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Abstract

In this paper, the folding methodology developed in the context of univariate Extreme Value
Theory (EVT) by You et al. (2010) is extended to a multivariate framework. Under the usual
EVT assumption of regularly varying tails, our multivariate folding allows for the estimation
of the spectral probability measure. A new weakly consistent estimator based on the classical
empirical estimator is proposed. Its behaviour is illustrated through simulations and an actuarial
application relative to reinsurance pricing in the case of an insurance dataset.
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1 Motivation
In practical applications where extreme phenomena are involved, modeling dependence among
extremes is a fundamental issue. Actuarial sciences give rise to many situations where multi-
variate extremes play a central role. In non life insurance, several lines of business in a portfolio
(motor, household, commercial,...) can be exposed to the same catastrophic events (windstorm,
floods,...). Non proportional reinsurance programs can be set up in order to cover simultaneously
these lines of business against such events. In the context of the Solvency 2 prudential frame-
work, the SCR (“Solvency Capital Requirement”), which is the risk-based regulatory amount
to hold against unforeseen extreme events, covers all the potential (and quantifiable) sources
of risk (assets, insurance claims, operational,...) and takes the dependence among risks into
account (the so-called diversification effect). More generally, multivariate extremes can arise in
situations where many variables are involved or where spatial and/or time dependence occurs.

In this paper, we are particularly interested in the estimation of quantities related to rare events
in a multivariate framework. Actuaries often have to deal with the computation of complex
nonlinear functions of random variables. For bivariate data (X,Y ), a general expression for
these functions of interest is:

Q = E [g(X,Y )] (1)
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Among examples of such functions, one can cite reinsurance premiums or the probability of a
rare event (e.g. attachment point of an excess-of-loss treaty or stress scenario combining uni-
variate claims assumptions).To illustrate the usefulness and practical relevance of our approach,
we will use the Loss-ALAE dataset, already analyzed in Frees & Valdez (1998). It consists of
a set of n = 1500 general liability claims randomly chosen from late settlement lags and that
were provided by Insurance Services Office, Inc. Each claim consists of an indemnity payment
(the loss) and an allocated loss adjustment expense (ALAE), that is, an expense specifically
attributable to the settlement of the individual claim such as lawyer’s fees and claims investi-
gation expenses. For each claim, the total amount paid by the insurance company is equal to
the sum of the loss (X) and the ALAE (Y ).

To reach this goal, we develop a methodology based on the estimation of the spectral prob-
ability measure, whose definition is recalled in Section 2.1. The estimation method used in this
paper is an extension of the folding approach (see You et al., 2010), recalled in Section 2.2,
to the multivariate setting (see Section 2.3). A class of estimators of the spectral probability
measure based on this folded method is proposed in Section 3 and their weak consistency are
also established. The performances of these estimators through simulations are illustrated in
Section 4. Finally, also in this last section, we come back to our initial estimation problem of
(1) with our set of real insurance data. Proofs are postponed to Section 5.

2 Spectral probability measure and folding method
In this section, we start to recall the definition of the spectral measure, afterwards we present
the folding methodology developed in You et al. (2010). Then we define the multidimensional
version of the folding transformation in a multivariate extreme value framework with some
application to statistical estimation problems.

2.1 Spectral probability measure
In the following, we consider a random vector X = (X(1), . . . , X(d)) with a distribution function
F on Rd+ = [0,∞)d. Let ‖ · ‖ be a norm on Rd and ℵ :=

{
x ∈ Rd : ‖x‖ = 1

}
the unit sphere of

Rd with respect to this norm. Denote by

T (X) := (R,Θ) =

(
‖X‖, X

‖X‖

)
the polar coordinates of X, where R is the radius of X and Θ its polar angle. Define the spaces
E := R d

+\ {0} and ℵ+ := ℵ∩E where R+ := [0,∞]. Note also byM+(E) andM+ ((0,∞]× ℵ+)
the sets of all nonzero Radon measures on E and (0,∞] × ℵ+, respectively. We assume that
X has a regularly varying tail F := 1 − F , that is, there exist a Radon measure ν on E and
bn →∞ such that

nP
(

X

bn
∈ ·
)

v−→ ν(·) , n→∞ (2)

in M+(E), where v−→ denotes the vague convergence of measures. An equivalent statement in
terms of the polar coordinates is the following: there exist a probability measure S(·) on Borel
subsets of ℵ+ and bn →∞ such that

nP
((

R

bn
,Θ

)
∈ ·
)

v−→ c να × S(·) , n→∞ (3)

in M+ ((0,∞]× ℵ+) for some c > 0 and α > 0, where να(r,∞] = r−α. Hence, the radial
component and the angular component are asymptotically independent. The so-called spectral
probability measure S (de Haan & Resnick, 1977) summarizes the dependence among extremes.
In statistics of multivariate extremes, estimation of the spectral probability measure is a crucial
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problem which has focused much attention in the literature (see, e.g., Einmahl et al., 1993, 1997,
2001; Einmahl & Segers, 2009).

2.2 Univariate folding methodology
Recently, You et al. (2010) introduced a new approach for statistical estimation problems in Ex-
treme Value Theory (EVT). Their method relies on the use of a folding transformation, defined
by Corcoran & Schneider (2003) in the context of “perfect sampling”. The explicit formulation
and the fundamental property of this folding transformation are given in the following lemma.

Lemma 1. Let X be a random variable with an absolutely continuous distribution function F
and a real number u < τF where τF = sup {x ∈ R : F (x) < 1} is the right endpoint of F . We
can define the following folding random variable

X(F )(u) =

F ←
(
F (u)

F (u)
F (X) + F (u)

)
if X < u,

X if X ≥ u,
(4)

where F := 1 − F is the survival function of X and F ← is the inverse function of F . Then
P
(
X(F )(u) ≤ x

)
= P (X ≤ x |X > u ) for all x.

