

𝑝

)︁
)︃
, 𝜖 ≤ 𝑣

𝑢
1+1/𝑝
𝐾(𝑣,𝑝)

exp
(︁
−𝐷 𝜖

8𝑢(𝑑+1)𝐾(𝑣,𝑝)

)︁
, otherwise,

≤ 8
√
2

(︂
𝑚|𝒞|
𝜖

)︂(︀
𝑝𝑖𝑛𝑡𝑟𝑣/𝐷(𝜖)

)︀ 1
𝑑+1

⎧⎪⎪⎨⎪⎪⎩
exp

(︃
−𝐷 𝜖2

8𝑣(𝑑+1)
(︁
1+ 1

𝑝

)︁
)︃
, 𝜖 ≤ 𝑣

𝑢
1+1/𝑝
𝐾(𝑣,𝑝)

exp
(︁
−𝐷 𝜖

8𝑢(𝑑+1)𝐾(𝑣,𝑝)

)︁
, otherwise,

where 𝐶𝑑 = 4
(︁
𝑑

1
𝑑+1 + 𝑑−

𝑑
𝑑+1

)︁
. Eventually when 𝒳 is a Banach space, the Lipschitz constant

of ℎ𝜔 is the supremum of the gradient 𝐻𝜔 = sup𝛿∈𝒟𝒞‖(∇ℎ𝜔)(𝛿)‖ ̂︀𝒳 .
Following the same proof technique we obtain the second bound for bounded ORFF.

Corollary 49

Let 𝐾 : 𝒳 × 𝒳 → ℒ(𝒴) be a shift-invariant 𝒴-Mercer kernel, where 𝒴 is a Hilbert space
and 𝒳 a finite dimensional Banach space of dimension 𝐷. Moreover, let 𝒞 be a closed ball
of 𝒳 centered at the origin of diameter |𝒞|, subset of 𝒳 , 𝐴 : ̂︀𝒳 → ℒ(𝒴) and Pr

Ĥaar,𝜌
a

pair such that �̃�𝑒 =
∑︀𝐷

𝑗=1 cos (·, 𝜔𝑗)𝐴(𝜔𝑗) ≈ 𝐾𝑒, 𝜔𝑗 ∼ Pr
Ĥaar,𝜌

i. i. d.. where 𝐴(𝜔𝑗) is a

Hilbert-Schmidt operator for all 𝑗 ∈ N*
𝐷. Let 𝒟𝒞 = 𝒞 ⋆ 𝒞−1 and 𝑉 (𝛿) < Var

Ĥaar,𝜌
�̃�𝑒(𝛿) for
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all 𝛿 ∈ 𝒟𝒞 and 𝐻𝜔 be the Lipschitz constant of the function ℎ : 𝑥 ↦→ (𝑥, 𝜔). If the three
following constant exists

𝑚 ≥
∫︁

̂︀𝒳 𝐻𝜔‖𝐴(𝜔)‖𝒴,𝒴𝑑Pr
Ĥaar,𝜌

<∞

and
𝑢 ≥ ess sup

𝜔∈ ̂︀𝒳 ‖𝐴(𝜔)‖𝒴,𝒴 + sup
𝛿∈𝒟𝒞

‖𝐾𝑒(𝛿)‖𝒴,𝒴 <∞

and
𝑣 ≥ sup

𝛿∈𝒟𝒞

𝐷‖𝑉 (𝛿)‖𝒴,𝒴 <∞.

define 𝑝𝑖𝑛𝑡 ≥ sup𝛿∈𝒟𝒞 IntDim (𝑉 (𝛿)) then for all
√︀

𝑣
𝐷 + 𝑢

3𝐷 < 𝜖 < 𝑚|𝒞|,

Pr
Ĥaar,𝜌

{︃
(𝜔𝑗)

𝐷
𝑗=1

⃒⃒⃒⃒
⃒ sup
𝛿∈𝒟𝒞

‖𝐹 (𝛿)‖𝒴,𝒴 ≥ 𝜖

}︃
≤ 8

√
2

(︂
𝑚|𝒞|
𝜖

)︂
𝑝

1
𝑑+1

𝑖𝑛𝑡 exp (−𝐷𝜓𝑣,𝑑,𝑢(𝜖))

where 𝜓𝑣,𝑑,𝑢(𝜖) =
𝜖2

2(𝑑+1)(𝑣+𝑢𝜖/3) .

