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HERMAN’S CONDITION AND SIEGEL DISKS OF BI-CRITICAL

POLYNOMIALS

ARNAUD CHÉRITAT AND PASCALE ROESCH

Abstract. We extend a theorem of Herman from the case of unicritical poly-
nomials to the case of polynomials with two finite critical values. This theo-

rem states that Siegel disks of such polynomials, under a diophantine condition

(called Herman’s condition) on the rotation number, must have a critical point
on their boundaries.

1. Introduction

By a Siegel disk of a rational map f of degree at least 2 we mean a maximal
domain on which an iterate of f is conjugate to an irrational rotation of a disk.
One can wonder what phenomena at the boundary of a Siegel disk prevent f from
having a larger linearization domain. Obviously, such a domain cannot contain a
critical point. A theorem of Fatou asserts that for an attracting periodic point,
there is always a linearization domain that extends up to at least one critical point.

Question. Does the boundary of a Siegel disk always contain a critical point?

The answer is no. Ghys and Herman gave the first examples of polynomials
having a Siegel disk without a critical point on the boundary (see [Ghy84, Her86]).

Let us now introduce the following subset of the irrationals.

Definition 1. Let H be the set of real numbers θ ∈ R such that every orientation-
preserving analytic circle diffeomorphism of rotation number1 θ is analytically con-
jugate to a rotation.

Herman proved that H is non-empty by showing that it contains all diophantine
numbers [Her79]. Yoccoz characterized numbers in H in terms of their continued
fraction expansion [Yoc02].

Theorem (Ghys, [Ghy84]). For every rational map f of degree ≥ 2 having a Siegel
disk ∆ of period one with rotation number in H, if ∂∆ is a Jordan curve then it
contains a critical point.

Later, Herman proved in [Her85] a general extension theorem for holomorphic
maps having an invariant annulus with rotation number inH. Among the corollaries
he obtained is the following:

Theorem (Herman).

(1) Suppose f is a rational map of degree ≥ 2 having a Siegel disk ∆ of pe-
riod one with rotation number in H. Then f cannot be injective in any
neighborhood of ∂∆.

(2) Every unicritical polynomial f(z) = zd + c having a Siegel disk ∆ of period
one with rotation number in H has a critical point on ∂∆.

Date: January 26, 2016.
1For further information on the notion of rotation number, see for instance [Mil06] or [dMvS93],

Chapter I, Section 1.
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Remark. Let K be a compact subset of the domain of definition of a holomorphic
map f . The following are equivalent:

(i) There is no neighborhood of K on which f is injective.
(ii) Either f has a critical point on K or the restriction of f to K is non-injective

(or both).

This applies in particular to K = ∂∆ in case (1) of Herman’s theorem.

The corresponding result for Siegel disks of higher periods is the following:

Theorem (Herman’s Theorem in the periodic case).

(1) For every rational map f of degree ≥ 2 having a Siegel disk ∆ of period p
with rotation number in H, there exists an i between 0 and p− 1 such that
f is not injective in any neighborhood of ∂f i(∆).

(2) For every unicritical polynomial f(z) = zd + c having a Siegel disk ∆ of
period p and with rotation number in H, there exists an i between 0 and
p− 1 such that f has a critical point on ∂f i(∆).

For completeness, we have included a proof of this corollary in Section 3.5.

One may state the following:2

Conjecture. The boundaries of Siegel disks of rational maps contain a critical
point whenever the rotation number is in H.

We contribute a further step towards this conjecture by proving the following
result:

Theorem 1 (Main theorem). For every polynomial with two finite critical values,
and a Siegel disk ∆ of arbitrary period and of rotation number in H, there is an
element in the cycle of ∆ whose boundary contains a critical point.

Our proof is a refinement of Herman’s proof with added ingredients supplied
by two theorems of Mañé as well as the separation theorem of Goldberg–Milnor–
Poirier–Kiwi.

1.1. Remarks. There are many polynomials with only two critical values besides
those with two critical points. Up to conjugacy, they come in infinitely many two
parameter families, one for each planar finite bipartite tree with at least one branch
point of each color.

The boundary ∂∆ of a Siegel disk of a rational map f of degree ≥ 2 is locally
connected if and only if it is a Jordan curve (see [Mil06], Lemma 18.7), and this is
in fact valid for general holomorphic maps as soon as the Siegel disk is compactly
contained in the domain of definition. In this case, the restriction of f to ∂∆ is
necessarily injective (see also [Mil06], Lemma 18.7). Hence if we further assume
that the rotation number is in H, we recover Ghys’ result from part (1) of Herman’s
theorem: there is a critical point on ∂∆.

There are many rational maps (including many polynomials) whose Siegel disk
boundaries are known to be Jordan curves. There are no known examples of rational
maps where this property fails. However there are examples of holomorphic maps
defined on a simply connected open subset U of C with a Siegel disk compactly
contained in U whose boundary is not locally connected (for instance a pseudocircle,
see [Ché11]). Moreover these maps can be chosen to be injective. As it has been
conjectured by Douady, it may well be the case that all Siegel disks of polynomials
(or rational maps) are always Jordan domains. If true then Ghys’ theorem will
imply that every Siegel disk of a rational map of degree ≥ 2 with rotation number

2Stronger conjectures have been formulated: some are mentioned in Sections 1.1 and 1.2.



HERMAN’S CONDITION AND SIEGEL DISKS OF BI-CRITICAL POLYNOMIALS 3

∆

∆′

critical point

critical value

Figure 1: We cannot yet rule out the existence of a quadratic polynomial P (z) =
z2 + c with a Siegel disk ∆ of period one with the critical point belonging to the
boundary ∂∆, but with the restriction of P to ∂∆ non-injective. The image above
gives one scenario. Of course this picture is not complete, since infinitely many
copies of the sine-like curves (images and preimages) must also appear on ∂∆. The
first pre-image of ∆ is the union of ∆ and ∆′ = the image of ∆ by the symmetry
z 7→ −z of P .

in H has a critical point on its boundary. However, this conjecture of Douady is
still open and seems out of reach today.

Note also that Herman did not prove part (2) of his theorem by showing that
f must be injective on ∂∆. For instance, it is still unknown today whether there
exist rotation numbers θ (even under the restriction θ ∈ H, or under the restriction
θ /∈ H) for which the boundary of the Siegel disk of z 7→ e2πiθz + z2 is the whole
Julia set, even though this now seems unlikely in light of the work of Inou and
Shishikura [IS08]. Another scenario for non-injectivity is illustrated in Figure 1.

Recall that the filled-in Julia set is connected if and only if the Julia set is con-
nected if and only if no critical orbit tends to infinity. If a critical orbit escapes, then
our main theorem follows from Herman’s. Indeed there is then a polynomial-like
restriction of P p whose filled-in Julia set is connected and contains ∆.3 Moreover,
this restriction has only one critical value, so it is conjugate to a unicritical polyno-
mial near its Julia set. We can then apply part (2) of Herman’s theorem. Therefore
we could restrict to polynomials with connected Julia sets, but the proof that we
will give does not require this assumption.

1.2. More about our knowledge. With a different method than Herman’s (ap-
proaching the boundary from inside instead of outside, and using the Schwarzian
derivative), Graczyk and Świ ↪atek proved in [GŚ03]:

Theorem (Graczyk and Świ ↪atek). If a Siegel disk has bounded type rotation number
and is compactly contained in the domain of definition of the map, then its boundary
contains a critical point.

3A proof of this well-known fact is included here for completeness: see Lemma 15.
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In particular for rational maps (including polynomials) of degree ≥ 2, there is
always a critical point on the boundary of bounded type Siegel disks. This also
follows from quasiconformal surgery techniques [Zha11], which prove more:

Theorem (Zhang). The boundary of a Siegel disk of a rational map of degree ≥ 2
with bounded type4 rotation number is a Jordan curve. Thus it contains at least
one critical point by Ghys’ theorem.

In the case of a polynomial with a Siegel disk ∆ whose boundary is not a Jordan
curve, ∂∆ could separate the plane into more than two components. As already
noted in Section 1.1, is not known if such cases occur for polynomials or even for
rational maps, and the common belief is that they do not. In fact there are no
known examples of a holomorphic map f : U → C with U ⊂ C, having a fixed
Siegel disk that is compactly contained in U and whose boundary separates the
plane into more that two connected components (the examples of [Ché11] do not).
If there is such a component, then ∂∆ cannot be locally connected, (it is even worse,
at least for polynomials, see the second theorem of Rogers below). Examples of
simply connected open sets with boundaries having more that two complementary
components can be found on Figure 2.

Let us define the filled-in Siegel disk ∆̂ as the union of ∂∆, together with all
bounded connected components of C \ ∂∆ (see also Definition 2).

Working towards a generalization of part (2) of Herman’s theorem to higher
degree polynomials, Rogers proved the following in [Rog98]. In the present article,
we reprove it.

Theorem (Rogers). If f is a polynomial with a Siegel disk ∆ of period one and

rotation number in H, then there is a critical point in the filled-in Siegel disk ∆̂.

The critical point in the theorem of Rogers above cannot be in the Siegel disk ∆,
so it must be either on ∂∆ or in another bounded component of C \ ∂∆.

Rogers also proved the following theorem in [Rog98], that we will not use in the
present article:

Theorem (Rogers). If the polynomial f has a Siegel disk ∆ of period one and with
rotation number in H, then either the boundary ∂∆ of ∆ contains a critical point or
∂∆ is an indecomposable continuum with three properties: (1) ∂∆ has at least three
complementary domains, and ∂∆ is the boundary of each of its complementary
domains, (2) each bounded complementary domain of ∂∆ is a component of the
grand orbit of ∆ and so a bounded component of the Fatou set, (3) one of the
bounded complementary domains of ∂∆ contains a critical point.

To clarify the content of the above theorem, recall that a continuum is a non-
empty compact connected metric space. A continuum is indecomposable if it cannot
be written as the union of two closed connected proper subsets.5 An indecomposable
continuum is never locally connected. An indecomposable continuum in the plane
which is the common boundary of at least three complementary domains is called
a Lakes of Wada continuum.

The proofs in the present article come in three cases, as described in Section 4.
Our proof of the second case (in Lemma 26) is a close relative of Rogers’ work.