When X falls under the fixed threshold u, the folding transformation defined by (4) can be
decomposed into three steps, as illustrated in Figure 1. Firstly, the variable X is transformed
into F (X), which takes its values in [0, F (u)). Secondly, a scaling/shifting transformation is
applied in order to obtain a random variable taking its values in [F (u), 1). Thirdly, the inverse
function F ← is applied to bring the modified variable into [u, τF ).
This transformation has been studied in the univariate independent and identically distributed

Figure 1: The folding mechanism

(iid) case and an adaptation of the classical Peaks-Over-Thresholds approach has been proposed.
Simulations tend to indicate that this method improves significantly the performances of extreme
quantiles estimators in finite sample situations. Below, we define a multidimensional version of
the folding transformation and the statistical procedure which allows us to build the folded
version of the sample.

2.3 A multivariate folding transformation
The following definition extends the univariate folding transformation and Lemma 2 below its
fundamental property studied by You et al. (2010) to a multivariate extreme value framework.

Definition 1. Let X be a Rd+-valued random vector with distribution F and suppose that the
tail F := 1 − F is regularly varying. For u > 0, define the folded random vector X

(F )
u by its

polar coordinates
T (X(F )

u ) = (R(F )
u ,Θ(F )

u )

where

• R(F )
u := F ←R

(
FR(u)

FR(u)
FR(R) + FR(u)

)
1l{R ≤ u}+R 1l{R > u} (5)

• Θ(F )
u := ΘS 1l{R ≤ u}+ Θ 1l{R > u} (6)

• ΘS is a random vector on ℵ+ that is independent of R and such that P(ΘS ∈ ·) = S(·) (7)

with FR(u) = 1− FR(u) = P(R ≤ u).
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Lemma 2. Let (R
(F )
u ,Θ

(F )
u ) be defined as in Definition 1. Then, for all x ≥ 1,

P(R(F )
u > xu,Θ(F )

u ∈ ·) v−→ x−α × S(·) , as u→∞

in M+ (ℵ+).

Notice that the random variables R(F )
u and Θ

(F )
u are well defined polar coordinates since

‖Θ(F )
u ‖ = ‖ΘS‖ 1l{R ≤ u}+ ‖Θ‖ 1l{R > u} = 1.

The folding transformation defined in Definition 1 consists in a two-step mechanism. In the first
step (“radial folding”), any point whose radius falls below the “circular” threshold u is sent above
it through a univariate folding transformation (see Lemma 1) which is applied to its radius. In
the second step (“angular folding”), its polar angle is re-drawn from the spectral probability
measure S, i.e. the angular distribution for extreme points far from the origin.
Now we consider a sample of n iid random vectors X1, . . . ,Xn with the distribution function
F on Rd+. Let T (Xi) = (Ri,Θi), i = 1, . . . , n, be the polar coordinates and R1,n ≤ . . . ≤ Rn,n
the order statistics of the sample radii R1, . . . , Rn. To apply the folding transformation defined
in Definition 1 to our sample, we have to estimate the unknown quantities: the distribution
function FR and its inverse F ←R are needed for folding the radii R1, . . . , Rn (see (5)), whereas
the spectral probability measure S is required for folding the polar angles Θ1, . . . ,Θn (see (6)
and (7)). We choose the following preliminary estimators based on the original (i.e. non folded)
sample:

• For r ≤ u, FR(r) is estimated by the empirical distribution function

Fn,R(r) :=
1

n

n∑
i=1

1l{Ri ≤ r} (8)

whereas FR(r) is estimated by Fn,R(r) := 1− Fn,R(r).

• Concerning the estimation of the inverse F ←R , for 0 < p < 1, we denote by rp the quantile
of order 1−p of R, that is, FR(rp) = P(R > rp) = p. From the regular variation condition,
we get

P(R > rp) =
P(R >

rp
u u)

P(R > u)
P(R > u) ≈

(rp
u

)−α
P(R > u).

Hence rp ≈ u
(
p/FR(u)

)−1/α
. This approximation suggests an estimation for rp = F ←R (1−

p), provided that FR(u) and α are also replaced by some estimators. As above, FR(u) is
estimated by Fn,R(u), whereas the index α can be estimated by one of the many estimators
that are available in the EVT literature (see, e.g., Hill, 1975; Pickands, 1975; Dekkers et
al., 1989; Beirlant et al., 1996, 2005). We use the classical Hill (1975) estimator

1/α̂ := HNu,n :=
1

Nu

n∑
j=1

log
Rj
u

1l{Rj > u}

with Nu :=
∑n
j=1 1l{Rj > u}. It follows that an estimator of F ←R is given by

F̂ ←R (1− p) := r̂p := u

(
Fn,R(u)

p

)HNu,n

. (9)

If the threshold u is chosen as some order statistic of the radii R1, . . . , Rn, the above esti-
mator is the Weissman (1978) estimator.
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• A preliminary estimation of the spectral probability measure S is given by the empirical
spectral probability measure (see, e.g., Einmahl et al., 2001; de Haan & Ferreira, 2006;
Resnick, 2006)

Ŝ(·) :=

∑n
i=1 1l{Ri > Rn−k,n,Θi ∈ ·}∑n

i=1 1l{Ri > Rn−k,n}
(10)

where k is the number of upper order statistics taken into account for estimating S, or,
equivalently, the number of radii larger than the radial threshold Rn−k,n. This estimator
is weakly consistent (see Theorem 2 in Section 5).

