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We consider a damped wave equation on a open subset of R n or a smooth Riemannian manifold with boundary, with Ventcel boundary conditions, with a linear damping, acting either in the interior or at the boundary. This equation is a model for a vibrating structure with a layer with higher rigidity of thickness δ > 0. By means of a proper Carleman estimate for second-order elliptic operators near the boundary, we derive a resolvent estimate for the wave semigroup generator along the imaginary axis, which in turn yields the logarithmic decay rate of the energy. This stabilization result is obtained uniformly in δ.

Introduction

We consider a damped wave equation on (Ω, g), a compact Riemannian manifold with smooth boundary ∂Ω, with Ventcel1 boundary conditions, and we are concerned here with the stabilization of such an equation. This type of boundary conditions is characterized by the presence of a second-order tangential operator at the boundary, for instance the Laplace-Beltrami operator ∆ T g , reading ∂ ν u -∆ T g u = 0 (ν denotes the outgoing normal unit vector). It generally arises when considering a domain with an thin boundary layer of high rigidity, after some approximations are made. The issue of stabilizing such a wave equation has been the subject of several works, for instance [START_REF] Cavalcanti | Uniform stabilization of the damped Cauchy-Ventcel problem with variable coefficients and dynamic boundary conditions[END_REF][START_REF] Cavalcanti | Geometrically constrained stabilization of wave equations with Wentzell boundary conditions[END_REF][START_REF] Cavalcanti | Wave equation with damping affecting only a subset of static Wentzell boundary is uniformly stable[END_REF][START_REF] Nicaise | Polynomial stabilization of the wave equation with Ventcel's boundary conditions[END_REF][START_REF] Heminna | Stabilisation frontière de problèmes de Ventcel[END_REF][START_REF] Maniar | Null controllability for parabolic equations with dynamic boundary conditions of reactive-diffusive type[END_REF][START_REF] Khemmoudj | Exponential decay for the semilinear cauchy-ventcel problem with localized damping[END_REF]. Here, we consider a linear damping of the form a(x)∂ t u, in the interior of the domain, or b(x)∂ t u | ∂Ω , within the Ventcel boundary condition at the boundary, where a and b are non-negative functions with a non-empty support of Ω or ∂Ω, respectively. Stabilization is measured by the decay and the convergence to zero of a natural energy function for the solution. Since the seminal works of [START_REF] Rauch | Exponential decay of solutions to hyperbolic equations in bounded domains[END_REF][START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF], it is known that a stabilization charaterized by an exponential decay rate for the energy is heavily related to a geometric control condition, GCC for short. Roughly speaking, every generalized geodesic (travelled at speed one), in the sense of [START_REF] Melrose | Singularities of boundary value problems[END_REF], needs to meet the control region in a finite time (see also [START_REF] Burq | Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes[END_REF]). In our case, we do not impose any condition on the localization of the damping, and we follow the approach of [START_REF] Lebeau | Équation des ondes amorties[END_REF][START_REF] Lebeau | Stabilisation de l'équation des ondes par le bord[END_REF][START_REF] Bellassoued | Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization[END_REF] that leads to the proof of a logarithm type decay for the energy. Setting the damped wave equation in a semigroup form, say d dt U + AU = 0, such a decay can be obtained upon deriving of a resolvent estimate for the semigroup generator of the form (iσ Id +A) -1 ≤ C exp(C|σ|) for σ ∈ R, with |σ| ≥ 1. Precise statements, including proper operator norms, are given below. Such a resolvent estimate can be achieved from Carleman type estimates for a second-order elliptic operator, taking into account the particular boundary condition used in the definition of the damped wave equation problem. Classical boundary conditions, e.g. homogeneous Dirichlet, homogeneous Neumann in the case of an inner damping (a nonvanishing), or Neumann in the case of a boundary damping (b nonvanishing), were treated in the works cited above. The subject of the present article is to consider Ventcel type condition, ∂ ν u -δ∆ T g u + b∂ t u = 0 with a parameter δ ∈ (0, 1]. In particular, in the result we obtain, the parameter δ is allowed to tend to 0 + and we recover the result known for Neumann boundary conditions [START_REF] Lebeau | Stabilisation de l'équation des ondes par le bord[END_REF]. We refer to Section 1.3 for precise statements.

A large part of the present work is devoted to the proof of a local Carleman estimate near the boundary for the following elliptic problem

∆ g u + σ 2 u = f in Ω ∂ ν u | ∂Ω -δ∆ T g u | ∂Ω = g in ∂Ω.
uniformly in σ and δ for |σ| ≥ 1 and δ ∈ (0, 1]. Then, this allows us to derive an interpolation inequality leading to the resolvent estimate for the semigroup generator. Using the analysis of [START_REF] Burq | Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel[END_REF][START_REF] Batty | Non-uniform stability for bounded semi-groups on Banach spaces[END_REF], we can then obtain the logarithmdecay stabilization result. We also show that a similar result can be obtained dynamical Ventcel type boundary conditions.

The proof of the Carleman estimate relies on microlocal techniques at the boundary in the spirit of [START_REF] Lebeau | Stabilisation de l'équation des ondes par le bord[END_REF][START_REF] Rousseau | On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations[END_REF][START_REF] Rousseau | Carleman estimate for elliptic operators with coefficients with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations[END_REF][START_REF] Rousseau | Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces[END_REF][START_REF] Rousseau | Controllability of a parabolic system with a diffuse interface[END_REF]. Near the boudary, our analysis is carried out in normal geodesic coordinates, which eases to use pseudodifferential methods.

The outline of this article is the following. Main results are presented in Section 1.3. In Section 2, we address the well-posedness issues for the damped wave equations we consider as well as the asymptotic behavior of their solutions in the limit δ → 0 + . Section 3 recalls notions around semiclassical calculus and in Section 4 we describe the local geometry of the problem near the boundary. In preparation for the derivation of the Carleman estimate, various microlocal regions are introduced in Section 5 and microlocal versions of the estimate are obtained in Section 6. These estimates are patched together in Section 7 yielding the desired local Carleman estimate near the boundary. Finally, in Section 8 an interpolation estimate is derived and we achieve the sought resolvent estimate.
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Statement of the problem

Let (Ω, g) be a Riemannian manifold of dimension n with smooth boundary ∂Ω. For simplicity, Ω is assumed to be connected. The boundary can be seen as a compact Riemannian manifold of dimension n -1 without boundary endowed with the induced metric g |∂Ω . In local coordinates, the gradient and the divergence on (Ω, g) are given by

∇ g = n j=1 g i j ∂ x i , div g u = 1 det(g) n j=1
∂ x j ( det(g)u j ).

where g i j denotes the coefficients of the inverse of the matrix g = (g i j ) i j , with similar formulae for ∇ T g := ∇ g| ∂Ω and div T g := div g| ∂Ω . The Laplace-Beltrami operator on (Ω, g) then reads

∆ g = div g ∇ g = 1 det(g) n i, j ∂ x i (g i j det(g)∂ x j ), (1.1) 
with a similar formula for ∆ T g . We shall denote throughout this paper by ν the outgoing unit normal vector to Ω with respect to the Riemannian metric, and ∂ ν the associated normal derivative. In this setting we consider the following wave equation

∂ 2 t u -∆ g u = 0 on R t × Ω x , ∂ ν u | ∂Ω -δ∆ T g u | ∂Ω = 0 on R t × ∂Ω x , (1.2) 
which corrresponds to a problem with a static boundary condition of Ventcel type. Dynamic boundary conditions can also be considered, namely

∂ 2 t u -∆ g u = 0 on R t × Ω x ∂ 2 t u | ∂Ω + 1 δ ∂ ν u | ∂Ω -∆ T g u | ∂Ω = 0 on R t × ∂Ω x . (1.3) 
In both cases, δ is a small parameter, say 0 < δ ≤ 1. This kind of boundary conditions may for instance model a thin layer structure surrounding Ω, and the positive parameter δ plays the role of the measure of the thickness of this layer (see Appendix A for a derivation of the model).

We now define usual norms and scalar products on Ω and ∂Ω u, ũ

L 2 (Ω) := Ω u ũdx g , v, ṽ L 2 (∂Ω) := ∂Ω vṽdσ g , (1.4) 
where dx g and dσ g are the volume elements associated with the metrics g and g |∂Ω . In local coordinates, we have dx g = det(g)dx 1 . . . dx n , and a similar formula for dσ g . We also introduce the following Sobolev H 1 scalar products u, ũ

H 1 (Ω) = u, ũ L 2 (Ω) + ∇ g u, ∇ g ũ L 2 (Ω)
, v, ṽ

H 1 (∂Ω) = v, ṽ L 2 (∂Ω) + ∇ T g v, ∇ T g ṽ L 2 (∂Ω)
.

(1.5) 

which corresponds to a conservation of energy E(u, t) of the system. The purpose of the present article is the study of interior stabilization, namely, the following system

∂ 2 t u -∆ g u + a∂ t u = 0 on R t × Ω x , ∂ ν u | ∂Ω -δ∆ T g u | ∂Ω = 0 on R t × ∂Ω x , (1.7) 
where a is a bounded function of Ω satisfying the condition a ≥ C > 0 on ω I , where ω I is a non empty subset of Ω, as well as the problem with damping affecting a subset the boundary

∂ 2 t u -∆ g u = 0 on R t × Ω x , ∂ ν u | ∂Ω -δ∆ T g u | ∂Ω + b∂ t u | ∂Ω = 0 on R t × ∂Ω x , (1.8) 
where b ∈ W 1,∞ (∂Ω) satisfying b ≥ C > 0 on a non-empty subset ω B of ∂Ω. Computing the evolution of the energy as above, we formally obtain respectively

E(u, t) -E(u, 0) = - t 0 Ω a|∂ t u| 2 , E(u, t) -E(u, 0) = - t 0 ∂Ω b|∂ t u | ∂Ω | 2 ,
which shows that, in both cases, the energy is a non-increasing function of time. We shall prove that the localized damping effect is actually sufficient to ensure that the energy goes to zero at least logarithmically. In [START_REF] Lebeau | Stabilisation de l'équation des ondes par le bord[END_REF], in the case where Ω is a ring of R 2 , the authors proved that such a logarithmic decay rate is in fact optimal in the case of Neumann boundary conditions. Below, we shall treat well-posedness and stabilization properties of (1.7) and (1.8) in the same time (Sections 1.3.1 and 2.1). In fact, we shall consider slightly more general operators at the boundary without adding technicality in the analysis. We shall consider the following system

∂ 2 t u -∆ g u + a∂ t u = 0 on R t × Ω x ∂ ν u | ∂Ω + δΣu | ∂Ω + b∂ t u | ∂Ω = 0 on R t × ∂Ω x , (1.9) 
where a and b are as above, but at least one is non identically zero, and Σ denotes any positive second-order differential operator on ∂Ω, that vanishes on constant functions, that is

C ⊂ ker(Σ), (1.10) 
and which furthermore is self-adjoint for the duality bracket ., . H -1 (∂Ω),H 1 (∂Ω) , where the chosen pivot space is L 2 (∂Ω) endowed with the inner-product defined by (1.4). Note that the definition of ., . H -1 (∂Ω),H 1 (∂Ω) depends on the metric g. Hence there is some connection between the operator Σ and g. In particular Σ = -∆ T g is a possible choice for Σ. Observe that H -1 is well defined as derivatives of L 2 (∂Ω) functions in the distribution sense, since ∂Ω has no boundary. Thus, the bilinear form

u | ∂Ω , u | ∂Ω L 2 (∂Ω) + Σu | ∂Ω , u | ∂Ω H -1 (∂Ω),H 1 (∂Ω) (1.11)
defines an equivalent norm on H 1 (∂Ω) to (1.5). Furthermore, we define the energy associated to (1.9)