4For polynomials, an extension of this theorem has recently been announced by Zhang

in [Zha12]. It uses trans-quasiconformal surgery as in [PZ04] and covers rotation numbers of
type PZ, i.e. irrationnals whose continued fraction expansion [a0; a1, . . .] satisfies log an = O(

√
n)

as n→ +∞. These numbers form a subset of full Lebesgue measure of R.
5The usual mistake is to confuse this definition with that of connectedness: it is not assumed

that the two closed subsets are disjoint, instead they are assumed to be connected.
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To conclude this section let us mention that, based on the present work, our
theorem has been extended to the case of transcendental entire maps by Benini
and Fagella in [BF13].

2. Preliminaries

2.1. Filled-in sets and their properties.

Definition 2. Given a compact subset X of C, let fill(X) be the union of X and
all bounded components of C \X.

The set fill(X) is also the complement of the unbounded connected component
of the complement of X. A compact subset X of C is called full if X = fill(X).
The set fill(X) is full, i.e. fill(fill(X)) = fill(X). If X is connected then fill(X) is
connected.6

Definition 3. We will say that the bounded components of C \ X are shielded
by X.

Notation 4. For a bounded set A ⊂ C, let

Â := fill(A).

The following lemma is elementary:

Lemma 5. If A and B are compact subsets of C then

A ⊂ fill(B) ⇐⇒ fill(A) ⊂ fill(B).

Proof.
⇐=: immediate since A ⊂ fill(A).
=⇒: when A ⊂ fill(B), the unbounded component of C \B is disjoint from A thus
it is an unbounded connected subset of C \A thus it is contained in the unbounded
component of C \A, i.e. fill(A) ⊂ fill(B). �

Corollary 6. If A and B are bounded subsets of C then

A ⊂ B̂ ⇐⇒ A ⊂ B̂ ⇐⇒ Â ⊂ B̂.
The first equivalence holds because B̂ is closed, and the second follows by ap-

plying Lemma 5 to A and B.

Lemma 7. For every complex polynomial P of degree ≥ 1 and every compact
subset K of C, P−1(fill(K)) = fill(P−1(K)).

Proof. Let U be the unbounded component of C \ K, so that fill(K) = C \ U .
Let V be the unbounded component of C \ P−1(K). The lemma is equivalent
to V = P−1(U). As V is connected, P (V ) is connected, disjoint from K and
unbounded thus P (V ) ⊂ U , i.e. V ⊂ P−1(U). Since P is a finite degree ramified
covering and U is open, its restriction to P−1(U) is a finite degree ramified covering
over U . Each component of P−1(U) will map surjectively to U , hence is unbounded,
so there is exactly one component of P−1(U). Thus P−1(U) is unbounded and
connected and it does not intersect P−1(K) (as U does not intersect K). It follows
that P−1(U) ⊂ V . �

Corollary 8. For every complex polynomial P of degree ≥ 1 and every bounded

subset X of C, P−1(X̂) = ̂P−1(X).

6Indeed, the claim is trivial if X is empty, otherwise it follows from fill(X) = X ∪
(⋃

U

X ∪ U
)

where U varies over the bounded connected components of C \ X, noting that the collection of

compact connected sets formed by X and all the X ∪ U has at least one point in common.
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Figure 2: Examples of simply connected open sets U (in dark gray) and their
image V by Q : z 7→ z2, on which Q is injective, and such that the connected

component of Q−1(V̂ ) containing U is strictly bigger than Û , where V̂ = fill(V )

and Û = fill(U). In the top one the critical point is not in Û , in the bottom one
it is in a shielded component (i.e. a bounded component of C \ ∂U) different from
U . Figure 1 gives another example without shielded components. The situation
for those hypothetical Siegel disks which are not Jordan domains might a priori
include similar or more complicated features.

Proof. By definition, ̂P−1(X) = fill(P−1(X)). Next, P−1(X) = P−1(X) (here the
inclusion ⊂ holds because P is continuous, while ⊃ holds because P is an open
map). Now apply Lemma 7 with K = X. �

The following two lemmas aim at proving Proposition 11 below.

Lemma 9. If X,Y ⊂ C, X is compact, Y is bounded and ∂Y ⊂ X then Y ⊂ fill(X).

Proof. Since fill(X) is closed, it suffices to show that Y ⊂ fill(X). Let A be the
unbounded component of C \X. If Y 6⊂ fill(X) then Y ∩A 6= ∅. As Y is bounded,
A 6⊂ Y and as A is connected there exists z ∈ A in the boundary of Y ∩A relative
to A. This point is also in the boundary of Y relative to C, hence in X by the
assumption. Thus z ∈ X ∩A = ∅, which is a contradiction. �

Lemma 10. The connected components of a full compact set are full.

Proof. Let X be a full compact set, so fill(X) = X. Let C be a component of X.
Assume by way of contradiction that there exists a bounded component U of C\C.
As C is closed, ∂U ⊂ C ⊂ X. Hence U is a bounded open set whose boundary is
contained in X. By Lemma 9, U ⊂ fill(X) = X. Now U ∪ C is a connected subset
of X, contradicting the definition of C. �
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Proposition 11. Let X be a compact subset of C. For every connected component
C of fill(X),

C = fill(X ∩ C).

Proof. Let us prove the two inclusions C ⊃ fill(X ∩ C) and C ⊂ fill(X ∩ C).
⊃: X ∩ C ⊂ C ⊂ fill(C) so by Lemma 5, fill(X ∩ C) ⊂ fill(C). The set fill(X) is
full so by Lemma 10, fill(C) = C.
⊂: Let z ∈ C. If z ∈ X, then z ∈ X ∩ C ⊂ fill(X ∩ C). Therefore we focus on the
case where z /∈ X. Since z ∈ C ⊂ fill(X) it follows that z belongs to a bounded
component A of C \X. Recall that C is the connected component of fill(X) that
contains z. Now A is connected, contains z and is contained in fill(X), hence A ⊂ C.
Since C is closed, ∂A ⊂ C, so ∂A ⊂ X ∩ C. Moreover A ∩ (X ∩ C) = ∅. Hence A
is a connected component of the complement of X ∩ C. Since A is bounded, this
proves A ⊂ fill(X ∩ C). �

2.2. Backward images. The content of this section is well known; the proofs are
included here for completeness. Let P be a polynomial of degree ≥ 2.

Proposition 12. Let K be a full and non-empty compact subset of C. Let L
be any connected component of P−1(K). Then there exist Jordan domains U , V
containing respectively L and K such that the restriction P : U → V is a ramified
covering, satisfies P−1(K)∩U = L and such that there is no critical value of P in
V \K.

Proof. The set K has a basis of neighborhoods in C that are Jordan domains; this
can be proven for instance by using a conformal map φ from C \K to C \ D when
K is not a single point, and taking the neighborhoods C \ φ−1(C \ B(0, 1 + ε))
which, having a connected complement, are simply connected. As there are only
finitely many critical values, we can take such a neighborhood V of K without
any in V \K. Let U be the connected component of P−1(V ) containing L. Then
U is simply connected. Its boundary is a Jordan curve, near which points on
one side map to V \ K, and points on the other side map to C \ V . Moreover
P−1(K) is disjoint from ∂U . From the last two assertions, it follows that only one
connected component of U \ P−1(K) has a closure that meets ∂U . Now the map
P : U → V is a ramified covering, whose restriction to U \P−1(K) is an unramified
finite degree covering of V \ K. Therefore, since V \ K is a topological annulus
(cf. the isomorphism φ), the same must be true for each connected component of
U \P−1(K). Now in fact there is only one such connected component: indeed each
of them surjects to V \K under P thus has points very close to the Jordan curve
∂U . This implies that U ∩ P−1(K) is connected and equal to L. �

Lemma 13. Let K and L be as in Proposition 12.

(1) If L contains no critical point then P is a homeomorphism from U to V
carrying L onto K.

(2) If P : L → K has a single critical value v then P−1(v) ∩ L is a singleton
(thus L contains a unique critical point).

Proof. Consider the (possibly) ramified covering P : U → V .
(1): A ramified covering without critical point is a covering. A covering map of

a simply connected set is a homeomorphism. The rest follows.
(2): A ramified covering with a unique critical value over a simply connected

domain in the plane is topologically equivalent to z 7→ zd from D to D. The rest
follows. �
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f
φ

g

Figure 3: Schematic illustration of the construction of the external map. Imagine
a polynomial fixing a Jordan domain whose preimage has 3 disjoint connected
components, including itself. In the example shown above, they are at some distance
from the Jordan domain, and the external map is well defined. See Figures 4 and 5
for cases where this fails. The domain of definition of the induced map g on the
right is the complement of the white set.

φ

g

Figure 4: Variation of Figure 3. In this example, there is a critical point on the
boundary and one of the preimage components touches the domain. The external
map is undefined at one point of the circle. Here the map still has a continuous
extension, usually not analytic. However, one could imagine worse situations, like
Figure 5.

2.3. External map. This is the central tool of Ghys and Herman’s proof. It has
also been extensively used by Pérez-Marco in his work on hedgehogs, and by Douady
and Hubbard in their work on polynomial-like maps.7 We present a particular case
of the construction below, but there exist constructions in more general situations.

Consider a holomorphic map f defined in an open neighborhood Dom(f) of
a compact subset X of C and assume that X is connected, contains more than
one point and that X is full, i.e. has connected complement U = C \ X (see also

7They consider conjugacy classes of external maps, also known as the external classes.
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φ

Figure 5: Example of how an external map could fail to be defined on a segment.

Section 2.1). Assume moreover that f(X) ⊂ X (in particular X ⊂ f−1(X)) and
that X is locally backward invariant, i.e. there is a neighborhood U ′ of X such that
f−1(X) ∩ U ′ = X.

From the hypotheses thatX is non empty, compact, connected and has connected
complement, we conclude that U ∪ {∞} is a simply connected open subset of the
Riemann sphere. Let D ⊂ C be the unit disk, S1 = ∂D and V = C\D. Since X has
more than one point, by the Riemann mapping theorem,8 there exists a holomorphic
bijection φ from V to U , with the property that φ(z)/z tends to a positive real as
z −→ ∞. Moreover, since φ is a homeomorphism, for every sequence (zn) in V ,
zn −→ ∂V if and only if φ(zn) −→ ∂U . Let us conjugate f by φ by setting
g = φ−1 ◦ f ◦ φ. The domain of definition of g is the set of points in V whose

8To be more precise, let s(z) = 1/z. Then s(U) ∪ {0} is a connected non empty simply
connected open subset of C with a non empty complement in C. The Riemann mapping theorem

asserts that there exists a unique holomorphic bijection ψ from D to s(U) ∪ {0} mapping 0 to 0

and such that ψ′(0) > 0. Let φ = s−1 ◦ ψ ◦ s.
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image by φ, then by f , do not belong to X. This domain contains the annulus
1 < |z| < 1 + ε for some ε > 0 because of the local backward invariance. Also,
for every sequence (zn) in Dom(g), zn −→ S1 implies g(zn) −→ S1. Therefore,
the map g admits a Schwarz reflection extension g̃ to the following domain: the
union of S1, Dom(g) and the reflection of Dom(g) with respect to S1. This domain
contains the annulus 1/(1 + ε) < |z| < 1 + ε. The map g̃ is holomorphic, preserves
the circle S1 and commutes with the reflection z 7→ 1/z̄. Its restriction to S1 is
called the external map and the map g̃ will be called the extended external map
associated with the pair (f,X). See Figures 3, 4 and 5. The external map is a
non-constant orientation-preserving analytic self-map of the circle without critical
points, in particular it is a covering. This follows from the fact that g̃ maps all
points outside the circle to points outside the circle.