From (5), the folded versions of the radii R1, . . . , Rn can be therefore defined by

R̂
(F )
i,u := F̂ ←R

(
δ(n)

Fn,R(u)

Fn,R(u)
Fn,R(Ri) + Fn,R(u)

)
1l{Fn,R(Ri) ≤ Fn,R(u)}+Ri 1l{Fn,R(Ri) > Fn,R(u)}

where δ(n) is some continuity correction which is applied in the above expression in order to
prevent the case R̂(F )

i,u = ∞ which can occur for Ri such that Fn,R(Ri) = Fn,R(u). It will
be chosen such that 0 < δ(n) < 1 and δ(n) → 1 as n → ∞. Some good candidates are e.g.
δ(n) = n/(n+ 1) or δ(n) = (n− 1)/n. Expression (9) gives

R̂
(F )
i,u = u

(
1− δ(n)

Fn,R(Ri)

Fn,R(u)

)−HNu,n

1l{Fn,R(Ri) ≤ Fn,R(u)}+Ri 1l{Fn,R(Ri) > Fn,R(u)}

(11)
whereas the folded versions of the polar angles Θ1, . . . ,Θn can be defined by

Θ̂
(F )
i,u := ΘŜ,i 1l{Fn,R(Ri) ≤ Fn,R(u)}+ Θi 1l{Fn,R(Ri) > Fn,R(u)} (12)

where ΘŜ,1, . . . ,ΘŜ,n are iid random vectors on ℵ+ such that P(ΘŜ,1 ∈ ·|X1, . . . ,Xn) = Ŝ(·).
Finally, the folded versions of the random vectors X1, . . . ,Xn are

X̂
(F )
i,u := T ←

(
R̂

(F )
i,u , Θ̂

(F )
i,u

)
= R̂

(F )
i,u Θ̂

(F )
i,u , i = 1, . . . , n. (13)

A practical example of the folding transformation for a bivariate sample is shown in Figures 2
and 3. The original sample is plotted in Figure 2 whereas the folded sample is displayed in
Figure 3 (left panel). In the latter, the radial threshold u is materialized by the “empty” area
around the origin, illustrating the fact that the original sample has been replaced by pseudo-
observations (as defined by (13)) that are all above the threshold u.

3 Estimation of the spectral probability measure with the
folded sample
Now we can propose a new estimator of the spectral probability measure S based on the folded
sample X̂

(F )
1,u , . . . , X̂

(F )
n,u . The idea is to replace the observations by their folded versions in the

empirical spectral probability measure (10), that is,

Ŝ(F )
u (·) :=

∑n
i=1 1l

{
R̂

(F )
i,u > Rn−k,n, Θ̂

(F )
i,u ∈ ·

}
∑n
i=1 1l

{
R̂

(F )
i,u > Rn−k,n

} .

Given that R̂(F )
i,u /Rn−k,n are actually the relative exceedances above the threshold Rn−k,n, it

seems natural to choose u = uk,n = Rn−k,n as the folding threshold. Expressions (11) and (12)
which define the folded polar coordinates become respectively

R̂
(F )
i,uk,n

= Rn−k,n

(
1− δ(n)

rR,i
n− k

)−Hk,n

1l{rR,i ≤ n− k}+Ri 1l{rR,i > n− k} (14)
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and
Θ̂

(F )
i,uk,n

= ΘŜ,i 1l{rR,i ≤ n− k}+ Θi 1l{rR,i > n− k}, i = 1, . . . , n (15)

where rR,i, i = 1, . . . , n, are the rank statistics of the radii R1, . . . , Rn, that is, rR,i :=∑n
j=1 1l{Rj ≤ Ri}, i = 1, . . . , n. Our folded estimator of the spectral probability measure S

can be rewritten as

Ŝ(F )
uk,n

(·) :=

∑n
i=1 1l

{
R̂

(F )
i,uk,n

> uk,n, Θ̂
(F )
i,uk,n

∈ ·
}

∑n
i=1 1l

{
R̂

(F )
i,uk,n

> uk,n

}
=

1

n

n∑
i=1

1l
{

Θ̂
(F )
i,uk,n

∈ ·
}

(16)

since R̂(F )
i,uk,n

> uk,n for all i = 1, . . . , n by construction. Our estimator is then nothing else

than the empirical distribution function of the folded polar angles Θ̂
(F )
1,uk,n

, . . . , Θ̂
(F )
n,uk,n . This is

a remarkable feature since the folded radii R̂(F )
1,uk,n

, . . . , R̂
(F )
n,uk,n do not enter into the estimation

of the spectral probability measure (i.e. it is only required that all the folded radii overshoot
the threshold).

The next result gives the weak consistency of the folded estimator of S.

Proposition 1. Let X1, . . . ,Xn be iid random vectors with a distribution function F on Rd+
whose tail is regularly varying and with polar coordinates T (Xi) = (Ri,Θi), i = 1, . . . , n. Denote
by
(
R̂

(F )
i,uk,n

, Θ̂
(F )
i,uk,n

)
, i = 1, . . . , n, the folded polar coordinates as defined by (14) and (15),

respectively, with uk,n = Rn−k,n. Then, conditionally on X1, . . . ,Xn, we have

Ŝ(F )
uk,n

(·) =
1

n

n∑
i=1

1l
{

Θ̂
(F )
i,uk,n

∈ ·
}

d−→ S(·) (17)

in M+ (ℵ+) as n→∞, k = k(n)→∞, k/n→ 0.

The previous statistical framework is valid under the regular variation assumption (2). As
usual, we assume that all the marginals of X are tail equivalent to a Pareto distribution with
the same extreme value index α. This corresponds to the so-called standard case of regular
variation where bn = n (or b(t) = t) and α = 1 (de Haan & Resnick, 1977; Resnick, 1987). In
practical situations, marginals of a random vector are generally not tail equivalent and, though
it is convenient for theoretical developments, the preceding framework is a bit restrictive for
applications. Some techniques have been proposed in the literature in order to get back to the
standard case when starting from more generic (nonstandard) regular variation conditions. We
propose here to use the ranks method (see, e.g., de Haan & de Ronde, 1998; Einmahl et al.,
2001; de Haan & Ferreira, 2006; Resnick, 2006); see Theorem 1 in Section 5 for the theoretical
motivation of the method. The underlying idea is to transform the marginals of the random
vector into unit Pareto distributions via a nonparametric approach: Denoting by X(j)

i the j-th
component of Xi, the rank transformed sample is defined by(

n

n+ 1− rX(j),i

, j = 1, . . . , d

)
, i = 1, . . . , n,

where rX(j),i, i = 1, . . . , n, are the rank statistics of the univariate sample X(j)
1 , . . . , X

(j)
n , that

is, rX(j),i :=
∑n
m=1 1l{X(j)

m ≤ X(j)
i }.