E s (u, t) := 1 2 ||∂ t u(t)|| 2 L 2 (Ω) + ||∇ g u(t)|| 2 L 2 (Ω) + δ Σu(t) | ∂Ω , u(t) | ∂Ω H -1 (∂Ω),H 1 (∂Ω) . (1.12) 
The reader should keep in mind that a prototype of such an operator Σ is -∆ T g defined in (1.1), and in this case, the energies E and E s coincide. To treat the existence and uniqueness properties of evolution system (1.9), it is convenient to recast the problem into a semigroup formalism. Considering the norms appearing in the energy of solutions given in (1.12), we introduce the natural following spaces

H δ = V δ × L 2 (Ω), δ ∈ (0, 1], where V δ = u ∈ H 1 (Ω) |u |∂Ω ∈ H 1 (∂Ω) , endowed with the norm ||u|| 2 V δ = ||u|| 2 H 1 (Ω) + δ Σu | ∂Ω , u | ∂Ω H -1 (∂Ω),H 1 (Ω) . (1.13)
The space V δ together with the norm ||.|| V δ has a Hilbert space structure. Observe that this norm is equivalent to

||.|| 2 H 1 (Ω) + δ|.| 2 H 1 (∂Ω)
1/2 . We then define the following norm on H δ as the cannonical norm

||(u, v)|| 2 H δ = ||u|| 2 V δ + ||v|| 2 L 2 (Ω) .
Each space H δ and V δ indexed by δ is algebraically equal to H δ=1 and V δ=1 respectively. Yet, note that this identification does not hold topologically as δ goes to 0. Next, we define the wave operator

A δ := 0 -Id -∆ g a(x) (1.14) of domain D(A δ ) := {(u 0 , u 1 ) | u 0 ∈ H 2 (Ω), u 0| ∂Ω ∈ H 2 (∂Ω), u 1 ∈ V δ , ∂ ν u 0| ∂Ω + δΣu 0| ∂Ω + bu 1| ∂Ω = 0}.
The operator A δ depends on δ through its domain. In this formalism, system (1.9) reads as an evolution equation

∂ t U + A δ U = 0, (1.15) 
for U = (u, ∂ t u). In the case of dynamic boundary conditions, we shall consider the following problem

∂ 2 t u -∆ g u + a∂ t u = 0 on R t × Ω x , ∂ 2 t u | ∂Ω + 1 δ ∂ ν u | ∂Ω + Σu + 1 δ b∂ t u | ∂Ω = 0 on R t × ∂Ω x , (1.16) 
where a and b are as in (1.9). Arguing as in (1.6), we define the following energy

E d (u, t) := 1 2 ||∂ t u(t)|| 2 L 2 (Ω) + ||∇ g u(t)|| 2 L 2 (Ω) + δ|∂ t u | ∂Ω (t)| 2 L 2 (∂Ω) + δ Σu | ∂Ω , u | ∂Ω H -1 (∂Ω),H 1 (∂Ω) .
We shall treat system (1.16) as a system of equations coupled through the normal derivative term with a transmission condition at the boundary

∂ 2 t u -∆ g u + a∂ t u = 0, ∂ ν u | ∂Ω + δ∂ 2 t y + δΣy + b∂ t y = 0, u |∂Ω = y.
(1.17)

We then define the space of energy

K δ := (u 0 , u 1 , y 0 , y 1 ) ∈ H 1 (Ω) × L 2 (Ω) × H 1 (∂Ω) × L 2 (∂Ω) | u 0 |∂Ω = y 0 , endowed with the norm (u 0 , u 1 , y 0 , y 1 ) 2 K δ = ||u 0 || 2 H 1 (Ω) + ||u 1 || 2 L 2 (Ω) + δ Σy 0 , y 0 H -1 (∂Ω),H 1 (∂Ω) + δ|y 1 | 2 L 2 (∂Ω)
, yielding a Hilbert space structure. We recast system (1.17) into the evolution equation ∂ t U + B δ U = 0, where U = (u, ∂ t u, y, ∂ t y), and where B δ is the operator defined on K δ

B δ :=               0 -Id 0 0 -∆ g a 0 0 0 0 -Id 0 1 δ γ 1 0 Σ 1 δ b               , with domain D(B δ ) := (u 0 , u 1 , y 0 , y 1 ) ∈ H 2 (Ω) × H 1 (Ω) × H 2 (∂Ω) × H 1 (∂Ω) | u 0 |∂Ω = y 0 .
The operator γ 1 denotes here the trace on ∂Ω of the normal derivative ∂ ν .

Main results

Stablization results on the damped wave equations

The main results of this article are the following stabilization properties.

Theorem 1.1. Let k ≥ 1. There exists C > 0 such that for all 0 < δ ≤ 1 we have the following energy decay estimate E s (u, t)

1/2 ≤ C log(2 + t) k ||A k δ U 0 || H δ (Ω) ,
for all u solutions of (1.9) with initial data U 0 = (u 0 , ∂ t u 0 ).

We also have Theorem 1.2. Let k ≥ 1. There exists C > 0 such that for all 0 < δ ≤ 1 we have the following energy decay estimate

E d (u, t) 1/2 ≤ C log(2 + t) k ||B k δ U 0 || H δ (Ω) ,
for all u solutions of (1.16) with initial data U 0 = (u 0 , ∂ t u 0 , y 0 , ∂ t y 0 ).

Note that zero may be an eigenvalue for both operators A δ and B δ associated with vectors of the form (C, 0) and (C, 0, C, 0) respectively, and with assumption (1.10), the energies E s and E d are invariant under addition of constants (see Proposition 2.3 and 2.7).

Observe that the decay rate increases as the regularity of the initial data does. In fact, using semi-group properties one can show that if we simply have E(u, t) ≤ f (t)E(u, 0) with f (t) → 0 as t → +∞ then, in fact, the energy decays exponentially. From [START_REF] Batty | Non-uniform stability for bounded semi-groups on Banach spaces[END_REF][START_REF] Burq | Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel[END_REF], it is well known that the stabilization results of Theorem 1.1 and 1.2 can be reduced to deriving the following resolvent estimate along the imaginary axis.

Theorem 1.3. For all σ ∈ R, σ 0, the operators (iσ Id +A δ ) and (iσ Id +B δ ) are invertible on H δ and K δ respectively. Moreover, there exists C>0 such that

||(iσ Id +A δ ) -1 || H δ →H δ ≤ Ce C|σ| |σ| ≥ 1, (1.18) 

||(iσ

Id +B δ ) -1 || K δ →K δ ≤ Ce C|σ| |σ| ≥ 1. (1.19)
As D(A δ ) is compactly embedded in H δ , the spectrum of A δ is countable. In the case of an undamped wave equation, i.e a = 0 and b = 0, the operator A δ is antisymmetric for the inner-product of H δ , and then its eigenvalues are purely imaginary. In the case of stabilization (a or b not identically zero), the only eigenvalue on the imaginary axis is zero. Indeed, let σ ∈ R * , σ 0 and consider U = (u 0 , u 1 ) satisfying (A δ + iσ)U = 0. This is equivalent to

       u 1 -iσu 0 = 0, -∆ g u 0 -aiσu 0 -σ 2 u 0 = 0 in Ω, ∂ ν u 0| ∂Ω + δΣu 0| ∂Ω + ibσu 0| ∂Ω = 0 in ∂Ω.
Multiplying the second equation by u 0 and integrating by parts over Ω yields u 0 = 0 on ω I if considering the imaginary part on ω I , and u 0| ∂Ω = 0 on ω B , thus u 0 satisfies -∆ g u 0 = σ 2 u 0 . Thus we can apply Calderón's unique continuation theorem if ω I ∅, and apply Theorem C.1 given in appendix if ω B ∅. The same arguments hold for the operator B δ . As said above, 0 is an eigenvalue for both operators. To remove this difficulty, we shall work in quotient spaces as described at the end of Sections 2.1.1 and 2.1.2. In these quotient spaces, we can extend the estimates of Theorem 1.3 to σ ∈ R, and (1.18) and (1.19) ensure that all the eigenvalues are not in a closed neighborhood of iR of the type {z := x + iy, x ≥ 0, x ≤ e -C|y| } (see for instance [START_REF] Lebeau | Stabilisation de l'équation des ondes par le bord[END_REF]). This kind of resolvent estimate is heavily related to the Carleman estimate stated in the next section.

Carleman estimate at the boundary

We shall prove Carleman estimates for classes of more general operators in the interior and at the boundary. We thus define the following operators

P = -∆ g + c(x).∇ g + d(x), S = Σ + c T (x).∇ T g + d T (x), (1.20) 
where c (resp. c T ) denotes any L ∞ vector field on Ω (resp. ∂Ω), and d (resp d T ) any L ∞ function on Ω (resp. ∂Ω).

The estimate we prove in this paper concerns the following system

(P -σ 2 )u = f on Ω, ∂ ν u + δ(S -κσ 2 )u = g on ∂Ω, (1.21) 
where σ is a real number, and κ is equal to 0 or 1. The operators (Pσ 2 ) and (Sκσ 2 ) will be denoted by P σ and S σ respectively. We introduce the parameter κ in order to prove a Carleman estimate that allows us to treat both cases of static and dynamic boundary conditions at the same time. More precisely, κ = 0 corresponds to the static case, and κ = 1 to the dynamic case. Note that in (1.21), we add lower order terms in the interior and at the boundary. Moreover, we consider non-homogeneous equation with f and g as body and surface source terms. To precisely state the result, we need to recallthe notion of sub-ellipticity. For τ ≥ 1, we set P ϕ,σ = e τϕ P σ e -τϕ , where ϕ ∈ C ∞ (R n ), and consider p ϕ,σ its semi-classical principal symbol. We then have the following definition.

Definition 1.4. Let V be a bounded open subset of Ω and ϕ ∈ C ∞ (V). We say that ϕ satisfies the sub-ellipticity condition on V if there exists τ 0 > 0 such that

p ϕ,σ (x, ξ, τ) = 0 =⇒ 1 2i p ϕ,σ , p ϕ,σ > 0, (1.22) 
for all x ∈ V, ξ ∈ R n , |σ| ≥ 1 and τ ≥ τ 0 |σ|.