2.4. The separation theorem. We will use the theory of polynomial-like maps
which can be found in [DH85].

The following theorem is stated in [Kiw00] as Lemma 3.1 and as an immediate
corollary of a theorem of Goldberg and Milnor.

Theorem (Goldberg, Milnor, Poirier, Kiwi). Let P be a complex polynomial of
degree ≥ 2 and connected Julia set. Then there exists m > 0 such that the union
of the set of external rays fixed by Pm (there are finitely many of them) and their
landing points cut the plane into regions, each of which contains at most one periodic
Fatou component or Cremer point (but never both).

The external rays in the above theorem are periodic under P . As such, they
land, and their landing points are either repelling or parabolic periodic points.
This implies:

Corollary 14. Let P be a degree > 1 complex polynomial with connected or dis-
connected Julia set. Let U, V be distinct periodic bounded Fatou components of P ,

and Û = fill(U), V̂ = fill(V ). Then Û ∩ V̂ is either empty or reduced to a periodic
point. In the latter case, this point is either parabolic or repelling.

Proof. This is an immediate consequence of the separation theorem in the case the
Julia set J(P ) is connected. Otherwise, we use the following observation: let C
be a connected component of the filled-in Julia set K(P ). If P p(C) ∩ C 6= ∅ then
P p(C) = C and there exists a polynomial-like restriction of P p whose filled-in Julia
set is C (see Lemma 15 below). Now we choose for C the component of K(P ) that

contains U . Then Û ⊂ C. If V is contained in a component of K(P ) other than C,

then Û ∩ V̂ = ∅. Otherwise consider an associated polynomial-like restriction of P p

as above, where p is the period of C. This restriction has degree > 1 since otherwise
C would reduce to a point. Therefore it is hybrid-equivalent to a polynomial of
degree ≥ 2 map near their Julia sets (see [DH85]). So we can reduce the argument
to the connected case as above. �

The following result was used in the above proof. For completeness we include
its proof, borrowed from [BH92].

Lemma 15. Assume P is a degree d ≥ 2 polynomial, C is a connected component of
the filled-in Julia set K(P ), and P p(C)∩C 6= ∅ for some p ≥ 1. Then P p(C) = C
and there exists a polynomial-like restriction of P p whose filled-in Julia set is C.

Proof. The set P p(C) is a connected subset of K(P ), so P p(C) ⊂ C. The reverse
inclusion follows from the confluence property (see [Why42]): if f is any open map
of the Riemann sphere, L a connected compact subset of the Riemann sphere, and
K a connected component of f−1(L) then f maps K onto L. Let f = P p, L = C
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and K = C. Since K is a connected component of K(P ) contained in f−1(L), it is
a fortiori a connected component of f−1(L).

Let G : C → [0,+∞[ be the Green’s potential associated with K(P ). Given
x > 0, let Ux be the connected component of the set G−1([0, x[) containing C. Then
Ux is a simply connected open set. Also,

⋂
x>0 Ux is connected and contained in

K(P ) = G−1(0). It follows that this intersection is equal to C. In particular, for
every neighborhood V of C in C, there is some x such that Ux ⊂ V . Take now x
small enough so that there are no critical points of P in Ux \C. Then the filled-in
Julia set of the polynomial-like restriction P p : Ux → Udpx is connected, contained
in K(P ) and contains C, so it is equal to C. �

3. Dynamics of Filled Siegel Disks

3.1. Setting up. Denote by P a polynomial of degree ≥ 2 with a Siegel disk ∆.
Let (see Section 1.2 and Section 2.1 notation 4)

∆̂ = fill(∆).

Thus, ∆̂ is the disjoint union of ∆, ∂∆ and at most countably many other bounded
components of C \ ∂∆, if any.9

Recall that we are not only considering fixed Siegel disks but also Siegel disks
with a higher period. Let p be the period of the Siegel disk ∆.

For k ≥ 0, let

∆k = P k(∆)

so the orbit of ∆ is ∆ = ∆0 7→ ∆1 7→ · · · 7→ ∆p−1 7→ ∆p = ∆.
Let

∆̂k = fill(∆k).

Remark. We used the notation ∆̂k instead of ∆̂k to avoid extra wide hats like in
∆̂k+1. However, the set fill(P k(∆)) is a priori not equal to P k(fill(∆)), so attention

should be paid to the fact that ∆̂k does not denote the latter.

Applied to our situation, Corollary 14 (separation theory) implies:

Corollary 16.

• For l 6= k (mod p), ∆̂k ∩ ∆̂l is either empty or a single point z, in which
case z is a repelling or parabolic periodic point on which at least two external

rays γ, γ′ land. Moreover, γ ∪ {z} ∪ γ′ separates ∆̂k \ {z} from ∆̂l \ {z}.
• A critical point can belong to at most one ∆̂k.

3.2. Dynamics. Let A denote the basin of attraction of infinity for P . Recall
that the Julia set J is equal to the boundary ∂A and that the Fatou set is the
complement of J . Siegel disks of rational maps are components of the Fatou set,
thus

∂∆k ⊂ J.
Recall that for a rational map F and a Fatou component U of F , F (U) is a

Fatou component of F and F (∂U) = ∂F (U). Hence

P (∂∆k) = ∂∆k+1.

Lemma 17.

9As we remarked earlier, there are examples of holomorphic maps defined on a simply connected
open subset U of C with a Siegel disk compactly contained in U and whose boundary is not locally
connected (for instance a pseudocircle, see [Ché11]). Yet, no such examples are known with a Siegel
disk having a boundary with more than two complementary components. Like chimaeras, they
may not exist.
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• Any non-empty bounded and connected open subset of C whose boundary is
contained in J is a Fatou component.10

• Bounded components of C \ ∂∆k are Fatou components.

Proof. First claim: call this set U . If U has non empty intersection with a Fatou
component V then V ⊂ U : indeed U is open and ∂U ⊂ J therefore U ∩ V is both
open and closed in V . Now U cannot contain points in J = ∂A (where A is the
basin of infinity), for otherwise as an open set it would contain points in A, and
therefore it would contain A and be unbounded. So U is contained in a Fatou
component,11 and thus is equal to it.
Second claim: follows from the first and the inclusion ∂∆k ⊂ J . �

Lemma 18. For every k, ∂∆̂k = ∂∆k.

Proof. Without loss of generality, we prove the case of ∆0 = ∆. For any compact

subset X of C, ∂ fill(X) ⊂ ∂X, hence ∂∆̂ = ∂ fill(∆) ⊂ ∂∆ ⊂ ∂∆. The other

inclusion is more specific to ∆: ∂∆ ⊂ J hence ∂∆ ⊂ A. Together with ∂∆ ⊂ ∆̂

and A ∩ ∆̂ = ∅, this implies ∂∆ ⊂ ∂∆̂. �

Lemma 19. The image of a bounded component of C\∂∆k is a bounded component
of C \ ∂∆k+1. In particular,

P
(

∆̂k
)
⊂ ∆̂k+1.

Proof. Consider a bounded component U of C \ ∂∆k so ∂U ⊂ ∂∆k. We have12

∂P (U) ⊂ P (∂U), and as already mentioned P (∂∆k) = ∂∆k+1, thus ∂P (U) ⊂
∂∆k+1. By Lemma 17, U , thus P (U), are contained in the Fatou set. In particular,
P (U) ∩ ∂∆k+1 = ∅. Now P (U) is an open connected subset of the complement of
∂∆k+1 whose boundary is contained in ∂∆k+1, hence it is a connected component
of C \ ∂∆k+1. �

3.3. Backward images toward local total invariance. The sets that we are
about to define will be used here and later in the text.

Definition 20. Let ∆̃k be the connected component of P−1(∆̂k+1) that contains

∆̂k.

Definition 21 (The sets Uk and Vk). Applying Proposition 12 to K = ∆̂k, there

are simply connected open neighborhoods Uk−1, Vk of ∆̃k−1, ∆̂k respectively, for
k ∈ {1, · · · , p}, such that the restriction P |Uk−1

: Uk−1 → Vk is a ramified covering

satisfying P−1(∆̂k) ∩Uk−1 = ∆̃k−1 and such that there is no critical value of P in

Vk \ ∆̂k. Let us define Uk+p = Uk and Vk+p = Vk for all k ∈ Z. Note that there is
no a priori inclusion between Uk and Vk.

Corollary 22. If ∆̃k does not contain a critical point then ∆̃k = ∆̂k i.e. ∆̂k is a

connected component of P−1(∆̂k+1). Moreover, P is a bijection from ∆̂k to ∆̂k+1.

Proof. By Lemma 13 case (1), P is a bijection from ∆̃k to ∆̂k+1. In particular P
is injective on ∂∆k. Recall that P (∂∆k) = ∂∆k+1. Hence

P−1(∂∆k+1) ∩ ∆̃k = ∂∆k.

10Note that this is false if we do not assume boundedness: consider for instance the complement
of the closure of any bounded Fatou component of Douady’s rabbit.

11Alternatively, ∂U ⊂ J which is bounded and invariant; hence the iterates of f are bounded
on ∂U thus on U by the maximum principle; whence U is contained in the Fatou set.

12If f : X → Y is a continuous and open map between topological spaces and U is an open
subset of X with compact closure, then ∂f(U) ⊂ f(∂U).
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Now consider a point z ∈ ∆̃k. Then P (z) ∈ ∆̂k+1. Either P (z) ∈ ∂∆k+1 or P (z)
belongs to a bounded component W of C \ ∂∆k+1. In the first case, z ∈ ∂∆k thus

z ∈ ∆̂k. In the second case, consider the component W ′ of P−1(W ) that contains
z. Since P (∂W ′) ⊂ ∂W ⊂ ∂∆k+1, we get ∂W ′ ⊂ ∂∆k. Hence W ′ is a bounded

connected component of C \ ∂∆k: W ′ ⊂ ∆̂k. �

Corollary 23. If ∆̃k = ∆̂k for every k, then ∆̂ is locally backward invariant under

P p, i.e. there is a neighborhood W of ∆̂ such that P−p(∆̂) ∩W = ∆̂.