B.2.5 Proof of the ORFF estimator variance bound (Proposition 33).

We use the notations 𝛿 = 𝑥 ⋆ 𝑧−1 for all 𝑥, 𝑧 ∈ 𝒳 , �̃�(𝑥, 𝑧) = ̃︀𝜑(𝑥)*̃︀𝜑(𝑧), �̃�𝑗(𝑥, 𝑧) =
𝜑𝑥(𝜔𝑗)

*𝜑𝑧(𝜔𝑗) and 𝐾𝑒(𝛿) = 𝐾𝑒(𝑥, 𝑧).

Proof Let 𝛿 ∈ 𝒟𝒞 be a constant. From the definition of the variance of a random variable
and using the fact that the (𝜔𝑗)

𝐷
𝑗=1 are i. i. d. random variables,

Var
Ĥaar,𝜌

[︁
�̃�𝑒(𝛿)

]︁
= E

Ĥaar,𝜌

⎡⎣ 1

𝐷

𝐷∑︁
𝑗=1

�̃�𝑗
𝑒(𝛿)−𝐾𝑒(𝛿)

⎤⎦2

=
1

𝐷2
E

Ĥaar,𝜌

⎡⎣ 𝐷∑︁
𝑗=1

�̃�𝑗
𝑒(𝛿)−𝐾𝑒(𝛿)

⎤⎦2

=
1

𝐷
E

Ĥaar,𝜌

[︁
�̃�𝑗
𝑒(𝛿)

2 − �̃�𝑗
𝑒(𝛿)𝐾𝑒(𝛿)−𝐾𝑒(𝛿)�̃�

𝑗
𝑒(𝛿) +𝐾𝑒(𝛿)

2
]︁

From the definition of �̃�𝑗
𝑒 , EĤaar,𝜌

�̃�𝑗
𝑒(𝛿) = 𝐾𝑒(𝛿), which leads to

Var
Ĥaar,𝜌

[︁
�̃�𝑒(𝛿)

]︁
=

1

𝐷
E

Ĥaar,𝜌

[︁
�̃�𝑗
𝑒(𝛿)

2 −𝐾𝑒(𝛿)
2
]︁

A trigonometric identity gives us (cos(𝛿, 𝜔))2 = 1
2 (cos(2𝛿, 𝜔) + cos(𝑒, 𝜔)). Thus

Var
Ĥaar,𝜌

[︁
�̃�𝑒(𝛿)

]︁
=

1

2𝐷
E

Ĥaar,𝜌

[︀
(cos(2𝛿, 𝜔) + cos(𝑒, 𝜔))𝐴(𝜔)2 − 2𝐾𝑒(𝛿)

2
]︀
.

Also,

E
Ĥaar,𝜌

[︀
cos(2𝛿, 𝜔)𝐴(𝜔)2

]︀
= E

Ĥaar,𝜌
[cos(2𝛿, 𝜔)𝐴(𝜔)]E

Ĥaar,𝜌
[𝐴(𝜔)]

+Cov
Ĥaar,𝜌

[cos(2𝛿, 𝜔)𝐴(𝜔), 𝐴(𝜔)]

= 𝐾𝑒(2𝛿)EĤaar,𝜌
[𝐴(𝜔)] +Cov

Ĥaar,𝜌
[cos(2𝛿, 𝜔)𝐴(𝜔), 𝐴(𝜔)]
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Similarly we obtain

E
Ĥaar,𝜌

[︀
cos(𝑒, 𝜔)𝐴(𝜔)2

]︀
= 𝐾𝑒(𝑒)EĤaar,𝜌

[𝐴(𝜔)] +Cov
Ĥaar,𝜌

[cos(𝑒, 𝜔)𝐴(𝜔), 𝐴(𝜔)]

Therefore

Var
Ĥaar,𝜌

[︁
�̃�𝑒(𝛿)