We now consider V a bounded open neighborhood of a point of ∂Ω. We impose additional conditions on ϕ on V, namely, ∇ g ϕ 0 on V, and

|∇ T g ϕ| ≤ ν 0 inf |∂ ν ϕ| on V ∩ ∂Ω, (1.23) 
for a sufficiently small ν 0 > 0. The local Carleman estimate in the neighborhood of the boundary that we shall prove is stated as following Theorem 1.5. Let x ∈ ∂Ω and V be an open neighborhood of x in Ω. Let ϕ be a weight function satisfying the conditions (1.22) and (1.23) on V. Then, there exist τ 0 > 0 and C > 0 such that

τ 3 ||e τϕ u|| 2 L 2 (V) + τ||e τϕ ∇ g u|| 2 L 2 (V) + τ|e τϕ ∂ ν u |∂Ω | 2 L 2 (V∩∂Ω) ≤ C ||e τϕ f || 2 L 2 (V) + τ|e τϕ g| 2 L 2 (V∩∂Ω) + (δ 2 τ 5 + τ 3 )|e τϕ u |∂Ω | 2 L 2 (V∩∂Ω) + τ|e τϕ ∇ T g u |∂Ω | 2 L 2 (V∩∂Ω) , (1.24)
and if in addition, ∂ ν ϕ(x) < 0, on V we have the stronger estimate

τ 3 ||e τϕ u|| 2 L 2 (V) + τ||e τϕ ∇ g u|| 2 L 2 (V) + τ 3 |e τϕ u |∂Ω | 2 L 2 (V∩∂Ω) + τ|e τϕ ∇ T g u |∂Ω | 2 L 2 (V∩∂Ω) + τ|e τϕ ∂ ν u |∂Ω | 2 L 2 (V∩∂Ω) ≤ C ||e τϕ f || 2 L 2 (V) + τ|e τϕ g| 2 L 2 (V∩∂Ω) , (1.25) for all 0 < δ ≤ 1, for all |σ| ≥ 1, for all τ ≥ τ 0 |σ| and for all u ∈ C ∞ 0 (V), f ∈ L 2 (Ω) and g ∈ L 2 (∂Ω) satisfying (1.21).
Observe that the two Carleman estimates are uniform in δ > 0. That will allow us to perform an uniform energy decay estimate with respect to the small parameter δ at the boundary. Furthermore, in the singular limit δ → 0, we recover the Carleman estimate proved in [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF].

Remark 1.6. Note that this estimate is invariant by adding lower order terms in σ in the following sense: if we set L := Pσ 2 + r(x)σ and L T := Sσ 2 + r T (x)σ, with r and r T two L ∞ functions, then we can write

||e τϕ Lu|| L 2 ≤ ||e τϕ (P -σ 2 )u|| L 2 + Cσ||e τϕ u|| L 2 ,
and the second term can be absorbed by the left hand side of the Carleman estimates of Theorem 1.5 by taking τ 0 large. In the same spirit,

|e τϕ L T u| L 2 ≤ |e τϕ (S -σ 2 )u| L 2 + Cσ|e τϕ u| L 2 ,
and we can absorb the second term by taking τ 0 sufficiently large. This estimate is also invariant by adding lower order operators. If (1.24) and (1.25) are true for P = -∆ g , it is also true for P in the form given in (1.20), by taking τ 0 large. It will thus be sufficient to derive these estimates keeping only the prinipal part of P.

Well-posedness and asymptotic behavior

In this section, we survey the well-posedness properties of the damped wave equation with static boundary conditions (1.7). We also consider the asymptotic behavior if δ goes to zero. Indeed, formally taking δ equal to zero, system (1.7) becomes a damped wave equation with Neumann boundary conditions. We shall make precise in which spaces such convergence can be proven.

Well-posedness properties

The well-posedness properties can be stated for general operators. We set

A δ := 0 -Id P a , with domain D(A δ ) := {(u 0 , u 1 ) | u 0 ∈ H 2 (Ω), u 0 | ∂Ω ∈ H 2 (∂Ω), u 1 ∈ V δ (∂Ω), ∂ ν u 0 + δS u 0 + bu 1 = 0}
, for P and S be the operators defined by (1.20). In the same idea, we set

B δ :=               0 -Id 0 0 P a 0 0 0 0 0 -Id 1 δ γ 1 0 S 1 δ b              
, and observe that D(B δ ) = D(B δ ).

The case of static boundary conditions

Proposition 2.1. There exists λ 0 > 0 such that for all λ ≥ λ 0 , for all F ∈ H δ , there exists a unique solution U = (u, v) ∈ D(A δ ) of (A δ + λ Id)U = F. Moreover, there exists C > 0 such that

||u|| 2 H 2 (Ω) + δ|u | ∂Ω | 2 H 2 (∂Ω) + ||v|| 2 V δ ≤ C||F|| 2
H δ , for all δ ∈ (0, 1], and λ ≥ λ 0 .

The proof is given in Apendix B.1. We can now state the existence and uniqueness result for the associated evolution equation.

Proposition 2.2. Let U 0 ∈ D(A δ ). Then, there exists a unique U in C 1 ([0, +∞), H δ )∩C([0, +∞), D(A δ )) satisfying the Cauchy problem

∂ t U + A δ U = 0 for t ≥ 0, U t=0 = U 0 .
where D(A δ ) is endowed with the norm of the graph

||U|| 2 D(A δ ) = ||U|| 2 H δ + ||A δ U|| 2 H δ . Moreover, we have ||U(t, .)|| H δ ≤ ||U 0 || H δ and ||∂ t U(t, .)|| H δ ≤ ||A δ U 0 || H δ .
Proof. From the previous propositions, A δ + λ 0 Id is maximal monotoneous on H δ . Then, we can apply the Lumer-Philips theorem (see for instance [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF], Theorem 4.3) to obtain the result.

We now focus on the case A δ = A δ (see (1.14)).

Proposition 2.3. Assume that (1.10) holds. Then

Sp(A δ ) ∩ iR = {0}, (2.1) 
and the subspace E 0 formed by the eigenfunctions of A δ associated with the eigenvalue 0 is

E 0 = C t (1, 0). (2.2) 
Proof. By Proposition 2.1, the spectrum of A δ is purely discrete. The fact that iσ, σ 0 is not an eigenvalue comes from the discussion below Theorem 1.3. It is clear that 0 is an eigenvalue, and that C t (1, 0) ⊂ E 0 . Let (u 0 , u 1 ) ∈ D(A δ ) such that A δ (u 0 , u 1 ) = 0. We obtain u 1 = 0, and thus -∆ g u 0 = 0. By integration by parts we have

||∇ g u 0 || 2 L 2 (Ω) + δ Σu 0| ∂Ω , u 0| ∂Ω H -1 (∂Ω)
,H 1 (∂Ω) = 0, and we obtain ψ = C on Ω, which shows equality (2.2).

Actually, if assumption (1.10) is not satisfied, then 0 is not an eigenvalue for A δ . Below, we shall work in quotient spaces Vδ = V δ / E 0 and Ḣδ = H δ / E 0 , where E 0 := {(C, 0) , C ∈ C} . We set Ȧδ the operator induced by the projection in the quotient space. We also set: D( Ȧδ ) := D(A δ ) ∩ Ḣδ . We can endow the space Vδ with the scalar product

u, ũ Vδ := ∇ g u, ∇ g ũ L 2 (Ω) + δ Σu, ũ H -1 (∂Ω),H 1 (∂Ω) ,
which defines a norm on Vδ , thanks to the Poincaré inequality. For the sake of simplicity, in the sequel we shall do the following abuse of notation: we shall drop the dots and continue to write • in place of •, where • is one of the spaces above.

Remark 2.4. Observe moreover that in the case A δ = A δ , Proposition 2.1 holds with λ 0 = 0 in the above quotient spaces.

The case of dynamic boundary conditions

We have the counterpart of proposition 2.1 for the dynamic case.

Proposition 2.5. There exists λ 0 > 0 such that for all λ ≥ λ 0 , for all F ∈ K δ , there exists a unique solution U = (u 0 , u 1 , y 0 , y 1 ) ∈ D(B δ ) of (B δ + λ Id)U = F. Moreover, there exists C > 0 such that

||u 0 || 2 H 2 (Ω) + δ|y 0 | 2 H 2 (∂Ω) + ||u 1 || 2 H 1 (Ω) + δ|y 1 | 2 H 1 (∂Ω) ≤ C||F|| 2 K δ , for all δ ∈ (0, 1], and λ ≥ λ 0 .
The proof is given in Appendix B.2. This leads to the following well-posedness result for the damped wave equation (1.17) written in a semigroup setting. Proposition 2.6. Let U 0 ∈ D(B δ ). Then there exists a unique U in C

1 ([0, +∞), K δ ) ∩ C([0, +∞), D(B δ )) satisfying the Cauchy problem ∂ t U + B δ U = 0, U t=0 = U 0
where D(B δ ) is endowed with the norm of the graph

||U|| 2 D(B δ ) = ||U|| 2 K δ + ||B δ U|| K δ . Moreover, we have ||U(t, .)|| 2 K δ ≤ ||U 0 || 2 K δ and ||∂ t U(t, .)|| 2 K δ ≤ ||B δ U 0 || 2 K δ .
We state the following result about the eigenvalues of the operator B δ . Proposition 2.7. Assume that (1.10) holds. Then

Sp(B δ ) ∩ iR = {0}, (2.3) 
and the subspace F 0 formed by the eigenfunctions of B δ associated with the eigenvalue 0 is

F 0 = C t (1, 0, 1, 0).
Proof. It is sufficient to repeat the proof of Proposition 2.3.

We then quotient the space K δ by F 0 , and still denote it K δ by abuse of notation.

Asymptotic behavior as δ goes to zero

In this section, we study the asymptotic behavior as δ goes to zero of the solutions u δ of the damped wave system with static Ventcel boundary condition

∂ 2 t u δ -∆ g u δ + a∂ t u δ = f δ in Ω × R, ∂ ν u δ| ∂Ω -δ∆ T g u δ| ∂Ω + b∂ t u δ| ∂Ω = 0 in ∂Ω × R, (2.4) 
(u δ (0), ∂ t u δ (0)) = U 0 δ in Ω,
to the solution of the damped wave equation with homogeneous Neumann boundary condition

∂ 2 t v -∆ g v + a∂ t v = f in Ω, ∂ ν v | ∂Ω + b∂ t v | ∂Ω = 0 in ∂Ω, (v(0), ∂ t v(0)) = V 0 in Ω. (2.5)
Proposition 2.8. Assume f δ ⇀ f in L 2 (0, T ; L 2 (Ω)) and U 0 δ = V 0 ∈ H. We then obtain

u δ ⇀ v in L 2 (0, T ; H 1 (Ω)) ∩ H 1 (0, T ; L 2 (Ω)),
and we have the estimate at the boundary

|∇ T g u δ| ∂Ω | L 2 (∂Ω) = O(δ -1/2
). The proof is given in Appendix C.1.

Notation and semi-classical operators

In the sections below, we shall use the following notation:

R n ∋ x = (x ′ , x n ) ∈ R n-1 × R, and R n ∋ ξ = (ξ ′ , ξ n ) ∈ R n-1 ×
R and we shall consider the operators D = -i∂ x and D ′ = -i∂ x ′ . For V a neighborhood of a point of the boundary ∂Ω (resp. a neighborhood of 0 in R n ), we set

V + = V ∩ Ω (resp. V + = V ∩ R n ), where R n + is the half-space {x ∈ R n , x n > 0}.