Proof. By the assumption, for each k the restriction P : Uk−1 → Vk pulls ∆̂k back

to ∆̂k−1. It is then not hard to check that the open set

W =

p−1⋂
k=0

P−k(Uk)

has the required property. �

The converse also holds (but will not be used in this article). Note that under

the assumptions of the last statement, P p(∆̂) = ∆̂ so ∆̂ is in fact locally totally
invariant.

3.4. Shielded components eventually map to the Siegel disk. Recall that a
component shielded by ∂∆k is a Fatou component and is mapped to a component
shielded by ∂∆k+1 (Lemma 19). The following statement is proved in [Rog98]. We
reproduce its proof here for convenience.

Lemma 24 (Rogers, Theorem 3.3 in [Rog98]). All components shielded by ∂∆k

eventually map under the iteration of P to some (hence to every) ∆l.

Proof. Let U be a component shielded by ∂∆k. By Lemma 17, U is a Fatou
component. By Sullivan’s no-wandering-domain theorem, it is eventually mapped
to a periodic component V = Pn(U). If V were none of the ∆l, then by Corollary 14
(consequence of the separation theorem) ∂V would intersect each ∂∆l in at most
one point. However, ∂V ⊂

⋃
k ∂∆k and ∂V is infinite. Contradiction. �

Special Case. 13 If there is no critical point in
⋃
k≥0 ∆̃k then for every m, ∆m is

the only component shielded by ∂∆m.

Proof. By Corollary 22 the map P is a bijection from ∆̂k to ∆̂k+1 for every k.

Thus ∆k+1 has only one preimage by P in ∆̂k, namely ∆k. Any component V

shielded by ∂∆m has its orbit contained in
⋃
k ∆̂k, and eventually maps to some

∆l by Lemma 24. Thus V = ∆m. �

Note that this result makes no assumption on the number of critical values of P .

3.5. Proof of Corollary 1 (Herman’s theorem in the periodic case). For
convenience, we recall its statement:

(1) For every rational map f of degree ≥ 2 having a Siegel disk ∆ of period p
with rotation number in H, there exists an i between 0 and p− 1 such that
f is not injective in any neighborhood of ∂f i(∆).

(2) For every unicritical polynomial f(z) = zd + c having a Siegel disk ∆ of
period p and with rotation number in H, there exists an i between 0 and
p− 1 such that f has a critical point on ∂f i(∆).

13Rogers proved a stronger statement in [Rog98] Theorem 8.4: if P is injective on the boundary
of a Siegel disk of period one, then ∆ is the only component shielded under ∂∆. It implies our
Special Case because here P p is injective on ∂∆k, see Corollary 22.
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Let us also recall the following equivalence (stated on page 2 as a remark just after
Herman’s theorem), where K is a compact subset of the domain of definition of a
holomorphic map f .

The following are equivalent:

(i) There is no neighborhood of K on which f is injective.
(ii) Either f has a critical point on K or the restriction of f to K is non-

injective (or both).

Assume p > 1, since the case p = 1 is already covered by Herman’s theorem. Let
∆i = f i(∆). As recalled in Section 3.2, f i(∂∆) = ∂∆i. We treat the two parts of
the theorem separately:

Part 1 (f is a rational map). Herman’s theorem applied to fp shows that fp is
not injective in any neighborhood of ∂∆. By the remark above, this implies that
either there is a critical point of fp on ∂∆ or that fp is non-injective on ∂∆. In
the first case, f has a critical point on ∆i for some i between 0 and p − 1. In the
second case, f is non-injective on ∂∆i for some i between 0 and p−1. Applying the
remark again, we conclude that in either case f is not injective in any neighborhood
of ∂∆i.

Part 2 (f is a unicritical polynomial). We give here a proof using the following
lemma. See the end of this section for an alternate proof.

Lemma 25 (folk.). If f is a unicritical polynomial with a period p Siegel disk ∆,
then there is a unicritical polynomial-like restriction of fp whose filled-in Julia set
contains ∆.

Proof. We give only a brief sketch. Consider ∆i = f i(∆) and the regions cut by the
union of the external rays fixed by fp and their endpoints. By the Fatou-Shishikura
theorem,14 f has at most one non-repelling cycle, hence all these endpoints are
repelling. By the separation theorem (see Section 2.4) applied to fp, each region
contains at most one ∆i. Let V be the region containing ∆ and U be the connected
component of f−p(V ) containing ∆. Then fp is a proper map from U to V and
U ( V . For each distinct i, i′ with 0 ≤ i < p and 0 ≤ i′ < p, the regions
containing f i(U) and f i

′
(U) are disjoint, so at most one contains a critical point.

As a consequence, the restriction of fp from U to V is univalent or unicritical.
It cannot be univalent for that would violate Schwarz’s lemma at the center of
the Siegel disk. Now one can cut U and V by equipotentials and thicken external
rays and endpoints to get the desired polynomial-like restriction; see [GM93] for
details. �

Polynomial-like maps are quasiconformally conjugate to polynomials in a neigh-
borhood of their respective filled-in Julia sets [DH85]. In particular in our case, fp

has a restriction to an open set containing ∆ which is conjugate to a unicritical
polynomial. By the period one version of Herman’s theorem, fp has a critical point
on ∂∆, which means that there is a critical point on ∂∆i for some i. This completes
the proof of Corollary 1.

Here is an alternate proof of Part 2 that avoids the use of Lemma 25. According
to Fatou (see [Mil06] Theorem 11.17), the ω-limit set of the critical point 0 contains
the boundary of ∆i for every i. By Sullivan’s no-wandering-domain theorem and the
classification of Fatou components, 0 cannot belong to a Fatou component. Now,
if 0 is not on the boundary of any ∆i, then according to Part 1 of Corollary 1 and
Case (ii) of the remark applied to fp on ∂∆, fp is not injective on ∂∆i. Equivalently
there is some i such that f is not injective on ∂∆i. By Corollary 22, the critical

14The number of non-repelling cycles of a polynomial map is at most the number of its critical
points in C.
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point 0 must belong to ∆̃i and the critical value P (0) to ∆̂i+1. Since P (0) is not in
the Fatou set, this means that P (0) ∈ ∂∆i+1. Then since 0 is the only preimage of
P (0) and since P is always surjective from ∂∆i to ∂∆i+1, this means that 0 ∈ ∂∆i,
contradicting our assumption.

4. Reduction of the Main Theorem

We now describe our plan for the proof of Theorem 1. The proofs of the three
main steps stated below are the object of the last three sections.

Let P be a polynomial of degree d ≥ 2 with a Siegel disk ∆ of arbitrary period

p. Let ∆k = P k(∆) and ∆̂k = fill(∆k).

Lemma 26. If all critical orbits eventually enter
⋃
k≥0 ∆̂k then there is a critical

point on
⋃
k≥0 ∂∆k.

Proof. Denote by ω(z) the ω-limit set of z, i.e. the set of points of accumulation of
the sequence (Pn(z)). Let B =

⋃
k≥0 ∂∆k.

Consider a critical point c that belongs to the Fatou set of P . By Sullivan’s
no-wandering-domain theorem and Fatou’s classification of periodic components,
ω(c) is equal to an attracting cycle, a parabolic cycle, or a cycle of invariant curves
in Siegel disks. The intersection ω(c) ∩ J is therefore finite or empty.

Another theorem of Fatou asserts that ∂∆ ⊂
⋃
c ω(c), the union being over all

critical points. The set ∂∆ is contained in J and contains infinitely many points.

Recall that ∆̂k is the disjoint union of ∂∆k and the bounded components of
C \∂∆k, and that the latter are Fatou components (Lemma 17). We have assumed

that all critical orbits of P eventually belong to some ∆̂k. If none would fall on
B, they would all belong to the Fatou set, thus J ∩

(⋃
c ω(c)

)
would be finite

contradicting the fact that it contains the infinite set ∂∆.
To prove that there is not only a point in the critical orbit, but also a critical

point on B, we must use the following theorem of Mañé [Mañ93], much harder
than Fatou’s: there exists a recurrent critical point c such that ∂∆ ⊂ ω(c). As
above, Pn(c) must belong to B for some n ∈ N. Since P (B) = B, we have
ω(c) = ω(Pn(c)) ⊂ B. Since c ∈ ω(c), we have c ∈ B. �

Recall that ∆̃k is defined as the connected component of P−1(∆̂k+1) containing

∆̂k.

Definition 27. Let n0 be the number of critical points of P belonging to
⋃
k≥0 ∆̃k,

and n1 be the number of critical values in
⋃
k≥0 ∆̂k, both counted without multi-

plicity.

Theorem 2 (Herman’s Case). If n0 = 0 then θ, the rotation number of ∆, is not
in H.

Note that by the Special Case in Section 3.4, under the same hypothesis, ∆ is
the only component shielded by ∂∆.

Lemma 28. If n1 = 1 then n0 = 0 or n0 = 1.

Theorem 3. If n0 = 1 and P has only two critical values then there is a critical
point on

⋃
k≥0 ∂∆k.

Proof of our Main Theorem assuming Lemma 28, Theorem 2 and Theorem 3:
Let P be a polynomial of degree d ≥ 2 with two finite critical values, and a

Siegel disk ∆ of arbitrary period p. Necessarily n1 ≤ 2. If n1 = 2, all critical orbits

eventually enter
⋃
k≥0 ∆̂k and by Lemma 26 there is a critical point on

⋃
k≥0 ∂∆k.

If n1 = 1 then n0 = 0 or n0 = 1 by Lemma 28. Last, if n1 = 0 then n0 = 0. If
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n0 = 0, it follows from Herman’s case (Theorem 2) that θ, the rotation number of
∆, is not in H. If n0 = 1, then Theorem 3 ensures that then there is a critical point
on
⋃
k≥0 ∂∆k. �

5. Proof of Herman’s Case

The idea of the proof is the same as Herman’s in [Her85], which in turns gener-

alizes a result of Ghys in [Ghy84]. Assume that n0 = 0. By Corollary 22, ∆̃k = ∆̂k

for all k. By Corollary 23, ∆̂ is locally backward invariant under P p in the sense of

Section 2.3, so we can consider the external map associated with the pair (P p, ∆̂).
Recall from Section 2.3 that this external map is defined as the restriction to the

unit circle of the Schwarz reflection f̃ of f := φ ◦P p ◦φ−1 for the unique conformal

map φ : C \ ∆̂→ C \ D such that φ(z)/z has a positive limit at ∞.