]︁
=

1

2𝐷

(︁
(𝐾𝑒(2𝛿) +𝐾𝑒(𝑒))EĤaar,𝜌

[𝐴(𝜔)]− 2𝐾𝑒(𝛿)
2

+Cov
Ĥaar,𝜌

[(cos(2𝛿, 𝜔) + cos(𝑒, 𝜔))𝐴(𝜔), 𝐴(𝜔)]
)︁

=
1

2𝐷

(︁
(𝐾𝑒(2𝛿) +𝐾𝑒(𝑒))EĤaar,𝜌

[𝐴(𝜔)]− 2𝐾𝑒(𝛿)
2

+Cov
Ĥaar,𝜌

[︁
(cos(𝛿, 𝜔))2𝐴(𝜔), 𝐴(𝜔)

]︁)︁
4

1

2𝐷

(︁
(𝐾𝑒(2𝛿) +𝐾𝑒(𝑒))EĤaar,𝜌

[𝐴(𝜔)]− 2𝐾𝑒(𝛿)
2 +Var

Ĥaar,𝜌
[𝐴(𝜔)]

)︁

B.3 Learning

B.3.1 Proof of Theorem 34

Proof Since 𝑓(𝑥) = 𝐾*
𝑥𝑓 , the optimization problem reads

𝑓𝑠 = argmin
𝑓∈ℋ𝐾

1

𝑁

𝑁∑︁
𝑖=1

𝑐(𝐾*
𝑥𝑖𝑓, 𝑦𝑖) +

𝜆

2
‖𝑓‖2𝐾

Let 𝑊𝑠 : ℋ𝐾 →
⨁︀𝑁

𝑖=1 𝒴 be the restriction14 linear operator defined as 𝑊𝑠𝑓 =
⨁︀𝑁

𝑖=1𝐾
*
𝑥𝑖𝑓 ,

with𝐾*
𝑥𝑖 : ℋ𝐾 → 𝒴 and𝐾𝑥𝑖 : 𝒴 → ℋ𝐾 . Let 𝑌 =

⨁︀𝑁
𝑖=1 𝑦𝑖 ∈ 𝒴𝑁 . We have ⟨𝑌,𝑊𝑠𝑓⟩⨁︀𝑁

𝑖=1 𝒴
=∑︀𝑁

𝑖=1⟨𝑦𝑖,𝐾*
𝑥𝑖𝑓⟩𝒴 =

∑︀𝑁
𝑖=1⟨𝐾𝑥𝑖𝑦𝑖, 𝑓⟩ℋ𝐾

. Thus the adjoint operator 𝑊 *
𝑠 :
⨁︀𝑁

𝑖=1 𝒴 → ℋ𝐾 is

𝑊 *
𝑠𝑌 =

∑︀𝑁
𝑖=1𝐾𝑥𝑖𝑦𝑖, and the operator 𝑊 *

𝑠𝑊𝑠 : ℋ𝐾 → ℋ𝐾 is 𝑊 *
𝑠𝑊𝑠𝑓 =

∑︀𝑁
𝑖=1𝐾𝑥𝑖𝐾

*
𝑥𝑖𝑓 .

Let R𝜆(𝑓, 𝑠) =
1

𝑁

𝑁∑︁
𝑖=1

𝑐(𝑓(𝑥𝑖), 𝑦𝑖)⏟  ⏞  
=R𝑐

+𝜆
2‖𝑓‖

2
𝐾 . To ensure that R𝜆 has a global minimizer we

need the following technical lemma (which is a consequence of the Hahn-Banach theorem
for lower-semicontimuous functional, see Kurdila and Zabarankin (2006)).

Lemma 50

Let R be a proper, convex, lower semi-continuous functional, defined on a Hilbert space ℋ.
If R is strongly convex, then R is coercive.

14. 𝑊𝑠 is sometimes called the sampling or evaluation operator as in Minh et al. (2016). However we prefer
calling it “restriction operator” as in Rosasco et al. (2010) since 𝑊𝑠𝑓 is the restriction of 𝑓 to the points
in 𝑠.
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Since 𝑐 is proper, lower semi-continuous and convex by assumption, thus the term R𝑐 is also
proper, lower semi-continuous and convex. Moreover the term 𝜆

2‖𝑓‖
2
𝐾 is strongly convex.