Taking the polar coordinates

T

(
n

n+ 1− ri

)
=: (Ri,Θi) , i = 1, . . . , n,
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where ri := (rX(1),i, . . . , rX(d),i), the folding can be applied according to formulæ (11) and
(12) with the folding threshold chosen as uk,n = n/k. We obtain the folded polar coordinates(
R̂

(F )
i,uk,n

, Θ̂
(F )
i,uk,n

)
, i = 1, . . . , n, and the folded empirical estimator (16) can be computed. Notice

that, as a consequence of the rank transformation, the estimator is invariant under monotone
transformations of the marginals. In particular, it does not depend on the marginal distributions
of the random vector X. The next result states that the folded empirical spectral probability
measure based on the rank transformed data is weakly consistent.

Proposition 2. Let X1, . . . ,Xn be iid random vectors with a distribution function F on Rd+
whose tail satisfies the nonstandard regular variation conditions (23) and (24). The polar coordi-
nates of the rank transformed observations are denoted by T

(
n

n+1−ri

)
= (Ri,Θi), i = 1, . . . , n.

Let
(
R̂

(F )
i,uk,n

, Θ̂
(F )
i,uk,n

)
, i = 1, . . . , n, be the folded polar coordinates, with uk,n = n/k. Then,

conditionally on X1, . . . ,Xn, we have

Ŝ(F )
uk,n

(·) =
1

n

n∑
i=1

1l
{

Θ̂
(F )
i,uk,n

∈ ·
}

d−→ S(·) (18)

in M+ (ℵ+) as n→∞, k = k(n)→∞, k/n→ 0.

4 Simulations and an insurance data application
An important step on the way of estimating quantities of interest related to multivariate extremes
such as defined by (1) is the determination of the spectral probability measure. To this aim, we
start to illustrate the efficiency of our approach in estimating the spectral probability measure on
two simulated examples: the autoregressive conditional heteroscedasticity (ARCH) model, used
in financial time series modelling, and the asymmetric logistic model, used in copula modelling.
Then, we come back to our initial problem of estimating expressions of the form (1) and propose
a simple approach based on Monte Carlo simulations. An application of this simulation-based
approach is shown by estimating reinsurance premiums with the Loss-ALAE dataset.

4.1 ARCH(1) process
We consider the ARCH(1) process defined by

Xt = (β + λX2
t−1)1/2Zt , t ∈ N (19)

where (Zt) is a sequence of iid standard normal random variables and β, λ > 0. ARCH processes
have been introduced by Engle (1982) and are widely used for financial time series modelling (e.g.
exchange rates), especially when one has to deal with volatility clustering. The mathematical
properties of such processes have been extensively studied in the literature (see, e.g., Embrechts
et al., 1997, Section 8.4). In particular, it is well-known that equation (19) admits a stationary
solution (Xt) if 0 < λ < 2eγ , where γ ≈ 0.5772 is the Euler’s constant. This solution has infinite
variance if 1 ≤ λ < 2eγ and although the innovations (Zt) are light-tailed, the tail behavior of
Xt is of Pareto-type:

P(Xt > x) ∼ cβ,λ,κ x−α , x→∞

where α is the unique solution of the equation E(λZ2)α/2 = 1 with Z ∼ N (0, 1) and cβ,λ,α is
a constant that depends on β, λ and α. The equation E(λZ2)α/2 = 1 must be solved using
numerical methods.
If we consider now the pair (Xt, Xt+1) with (Xt) a stationary ARCH(1) process, the distribution
tail of this random vector is regularly varying (see Davis & Mikosch, 1998, Lemma A.1), that is
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there exists a sequence bn →∞ such that

nP
(
b−1
n ‖(Xt, Xt+1)‖ > r,

(Xt, Xt+1)

‖(Xt, Xt+1)‖
∈ ·
)

d−→ r−α
E
(
‖(Bt, λ1/2Zt+1)‖α1l

{
(Bt, λ

1/2Zt+1)

‖(Bt, λ1/2Zt+1)‖
∈ ·
})

E
(
‖(Bt, λ1/2Zt+1)‖α

) (20)

in M+(ℵ ∩ E) as n → ∞, where E = R2\ {0} and (Bt) is a sequence of iid random variables
defined by P(Bt = 1) = P(Bt = −1) = 1/2 and independent of |Xt|. The chosen norm is the
L2-norm, i.e. ‖x‖2 = (x(1))2 + (x(2))2.
Let us take the ARCH(1) process with parameters (β, λ) = (1, 0.9). A numerical routine gives
us α = 2.3. We want to estimate the spectral probability measure in (20). To illustrate our
folding procedure in this case, n = 5000 values of (Xt) have been generated from the ARCH(1)
process (see Figure 2). The folded versions of (Xt, Xt+1) have been obtained over a threshold
uk,n, taken as the empirical quantile of the radii Rt := ‖(Xt, Xt+1)‖ at level 0.95 (i.e. k = 250
exceedances).
Figure 3 (left) represents the scatterplot of the folded versions of (Xt, Xt+1) with the “true” ex-
ceedances (i.e. exceedances before application of the folding method) together with the “pseudo-
exceedances” (i.e. observations initially below the threshold). Also Figure 3 (right) illustrates
the comparison between the spectral density estimates using the conventional estimator (10),
the folded estimator (16) and the true spectral density which has been computed numerically.
The folding yields a density estimate that seems closer to the true spectral density than the con-
ventional empirical estimator. This result is confirmed with a Mean Integrated Squared Error
criterion (MISE) based on 1000 sequences of length n = 5000 from the ARCH(1) process and
computed for several values of the thresholding parameter k (from 50 to 2000). For these two
methods, the empirical MISE have been computed over the 1000 samples as follows:

M̂ISE
(
Ŝ
)

:=
1

1000

1000∑
i=1

∫ 2π

0

(
Ŝi([0, θ])− S([0, θ])

)2

dθ (21)

M̂ISE
(
Ŝ(F )
uk,n

)
:=

1

1000

1000∑
i=1

∫ 2π

0

(
Ŝ

(F )
uk,n,i

([0, θ])− S([0, θ])
)2

dθ (22)

where S, Ŝi and Ŝ
(F )
uk,n,i

denote the true spectral measure from (20), the conventional estimator
and the folded estimator for the i-th sequence, respectively. Results are shown in Figure 4. The
folding estimator outperforms the conventional empirical estimator for the whole range of values
of the thresholding parameter k.