Lemma 29. The restriction of f̃ to ∂D is an orientation-preserving analytic dif-
feomorphism with rotation number θ.

Proof. By Section 2.3 we already know that f̃ is analytic and that its restriction

is orientation-preserving and has no critical point. To prove that f̃ has degree
one on ∂D and has the same rotation number as the Siegel disk, Herman’s trick

is to do the same construction as above but replacing ∆̂ by the invariant sub-disk
∆r := ψ(B(0, r)) where r < 1 and ψ : D → ∆ is a conformal map sending 0 to
the center of the Siegel disk, i.e. to the periodic point. Recall that the map ψ
is also a conjugacy from the rotation of angle 2πθ to P p. Let φr be the unique
conformal map from C \∆r to C \ D such that φr(z)/z has a positive limit at ∞
and let fr = φr ◦ P p ◦ φ−1

r . Since the boundary of ∆r is a Jordan curve, the map
φr extends to a homeomorphism from ∂∆r to ∂D. The map φr ◦ ψ conjugates
the rotation of angle 2πθ on the circle of radius r to fr on ∂D. Thus the rotation

number of fr is equal to θ. The domain C \ ∆r tends to C \ ∆̂ in the sense of

Caratheodory.15 Thus as r −→ 1, φr −→ φ uniformly on compact subsets of C \ ∆̂
and φ−1

r −→ φ−1 uniformly on compact subsets of C \ D. We claim that apart

from ∆ itself, the components of P−p(∆) are at positive distance from ∆̂. By local

backward invariance, P−p(∆̂)\∆̂ is at positive distance from ∆̂. Since P is injective

on ∆̂k by Corollary 22, it follows that P−p(∆) ∩ ∆̂ = ∆, proving the claim. Now,
since φ−1

r −→ φ−1 uniformly on compact sets, the image by φ−1
r of the annulus

1 < |z| < 1 + ε/2 is disjoint from the components of P−p(∆) other than ∆ for all
r sufficiently close to 1. Thus the domains of definition of fr contain the annulus

1 < |z| < 1 + ε/2 for all such r. Thus the domains of definition of f̃r contain a
common annulus containing ∂D for r close enough to 1. On the boundary of this

annulus, f̃r converges uniformly to f̃ . This implies by the maximum principle that

f̃r converges uniformly to f̃ on the annulus, so in particular on ∂D. As a uniform

limit of orientation-preserving homeomorphisms of f̃r : ∂D → ∂D with rotation

number θ, f̃ has degree one and rotation number θ. �

End of the Proof. Let us assume by contradiction that θ belongs to H. Then f̃
is analytically linearizable on ∂D. The linearizing map has an injective holomorphic
extension to a neighborhood of ∂D, and by analytic continuation this extension still

conjugates f̃ to a rotation in a neighborhood of ∂D. Since f̃(z) = f(z) for |z| > 1,
f has a stable domain containing an annulus of the form 1 < |z| < 1 + ε′. Thus P p

15Consider rn −→ 1. By definition the associated kernel is the union over n ∈ N of the

unbounded connected component Vn of the interior of Kn =
⋂

k≥n C\∆rk . Trivially, Kn = C\∆,

so Vn = C \ ∆̂. Hence the kernel is C \ ∆̂. Thus the family C \ ∆r converges in the sense of

Caratheodory to C \ ∆̂ as r −→ 1.
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has a stable domain containing a neighborhood of ∆̂, hence a neighborhood of ∂∆.
This contradicts the fact that ∂∆ is contained in the Julia set.

6. Proof of Lemma 28

In Lemma 28, we assume that only one critical value v of P belongs to
⋃
k≥0 ∆̂k.

Suppose there are critical points c ∈ ∆̃k, c′ ∈ ∆̃l, with l different or equal to k, and

let us prove that c = c′. Note that P (c) ∈ ∆̂k+1 and P (c′) ∈ ∆̂l+1 so necessarily

P (c′) = P (c) = v. The sets ∆̂k+1 and ∆̂l+1 have a common point v, and since

∆̂k ⊃ P p−1(∆̂k+1) and ∆̂l ⊃ P p−1(∆̂l+1), the sets ∆̂k and ∆̂l also have a common
point. Consider the compact connected set

K = ∆̂k+1 ∪ ∆̂l+1

and let L be the component of P−1(K) that contains ∆̂k and L′ be the one that

contains ∆̂l. Then L = L′ because they have a point in common.

Let us prove that the set K is full. If k = l this is immediate since K = ∆̂k+1.

Otherwise by16 Corollary 16, ∆̂k+1 ∩ ∆̂l+1 is a single point z and there are two

curves γ and γ′ from ∞ to z such that the curve γ ∪ γ′ separates ∆̂k+1 \ {z}
from ∆̂l+1 \ {z}. In fact, this curve cuts the plane into two domains A, B with

∆̂k+1 \ {z} ⊂ A and ∆̂l+1 \ {z} ⊂ B. The curve minus the point z is contained
in the unbounded component of C \K. In particular, if C is a bounded connected
component of C \K, then C is disjoint from γ ∪ γ′ thus contained either in A or

in B. Hence ∂C is contained either in ∆̂k+1 or ∆̂l+1. But then C is a bounded
component of C\ ∆̂k+1 or C\ ∆̂l+1, which is impossible. Hence ∆̂k+1∪ ∆̂l+1 is full.

Since there is only one critical value, we can apply case (2) of Lemma 13 to K
and L and deduce c = c′. �

7. Proof of Theorem 3

Recall that ∆̂k is defined as fill(∆k), where ∆k = P k(∆) and that ∆̃k is the

connected component of P−1(∆̂k+1) that contains ∆̂k. The assumption n0 = 1 of

Theorem 3 means is that there is only one critical point c′ in
⋃
k≥0 ∆̃k. Without

loss of generality, we may assume that c′ ∈ ∆̃0. In Section 3.3, Definition 21 we

introduced simply connected open sets U0 and V1 containing ∆̂0 and ∆̂1 respec-

tively, such that P : U0 → V1 is a ramified covering with all critical values in ∆̂1.
We distinguish two cases:

• First case: P (c′) ∈ ∂∆1. The critical value P (c′) ∈ V1 has only one preim-
age in U0 by Lemma 13 case (2). Recall that ∂∆ surjects to ∂∆1 under
P (see the beginning of Section 3.2). Hence there must be at least one
preimage of P (c′) on ∂∆. This implies that c′ ∈ ∂∆.

• Second case: P (c′) /∈ ∂∆1. We will show this cannot occur according to
the following plan:

(1) We will first prove that ∆̂ is locally totally invariant under P p (Sec-
tions 7.1, 7.2, 7.3 and 7.4 or its variant 7.5).

(2) We will then consider the external map associated to (P p,∆), i.e. we

conjugate P p by the conformal map C \ ∆̂ → C \ D. We prove in
Section 7.6 that the external map is a degree d covering of the circle
for some g ≥ 2. (See Section 2.3 for a general discussion of external

16More generally, if K and L are two full compact subsets of C and K ∩L is full then K ∪L is
full. This can be proved for instance by studying the end of the Mayer–Vietoris exact homology
sequence applied to the complement of K and of L in the Riemann sphere.
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maps. Note that the proof of Theorem 2 also makes use of the external
map associated to (P p,∆) but there, we get a degree 1 cover instead.)

(3) The local total invariance implies that we get a map defined in an
annulus 1 < |z| < 1+ε, but this time the induced circle map has degree
> 1. We will then use a theorem of Mañé ensuring hyperbolicity of
this circle map, provided there are no non-repelling cycles on the circle
(Section 7.8)

(4) To check the absence of such cycles (Section 7.7), we will use the second
hypothesis of Theorem 3, i.e. that P has only 2 critical values.

(5) Once we have this hyperbolicity, it follows that the map has a polynomial-

like restriction to a neighborhood of ∆̂, with only one critical point
(Lemma 45).

(6) We can then apply Herman’s theorem (or Lemma 26) to reach a con-
tradiction.

The rest of Section 7 deals with the second case: we have assumed P (c′) /∈ ∂∆1

to arrive to a contradiction. In particular, not all that we prove in the rest of this
section needs to occur in reality.

7.1. Towards local invariance. As P p(∆̂) ⊂ ∆̂, we have ∆̂ ⊂ P−p(∆̂). By

Corollary 23 and the discussion that follows it, to prove that ∆̂ is locally totally

invariant by P p it is sufficient to prove that ∆̃k = ∆̂k for every k.

Lemma 30. P (c′) belongs to a component shielded by ∂∆1 which is not ∆1.

Proof. The assumption that the critical value P (c′) does not belong to ∂∆1 implies
that it belongs to a component shielded by ∂∆1. The restriction P : ∆ → ∆1 is a
holomorphic bijection, in particular it is surjective and has no critical point. Thus
every point of ∆1 has at least one preimage in U0 that is not a critical point. Now
P (c′) has a unique preimage in U0 (namely c′) and it is a critical point. Hence
P (c′) /∈ ∆1. Thus P (c′) belongs to component shielded by ∂∆1 but different from
∆1. �

Lemma 31. If k 6= 0 (mod p) then ∆̃k = ∆̂k.

Proof. We saw that the critical value P (c′) belongs to a component shielded by
∂∆1. Since on one hand P (c′) belongs to the Fatou set and on the other hand

∆̂i ∩ ∆̂j is either empty or a single point in the Julia set (Corollary 14), it follows

that P (c′) /∈ ∆̂k when k 6= 1 (mod p), hence ∆̃k−1 contains no critical point (recall

the assumption that c′ is the only critical point in
⋃
k≥0

∆̃k). Thus by Corollary 22:

∆̃k = ∆̂k if k 6= 0 (mod p). �

The next few sections aim to prove that this also holds when k = 0 (mod p), i.e.
that

(1) ∆̃ = ∆̂.

Lemma 32. There exists m ≥ 1 such that Pmp(c′) ∈ P−1(∆1) \∆.