Semi-classical operators acting on R n

Here we recall some facts on semi-classical pseudo-differential operators with a large parameter τ, say τ ≥ τ 0 ≥ 1. We shall denote by S m τ the space of smooth functions a(x, ξ, τ) defined on R n ×R n , with τ ≥ τ 0 as a large parameter, that satisfy the following behavior at infinity: for all multi-indices α, β there exists C α,β > 0 such that

∂ α x ∂ β ξ a(x, ξ, τ) ≤ C α,β (τ 2 + |ξ| 2 ) (m-|β|)/2 , for all (x, ξ ′ , τ) ∈ R n × R n × [τ 0 , +∞).
For a ∈ S m τ , we define pseudo-differential operator of order m, denoted by A = Op(a):

Au(x) := 1 (2π) n R n e ix.ξ a(x, ξ, τ) û(ξ)dξ, u ∈ S(R n ).
One says that a is the symbol of A. We shall denote Ψ m τ the set of pseudo-differential operators of order m and denote by σ(A) (resp. σ(a)) the principal symbol of the operator A (resp. the symbol a) and thus σ(D) = ξ. We shall also denote by D m τ the space of semi-classical differential operators, i.e the case when the symbol a(x, ξ, τ) is a polynomial function of order m in (ξ, τ). Throughout the article, we shall use the following order function on the whole phase-space: λ τ = (τ 2 + |ξ| 2 ) 1/2 . We recall here the composition formula of pseudo-differential operators. , and for all N ∈ N, there exists

R N ∈ S m+m ′ -N τ such that a#b(x, ξ, τ) = |α|≤N 1 i |α| α! ∂ α ξ a(x, ξ, τ)∂ α x b(x, ξ, α) + R N (x, ξ, τ). (3.1)
For a review on symbolic calculus we refer the reader to [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF].

Tangential semi-classical operators

In the section we consider pseudo-differential operators which only acts in the tangential direction x ′ , with parameter x n . We define S m T,τ as the set of smooth functions a(x, ξ ′ , τ) defined for τ as a large parameter, say τ ≥ τ 0 ≥ 1, satisfying the following behavior at infinity: for all multi-indices α

∈ N n , β ∈ N n-1 there exists a constant C α,β > 0 such that ∂ α x ∂ β ξ ′ a(x, ξ ′ , τ) ≤ C α,β (τ 2 + |ξ ′ | 2 ) (m-|β|)/2 , for all (x, ξ ′ , τ) ∈ R n + ×R n-1 ×[τ 0 , +∞).
For a ∈ S m T,τ , we define a tangential pseudo-differential operator B := Op T (b) of order m by

Bu(x) := 1 (2π) n-1 R n-1 ×R n-1 e i(x ′ -y ′ ).ξ ′ b(x, ξ ′ , τ)u(y ′ , x n )dy ′ dξ ′
As in the previous section, we define Ψ m T,τ as the set of tangential pseudo-differential operators of order m, and D m T,τ the set of tangential differential operators of order m. We shall denote the tangential order function by λ T,τ := (τ 2 + |ξ ′ | 2 ) 1/2 , and define the following semi-classical Sobolev tangential norms, for fonctions on R n-1 or traces of functions on

R n at {x n = 0} |u| m,τ := | Op T (λ m T,τ )u| L 2 (R n-1
) . We also define the following semi-classical norms on the half space

R n + ||u|| 2 m,τ := m k=0 ||D k n Op T (λ m-k )u|| 2 L 2 (R n + ) . Observe that , if m ∈ N, this semi-classical norm is equivalent to |α|≤m τ |α| ||D m-|α| u|| L 2 (R n + )
, uniformly for τ ∈ [τ 0 , +∞). Below, we shall use several times the following trace lemma.

Lemma 3.1. There exists C > 0 such that for all u ∈ S (R n ), for τ ≥ 1, |u | xn =0 | 0 ≤ Cτ -1/2 ||u|| 1,τ . (3.2)
The proof is left to the reader.

Remark 3.2. In this paper, we shall use operators whose symbol depends on a additional parameter σ, say a(x, ξ, τ, σ), such that they satisfy

∂ α x ∂ β ξ a(x, ξ, τ, σ) ≤ C α,β (σ 2 + τ 2 + |ξ| 2 ) (m-|β|)/2 .
However, in the region where τ |σ|, we have a ∈ S m τ , and this property will be used several times.

Local setting in the neighborhood of the interface

Here, we consider normal geodesic coordinates x = (x ′ , x n ) ∈ R n-1 × R in a neighborhood V of a point of the boundary. Locally, we have Ω = {x n > 0} and ∂Ω = {x n = 0}. We recall that from the remark below Theorem 1.5, we can consider only the higher order terms in the operator P, since the form of the estimates we want to prove is insensitive to the addition of low order terms. In such local coordinates, the principal part of operator P takes the form (and we still denote by P, by abuse of notation)

P = D 2 n + R(x, D ′ ), R(x, D ′ ) = n-1 j,k=1 D j (a j,k (x)D k ),
where a j,k = a k, j and, if we denote by r(x, ξ ′ ) the homogeneous principal symbol of R,

r(x, ξ ′ ) = n-1 j,k=1 a j,k (x)ξ j ξ k ∈ R and ∃C > 0, ∀(x, ξ ′ ) ∈ R n × R n-1 , r(x, ξ ′ ) ≥ C|ξ ′ | 2 . (4.1)
Note that the principal part of the operator P is chosen to be formally self-adjoint. We also denote the homogeneous principal symbol of

P by p(x, ξ) = ξ 2 n + r(x, ξ ′ ). Whenever V is a neighborhood of 0 in R n , we shall denote by C ∞ 0 (V + ) the space of restrictions to V + := R n ∩ {x n > 0} of C ∞ functions on R n compactly supported in V.
On the boundary {x n = 0}, the operator S is an elliptic second-order differential operator in the x ′ -direction. If we denote by s(x ′ , ξ ′ ) its homogeneous principal symbol, we have

s(x ′ , ξ ′ ) ∈ R and ∃C > 0, ∀(x ′ , ξ ′ ) ∈ R n-1 × R n-1 , s(x ′ , ξ ′ ) ≥ C|ξ ′ | 2 .
Observe that in these local coordinates, we have ∂ ν = -∂ x n , where ∂ ν denote the outgoing normal derivative associated with the metric g. In what follows, we shall denote P σ := P-σ 2 and S σ := S -κσ 2 for all σ ∈ R, and κ ∈ {0, 1}.

Operator conjugaison by a weight function

As is done classically, we introduce the following conjugated operator P ϕ,σ = e τϕ P σ e -τϕ , of homogeneous principal symbol p ϕ,σ , for a smooth function ϕ to be precisely defined below. We denote also S ϕ,σ the conjugated boundary operator

S ϕ,σ = e τϕ | xn =0 S σ e -τϕ | xn =0 , of homogeneous principal symbol s ϕ,σ .
In what follows, we set: v = e τϕ u, and we thus have e τϕ P σ u = P ϕ,σ v and

e τϕ | xn =0 S σ u | xn =0 = S ϕ,σ v |x n =0 .
We have P = P 2 + iP 1 by setting

P 2 = 1 2 P ϕ,σ + P * ϕ,σ , P 1 = 1 2i P ϕ,σ -P * ϕ,σ .
Note that P 2 and P 1 are formally self-adjoints. Observing that e τϕ D j e -τϕ = D j + iτ∂ x j ϕ, we have

P 2 = D 2 n -(τ∂ x n ϕ) 2 -σ 2 + R(x, D ′ ) -r(x, τd x ′ ϕ) = P σ -p(x, τd x ϕ), (4.2) 
P 1 = τD n ∂ x n ϕ + τ∂ x n ϕD n + τ n j,k=1 (D j a j,k (x)∂ k ϕ + a j,k (x)∂ j ϕD k ) (4.3) = 2τ(∂ x n ϕD n + r(x, d x ′ ϕ, D ′ )) mod τD 0 T , (4.4) 
where r denotes the symmetric bilinear form associated with the quadratic form r, r(x, ξ, η) = n j,k=1 a j,k (x)ξ.η. At the boundary, we also have S ϕ,σ = S 2 + iS 1 , with

S 2 = 1 2 S ϕ,σ + S * ϕ,σ S 1 = 1 2i S ϕ,σ -S * ϕ,σ ,
that are formally self adjoints and of the form

S 2 = s(x, D ′ ) -s(x ′ , τd x ′ ϕ | xn =0 ) -κσ 2 mod D 1 T,τ and S 1 = 2τ s(x ′ , d x ′ ϕ | xn =0 , D ′ ) mod D 1 T,τ , (4.5) 
where s denotes the symmetric bilinear form associated with the quadratic form s. Their principal symbols are respectively

p 2 (x, ξ, τ, σ)) = -σ 2 + ξ 2 n + r(x, ξ ′ ) -τ 2 (∂ x n ϕ) 2 -r(x, τd x ′ ϕ), (4.6 
)

p 1 (x, ξ, τ) = 2τ ∂ x n ϕξ n + r(x, d x ′ ϕ, ξ ′ ) , (4.7) 
s 2 (x ′ , ξ ′ , τ, σ) = s(x, ξ ′ ) -s(x ′ , τd x ′ ϕ | xn =0 ) -κσ 2 , (4.8 
)

s 1 (x ′ , ξ ′ , τ) = 2τ s(x ′ , d x ′ ϕ | xn =0 , ξ ′ ). (4.9)
Note that p ϕ,σ (x, ξ, τ) = p 2 (x, ξ, τ, σ) + ip 1 (x, ξ, τ). We shall denote the tangential parts of the symbols p 2 and p 1 by

p2 (x, ξ ′ , τ, σ) = -σ 2 + r(x, ξ ′ ) -p(x, τd x ϕ), (4.10) p1 (x, ξ ′ , τ) = 2τr(x, ξ ′ , d x ′ ϕ). (4.11) With this notation, if u satisfies ∂ ν u | xn =0 + δS σ (x ′ , D ′ )u | xn =0 = Θ, then v satisfies D n v | xn =0 = Kv | xn =0 + Θ (4.12)
where K ∈ δD 2 T,τ + τD 0 T,τ , with principal symbol

k(x ′ , ξ ′ , τ, σ) = 2τδ s(x ′ , ξ ′ , d x ′ ϕ) -i τ∂ x n ϕ + δs(x ′ , ξ ′ ) -δs(x ′ , τd x ′ ϕ) -δκσ 2 = δs 1 (x ′ , ξ ′ , τ) -i(τ∂ x n ϕ + s 2 (x ′ , ξ ′ , τσ)), (4.13) 
and

Θ = ie τϕ Θ, recalling that ∂ ν = -∂ x n .
Under the action of conjugaison by the weight function, the resulting operator P ϕ,σ is not elliptic. In order to handle the presence of the characteristics set, we shall impose the following condition on the weight function which ensures the positivity of some commutators. Definition 4.1. Let V be a bounded open set of R n . We say the weight function ϕ ∈ C ∞ (R n ) satisfies the subellipticity property in V if |d x ϕ| > 0 in V and if there exist C > 0 and τ 0 > 0 such that for |σ| ≥ 1 > 0

∀(x, ξ) ∈ V × R n , ∀τ ≥ τ 0 |σ|, p ϕ,σ (x, ξ, τ) = 0 =⇒ {p 2 , p 1 }(x, ξ, τ) ≥ Cλ 3 τ . (4.14)
Here, we state the sub-ellipticity condition in normal geodesic coordinates. However, note that this condition is geometrically invariant, and thus this definition is equivalent to (1.22) (observe that by the homogeneity of the Poisson bracket, {p 2 , p 1 } > 0 implies (4.14), see the end of the proof of Proposition 4.2). The following proposition provides a construction of a weight function ϕ that yields sub-ellipticity using a classical convexification procedure. A proof without the parameter σ can be found in [START_REF] Rousseau | On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations[END_REF]. With the parameter σ, a proof is given in Appendix D.1.