Figure 2: Time series plot of the ARCH(1) process (left) and scatterplot of (Xt, Xt+1) (right).

4.2 Asymmetric logistic model
We consider the bivariate extreme value distribution with unit Fréchet margins, defined by

G0(x, y) := exp

{
−`
(

1

x
,

1

y

)}
, x, y > 0

where the function ` is called the stable tail dependence function. An example of parametric
form for the function ` is given by the asymmetric logistic model (Tawn, 1988)

`(x, y) := (1− ψ1)x+ (1− ψ2)y + {(ψ1x)r + (ψ2y)r}1/r , x, y ≥ 0

8



Figure 3: Scatterplot of the folded versions of (Xt, Xt+1) (left): “true” exceedances (“+”) and
pseudo-exceedances (dots) over the threshold u. Spectral density estimates for (Xt, Xt+1) (right):
conventional empirical estimator (dotted line) and folded estimator (solid line), compared to the
true density (grey). To ease graphical representation, density curves have been smoothed using a
kernel estimator.

Figure 4: MISE of the conventional empirical estimator (dotted line) and the folded estimator (solid
line) for 1000 sequences of length n = 5000 from the ARCH(1) process.

with 0 ≤ ψ1, ψ2 ≤ 1 and r ≥ 1 (notation: LM(ψ1, ψ2, r)). The asymmetric logistic model
has been extensively used in the extreme value copulas framework for large claims modelling
and excess-of-loss reinsurance issues (see, e.g., Beirlant et al., 2004; Cebrián et al., 2003; Frees
& Valdez, 1998). It is a very flexible dependence model which encompasses a wide range of
situations, from asymptotic independence (r = 1 or ψ1ψ2 = 0) to full dependence (ψ1 = ψ2 = 1
and r =∞). Values of ψ1 and ψ2 different from 1 allow us to build dependence structures whose
spectral measure has atoms on π/2 and 0, respectively. The special case ψ1 = ψ2 = 1 yields the
Gumbel’s model (Gumbel, 1960). The tail of G0 is regularly varying with the limit measure ν
given by

ν((x,∞]× (y,∞]) = `

(
1

x
,

1

y

)
.

The spectral probability measure S on [0, π/2] is given by

S({0}) =
1− ψ2∫ π/2

0
dQ(θ)

S({π/2}) =
1− ψ1∫ π/2

0
dQ(θ)

S(Λ) =

∫
Λ
dQ(θ)∫ π/2

0
dQ(θ)

, Λ ∩ {0, π/2} = ∅

with

dQ

dθ
(θ) := (r − 1)(ψ1ψ2)r(sin θ + cos θ)r−2(sin θ cos θ)r−2 {(ψ1 cos θ)r + (ψ2 sin θ)r}1/r−2

for 1 < r <∞.
For this example, we have simulated 1000 samples of size n = 1000 from two logistic models
LM(1,1,1.25) and LM(1,1,2.5). The chosen norm is again the L2-norm. Folding has been
performed on the rank transformed samples and the spectral probability measure has been
estimated with the three following estimators: the conventional and the folded estimators, as
defined by (10) and (16), respectively, and the maximum empirical likelihood estimator (MELE)
recently proposed by Einmahl & Segers (2009). The thresholding parameter k has been allowed
to vary. For each model, a scatterplot for one sample is displayed in Figure 5. For k = 100
in the LM(1,1,1.25) model and k = 200 in the LM(1,1,2.5) model, the folded versions of the
rank transformed samples and the spectral density estimates are displayed in Figures 6 and 7,
respectively. To ease visualization, Figures 5 and 6 are on a logarithmic scale.
For these three methods, the empirical MISE have been computed over the 1000 samples using

9



formula (21) and (22) for Ŝ and Ŝ(F )
uk,n and a similar expression for the MELE:

M̂ISE
(
ŜMELE

)
:=

1

1000

1000∑
i=1

∫ π/2

0

(
ŜMELE
i ([0, θ])− S([0, θ])

)2

dθ

where ŜMELE
i denotes the MELE for the i-th sample. Results are shown in Figure 8. For both

logistic models, the folded estimator is better than both the conventional empirical estimator
and the MELE for a wide range of values of k (the conventional estimator and the MELE
perform slightly better for small values of k). Moreover, the MISE of the folded estimator seems
more stable as k varies than the conventional estimator. From a practical point of view, this
means that making a “wrong” choice of the thresholding parameter k has a smaller consequence
on the statistical performance of the estimation in the case of the folding.

Figure 5: Scatterplots of n = 1000 random vectors from the models LM(1,1,1.25) and LM(1,1,2.5)
(on a logarithmic scale).

Figure 6: Folded versions of the samples displayed in Figure 5, after rank transformation (on a
logarithmic scale): “true” exceedances (“+”) and pseudo-exceedances (dots) over the thresholds
uk,n = n/k.

Figure 7: Spectral density estimates for the samples displayed in Figure 5: conventional empirical
estimator (dotted line), folded estimator (solid line) and MELE (dashed line), compared to the true
density (grey). To ease graphical representation, density curves have been smoothed using a kernel
estimator.