Proof. The point P (c′) belongs to ∆̂1. Moreover, since it is in a shielded component
it is eventually mapped under iterations of P to

⋃
k ∆k (Lemma 24). Neither c′

nor P (c′) belongs to
⋃
k ∆k. By Lemma 31 and Corollary 22, P is a bijection from

∆̂k to ∆̂k+1 when k 6= 0 (mod p) and P is also a bijection from ∆k to ∆k+1. It

follows that a point in ∆̂k that maps to ∆k+1 necessarily belongs to ∆k if k 6= 0
(mod p). Hence the first iterate of c′ that hits

⋃
k ∆k is a point P k0(c′) ∈ ∆1 with
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k0 = 1 +mp and m ≥ 1. Thus Pmp(c′) ∈ ∆̃ belongs to a preimage of ∆1 which is
not ∆. �

7.2. Symmetries. To prove (1), we will use in an essential way the fact that there

is some symmetry on the preimages of ∆1 in ∆̃ and in the global picture of U0.
The map P : U0 → V1 is a ramified covering with a single critical value P (c′)

and V1 is simply connected so it is equivalent to the map D : D→ D, z 7→ zd where
d is the local degree of P at c′. The map D : z 7→ zd is a normal covering17 and has
a finite cyclic group of automorphisms, namely the group of rotations generated by
z 7→ e2πi/dz. Hence the ramified covering P : U0 → V1 is normal too and its group
of autormophisms G is isomorphic to (Z/dZ,+).

Let ρ : U0 → U0 be a generator of G. Since P (c′) does not belong to ∆1, this

implies that ∆1 has exactly d preimage components in ∆̃, the sets ρn(∆), n ∈ Z.
Let us call them partners of ∆ and denote their union by O:

O =
⋃
g∈G

g(∆).

Lemma 33.

(2) ∆̃ = Ô.

Proof. Note that

O = ∆̃ ∩ P−1(∆1) = U0 ∩ P−1(∆1) =
⋃
n∈Z

ρn(∆) =
⋃
g∈G

g(∆).

By Corollary 8, P−1(∆̂1) = ̂P−1(∆1). The set ∆̃ is thus a connected component

of ̂P−1(∆1), so by Proposition 11, ∆̃ = fill(P−1(∆1) ∩ ∆̃). Now P−1(∆1) consists

of finitely many components: the ones in ∆̃, whose union compose O and the

rest, which are disjoint from U0, so their closure is disjoint from ∆̃. This shows

P−1(∆1) ∩ ∆̃ = P−1(∆1) ∩ ∆̃, so

fill(P−1(∆1) ∩ ∆̃) = fill(P−1(∆1) ∩ ∆̃) = fill(O) = Ô.

Hence ∆̃ = Ô. �

7.3. Some topological considerations. In this section, we reduce the proof of
local total invariance to a general topological proposition. In the course of this
argument, it will be shown that all partners of ∆ share the same boundary. Together
with the unbounded complementary component of ∂∆, they thus form a system of
lakes of Wada.18

Lemma 34. ∂∆ shields one of the partners of ∆ other than ∆. In other words,

u(∆) ⊂ ∆̂ for some u ∈ G \ {id}.

Proof. By Lemma 32, Pmp(c′) belongs to a component of P−1(∆1) other than ∆.
Hence, Pmp(c′) ∈ u(∆) for some u ∈ G with u 6= id. Recall that P (c′) is contained
in a component shielded by ∂∆1. Since mp ≥ 1, it follows that Pmp(c′) belongs to

a component shielded by ∂∆. This proves u(∆) ⊂ ∆̂. �

17Recall that the group of automorphisms or deck transformation group of a covering f : X →
Y is the set of homeomorphisms φ : X → X so that f ◦ φ = φ, and that the covering is termed
regular, normal or Galois whenever its action is transitive on fibers of f .

18Recall that we are in the middle of a proof by contradiction, so our work does not have

any bearing on the problem of existence of lakes of Wada. Yet, Rogers proved this existence
under the sole assumption that the boundary of the polynomial Siegel disk ∆ has more than two

complementary components (see Section 1.2) a hypothesis that has not been proven possible or
impossible.
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Our next goal is to show that ∂∆ shields all partners of ∆. This can be rephrased

as O ⊂ ∆̂ where O =
⋃
g∈G g(∆) was introduced above. Once this is established,

it follows from Corollary 6 that Ô ⊂ ∆̂. Thus, by Equation (2) above,

∆̂ ⊂ ∆̃ = Ô ⊂ ∆̂,

which proves the desired local total invariance (cf. Section 7.1).
The fact that ∂∆ shields all partners of ∆ follows immediately from the following

more general19 topological proposition, by going to the disk model of U0 in which
elements of G act as rotations:

Proposition 35. Let U0 be a connected and simply connected open subset of C,
G be a non-trivial finite cyclic group of homeomorphisms of U0 that is conjugate
to a group of rotations on the unit disk. Let c′ be the common fixed point and
let ∆ be a non-empty connected and simply connected open subset of U0 such that

g(∆) ∩∆ = ∅ for all g ∈ G \ {id}, such that ∂∆ = ∂∆̂ and such that c′ does not

belong to ∂∆. If there is a u ∈ G \ {id} such that u(∆) ⊂ ∆̂ then for every g ∈ G,

g(∆̂) = ∆̂.

For our case where ∆ is the Siegel disk, the hypothesis ∂∆ = ∂∆̂ is satisfied
according to Lemma 18. Moreover, By Lemma 34 we get the assumption that

there is a u ∈ G \ {id} such that u(∆) ⊂ ∆̂. Note that the conclusion g(∆̂) = ∆̂

implies that g(∆) ⊂ ∆̂ for every g ∈ G and therefore O ⊂ ∆̂.
Section 7.4 is devoted to a self-contained proof of Proposition 35. Section 7.5

gives a simpler proof of O ⊂ ∆̂ suggested by the referee, based on a theorem of
Rogers.

7.4. Proof of Proposition 35. As this proof is a bit long, let us describe the
plan: The proof goes by contradiction. Assume that there is some g ∈ G such that

g(∆̂) 6= ∆̂. Then the stabilizer H of ∆̂ in G is a proper subgroup of G. We first
prove that u ∈ H so that H is not trivial. Let ρ be a generator of G, ρ /∈ H. Then
∂∆ 6= ρ(∂∆) but we prove that they both separate c′ from ∞. Intuitively, taking
the images by iterates of ρ should lead to a contradiction, but we have not been
able to push this argument through using ∂∆ itself. Instead, we use two curves γ
and γ′ that are disjoint and such that each separate one another from ∞, which is
an impossible configuration. We now begin the proof.

Recall that G acts on U0. The stabilizer (in G) of a set A ⊂ U0 is defined by

StabA =
{
g ∈ G

∣∣ g(A) = A
}
.

Let

H = Stab ∆̂.

Let G{∆̂} denote the orbit of ∆̂ under G:

G{∆̂} = {∆̂, ρ(∆̂), ρ2(∆̂), . . .}.
Do not confuse this with the the following notation that we also use below: for
X ⊂ U0, let

H ·X =
⋃
h∈H

h(X).

Lemma 36. For every M,N ∈ G{∆̂}, the inclusion N ⊂M implies N = M .

Proof. There is g ∈ G such that N = g(M), so g(M) ⊂M . Let d be the order of G.
Then M = gd(M) ⊂ gd−1(M) ⊂ · · · ⊂ g2(M) ⊂ g(M) ⊂M . Thus g(M) = M . �

19We have not tried to find minimal hypotheses in Proposition 35.
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Lemma 37. If X is a compact subset of U0 then every g ∈ G is defined on X̂ and

ĝ(X) = g(X̂).

Proof. Recall that X̂ is the union of X and all bounded connected components of
C \ X. Also, U0 is simply connected, so its complement in the Riemann sphere
is connected. As a consequence, for any compact subset X of U0, the unbounded

component of C \X must contain C \U0, hence X̂ is contained in U0. The latter is

the domain of g, hence g is defined on X̂. Consider any bounded component C of
C \X. Then ∂C ⊂ X, so ∂g(C) = g(∂C) ⊂ g(X). Moreover, since g(C) is open, it

must be a bounded component of the complement of g(X), so g(C) ⊂ ĝ(X). Hence

g(X̂) ⊂ ĝ(X). Replacing g by g−1 and X by g(X) in the above argument leads to
the opposite inclusion. �

Lemma 38. The stabilizer H is non-trivial.

Proof. Recall that u(∆) ⊂ ∆̂ for some u ∈ G \ {id} by the assumption of in

Proposition 35. It follows from Corollary 6 that û(∆) ⊂ ∆̂. By Lemma 37, u(∆̂) ⊂
∆̂. Applying Lemma 36, we obtain u(∆̂) = ∆̂. �

Lemma 39. H = Stab ∆̂ = Stab ∂∆ = Stab g(∆̂) = Stab g(∂∆) for every g ∈ G.

Proof. By the assumption ∂∆ = ∂∆̂. Thus, if h ∈ H, then h(∂∆) = h(∂∆̂) =

∂h(∆̂) = ∂∆̂ = ∂∆, which proves h ∈ Stab ∂∆. Conversely, if h ∈ Stab ∂∆, then

∂h(∆̂) = h(∂∆̂) = h(∂∆) = ∂∆ = ∂∆̂. By Lemma 37, h(∆̂) = ĥ(∆). Thus ∆̂

and ĥ(∆) have the same boundary. Since they are full, they must be equal. Hence

h(∆̂) = ĥ(∆) = ∆̂ which proves h ∈ H.

To finish the proof, note that for every g ∈ G, both stabilizers of g(∆̂) and g(∂∆̂)
coincide with the conjugate group gHg−1, which is just H since G is commutative.

�

Lemma 40. For every g ∈ G, ∂g(∆) separates c′ from ∞.

Proof. It is enough to prove that ∂∆ separates c′ from ∂U0. Assume by way of
contradiction that it does not. Then there is a path δ in U0 from c′ to ∂U0 and
avoiding ∂∆. Let V be the connected component of U0 \ (H · δ) containing ∂∆. For
every h ∈ H, since h(∂∆) = ∂∆, the sets V and h(V ) are not disjoint (thus are
equal). We now work in coordinates in which the group G is a group of rotations
on a disk centered on 0, where for simplicity we will use the same name for all the
objects. Choose h ∈ H \ {id} and z ∈ V ∩ h(V ): since both z and h−1(z) belong
to V and since V is open and connected, there exists a path γ in V from h−1(z)
to z. The winding number20 around 0 of this path is of the form α = i/d for some
i ∈ Z and i /∈ dZ because h 6= id hence α 6= 0. Let k be the order of h. The
concatenation of γ, h(γ), h2(γ), . . . , hk−1(γ) has winding number kα and is closed
so kα ∈ Z \ {0}. Hence γ′ separates 0 from ∞. Note that H · δ is connected and
disjoint from γ′. Hence γ′ separates H · δ from the boundary of the round disk,
which contradicts the fact that δ starts from 0 and tends to this boundary.