Proposition 4.2. Let V be a bounded open subset of R n and ψ ∈ C ∞ (R n ) such that |d x ψ| ≥ C > 0 on V.
Then, there exists λ > 0 sufficiently large, such that the function ϕ := e λψ satisfies the sub-ellipticity condition on V for

τ ≥ C|σ|, where C is a constant satisfying C ≥ 1 λ inf ϕ .
Observe that we impose τ to be larger than σ here. This condition appears naturally in the following proof. In what follows, τ will thus be the principal parameter. Inspecting the proof we actually obtain the stronger property:

p 2 = 0 ⇒ {p 2 , p 1 } ≥ Cλ 3 τ .
Considering the previous proposition, we shall often write τ ≥ τ 0 |σ|, where τ 0 > 0 is taken sufficiently large, and we shall use the fact that τ + σ ≈ τ on many occasions in what follows.

Weight function properties

In this section, we first recall the required properties (1.22), (1.23) for the function ϕ to be an admissible weight function on V, where V is an bounded open neighborhood of 0 in R n . Yet, here we states these conditions in the normal geodesic coordinates introduced above, and we provide a construction for such a function. The weight function to be used, ϕ ∈ C ∞ (V), is chosen so as to satisfy the following conditions

• |∇ x ϕ| ≥ C > 0 ;
• For a given ν 0 > 0, we have

|∂ x j ϕ| ≤ ν 0 inf V |∂ x n ϕ| j = 1, . . . , n -1 (4.15)
• ϕ satisfies the sub-ellipticity condition (4.14), on V, which is given in Section 4.1.

The value of ν 0 > 0 will be determined in Lemma 5.3 and in Lemma 6.7 and it is meant to be small. With this parameter, we enforce the weight function to be relatively flat in the tangential directions as compared to its variations in the normal direction. In the applications we have in mind, we shall use weights of the form e λψ . The two first conditions are satisfied if

• |∇ψ| ≥ C > 0 ;
• For a given ν 0 > 0, we have

|∂ x j ψ| ≤ ν 0 inf V |∂ x n ψ| j = 1 . . . n -1.
If |∇ψ| ≥ C > 0 then for λ sufficiently large, the third condition is satisfied (see Proposition 4.2). Observe that if ϕ is an admissible weight function fulfilling the above conditions, then its normal derivative cannot be zero, implying:

|∂ x n ϕ| ≥ C > 0 on V.

A boundary quadratic form

Using integrations by parts and symbolic calculus, we derive a first estimate. It exhibits a quadratic form involving the two traces u | xn=0 and ∂ x n u | xn=0 at the boundary. This estimate is central in what follows. Actually, we shall exploit its structure when considering the phase-space region where the operator P σ,ϕ is not elliptic, and use the sub-ellipticity condition (4.14) in a crucial way. This estimate is now classical and is proved in [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF]. A proof with the parameter σ is given in Appendix D.2. 

B(v) = 2 ∂ x n ϕD n v | xn=0 , D n v | xn =0 L 2 (R n-1 ) + A 1 v | xn =0 , D n v | xn=0 L 2 (R n-1 ) + D n v | xn =0 , A ′ 1 v | xn =0 L 2 (R n-1 ) + A 2 v | xn =0 , v | xn=0 L 2 (R n-1
) .

The operators A 1 , A ′ 1 and A 2 are differential, and

• A 1 , A ′ 1 ∈ D 1 T,τ and satisfy a 1 := σ(A 1 ) = σ(A ′ 1 ) = 2r(x, ξ ′ , d x ′ ϕ); (4.16) • A 2 ∈ D 2 T,τ and satisfies a 2 := σ(A 2 ) = 2∂ x n ϕ σ 2 + p(x, τd x ′ ϕ) -r(x, ξ ′ ) . (4.17)

Microlocal regions and roots properties

Here, we consider the principal symbol of the conjugated operator (see (4.6)-(4.11))

p ϕ,σ (x, ξ, τ) = p 2 (x, ξ, τ, σ) + ip 1 (x, ξ, τ) = p2 (x, ξ ′ , τ, σ) + i p1 (x, ξ ′ , τ) + ξ 2 n + 2iτ∂ x n ϕξ n = (ξ n + iτ∂ x n ϕ) 2 + (τ∂ x n ϕ) 2 + p2 (x, ξ ′ , τ, σ) + i p1 (x, ξ ′ , τ).
We set: m = (τ∂ x n ϕ) 2 + p2 (x, ξ ′ , τ, σ)+i p1 (x, ξ ′ , τ). Then, we can write p ϕ,σ as a factorized second-order polynomial function in the ξ n variable

p ϕ,σ (x, ξ ′ , ξ n , τ) = ξ n + iα + iτ∂ x n ϕ ξ n -iα + iτ∂ x n ϕ ,
where α ∈ C satisfies Re(α) ≥ 0 and α 2 = m. We can write

p ϕ,σ (x, ξ ′ , ξ n , τ) = ξ n -ρ + ξ n -ρ -,
with ρ -= -iτ∂ x n ϕiα and ρ + = -iτ∂ x n ϕ + iα. Observe that there exists C > 0 such that |ρ ± | ≤ Cλ T , τ.

(5.1)

We set µ(x, ξ ′ , τ, σ) = p2 (x, ξ ′ , τ, σ) + p1 (x, ξ ′ , τ) 2 (2τ∂ x n ϕ) 2 .
Note that it is a homogeneous function of degree 2 in the (ξ ′ , τ, σ) variable.

Lemma 5.1. We have the following:

if µ(x, ξ ′ , τ, σ) < 0 , then ρ ± R and sign(Im(ρ -)) = sign(Im(ρ + )) = sign(-∂ x n ϕ); if µ(x, ξ ′ , τ, σ) = 0 , then • if ∂ x n ϕ > 0, then ρ + ∈ R and Im(ρ -) < 0; thus (x, ξ ′ , ρ + , τ) ∈ Char(P ϕ,σ ) • if ∂ x n ϕ < 0, then ρ -∈ R and Im(ρ + ) > 0; thus (x, ξ ′ , ρ -, τ) ∈ Char(P ϕ,σ ); if µ(x, ξ ′ , τ, σ) > 0 , then ρ ± R, Im(ρ -) < 0 and Im(ρ + ) > 0;
The different root configurations are represented in figure 1. From Lemma 5.2, we have µ < 0 implies |ξ ′ | τ, and that µ > 0 implies |ξ ′ | τ, and that µ = 0 implies τ |ξ ′ | τ.

Proof.

For z = a + ib ∈ C, a 0, we have Re(z 2 ) = a 2 - Im(z 2 ) 2 4a 2 . (5.2) 
Using (5.2) with z = α, observe that

µ = Re(m) -(τ∂ x n ϕ) 2 + Im(m) 2 (2τ∂ x n ϕ) 2 = Re(α) 2 -(τ∂ x n ϕ) 2 + Im(α 2 ) 2 4 1 (τ∂ x n ϕ) 2 - 1 Re(α) 2 = Re(α) 2 -(τ∂ x n ϕ) 2 1 + Im(α 2 ) 2 4 Re(α) 2 (τ∂ x n ϕ) 2 .
(5.3) Thus µ 0 if and only if Re α-τ|∂ x n ϕ| = | Re α|-τ|∂ x n ϕ| 0. This allows us to conclude as Im ρ ± = ± Re α-τ∂ x n ϕ.

The sign of µ is related to the value of the tangential variables |ξ ′ | with respect to τ.

Lemma 5.2. For δ 0 > 0 taken sufficiently small, there exists C > 0 such that we have the following:

if µ(x, ξ ′ , τ, σ) ≤ δ 0 λ 2 T,τ , then |ξ ′ | 2 ≤ Cτ 2 ; if µ(x, ξ ′ , τ, σ) ≥ -δ 0 λ 2 T,τ , then τ 2 C ≤ |ξ ′ | 2 . Proof. Suppose first that µ(x, ξ ′ , τ, σ) ≤ δ 0 λ 2 T,τ . This means r(x, ξ ′ ) + r(x, ξ ′ , d x ′ ϕ) 2 (∂ x n ϕ) 2 ≤ δ 0 λ 2 T,τ + p(x, τd x ϕ) + σ 2 ,
implying for some C 0 > 0, and

C 1 > 0, we have C 0 |ξ ′ | 2 ≤ δ 0 |ξ ′ | 2 + C 1 τ 2 . Thus, for δ 0 < C 0 , we have |ξ ′ | τ 2 . Suppose second that µ(x, ξ ′ , τ, σ) ≥ -δ 0 λ 2 T,τ , meaning p(x, τd x ϕ) + σ 2 ≥ r(x, ξ ′ ) + δ 0 λ 2 T,τ + r(x, ξ ′ , d x ′ ϕ) 2 (∂ x n ϕ) 2 .
The case where ∂ x n ϕ > 0 :

Re(ξ n ) Im(ξ n ) × ρ - × ρ + E -: µ < 0 Re(ξ n ) Im(ξ n ) × ρ - × ρ + E 0 : µ = 0 ρ + crosses the real axis Re(ξ n ) Im(ξ n ) × ρ - × ρ + E + : µ > 0
The case where ∂ x n ϕ < 0: This implies that for some C 2 > 0, and

Re(ξ n ) Im(ξ n ) × ρ + × ρ - E -: µ < 0 Re(ξ n ) Im(ξ n ) × ρ + × ρ - µ = 0 ρ -crosses the real axis Re(ξ n ) Im(ξ n ) × ρ - × ρ + E + : µ > 0
C 3 > 0 we have C 2 τ 2 + σ 2 ≤ C 3 |ξ ′ | 2 + δ 0 τ 2 . Thus for δ 0 < C 2 , we have τ 2 |ξ ′ | 2 .
In the case µ = 0, the operator P ϕ,σ is not elliptic, as one of the roots ρ + or ρ -is real. There is a (real) characteristic set. The ellipticity or the non-ellipticity of P ϕ,σ can thus be expressed through an algebraic condition on the tangential variables. We introduce the following phase-space regions

E + = (x, ξ ′ , τ, σ) ∈ V + × R n-1 × R + × R | |σ| ≥ 1, τ ≥ τ 0 |σ| | µ(x, ξ ′ , τ, σ) > η 1 λ 2 T,τ E -= (x, ξ ′ , τ, σ) ∈ V + × R n-1 × R + × R | |σ| ≥ 1, τ ≥ τ 0 |σ| | µ(x, ξ ′ , τ, σ) < -η 1 λ 2 T,τ E 0 = (x, ξ ′ , τ, σ) ∈ V + × R n-1 × R + × R | |σ| ≥ 1, τ ≥ τ 0 |σ| | -2η 1 λ 2 T,τ < µ(x, ξ ′ , τ, σ) < 2η 1 λ 2 T,τ
, where η 1 > 0 will be chosen sufficiently small below (see Proposition 6.5 and Lemma 6.7). These microlocal regions are sketched in Figure 2. We shall thus cut the tangential phase-space into three pieces to isolate the different behaviors of the roots of P ϕ,σ . Lemma 5.3. (Localization of the characteristic sets). Let ϕ be a weight function satisfying the properties of Section 4.2. Then, there exist C > 0, C 0 > 0 and τ 0 > 0 such that for all |σ| ≥ 1 and τ ≥ τ 0 |σ| we have

Re s ϕ,σ (x ′ , ξ ′ , τ) = s(x ′ , ξ ′ ) -s(x ′ , τd x ′ ϕ | xn =0 ) -κσ 2 ≥ Cλ 2 T,τ if µ(x, ξ ′ , τ, σ) ≥ -C 0 λ 2 T,τ .
In particular, we have the following inclusions: 

Char(S ϕ,σ ) ⊂ Char(Re(S ϕ,σ )) ⊂ {µ ≤ -C 0 λ 2 T,τ } ∩ {x n = 0} ⊂ E -∩ {x n = 0}, µ λ T,τ Char(P ϕ,σ ) • Char(S ϕ,σ ) • E - E + E 0 |ξ ′ | ≍ τ |ξ ′ | τ |ξ ′ | τ 2η 1 -2η 1 µ = 0 µ < 0 µ > 0
if 0 < η 1 ≤ C 0 .
Proof. We have, on the one hand

s(x ′ , ξ ′ ) -s(x ′ , τd x ′ ϕ | xn =0 ) -κσ 2 ≥ C ′′ |ξ| 2 -C ′′′ τ 2 |d x ′ ϕ | xn =0 | 2 -κσ 2 ≥ C ′′ |ξ ′ | 2 -C ′′′ ν 2 0 τ 2 inf V |∂ x n ϕ| 2 -κσ 2 ,
and on the other hand, from Lemma 5.2,

|ξ ′ | 2 λ T,τ , if µ ≥ -C 0 λ 2 T,τ for C 0 > 0 sufficiently small. This yields s(x ′ , ξ ′ ) -s(x ′ , τd x ′ ϕ) -κσ 2 ≥ C ′′′′ |ξ ′ | 2 + σ 2 + τ 2 -C ′′ ν 2 0 τ 2 inf |∂ x n ϕ| 2 -κσ 2 λ 2
T,τ , for all τ ≥ τ 0 |σ|, by taking ν 0 sufficiently small and τ 0 sufficiently large. The other statements follow.