4.3 Application to the Loss-ALAE dataset
We come back to our initial estimation problem presented in Section 1. This dataset of size
n = 1500 has been first analyzed in Frees & Valdez (1998) in the context of copula fitting. Spec-
tral measure estimation has been considered in Einmahl & Segers (2009); see also Chapter 9
in Beirlant et al. (2004) for an extended statistical analysis. The data are displayed in Figure 9.
The plot suggests a strong relationship between the two components at intermediate levels (the
correlation between losses and ALAE is 0.44 in log-scale). Firstly, we seek to estimate the un-
derlying spectral probability measure. In Beirlant et al. (2004), Generalized Pareto distributions
are fitted to the marginals conditionally on being above a high threshold, with Pareto index es-
timates equal respectively to α̂1 = 1.92 (Loss) and α̂2 = 2.13 (ALAE). Considering these values,
one can assume the equality of tail indices in the following. Hence, the spectral probability mea-
sure can be estimated without any prior transformation of the marginals. The following values
for the thresholding parameter have been used: k = 25, 50, 100, 200. The spectral probability
measure is estimated using the conventional estimator (10), the folded estimator (16) and the
MELE from Einmahl & Segers (2009). Spectral density estimates are displayed in Figure 10.
The MELE is basically close to the conventional estimate. For every value of k, all the estimates
indicate a bimodal density with modes located near 0 and π/2, so there is some evidence for
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Figure 8: MISE of the conventional empirical estimator (dotted line), the folded estimator (solid
line) and the MELE (dashed line) for 1000 samples of size n = 1000 from the models LM(1,1,1.25)
and LM(1,1,2.5).

some asymptotic dependence between losses and ALAE, even if it seems that the mass is getting
more concentrated around the modes as k decreases.

With the spectral probability measure being estimated, we can examine some estimation prob-
lems related to rare events in a multivariate framework, such as functions Q defined in (1). In
Frees & Valdez (1998), the authors propose to evaluate reinsurance premiums for an excess-
of-loss treaty with deductible D and limit L. The corresponding function g in (1) is given
by

g(X,Y ) =


0 if X < D,

X −D + X−D
X Y if D ≤ X < L,

L−D + L−D
L Y if X ≤ L.

With such a kind of treaty, each claim triggers the reinsurance cover according to the amount
of loss (X) and the ALAE (Y ) are ceded to the reinsurer on a prorata basis. Other possible
applications include the estimation of a probability of a rare event (e.g. attachment point of an
excess-of-loss treaty or stress scenario combining univariate claims assumptions) with a function
g of the form g = 1l {(X,Y ) ∈ B} where B is a risk region of interest.

These quantities can be estimated using a simple approach based on Monte Carlo simulations:

1. Simulate m iid pairs (Ui, Vi), i = 1, . . . ,m, with Ui and Vi independent uniform (0, 1)
random numbers;

2. Compute R̃i = uk,n(1−Ui)−1/α̂ and Θ̃i = Ŝ
(F )←
uk,n (Vi), i = 1, . . . ,m, where α̂ is an estimate

of the Pareto index of the radial component in (3) and Ŝ
(F )←
uk,n is the empirical quantile

function for the folded estimate Ŝ(F )
uk,n of the spectral probability measure S;

3. Compute (X̃i, Ỹi) := (R̃i cos Θ̃i, R̃i sin Θ̃i), i = 1, . . . ,m;

4. Estimate Q = E [g(X,Y )] by

Q̂ =
1

m

m∑
i=1

g(X̃i, Ỹi) ·
k

n
+

∑n
j g(Xj , Yj)1l {Rj ≤ uk,n}∑n

j 1l {Rj ≤ uk,n}
·
(

1− k

n

)

with the expression for Q̂ coming from the fact that

E [g(X,Y )] = E [g(X,Y )|R > uk,n]P(R > uk,n) + E [g(X,Y )|R ≤ uk,n]P(R ≤ uk,n).

Notice that this simulation program should be slightly adapted in the case of marginals with
different tails. Indeed, the simulated outcomes from the folded multivariate distribution are tail
equivalent and should be correctly rescaled according to the tail behaviour of each marginal.

Now, we choose to estimate the preceding reinsurance premiums for the Loss-ALAE data. We
use our Monte Carlo method with a number of simulated pairs equal to m = 500 000. The
Pareto index in Step 2 is estimated with a folded Hill estimator, using the univariate folding
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approach described in You et al. (2010). The corresponding Hill plot (not shown) is quite stable
for a wide range of values of the thresholding parameter k (Pareto index estimate α̂ = 1.65).
Here, we give our results for k = 100:

• D = 50 000, L = 100 000: Q̂ = 7 634 (RoL = 15.27%)

• D = 75 000, L = 100 000: Q̂ = 3 593 (RoL = 14.37%)

• D = 95 000, L = 100 000: Q̂ = 690 (RoL = 13.80%)

• D = 500 000, L = 1 000 000: Q̂ = 2 795 (RoL = 0.56%)

• D = 750 000, L = 1 000 000: Q̂ = 1 114 (RoL = 0.45%)

• D = 950 000, L = 1 000 000: Q̂ = 197 (RoL = 0.39%)

These results show two common features for non proportional reinsurance treaties : firstly,
the thinner the layer (L−D) the smaller the ceded amount of claims to the reinsurer (and hence
the premium of the layer); secondly, the so-called Rate on Line (RoL), which is the price of one
monetary unit of reinsurance capacity (i.e. the premium of the layer divided by the size L−D
of the layer) decreases when the deductible increases, that is, upper layers are less costly than
lower layers.

Figure 9: Scatterplot of the Loss-ALAE data (on a logarithmic scale).

Figure 10: Spectral density estimates for the Loss-ALAE data: conventional empirical estimator
(dotted line), folded estimator (solid line) and MELE (dashed line). To ease graphical representa-
tion, density curves have been smoothed using a kernel estimator.

5 Appendix
Theorem 1 (Resnick, 2006, Theorem 6.5, p. 204-205). Let X = (X(1), . . . , X(d)) be a random
vector on Rd+. Suppose for 1 ≤ j ≤ d that there exist sequences

{
b
(j)
n , n ≥ 1

}
, with limn→∞b

(j)
n =

∞, j = 1, . . . , d, such that we have the following:

(i) Marginal regular variation: for each j = 1, . . . , d,

nP
(
X(j)

b
(j)
n

∈ ·
)

v−→ ναj (·), n→∞ (23)

in M+ (0,∞], where ναj (x,∞] = x−αj for x > 0 and αj > 0.
(ii) Nonstandard global regular variation: there exists a measure ν on Borel subsets of Rd+ such
that

nP
((

X(j)

b
(j)
n

, j = 1, . . . , d

)
∈ ·
)

v−→ ν(·), n→∞ (24)

in M+

(
Rd+
)
.