�

The generator ρ of G is not in H, i.e. ∆̂ 6= ρ(∆̂), so by Lemma 36

(3) ∆̂ 6⊂ ρ(∆̂) and ρ(∆̂) 6⊂ ∆̂.

20By the winding number of an open path here we mean the difference of the initial and final
values of a lift of the argument along the path, divided by 2π.
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c′

U0

ρ(z0)
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b(D)

b2(D)

z0
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b(γ0)

γ0

b2(γ0)

b(γ0)
b2(γ0)

Figure 6: Schematic illustration of the construction of the curve γ in the case
|G| = 9 and |H| = 3, in the disk model. Here γ = γ0 · b(γ0) · b2(γ0). The part
of ∆ that sits in D = B(z0, ε) and its images under H are indicated in gray, its
boundary in black. The curve γ0 is indicated in red, but only its beginning and
its end are shown. Similarly b(γ0) is indicated in yellow and b2(γ0) is indicated in
cyan. The point z0 and its orbit under G are indicated by blue crosses.

The first non-inclusion implies ∂∆ 6⊂ ρ(∆̂), otherwise ∆̂ = ∂̂∆ ⊂ ρ̂(∆̂) = ρ
( ̂̂

∆
)

=

ρ(∆̂). The second non-inclusion gives a similar conclusion, hence

(4) ∂∆ 6⊂ ρ(∆̂) and ρ(∂∆) 6⊂ ∆̂.

Lemma 41.

(5) ∆ ∩ ρ̂(∆) = ∅ and ρ(∆) ∩ ∆̂ = ∅.

Proof. Since ∆ and ρ(∆) are disjoint open subsets of U0, ∆ does not intersect
∂ρ(∆). If the first intersection were not empty, since ∆ is connected, we would

get ∆ ⊂ ρ̂(∆) and thus ∆̂ ⊂ ρ̂(∆) by Corollary 6, leading to a contradiction. The
second intersection is empty by a similar argument. �

Construction of a pair of disjoint curves γ and γ′.

The first non-inclusion in (4) means that there is a point z0 ∈ ∂∆ \ ρ(∆̂). Since

ρ(∆̂) is closed, there is a neighborhood of z0 that does not intersect ρ(∆̂). Let
D = B(z0, ε) be contained in this neighborhood and in U0 and not containing c′

(c′ 6= z0 because c′ /∈ ∂∆ and z0 ∈ ∂∆):

D ⊂ U0, D ∩ ρ(∆̂) = ∅, c′ /∈ D.
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Since z0 ∈ ∂∆, D intersects ∆. Denote by b a generator of the group H. Since
b ∈ H, b(∂∆) = ∂∆ so b(z0) ∈ ∂∆ thus b(D) intersects ∆ too. Now choose any
curve contained in ∆ and going from a point z1 in ∆∩D to a point z2 in ∆∩ b(D).
Complete it by any curve contained in D from z1 to z0 and by any curve contained
in b(D) from z2 to b(z0): thus we get a curve γ0 going from z0 to b(z0). Extend
this curve to a closed21 curve γ = γ0 · b(γ0) · · · bk(γ0) where k ≥ 2 is the order of
H. Notice that γ does not contain the critical point c′.22

To construct γ we used the fact that ∆̂ 6⊂ ρ(∆̂). We similarly use ρ(∆̂) 6⊂ ∆̂ to
construct a curve γ′. We can make the curves γ and γ′ disjoint if we proceed as

follows: We first select z0 ∈ ∂∆ \ ρ(∆̂) and z′0 ∈ ∂ρ(∆) \ ∆̂. Note that z0 and z′0
cannot be in the same orbit under H because ∂ρ(∆) is invariant under H and is

contained in ρ(∆̂). We then choose ε and ε′ small enough so that D := B(z0, ε)
and D′ := B(z′0, ε

′) satisfy

D ⊂ U0, D ∩ ρ(∆̂) = ∅, c′ /∈ D,
D′ ⊂ U0, D

′ ∩ ∆̂ = ∅, c′ /∈ D′,
D and D′ have disjoint orbits under H.

We then carry out the construction of γ and γ′ as above. In particular:

z0 ∈ γ ∩ ∂∆ and z′0 ∈ γ′ ∩ ∂ρ(∆).

Recall the following notation for X ⊂ U0:

H ·X =
⋃
h∈H

h(X).

Recall that H · ∆ ⊂ ∆̂ and so H · ρ(∆) ⊂ ρ(∆̂) = ρ̂(∆). In particular H · D is
disjoint from H · ρ(∆). Now γ ⊂ (H ·∆) ∪ (H ·D), and γ′ ⊂ (ρH ·∆) ∪ (H ·D′),
thus

γ ∩ γ′ = ∅.
Since on one hand D is disjoint from ρ̂(∆) = H.ρ̂(∆) and thus H.D is disjoint

from ρ̂(∆), and on the other hand ∆ is disjoint from ρ̂(∆) by (5), we also get

γ ∩ ρ̂(∆) = ∅; similarly γ′ ∩ ∆̂ = ∅:

(6) γ ∩ ρ̂(∆) = ∅ and γ′ ∩ ∆̂ = ∅.

Remark. It would be tempting to try to take γ′ = ρ(γ). But note that it is not

even clear that one can take z′0 = ρ(z0): indeed, from z0 ∈ ∂∆ \ ρ(∆̂) one deduces

that ρ(z0) ∈ ∂ρ(∆) \ ρ2(∆̂), whereas we want ρ(z0) ∈ ∂ρ(∆) \ ∆̂. Unless ρ2 ∈ H
(i.e. H has index 2 in G), there is no obvious reason for ρ(z0) to avoid ∆̂.

Lemma 42. Both γ and γ′ separate c′ from ∞.

Proof. The proofs are similar so we only consider the case of γ. Let us go into
the disk model of U0: recall that by assumption there is a homeomorphism from
U0 to D that sends c′ to 0 and conjugates the group G to the group of rotations
generated by z 7→ e2πi/dz. The curve γ0 joins z0 to some e2πik/dz0 6= z0. The lifted
rotation angle around 0 of γ0 is therefore 6= 0. The lifted rotation angle of γ is d
times the former, thus 6= 0. Therefore the winding number of γ around 0 is 6= 0.
So γ separates 0 from ∂D in the disk model. This proves the claim. �

21It is not hard to get a simple closed curve, but we will not need to.
22One could naively think we could do without D by choosing z0 accessible from ∆. But there

is no guarantee that b(z0) is accessible from ∆. The image under b of the access to z0 from ∆ is
an access to b(z0), but from b(∆), not ∆.
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Lemma 43. Given two disjoint connected non-empty compact subsets K, L of C,
one and only one of the following occurs:

(a) K̂ ∩ L̂ = ∅,

(b) K̂ ⊂ L̂ \ L,

(c) L̂ ⊂ K̂ \K.

Proof. The set L is contained in a component U of the complement of K, the set
K is contained in a component V of the complement of L. Cases (a), (b) and
(c) correspond respectively to the situations where U and V are unbounded, U is
unbounded but not V and V is unbounded but not U . The three cases are mutually
exclusive. There remains to rule out the last case where U and V are bounded.
Consider the unbounded component W of the complement of K ∪ L. There is at
least one point on ∂W ⊂ K ∪ L and if it belongs to K then V is unbounded, if it
belongs to L then U is unbounded. �

We can apply Lemma 43 to K = γ and L = γ′. Case (a) does not occur because

of Lemma 42, thus either γ̂ ⊂ γ̂′ \ γ′ or γ̂′ ⊂ γ̂ \ γ. Let us assume that γ̂′ ⊂ γ̂ \ γ,
the other case being treated similarly. Let us apply Lemma 43 to K = γ′ and

L = ∂∆. By Lemmas 40 and 42, ∂̂∆∩ γ̂′ is non-empty since it contains c′. By (6),

γ̂′ cannot be contained in ∂̂∆. Thus the only remaining possibility is ∂̂∆ ⊂ γ̂′ \ γ′.
This, by the assumption above, leads to the inclusion ∂∆ ⊂ γ̂ \ γ. However, ∂∆
and γ have a point in common (the point z0 in the construction of γ). We reached
a contradiction.

We have thus proved that H 6= G leads to a contradiction. This ends the proof
of Proposition 35.

7.5. Alternate proof. The referee suggested to us an alternate proof that all
partners of ∆ are shielded by ∂∆. In this proof, one does not need to use the
topological Proposition 35 in full generality: by dealing with actual Siegel disks,
the elaborate construction of γ and γ′ is replaced by the use of the second theorem of
Rogers mentioned in Section 1.2, more precisely the claim that ∂∆ is the boundary
of each component of its complement, a fact that we did not use nor reprove here
(see [Rog98]). This proof is much shorter, but comes at the cost of not being
self-contained.

The proof begins as the proof of Proposition 35: we introduce the stabilizer H of
∂∆ and use the fact that H is not trivial. We also keep Lemma 40: ∂∆ separates
c′ from ∞. Then we note that the component W of the complement of ∂∆ that
contains c′ is G-invariant: indeed, W is a Fatou component and for every g ∈ G,
g(W ) is again a Fatou component (g leaves invariant the intersection of the Julia
and the Fatou set with U0, since P ◦ g = P ) and contains c′ thus is equal to W . By
Rogers’ theorem, ∂W = ∂∆, hence ∂∆ is G-invariant. The result follows.

7.6. Analytic coverings of the circle with non vanishing derivative. As
explained in Section 2.3, let f be conjugate to P p by a conformal isomorphism

φ : C \ ∆̂→ C \D and f̃ be its Schwarz reflection. Thanks to local total invariance,

the domain of f̃ contains some annulus of the form 1/(1 + ε) < |z| < 1 + ε. Recall

that d denotes the local degree of the critical point c′ ∈ U0 and that ∆̂k is defined

as fill(∆k).

Lemma 44. The restriction of f̃ to ∂D is a degree d covering map of the circle
with non-vanishing derivative.