Thus R𝜆 is strongly convex. Apply Lemma 50 to obtain the coercivity of R𝜆, and then Mazur-
Schauder’s theorem (see Górniewicz (1999); Kurdila and Zabarankin (2006)) to show that R𝜆

has a unique minimizer and is attained. Then let ℋ𝐾,𝑠 =
{︁∑︀𝑁

𝑗=1𝐾𝑥𝑗𝑢𝑗

⃒⃒⃒
∀(𝑢𝑖)𝑁𝑖=1 ∈ 𝒴𝑁

}︁
.

For 𝑓 ∈ ℋ⊥
𝐾,𝑠

15, the operator 𝑊𝑠 satisfies ⟨𝑌,𝑊𝑠𝑓⟩⨁︀𝑁
𝑖=1 𝒴

= ⟨ 𝑓⏟ ⏞ 
∈ℋ⊥

𝐾,𝑠

,
𝑁∑︁
𝑖=1

𝐾𝑥𝑖𝑉
*𝑦𝑖⏟  ⏞  

∈ℋ𝐾,𝑠

⟩ℋ𝐾
= 0 for

all sequences (𝑦𝑖)
𝑁
𝑖=1, since 𝑦𝑖 ∈ 𝒴. Hence,

(39)(𝑓(𝑥𝑖))
𝑁
𝑖 =1 = 0

In the same way,
∑︀𝑁

𝑖=1⟨𝐾*
𝑥𝑖𝑓, 𝑢𝑖⟩𝒴 = ⟨ 𝑓⏟ ⏞ 

∈ℋ⊥
𝐾,𝑠

,
𝑁∑︁
𝑗=1

𝐾𝑥𝑗𝑢𝑗⏟  ⏞  
∈ℋ𝐾,𝑠

⟩ℋ𝐾
= 0. for all sequences (𝑢𝑖)

𝑁
𝑖=1 ∈

𝒴𝑁 . As a result,
(40)(𝑓(𝑥𝑖))

𝑁
𝑖 =1 = 0.

Now for an arbitrary 𝑓 ∈ ℋ𝒦, consider the orthogonal decomposition 𝑓 = 𝑓⊥ + 𝑓‖, where

𝑓⊥ ∈ ℋ⊥
𝐾,𝑠 and 𝑓‖ ∈ ℋ𝐾,𝑠. Then since

⃦⃦
𝑓⊥ + 𝑓‖

⃦⃦2
ℋ𝐾

=
⃦⃦
𝑓⊥
⃦⃦2
ℋ𝐾

+
⃦⃦
𝑓‖
⃦⃦2
ℋ𝐾

, Equation 39

and Equation 40 shows that if 𝜆 > 0, clearly then R𝜆(𝑓, 𝑠) = R𝜆

(︀
𝑓⊥ + 𝑓‖, 𝑠

)︀
≥ R𝜆

(︀
𝑓‖, 𝑠

)︀
The last inequality holds only when

⃦⃦
𝑓⊥
⃦⃦
ℋ𝐾

= 0, that is when 𝑓⊥ = 0. As a result since
the minimizer of R𝜆is unique and attained, it must lies in ℋ𝐾,𝑠.

B.3.2 Proof of Theorem 35

Proof Since ̃︀𝐾 is an operator-valued kernel, from Theorem 34, Equation 24 has a solution
of the form

̃︀𝑓𝑠 =

𝑁∑︁
𝑖=1

̃︀𝐾(·, 𝑥𝑖)𝑢𝑖 =
𝑁∑︁
𝑖=1

̃︀𝜑(·)*̃︀𝜑(𝑥𝑖)𝑢𝑖 = ̃︀𝜑(·)* (︃ 𝑁∑︁
𝑖=1

̃︀𝜑(𝑥𝑖)𝑢𝑖)︃⏟  ⏞  
=𝜃∈(Ker ̃︁𝑊)

⊥
⊂ ̃︀ℋ
,

where 𝑢𝑖 ∈ 𝒴 and 𝑥𝑖 ∈ 𝒳 . Let 𝜃𝑠 = argmin
𝜃∈(Ker ̃︁𝑊)

⊥
1
𝑁

∑︀𝑁
𝑖=1 𝑐

(︁̃︀𝜑(𝑥𝑖)*𝜃, 𝑦𝑖)︁+ 𝜆
2

⃦⃦⃦̃︀𝜑(·)*𝜃⃦⃦⃦2̃︀𝐾 .