Let F
(j)

(x) := P
(
X(j) > x

)
be the j-th marginal distribution tail, and from (23), we can define

b(j)(x) :=

(
1

1− F (j)(·)

)←
(x), x > 1,
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and set b(j)n = b(j)(n). Then we have the following:

(iii) Standard global regular variation:

nP
((

(b(j))←(X(j))

n
, j = 1, . . . , d

)
∈ ·
)

v−→ ν∗(·), n→∞ (25)

in M+

(
Rd+
)
, where

ν∗(t·) := t−1ν∗(·) (26)

on Borel subsets of Rd+.
(iv) Standard marginal convergence: for j = 1, . . . , d,

nP
(

(b(j))←(X(j))

n
> x

)
→ x−1, x > 0, n→∞. (27)

The following theorem summarizes some useful results about the weak consistency of empirical
spectral probability measures.

Theorem 2. Let X1, . . . ,Xn be iid random vectors with a distribution function F on Rd+ whose
tail is regularly varying and with polar coordinates T (Xi) = (Ri,Θi), i = 1, . . . , n. Suppose the
regular variation condition is given by (3). Set b̃(n/k) := c1/α b(n/k). Then

1

k

n∑
i=1

1l
{

(Ri/b̃(n/k),Θi) ∈ ·
}

d−→ να × S(·) (28)

in M+ ((0,∞]× ℵ+) as n→∞, k = k(n)→∞, k/n→ 0.

Moreover, if we estimate b̃(n/k) by Rn−k,n the (k+ 1)-th largest observation among R1, . . . , Rn,
then

1

k

n∑
i=1

1l{(Ri/Rn−k,n,Θi) ∈ ·}
d−→ να × S(·) (29)

in M+ ((0,∞]× ℵ+) as n→∞, k = k(n)→∞, k/n→ 0. In particular, we have

Ŝ(·) :=
1

k

n∑
i=1

1l{Ri > Rn−k,n,Θi ∈ ·}
d−→ S(·). (30)

Proof:
Result (28) comes directly from Theorem 6.2. in Resnick (2006) (p. 179-180) and from the
homogeneity property of να. We give below the proof for (29). Then (30) is trivial.
We have

Rn−k,n

b̃(n/k)

P−→ 1 (31)

as n→∞, k = k(n)→∞, k/n→ 0. Indeed, for ε > 0, we have

P

(∣∣∣∣∣Rn−k,nb̃(n/k)
− 1

∣∣∣∣∣ > ε

)
= P

(
Rn−k,n

b̃(n/k)
> 1 + ε

)
+ P

(
Rn−k,n

b̃(n/k)
< 1− ε

)

= P

(
n∑
i=1

1l
{
Ri/b̃(n/k) > 1 + ε

}
> k

)

+ P

(
n∑
i=1

1l
{
Ri/b̃(n/k) > 1− ε

}
≤ k

)
.
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From (28), as n→∞, k = k(n)→∞, k/n→ 0, we get

1

k

n∑
i=1

1l
{
Ri/b̃(n/k) > 1 + ε

}
P−→ (1 + ε)−α < 1

and
1

k

n∑
i=1

1l
{
Ri/b̃(n/k) > 1− ε

}
P−→ (1− ε)−α > 1,

which implies

P

(∣∣∣∣∣Rn−k,nb̃(n/k)
− 1

∣∣∣∣∣ > ε

)
→ 0.

Now, set

φn(·) :=
1

k

n∑
i=1

1l
{

(Ri/b̃(n/k),Θi) ∈ ·
}

and φ(·) := να × S(·).

From (28) and (31), we have (
φn,

Rn−k,n

b̃(n/k)

)
d−→ (φ, 1)

in M+ ((0,∞]× ℵ+)× (0,∞) as n→∞, k = k(n)→∞, k/n→ 0.
Set

φ̂n(·) :=
1

k

n∑
i=1

1l{(Ri/Rn−k,n,Θi) ∈ ·}.

The map
C : M+ ((0,∞]× ℵ+)× (0,∞) 7→M+ ((0,∞]× ℵ+)

defined by
C(µ, x)(·) = µ(x·)

is continuous at (φ, 1). Since

φ̂n(·) = φn

(
Rn−k,n

b̃(n/k)
·

)
= C

(
φn,

Rn−k,n

b̃(n/k)

)
(·),

result (29) then follows from the continuous mapping theorem (see, e.g., Theorem 2.7 in Billings-
ley, 1999, p. 21).

5.1 Proof of Lemma 2
Let Λ be a relatively compact Borel subset of ℵ+ such that S(∂Λ) = 0. Clearly,

P(R(F )
u > xu,Θ(F )

u ∈ Λ) = P(R(F )
u > xu,Θ(F )

u ∈ Λ, R ≤ u) + P(R(F )
u > xu,Θ(F )

u ∈ Λ, R > u).
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Now remark that, for x ≥ 1

P(R(F )
u > xu,Θ(F )

u ∈ Λ, R ≤ u) = P
(
F ←R

(
FR(u)

FR(u)
FR(R) + FR(u)

)
> xu,ΘS ∈ Λ, R ≤ u

)
= P

(
F ←R

(
FR(u)

FR(u)
FR(R) + FR(u)

)
> xu

∣∣∣R ≤ u)P (R ≤ u)S(Λ)

= P
(
FR(R) >

FR(u)

FR(u)
(FR(xu)− FR(u))

∣∣∣FR(R) ≤ FR(u)

)
× P(R ≤ u)S(Λ)

=

FR(u)− FR(u)

FR(u)
(FR(xu)− FR(u))

FR(u)
P(R ≤ u)S(Λ)

=
FR(xu)

FR(u)
P(R ≤ u)S(Λ)

= P(R > xu |R > u )P(R ≤ u)S(Λ)

and

P(R(F )
u > xu,Θ(F )

u ∈ Λ, R > u) = P(R > xu,Θ ∈ Λ, R > u)

= P(R > xu,Θ ∈ Λ |R > u )FR(u).