Proof. We saw in Section 2.3 that this restriction is an orientation-preserving cover-
ing of ∂D without critical points. Let m be its degree. For every neighborhood U of
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∂D there exists a neighborhood V of ∂D such that every point in V \D has exactly
m preimages under f in U \ D. The map P is a degree d ramified covering from

U0 to V1 (whose critical value is in ∆̂1) and an isomorphism from Uk to Vk+1 when

k 6= 0 (mod p). Thus for every neighborhood U of ∆̂k, there exists a neighborhood

V of ∆̂k+1 such that every point of V \ ∆̂k+1 has exactly d or 1 preimages under

P in U \ ∆̂k, according as k = 0 (mod p) or k 6= 0 (mod p). From this it follows

that for every neighborhood U of ∆̂ there exists a neighborhood V of ∆̂ such that

every point in V \ ∆̂ has exactly d preimages under P p in U \ ∆̂. Thus m = d. �

7.7. Absence of non-repelling cycles on the circle for the external map.
Assume by way of contradiction that the (extended) external map has a non-
repelling cycle on ∂D. Notice that since the unit circle is invariant, this cycle
can only be attracting or parabolic with multiplier 1. Choose a point a in the cy-
cle, let m be its period and let A be its immediate basin in the complex plane. Let
B = φ−1(A) = φ−1(A ∩ (C \ D)). (Recall that the domain of φ−1 is C \ D.) Then
B is bounded in C and stable under Pmp. It is therefore contained in a periodic
component B′ of the Fatou set.23 Since every point of A tends to a under the

iteration of f̃m, every point of B tends to ∂∆̂ = ∂∆ under the iteration of Pmp. In
particular B′ is not part of an attracting basin or a cycle of Siegel disks, because
every point in such a component has an orbit that stays bounded away from the
Julia set. It follows that B′ is a component of an immediate parabolic basin. In
particular the cycle of components associated to B′ must contain a critical point.

Let us now use the assumption that P has only two critical values. One of them
is P (c′) and eventually maps to ∆ so its orbit does not accumulate on ∂∆. The
other must therefore be contained in the cycle of B′ so its orbit accumulates on the
associated parabolic cycle, a finite set. This contradicts Fatou’s theorem asserting
that ∂∆ ⊂

⋃
c ω(c), the union being over all critical points.

Therefore there is no non-repelling cycle for f̃ on ∂D.

Remark. For polynomials P with more than two critical values, we have not
been able to get a contradiction. The reason is that a third critical point may
accumulate on all ∂∆ as required by Fatou’s theorem. All our argument proves in

this case is that if there is a non-repelling cycle for f̃ on ∂D then there must be
a parabolic cycle on ∂∆. Unfortunately the separation theorem does not rule this
out: the separating external rays may well land on this parabolic point and still
separate B′ from ∆. However, the notion of parabolic-like maps may help us deal
with this possibility, see [Lom14].

This is the only place in the proof of Theorem 3 where we use the assumption
that P has only two critical values.

7.8. Hyperbolicity. Let us cite Theorem A in [Mañ85] (see also [Mañ87]).

Theorem (Mañé). Let N = S1 (the circle) or N = [0, 1]. If f is a C2 map from N
to N and Λ ⊂ N is a compact invariant set that doesn’t contain critical points, sinks
or non-hyperbolic periodic points, then either Λ = N = S1 and f is topologically
equivalent to an irrational rotation or Λ is a hyperbolic set.

The second case does not exclude the possibility that Λ = N = S1, consider for
instance the angle doubling map on S1.

We can apply Mañé’s theorem to the extended external map f̃ on ∂D with
Λ = N = ∂D: Section 7.7 proved the absence of attracting or parabolic cycles, and

Lemma 44 the absence of critical points. It follows that f̃ is hyperbolic on ∂D, which

23It is not hard to show that in fact B′ = B, but we do not need this.
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means that there is a continuous function ρ > 0 on the unit circle such that f̃ is

uniformly expanding with respect to the metric ρ(z)|dz|, i.e. ρ(f̃(z))|f̃ ′(z)| > κρ(z)
for some κ > 1. Let s : z 7→ 1/z.

Lemma 45. There exists a pair of bounded topological annuli U, V ⊂ C such that

∂D ⊂ U b V , s(U) = U , s(V ) = V and f̃ : U → V is a covering map.

Proof. This is a classical construction, we recall it for completeness. The following
fact will be used twice:
(*) Two inverse branches of a holomorphic map that coincide at a given point z
must coincide in a neighborhood of z. It follows that they must coincide in the
connected component containing z of the intersection of their domains.

Let E be the holomorphic bijection from the cylinder C/Z to C∗ defined by
E(ζ) = e2πiζ . It sends R/Z to ∂D. Let us make the coordinate change z = E(ζ), i.e.

let us define F = E−1 ◦ f̃ ◦E. To simplify notations below, let also µ(x) = ρ(E(x))
for x ∈ R/Z. Then, since |E′| = 2π on the circle, we have

µ(F (x))|F ′(x)| > κµ(x).

Given ε > 0, let

rx =
ε

µ(x)

and consider the domain

B =
⋃

x∈R/Z

Bx with Bx = B(x, rx).

For ε small enough, all balls Bx have radius ≤ 1/2 and B is contained in the domain
of definition of F .

We will make use of the following quantitative version of the implicit function
theorem:

Sublemma. Let r, a > 0 and f : B(0, r)→ C be holomorphic with |f ′−1| < a < 1.
Then f is injective, its image contains B(f(0), (1−a)r), its inverse is holomorphic
and |(f−1)′ − 1| < a/(1− a).

Injectivity follows from the fact that f − id is contracting. The second statement
follows for instance from the fixed point theorem applied to the map z 7→ w + z −
f(z), w ∈ B(f(0), (1− a)r). Details of the proof are left to the reader.

Choose κ′ such that

1 < κ′ < κ

and let

a = 1− 1

κ′
.

By uniform continuity of F ′, provided ε is small enough we have

|F ′(x+ ζ)− F ′(x)| < a|F ′(x)| if x ∈ R/Z and |ζ| < rx.

Let us apply the sublemma above to fx : B(0, rx) → C defined by fx(ζ) = F (x +
ζ)/F ′(x). Then fx has an inverse gx whose domain contains B(F (x)/F ′(x), (1 −
a)rx). Consider the inverse branch Gx of F defined by Gx(z) = x + gx(z/F ′(x)).
Then the domain of Gx contains B(F (x), (1−a)rxF

′(x)) c B(F (x), rF (x)) = BF (x).
Since the domain of Gx is equal to F (Bx) it follows that

Gx(BF (x)) b Bx.

Set Cx = Gx(BF (x)) and

A =
⋃

x∈R/Z

Cx.
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The sublemma also states that |g′x| ≤ 1 + |g′x − 1| < 1 + a/(1− a) = 1/(1− a) = κ′

and thus

|G′x(z)| ≤ κ′/|F ′(x)|,
hence

|G′x(z)| · rF (x) ≤
κ′

κ
· rx,

whence

Cx ⊂ B(x,
κ′

κ
rx).

The radii of B(x, κ
′

κ rx) and Bx differ by at least (1 − κ′

κ ) · rx, whose infimum is
positive, so A b B.

Let us now prove that F : A → B is a covering. For this, it is enough to show
that for every x ∈ R/Z, A ∩ F−1(Bx) is the disjoint union of Cx1 , . . . , Cxd

where
x1, . . . , xd are the d real preimages of x.24 It is immediate that A ∩ F−1(Bx)
contains Cx1

∪ · · · ∪ Cxd
. The union is on pairwise disjoint sets, for if Cxi

meets
Cxj

then by (*) the two branches Gxi
and Gxj

are equal. There remains to prove

that A∩F−1(Bx) is contained in Cx1
∪ · · · ∪Cxd

. Consider ζ ∈ Bx and any ζ ′ ∈ A
such that F (ζ ′) = ζ. By definition of A, there exists x′ ∈ R/Z such that ζ ′ ∈ Cx′ ,
so ζ ∈ BF (x′) and Gx′(ζ) = ζ ′. Let x′′ = Re (ζ). The vertical line segment [ζ, x′′]
is contained in Bx ∩BF (x′). The point x′′ has exactly d preimages, so there exists
i ∈ {1, . . . , d} such that Gxi

(x′′) = Gx′(x
′′). Then by (*) the maps Gx′ and Gxi

coincide in a neighborhood of the segment. Hence Gxi(ζ) = Gx′(ζ) and ζ ′ ∈ Cxi .
The open set B is real-symmetric and is a topological annulus: indeed its in-

tersection with every vertical is a connected open interval containing a real point.
Since F : A→ B is a finite degree covering, A is also a topological annulus.

The pair of sets U = E(A) and V = E(B) satisfies the conclusions of the
lemma. �

Let U ′ = ∆̂∪φ−1(U) and V ′ = ∆̂∪φ−1(V ). Then U ′ and V ′ are open, connected,
simply connected, U ′ is a connected component of P−p(V ′) and U ′ is compactly
contained in V ′. Therefore the restriction P p : U ′ → V ′ is a polynomial-like map,
which is also unicritical.

So we have proved that P p has a unicritical polynomial-like restriction whose
domain contains ∆. For this restriction, ∆ is a Siegel disk of rotation number θ
and period one. Now we can apply Herman’s theorem (which works as well for
unicritical polynomial-like maps) to conclude that the critical point c′ must belong
to ∂∆. This contradicts our standing assumption that P (c′) /∈ ∂∆1. Alternatively,
we can finish the argument as in Lemma 26: Fatou’s theorem stating that ∂∆ is
contained in the ω-limit set of the critical points also works for polynomial-like
maps, and since the only critical point c′ of our polynomial-like map is in a Fatou
component, the whole boundary ∂∆ cannot be accumulated by its orbit, leading to
a contradiction.

This finishes the proof of the second case of Section 7: the assumption P (c′) /∈
∂∆1 leads to a contradiction.

The proof of Theorem 3 is thus complete.
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des rotations et applications aux disques singuliers de Siegel, 1986. Manuscript.
[IS08] Hiroyuki Inou and Mitsuhiro Shishikura. Near parabolic renormalization. Submited,

2008.

[Kiw00] Jan Kiwi. Non-accessible critical points of Cremer polynomials. Ergodic Theory Dynam.
Systems, 20(5):1391–1403, 2000.

[Lom14] Luna Lomonaco. Parabolic-like maps. Erg. Theory and Dyn. Syst., first view:1–27,
online 2014.
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deaux, 351, cours de la Libération, F 33405 Talence cedex, France
E-mail address: arncheritat@math.u-bordeaux.fr

Institut de Mathématiques de Marseille I2M, Aix-Marseille Université, Technopôle
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