Since 𝜃 ∈ (Ker ̃︁𝑊 )⊥ and 𝑊 is an isometry from (Ker ̃︁𝑊 )⊥ ⊂ ̃︀ℋ onto ℋ ̃︀𝐾 , we havẽ⃦⃦⃦︀𝜑(·)*𝜃⃦⃦⃦2̃︀𝐾 = ‖𝜃‖2̃︀ℋ. Hence 𝜃𝑠 = argmin
𝜃∈(Ker ̃︁𝑊)

⊥
1
𝑁

∑︀𝑁
𝑖=1 𝑐

(︁̃︀𝜑(𝑥𝑖)*𝜃, 𝑦𝑖)︁+ 𝜆
2‖𝜃‖

2̃︀ℋ Finding a

minimizer 𝜃𝑠 over
(︁
Ker ̃︁𝑊)︁⊥ is not the same as finding a minimizer over ̃︀ℋ. Although in both

cases Mazur-Schauder’s theorem guarantees that the respective minimizers are unique, they

15. ℋ⊥
𝐾,𝑠 ⊕ℋ𝐾,𝑠 = ℋ𝐾 because 𝑊𝑠 is bounded.
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might not be the same. Since ̃︁𝑊 is bounded, Ker ̃︁𝑊 is closed, so that we can perform the de-

composition ̃︀ℋ =
(︁
Ker ̃︁𝑊)︁⊥⊕(︁Ker ̃︁𝑊)︁. Then clearly by linearity of𝑊 and the fact that for

all 𝜃‖ ∈ Ker ̃︁𝑊 , ̃︁𝑊𝜃‖ = 0, if 𝜆 > 0 we have 𝜃𝑠 = argmin
𝜃∈ ̃︀ℋ 1

𝑁

∑︀𝑁
𝑖=1 𝑐

(︁̃︀𝜑(𝑥𝑖)*𝜃, 𝑦𝑖)︁+ 𝜆
2‖𝜃‖

2̃︀ℋ
Thus 𝜃𝑠 = argmin

𝜃⊥∈(Ker ̃︁𝑊)
⊥
,

𝜃‖∈Ker ̃︁𝑊
1
𝑁

∑︀𝑁
𝑖=1 𝑐

⎛⎜⎜⎝(︁̃︁𝑊𝜃⊥
)︁
(𝑥) +

(︁̃︁𝑊𝜃‖
)︁
(𝑥)⏟  ⏞  

=0 for all 𝜃‖

, 𝑦𝑖

⎞⎟⎟⎠ + 𝜆
2

⃦⃦
𝜃⊥
⃦⃦2̃︀ℋ +

𝜆

2

⃦⃦⃦
𝜃‖
⃦⃦⃦2

̃︀ℋ⏟  ⏞  
=0 only if 𝜃‖=0

Thus 𝜃𝑠 = argmin
𝜃⊥∈(Ker ̃︁𝑊)

⊥
1
𝑁

∑︀𝑁
𝑖=1 𝑐

(︁(︁̃︁𝑊𝜃⊥
)︁
(𝑥), 𝑦𝑖

)︁
+ 𝜆

2

⃦⃦
𝜃⊥
⃦⃦2̃︀ℋ

Hence minimizing over
(︁
Ker ̃︁𝑊)︁⊥ or ̃︀ℋ𝜔 is the same when 𝜆 > 0. Eventually,

𝜃𝑠 = argmin
𝜃∈ ̃︀ℋ 1

𝑁

∑︀𝑁
𝑖=1 𝑐

(︁̃︀𝜑(𝑥𝑖)*𝜃, 𝑦𝑖)︁+ 𝜆
2‖𝜃‖

2̃︀ℋ.
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C. Brouard, F. d’Alché-Buc, and M. Szafranski. Input output kernel regression. to appear
in JMLR, 2016a.
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