Therefore

P(R(F )
u > xu,Θ(F )

u ∈ Λ) = P(R > xu |R > u )FR(u)S(Λ) + P(R > xu,Θ ∈ Λ |R > u )FR(u).

Recall that (3) is the same as

P (R > xu,Θ ∈ ·)
P (R > u)

v−→ x−α × S(·) , x > 0 u→∞.

It follows that

• P(R > xu |R > u )→ x−α

• P (R > xu,Θ ∈ Λ |R > u )→ x−α × S(Λ).

Therefore
P(R(F )

u > xu,Θ(F )
u ∈ Λ)→ x−α × S(Λ)

as u→∞.

5.2 Proof of Proposition 1
We have

Ŝ(F )
uk,n

(·) =
1

n

n∑
i=1

1l
{

Θ̂
(F )
i,uk,n

∈ ·
}

=
1

n

n∑
i=1

1l
{
Ri ≤ uk,n, Θ̂(F )

i,uk,n
∈ ·
}

+
1

n

n∑
i=1

1l
{
Ri > uk,n, Θ̂

(F )
i,uk,n

∈ ·
}

=
1

n

n∑
i=1

1l
{
Ri ≤ uk,n,ΘŜ,i ∈ ·

}
+

1

n

n∑
i=1

1l{Ri > uk,n,Θi ∈ ·}

=: A+B.

We study each term separately.
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Study of the term A:
Let Ri1 , . . . , Rin−k

be the n− k radii that are lower or equal than the threshold uk,n = Rn−k,n.
Then A can be rewritten as

A =
1

n

n−k∑
j=1

1l
{
Rij ≤ uk,n

}
1l
{

ΘŜ,ij
∈ ·
}

=

(
1− k

n

)
1

n− k

n−k∑
j=1

1l
{

ΘŜ,ij
∈ ·
}

with the latter sum being a sum of n−k iid terms conditionally on X1, . . . ,Xn as a consequence
of the definition of Θ̂

(F )
i,uk,n

, i = 1, . . . , n. We will adapt the proof of Theorem 5.3 (ii) from
Resnick (2006) (p. 138-139). Thus, conditionally on X1, . . . ,Xn

1

n− k

n−k∑
j=1

1l
{

ΘŜ,ij
∈ ·
}

d−→ S(·)

in M+ (ℵ+) if and only if

E

 1

n− k

n−k∑
j=1

1l
{

ΘŜ,ij
∈ ·
}∣∣∣∣∣X1, . . . ,Xn

 v−→ S(·)

in M+ (ℵ+). Now, we have

E

 1

n− k

n−k∑
j=1

1l
{

ΘŜ,ij
∈ ·
}∣∣∣∣∣X1, . . . ,Xn

 = P(ΘŜ,1 ∈ · |X1, . . . ,Xn ) = Ŝ(·)

and
Ŝ(·) d−→ S(·)

in M+ (ℵ+) as n → ∞, k = k(n) → ∞, k/n → 0 (see Theorem 2). Hence, conditionally on
X1, . . . ,Xn, A

d−→ S(·) in M+ (ℵ+) as n→∞, k = k(n)→∞, k/n→ 0.

Study of the term B:

B =
k

n
× 1

k

n∑
i=1

1l{Ri > Rn−k,n,Θi ∈ ·} =
k

n
Ŝ(·) P−→ 0

since Ŝ(·) d−→ S(·) in M+ (ℵ+) as n → ∞, k = k(n) → ∞, k/n → 0 (see Theorem 2). We
conclude that, conditionally on X1, . . . ,Xn

Ŝ(F )
uk,n

(·) d−→ S(·)

in M+ (ℵ+) as n→∞, k = k(n)→∞, k/n→ 0.

5.3 Proof of Proposition 2
As in the proof of Proposition 1, we have

Ŝ(F )
uk,n

(·) =
1

n

n∑
i=1

1l
{

Θ̂
(F )
i,uk,n

∈ ·
}

=
1

n

n∑
i=1

1l
{
Ri ≤ n/k,ΘŜ,i ∈ ·

}
+

1

n

n∑
i=1

1l{Ri > n/k,Θi ∈ ·}

=: C +D.
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We study each term separately.

Study of the term C:
Denote by bxc the integer part of x ≥ 0. Using the same kind of arguments as in the proof of
Theorem 2, we can show that

Rn−bc kc,n

n/k

P−→ 1

as n→∞, k = k(n)→∞, k/n→ 0. Moreover, conditionally on X1, . . . ,Xn, we have

1

n

n−bc kc∑
j=1

1l
{

ΘŜ,ij
∈ ·
}

d−→ S(·)

in M+ (ℵ+), as n → ∞, k = k(n) → ∞, k/n → 0 (see the study of term A in the proof
of Proposition 1). Then, as in the proof of Theorem 2, we prove by the continuous mapping
theorem that, conditionally on X1, . . . ,Xn

C
d−→ S(·)

in M+ (ℵ+), as n→∞, k = k(n)→∞, k/n→ 0.

Study of the term D:
One can show that (see Resnick, 2006, Proposition 9.4, p. 312)

1

k

n∑
i=1

1l

{(
Ri
n/k

,Θi

)
∈ ·
}

d−→ c ν1 × S(·) (32)

in M+ (ℵ+), as n→∞, k = k(n)→∞, k/n→ 0. Then

D =
k

n
× 1

k

n∑
i=1

1l{Ri > n/k,Θi ∈ ·}
P−→ 0.

Indeed, by (32), we have
1

k

n∑
i=1

1l{Ri > n/k,Θi ∈ ·}
d−→ c S(·)

in M+ (ℵ+) as n→∞, k = k(n)→∞, k/n→ 0.
We conclude that, conditionally on X1, . . . ,Xn

Ŝ(F )
uk,n

(·) d−→ S(·)

in M+ (ℵ+) as n→∞, k = k(n)→∞, k/n→ 0.
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