Here, we used that the weight function is chosen sufficiently flat in the tangential directions with respect to the normal one in a crucial way: it ensure that the two characteristic sets, that of P ϕ,σ and that of S ϕ,σ are associated with two different microlocal regions. We shall derive three microlocal estimates corresponding to the previous regions determined by the sign of µ, and prove an uniform Carleman estimate with respect to the small parameter δ, that appears in the boundary condition in (1.21). In fact, if we only want estimates with a fixed δ, say equal to one, we can prove such an estimate using only two microlocal regions E -and E 0 ∪ E + . This is due to the fact that the principal symbol of the boundary operator is of order 2 and elliptic in high frequencies. Then, if δ = 1, only second orders terms are relevant. Here, because δ varies in (0, 1], we have to treat second-and first-order terms. That is precisely the reason of the apparition of our particular treatment in the zone E + . Lemma 5.4. Let χ ∈ S 0 T,τ homogeneous of degree 0, such that supp(χ) ⊂ E + . Then, χρ ± ∈ S 1 T,τ and there exists C > 0 such that | Im(ρ ± )| ≥ Cλ T,τ on the support of χ.

Proof. Let us show first χρ ± ∈ S 1 T,τ . As τ∂ x n ϕ ∈ S 1 T,τ , it suffices to prove that χα ∈ S 1 T,τ . We have

χ |α 2 | λ 2 T,τ ∈ S 0 T,τ
as a homogeneous function of degree 0 in the (ξ ′ , τ, σ) variable. In the region E + , we claim that there exists a neighborhood U of R -such that m U. Indeed, consider (x, ξ ′ , τ, σ) ∈ E + ∩ (V × S (ξ ′ ,τ,σ)=1 ) where S (ξ ′ ,τ,σ) denotes the unit sphere in the variable (ξ ′ , τ, σ). Suppose that Im(m) = 0. This implies that p1 (x, ξ ′ , τ) = 0 and thus µ(x, ξ ′ , τ, σ) = p2 (x, ξ ′ , τ, σ). The definition of E + yields that p2 (x, ξ ′ , τ, σ) > 0 and thus Re(m) > 0. By a compacity argument we have there exists a constant C > 0 such that Re(m) ≥ C > 0, and then the claim is proved by homogeneity. This allows us to define α λ T,τ = F( m

λ 2 T,τ
), where F is the complex principal square root. Using Theorem 18.1.10 in [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF], we obtain α λ T,τ ∈ S 0 T,τ in a conic neighborhood of the support of χ. Now, we show that

| Im(ρ ± )| ≥ Cλ T,τ > 0. We have | Im(ρ ± )| ≥ | Re(α)| -τ|∂ x n ϕ|.
(5.4) Using (5.3) and observing that on the support of χ, we have µ Cλ 2 T,τ , we obtain Re(α) 2 -(τ∂ x n ϕ) 2 λ 2 T,τ , and with (5.4) this concludes the proof.

Microlocal Carleman estimates

We recall that the operators P ϕ,σ and K are defined in Section 4.1. In each region, we define cut-off functions χ depending on (x, ξ ′ , τ, σ), but from Remark 3.2, the parameter σ will not be involved in the symbolic calculus.

Estimate in E +

In this region, we have µ > η 1 and thus |ξ ′ | τ and both operators P ϕ,σ and S ϕ,σ are elliptic, and this allows us to estimate v in the interior and at the boundary from a single observation at the boundary. Observe that the estimate here is of better quality than that in the other zones E -and E 0 . Proposition 6.1. Let V be an open neighborhood of 0 in R d , and ϕ satisfying the conditions of section 4.2, and χ(x, ξ ′ , τ, σ) ∈ S 0 T,τ be such that supp(χ) ⊂ E + . Then there exist τ 0 > 0 and C > 0 such that

τ 2 || Op T (χ)v|| 2 1,τ + (τ + δ 2 τ 3 )| Op T (χ)v | xn=0 | 2 1,τ + τ|D n Op T (χ)v |x n =0 | 2 0,τ ≤ C ||P ϕ,σ v|| 2 0,τ + τ|(D n -K)v | xn =0 | 2 0,τ + ||v|| 2 1,τ + τ -1 |D n v | xn=0 | 2 0,τ + τ -1 |v | xn =0 | 2 1,τ (6.1) 
for all |σ| ≥ 1, for all τ ≥ τ 0 |σ|, for all v ∈ C ∞ 0 (V + ), and δ ∈ (0, 1].

Proof. In this microlocal region, we shall apply the Calderón projector method. We shall denote

P ϕ,σ v = f in R n + , D n v | xn =0 -Kv | xn =0 = Θ in {x n = 0}, for v ∈ C ∞ 0 (V + ). Let χ ∈ S 0
T,τ as in the statement of the proposition. We set w := Op T (χ)v and g := Op T (χ) f . Hence

w 1 := P ϕ,σ w = Op T (χ)P ϕ,σ v + [P ϕ,σ , Op T (χ)]v = g + [P ϕ,σ , Op T (χ)]v,
and on {x n = 0} we have

(D n -K)w | xn =0 =: w 0 = [D n -K, Op T (χ)]v | xn=0 + Op T (χ)Θ | xn =0 , (6.2) 
and as

[D n -K, Op T (χ)] ∈ δΨ 1 T,τ + Ψ 0 T,τ we find |w 0 | 0 δ|v | xn=0 | 1,τ + |v | xn=0 | 0 + |Θ| 0 . (6.3) 
Observing that the commutator [P ϕ,σ , Op T (χ)] ∈ Ψ 1 τ and does not depend on σ, we obtain

||w 1 || L 2 ||g|| L 2 + ||v|| 1,τ . (6.4) 
In what follows, we shall denote by w the extension of w by 0 on {x n < 0}. We thus obtain the following equality on the whole R n :

P ϕ,σ w = w 1 -iγ 1 (w)δ x n =0 -γ 0 (w)δ ′ x n =0 + 2τ∂ x n ϕγ 0 (w)δ x n =0 (6.5)
where γ 0 (w) = w |x n =0 , γ 1 (w) = (D n w) |x n =0 , and δ is the Dirac measure. Recalling that ρ + and ρ -are the two complex roots of the principal symbol p ϕ,σ viewed as a polynomial in the variable ξ n (with Im ρ + > 0 and Im ρ -< 0), we find -2iτ∂

x n ϕ = ρ + (x, ξ ′ , τ, σ) + ρ -(x, ξ ′ , τ, σ).
With this relation, (6.5) reads

P ϕ,σ w = w 1 + W 0 δ x n =0 + W 1 δ ′ x n =0 , (6.6) 
where

W 1 = -γ 0 (w), W 0 = i Op(ρ + + ρ -)γ 0 (w) -γ 1 (w) , (6.7) 
Let U 0 and U 1 be two conic neighborhoods of supp(χ) in

(V ∩ R n + ) × R n-1 × R + × R such that U 1 ⊂ U 0 and U 0 ⊂ E + .
We also define, for τ 0 > 0:

V 0 := (x, ξ, τ, σ) | x ∈ V + , |σ| ≥ 1, τ ≥ τ 0 |σ|, |ξ n | ≥ C 0 |(ξ ′ , τ)| , V 1 := (x, ξ, τ, σ) | x ∈ V + , |σ| ≥ 1, τ ≥ τ 0 |σ|, |ξ n | ≥ C 1 |(ξ ′ , τ)| ,
for 0 < C 1 < C 0 chosen sufficiently large. Note that V 0 and V 1 are conic in (ξ, τ, σ). Let χ(x, ξ, τ, σ) ∈ S 0 τ (see Remark 3.2), homogeneous of degree 0, be such that χ is equal to 1 on the conic set (U 1 × R) ∪ V 0 , and is equal to

0 outside (U 0 × R) ∪ V 1 . Note that it is possible since ((U 1 × R) ∪ V 0 ) ∩ S |(ξ,τ,σ)|=1 ⋐ ((U 0 × R) ∪ V 1 ) ∩ S |(ξ,τ,σ)|=1
, where S |(ξ,τ,σ)|=1 denotes the unit sphere on R n × R + × R. The microlocal neighborhoods are represented in Figure 3. Observe moreover that on supp( χ), we have p ϕ,σ 0. Indeed, on the one hand it is true on U 1 × R since it is true on E + × R, and on the other hand it is true on V 1 since p ϕ,σ = 0 is equivalent to ξ n = ρ + or ξ n = ρ -, and implies from (5.1), that there exists a constant C > 0 such that |ξ n | ≤ Cλ T,τ , which can be avoided i n V 1 , for C 1 chosen sufficiently large. Thus, we can construct a parametrix

τ + |σ| |ξ ′ | E + U 0 U 1 U 2 U 3 U 0 × R V 0 |ξ ′ | τ + |σ| ξ n
E N = Op(e) ∈ Ψ -2 τ , N ∈ N, such that e = N j=0
e j , e 0 = χ p ϕ,ϕ , e j ∈ Ψ -2-j τ with e j homogeneous of dergree -2j and satisfying

E N P ϕ,σ = Op( χ) + R N . where R N ∈ Ψ -N τ . From (6.6) we find w = E M W 1 δ ′ x n =0 + W 0 δ x n =0 + g 1 , (6.8) 
where

g 1 = E N (w 1 ) + Id -Op( χ) w -R N w. As in {x n > 0} we have w = Op(χ)v, we observe that supp(1 -χ) ∩ supp(χ) × R = ∅,
and we shall make use of the following lemma of [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF], Theorem 18.1.35, which proof can be adapted to the semi-classical setting we consider here. Lemma 6.2. Let a T,m (x, ξ ′ , τ, σ) ∈ S m T,τ and b m ′ (x, ξ, τ, σ) ∈ S m ′ τ and assume that for some δ > 0 we have b

m ′ (x, ξ, τ, σ) = 0 if δ|ξ n | > 1 and |(ξ ′ , τ)| ≤ δ|ξ n |. If moreover, supp(a T,m × R) ∩ supp(b m ′ ) = ∅, then Op T (a T,m ) • Op(b m ′ ) ∈ M∈N Ψ -M τ , and 
Op(b m ′ ) • Op T (a T,m ) ∈ M∈N Ψ -M τ .
With Lemma 6.2 we find (Id -Op( χ)) • Op(χ) ∈ M Ψ -M τ , which yields:

||g 1 || 2,τ ||v|| 1,τ + ||g|| 0,τ . (6.9) 
We have

                     E N W 1 δ ′ x n =0 + W 0 δ x n = T 0 W 0 + T 1 W 1 T j W := Op T (t j )(x n )W = 1 (2π) n-1 R n-1 e i(x ′ -y ′ ).ξ ′ t j (x, ξ ′ , τ, σ)W(y ′ )dy ′ dξ ′ t j = 1 2π R e ix n ξ n (iξ n ) j e(x, ξ, τ, σ)dξ n . (6.10) 
Note that from (5.1), e(x, ξ, τ, σ) λ -2 τ for all ξ n ∈ C satisfying |ξ n | ≥ Rλ T,τ , with R sufficiently large. Then t 0 defines an absolutely convergent integral, but t 1 has to be taken in the oscillatory integral sense, and

t 1 = 1 2π ∂ z n R e iz n ξ n e(x, ξ, τ, σ)dξ n z n =x n , (6.11) 
where the derivative is taken in the distribution sense. As for |ξ n | ≥ C 1 λ T,τ , χ = 1, the symbol e(x, ξ, τ, σ) is holomorphic in the variable ξ n , we can thus change the contour of integration:

t 0 = 1 2π β e ix n ξ n e(x, ξ, τ, σ)dξ n , (6.12) 
where

β = {ξ n ∈ R | ξ n ∈ [-Rλ T,τ , Rλ T,τ ]} ∪ {ξ n ∈ C, |ξ n | = Rλ T,τ , Im ξ n ≥ 0}
, with R > 0 chosen sufficiently large to have ρ ± in the complex domain delimited by β (such a constant R exists since ρ ± ∈ S 1 T,τ ). From (6.11), we can also define:

t 1 = 1 2π β e ix n ξ n iξ n e(x, ξ, τ, σ)dξ n . (6.13)
For a review of oscillatory integrals, the reader may refer to [START_REF] Hörmander | The analysis of linear partial differential operators. I. Classics in Mathematics[END_REF]Section 7.8]. Observe that Op T (t j )(x n ) is a

x n -family of pseudo-differential operators acting on R n-1 . In fact, from (6.12) and (6.13) we have

∂ l x n ∂ α 1 x ′ ∂ α 2 ξ ′ t j ≤ C l,α 1 ,α 2 λ -1-|α 2 |+l+ j T,τ j = 0, 1. (6.14)
Now let U 2 and U 3 be two conic neighborhoods of supp(χ) in

(V ∩ R n + ) × R n-1 × R + × R such that U 3 ⊂ U 2 and U 2 ⊂ U 0 , and we choose χ 1 (x, ξ ′ , τ, σ) ∈ S 0
T,τ such that χ 1 = 1 on U 2 and χ 1 = 0 outside U 3 (see figure 3). In addition, we set s j = χ 1 t j and

g 2 = Op T ((1 -χ 1 )t 0 )(x n )W 0 + Op T ((1 -χ 1 )t 1 )(x n )W 1 which yields w = Op(s 0 )(x n )W 0 + Op(s 1 )(x n )W 1 + g 3 , (6.15) 
where g 3 = g 1 + g 2 . By tangential symbolic calculus (the normal variable ξ n is not involved in the calculus), as supp(1χ 1 ) ∩ supp(χ) = ∅, using (6.14), the trace formula (3.2), we obtain

|| Op T (λ l T,τ )D l ′ x n g 2 || 0,τ ||v|| 1,τ + τ -1 |γ 1 (v)| 0,τ , (6.16) 
for all l ∈ R, l ′ ∈ N. This allows us to estimate g 3 :

||g 3 || 2,τ ||g|| 0,τ + ||v|| 1,τ + τ -1 |γ 1 (v)| 0,1 . (6.17) 
We now estimate s j . The symbol e(x, ξ ′ , ξ n , τ, σ) is holomorphic in ξ n on the support of χ 1 , we then can change the contour of integration in the complex plane

s j = χ 1 (x, ξ ′ , τ, σ) 2π β 0 e ix n .ξ n e(x, ξ ′ , ξ n , τ, σ)(iξ n ) j dξ n j = 0, 1 (6.18) 
where β 0 is a direct contour surrounding ρ + in the region where Im ξ n ≥ c 0 λ 1 T,τ , for some c 0 > 0. (note that it is possible from Section 5). By the residue formula, we have

e -ix n ρ + s j = i j+1 (ρ + ) j χ 1 ρ + -ρ -+ m j , (6.19) 
with m j ∈ S -2+ j T,τ . With (6.18), we can estimate:

|D l x n ∂ α 1 x ′ ∂ α 2 ξ ′ s j | ≤ C l,α 1 ,α 2 e -c 0 x n λ T,τ (|ξ ′ | + τ) -1+ j+l-|α 2 | j = 0, 1.
We thus obtain e c 0 x n τ D l x n s j is bounded in S -1+ j+l T,τ uniformly in x n ≥ 0. This yields

|| Op T (λ T,τ ) Op T (s j )(x n )W j || 2 L 2 (R n + ) ≤ C x n >0 | Op T (s j )W j | 2 1,τ (x n )dx n ≤ C x n >0 e -2c 0 x n τ |e c 0 x n τ Op T (s j )W j | 2 1,τ (x n )dx n ≤ C|W j | 2 j,τ x n >0 e -2c 0 x n τ dx n ≤ Cτ -1 |W j | 2 j,τ , (6.20) 
and

||D n Op T (s j )(x n )W j || 2 L 2 (R n + ) ≤ C x n >0 |D n Op T (s j )W j | 2 0 (x n )dx n ≤ C x n >0 e -2c 0 x n τ |e c 0 x n τ D n Op T (s j )W j | 2 0 (x n )dx n ≤ C|W j | 2 j,τ x n >0 e -2c 0 x n τ dx n ≤ Cτ -1 |W j | 2 j,τ . (6.21) 
Using (6.15), (6.17), (6.20) and (6.21), we obtain

||w|| 1,τ τ -1 ||g 3 || 2,τ + τ -1/2 |W 1 | 1,τ + τ -1/2 |W 0 | 0 + τ -2 |D n v| L 2 τ -1 ||g|| 0,τ + τ -1 ||v|| 1,τ + τ -1/2 |W 1 | 1,τ + τ -1/2 |W 0 | 0,τ + τ -2 |γ 1 (v)| L 2 . (6.22)
It remains to determine the two traces W 0 et W 1 . Taking the trace x n = 0 + in (6.15) and using the definition of W 0 and W 1 in (6.7): γ 0 (w) = Op T (a)γ 0 (w) + Op T (b)γ 1 (w) + γ 0 (g 3 ), (

with a ∈ S 0 T,τ , of principal symbol σ(a) = -χ 1

ρ - ρ + -ρ -| x n =0 and b ∈ S -1 T,τ , of principal symbol σ(b) = χ 1 ρ + -ρ -| x n =0
(see (6.19)). Here, Op T (a) and Op T (b) are the so-called Calderón projectors. Moreover, using again the trace formula (3.2), the remainder γ 0 (g 3 ) satisfies

|γ 0 (g 3 )| 1,τ ≤ τ -1/2 ||g 3 || 2,τ τ -1/2 ||g|| 0,τ + τ -1/2 ||v|| 1,τ + τ -3/2 |D n v | xn =0 | 0,τ . (6.24) 
The principal symbol of b satisfies |σ(b)| ≥ Cλ -1 T,τ in supp(χ 1 ). Let χ(x ′ , ξ ′ , τ, σ) ∈ S 0 T,τ satisfy the same hypothesis than χ 1 , and such that χ 1 = 1 on the support of χ. We can thus construct a parametrix, of symbol denoted by

l 1 ∈ S 1 T,τ , such that Op T (l 1 ) Op T (b) = Op T ( χ) + R, R ∈ S -∞ τ .
Moreover the principal symbol of l 1 is given by χ(ρ +ρ -). We now apply this parametrix to (6.23), and we find

Op T (l 1 ) Op T (1 -a)γ 0 (w) = γ 1 (w) + g 4 , (6.25) 
where g 4 = S 1 γ 1 (v) + S 0 γ 0 (v) + Op T (l 1 )γ 0 (g 3 ), with S 0 , S 1 ∈ S -∞ T,τ . Here we used

Op T ( χ)γ 1 (w) = γ 1 (w) -Op T (1 -χ)γ 1 (w) = γ 1 (w) -Op T (1 -χ)D n Op(χ)v | xn=0 = γ 1 (w) -Op T (1 -χ) Op(χ) | xn=0 D n v | xn =0 -Op T (1 -χ) [D n , Op T (χ)]v | xn =0 , and Op T (1 -χ) • Op(χ) | xn=0 ∈ S -∞ T,τ , and Op T (1 -χ)[D n , Op T (χ)] | xn=0 ∈ S -∞ T,τ
. From (6.24), we have the following estimate on g 4

|g 4 | 0,τ ≤ |S 1 γ 1 (v)| 0,τ + |S 0 γ 0 (v)| 0,τ + |γ 0 (g 3 )| 1,τ , τ -1/2 ||g|| 0,τ + τ -1/2 ||v|| 1,τ + C N τ -N |γ 0 (v)| 0,τ + τ -3/2 |γ 1 (v)| 0,τ . (6.26) 
for τ sufficiently large and N arbitrary. We can thus estimate the Neumann trace from the Dirichlet trace

|γ 1 (w)| 0,τ |γ 0 (w)| 1,τ + |g 4 | 0,τ . (6.27) 
Now we use the relation (6.2) between the two traces at the boundary, that is, γ 1 (w) = Kγ 0 (w) + w 0 . From (6.25), we have Op T (l 1 ) • Op T (1a 0 )γ 0 (w) -Kγ 0 (w) = w 0 + g 4 . (6.28) (6.28) reads Hγ 0 (w) = w 0 + g 4 , (

where H = Op T (l 1 (1a)) -K mod Ψ 0 T,τ and the principal symbol of H in the region where χ is equal to one is given by

h = i(δs(x ′ , ξ ′ ) -δs(x ′ , τd x ′ ϕ) -δκσ 2 + τ∂ x n ϕ) -2δ s(x ′ , ξ ′ , τd x ′ ϕ) + ρ + .
In order to produce an estimate that is uniform in δ, and handle properly the calculus with the large parameter τ, we write δ as the inverse of a large parameter δ = 1 r , r ≥ 1 and we introduce a new symbolic calculus. We define the order function M 2 = λ 2 T,τ + rλ T,τ , associated with the usual semi-classical metric on the cotangent bundle

T * R n-1 : g = |dx ′ | 2 + |dξ ′ | 2 λ 2 T,τ
. The following lemma state that symbols can be defined with this order function, viewing the semi-classical calculus in the general Weyl-Hörmander calculus [12, Section 18.4-6] and [START_REF] Lerner | Metrics on the phase space and non-selfadjoint pseudo-differential operators, volume 3 of Pseudo-Differential Operators[END_REF]. Lemma 6.3. The order function M 2 is admissible with respect to the metric g, i.e is slowly varying and temperate.

A proof can be found in [START_REF] Rousseau | Controllability of a parabolic system with a diffuse interface[END_REF], Lemma 4.7, in the semi-classical small parameter setting. Actually, any order function defined by a linear combination of powers of λ T,τ is admissible with respect to the metric g. In this symbol classes, we have rh ∈ S(M 2 , g). The aim is now to construct a parametrix of rh. We have

rh = i(s(x ′ , ξ ′ ) -s(x ′ , τd x ′ ϕ) -κσ 2 ) + irτ∂ x n ϕ -2 s(x ′ , ξ ′ , d x ′ ϕ) + rρ + .
Taking the imaginary part, Im(rh) = s(x ′ , ξ ′ )s(x ′ , τd x ′ ϕ)κσ 2 + rτ∂ x n ϕ + r Im(ρ + ), and remarking that from Lemma 5.3, we have Re(s ϕ,σ ) = s(x ′ , ξ ′ )s(x ′ , τd x ′ ϕ)κσ 2 λ 2 T,τ , and that from Lemma 5.4 r Im(ρ + ) rλ 1 T,τ , we thus obtain |rh| Im rh λ 2 T,τ + rλ T,τ = M 2 . Then rh is an elliptic symbol in the class S(M 2 , g), this allows us to construct a parametrix L ∈ S(M -2 , g) satisfying Op T (L)rH = Op(χ L ) + R L with R L ∈ S -∞ T,τ , for some χ L ∈ S 0 T,τ equal to 1 in a neighborhood of χ and such that χ equal to 1 in a neighborhood of χ L . Applying this parametrix to (6.29), we obtain

γ 0 (w) = r Op T (L)(w 0 + g 4 ) -R L γ 0 (w) + (1 -Op(χ L )) Op(χ | xn =0 )γ 0 (v) (6.30)
Yet, we use the following lemma Lemma 6.4. For all u ∈ S (R n-1 ) we have

| Op T (rλ T,τ ) Op T (L)u| 0,τ | Op T ( r λ T,τ + r )u| 0 . ( 6 

.31)

Proof. There exists ũ ∈ S (R n-1 ) such that u = Op T ( λ T,τ +r r ) ũ and it is given by Op( r λ T,τ +r )u. As rλ T,τ ∈ S(rλ T,τ , g), L ∈ S(M -2 , g) and λ T,τ + r ∈ S(λ T,τ + r, g) we have rλ T,τ #L# λ T,τ +r r ∈ S(1, g) by Theorem 18.5.4 in [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF] (stated for the Weyl quantization). Then applying Theorem 18.6.3 in [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF], we obtain

| Op T (rλ T,τ ) Op T (L) Op T ( λ T,τ + r r ) ũ| 0,τ | ũ| 0,τ ,
that is precisely the result. Then using this lemma r Op T (λ T,τ ) Op T (L)(w 0 + g 4 ) 0,τ r Op T (λ 1 T,τ + r) -1 (w 0 + g 4 ) 0,τ r τ + r |w 0 + g 4 | 0,τ (6.32) and, with (6.3) and (6.26)

|w 0 + g 4 | 0,τ τ -1/2 ||g|| 0,τ + τ -1/2 ||v|| 1,τ + r -1 |γ 0 (v)| 1,τ + |γ 0 (v)| 0,τ + |Θ| 0,τ + τ -3/2 |γ 1 (v)| 0,τ , (6.33) 
for τ sufficiently large. Observe that in (6.30), (1 -Op T (χ L )) Op T (χ) ∈ S -∞ T,τ and R L ∈ S -∞ T,τ and thus, using (6.30), (6.32) and (6.33), we obtain

r + τ r τ 1/2 |γ 0 (w)| 1,τ ||g|| 0,τ + ||v|| 1,τ + τ 1/2 r |γ 0 (v)| 1,τ + τ 1/2 |γ 0 (v)| 0,τ + τ 1/2 |Θ| 0,τ + τ -1/2 |γ 1 (v)| 0,τ . (6.34) 
From (6.22), and using (6.7) we have

τ||w|| 1,τ ||g|| L 2 + ||v|| 1,τ + τ 1/2 |γ 0 (w)| 1,τ + τ 1/2 |γ 1 (w)| 0,τ + τ 1 |γ 1 (v)| 0,τ (6.35) 
Injecting estimates (6.27) and (6.34) in (6.22) yields

τ||w|| 1,τ + τ 1/2 (τ + r) r |γ 0 (w)| 1,τ + τ 1/2 |γ 1 (w)| 0,τ ||g|| 0,τ + ||v|| 1,τ + τ -1/2 |γ 1 (v)| 0,τ + τ 1/2 |Θ| 0,τ + τ -1/2 |γ 0 (v)| 1,τ , (6.36) 
by taking τ 0 sufficiently large. Writing δ = 1 r ends the proof.

Estimate in E 0

We shall derive an estimate in the region where P ϕ,σ is not elliptic. This is precisely the region where there is a loss of a half derivative. However, the operator at the boundary S ϕ,σ is elliptic here, this allow us to estimate the two traces from a single observation at the boundary. Proposition 6.5. Let V be an open neighborhood of 0 in R d , and let ν 0 > 0, η 1 > 0 be chosen sufficiently small. Let ϕ be a weight function satisfying the conditions of Section 4.2 in V, and χ 0 (x, ξ ′ , τ, σ) ∈ S 0 T be such that supp(χ) ⊂ E 0 . Assume moreover that ∂ x n ϕ ≥ C ′ > 0. Then, there exist τ 0 > 0 and C > 0 such that τ|| Op T (χ 0 )v|| 2 1,τ

+ δ 2 τ| Op T (χ 0 )v |x n =0 | 2 2,τ + τ| Op T (χ 0 )v |x n =0 | 2 1,τ + τ|D n Op(χ 0 )v | xn =0 | 2 0,τ ≤ C ||P ϕ,σ v|| 2 0,τ + ||v|| 2 1,τ + δ 2 τ|v | xn =0 | 2 1,τ + τ|v | xn =0 | 2 0 + τ|Θ| 2 0,τ . (6.37)
for all |σ| ≥ 1, for all τ ≥ τ 0 |σ|, for all u ∈ C ∞ 0 (V + ) and δ ∈ (0, 1]. Remark 6.6. Observe that E 0 depends on η 1 and on ϕ and this is precisely the region where theses parameters will be fixed (see Lemma 6.7). Observe also the critical power of τ in the right hand side of the estimate in front of the norm |v| 1,τ . This term will not be absorbed directly when we will try to patch the three different estimates. However, this critical term vanishes in the singular limit δ = 0.

Proof. We set w = Op T (χ 0 )v. We recall that γ 0 (w where B is the following quadratic form on the boundary:

) = w | xn =0 and γ 1 (w) = D n w | xn =0 .
B( f ) = 2 ∂ x n ϕγ 1 ( f ), γ 1 ( f ) + A 1 γ 0 ( f ), γ 1 ( f ) + γ 1 ( f ), A ′ 1 γ 0 ( f ) + A 2 γ 0 ( f ), γ 0 ( f ) , (6.39) 
and (., .) denotes the scalar product of L 2 (R n-1 ), and the differential operators A 1 , A ′ 1 and A 2 are defined by (4.16) and (4.17). Arguing in the same way as at the beginning of the proof of the estimate in E + in Proposition 6.1, and using (4.12), we have

γ 1 (w) = (Op T (χ 0 )D n v) | xn =0 + ([Op T (χ 0 ), D n ]v) | xn=0 = Op T (χ 0 )(Kv | xn=0 + Θ) + ([Op T (χ 0 ), D n ]v) | xn=0 = Kγ 0 (w) + G 1 .
with estimate of the remainder term

|G 1 | 0,τ δ|γ 0 (v)| 1,τ + |γ 0 (v)| 0 + |Θ| 0 , (6.40) 
as K ∈ δD 2 T,τ + τD 0 (see (4.13)). It follows that

B(w) = 2∂ x n ϕKγ 0 (w), Kγ 0 (w) + 4 Re ∂ x n ϕKγ 0 (w), G 1 + ∂ x n ϕG 1 , G 1 + A 1 γ 0 (w), Kγ 0 (w) + Kγ 0 (w), A ′ 1 γ 0 (w) + A 1 γ 0 (w), G 1 + G 1 , A ′ 1 γ 0 (w) + A 2 γ 0 (w)
, γ 0 (w) . (6.41) By the Cauchy-Schwarz inequality, for the terms involving G 1 , we have

4 Re ∂ x n ϕKγ 0 (w), G 1 + ∂ x n ϕG 1 , G 1 + A 1 γ 0 (w), G 1 + G 1 , A ′ 1 γ 0 (w) |Kγ 0 (w)| 0,τ |G 1 | 0,τ + |γ 0 (w)| 1,τ |G 1 | 0,τ + |G 1 | 2
0,τ . (6.42) By symbolic calculus, we can write the "principal" terms of (6.41) in the following way

2 ∂ x n ϕKγ 0 (w), Kγ 0 (w) + A 1 γ 0 (w), Kγ 0 (w) + Kw, A ′ 1 γ 0 (w) + A 2 γ 0 (w), γ 0 (w) = (δ 2 B 4 + δB 3 + B 2 )γ 0 (w), γ 0 (w) , (6.43)
where the principal symbols of B 4 , B 3 and B 2 are respectively

b 4 = 2∂ x n ϕ | xn =0 |s ϕ,σ | 2 ∈ S 4 T,τ , b 3 = 4τ(∂ x n ϕ | xn =0 ) 2 s 2 (x, ξ ′ , τ, σ) + 4s 1 (x, ξ ′ , τ)r(x ′ , x n = 0, ξ ′ , d x ′ ϕ | xn =0 ) ∈ S 3 T,τ , b 2 = 2 ∂ x n ϕ 3 τ 2 + 2∂ x n ϕ(-r(x, ξ ′ ) + p(x, τd x ϕ) + σ 2 ) | xn =0
∈ S 2 T,τ . Now we state positivity result of these symbols. Lemma 6.7. There exists C > 0, η 1 > 0, satisfying η 1 < C 0 , independent of σ, τ and δ such that b j (x ′ , ξ ′ , τ, σ) ≥ Cλ j T,τ , j = 2, 3, 4, (6.44) for all (x, ξ ′ , τ, σ) satisfying -2η 1 τ 2 ≤ µ(x, ξ ′ , τ, σ) ≤ 2η 1 τ 2 , where C 0 is the constant given in the second part of Proposition 5.3.

Proof of Lemma 6.7. The positivity of the symbol b 4 comes precisely from the fact that the boundary operator S ϕ,σ is elliptic in this region (see Lemma 5.3). Let us prove now the positivity of b 2 . Let (x ′ , x n = 0, ξ ′ , τ, σ) ∈ E 0 , i.e be such that -2η 1 λ 2 T,τ ≤ -µ ≤ 2η 1 λ 2 T,τ . In particular, we have

-2η 1 λ 2 T,τ ≤ σ 2 + p(x ′ , x n = 0, τd x ′ ϕ) -r(x ′ , x n = 0, ξ ′ ),
and thus

b 2 ≥ 2∂ x n ϕ 3 τ 2 -4η 1 ∂ x n ϕλ 2 T,τ . (6.45) 
Observe that as (x ′ , x n = 0, ξ ′ , τ, σ) ∈ E 0 , there exists C > 0 such that λ 2 T,τ ≤ Cτ 2 (see Lemma 5.2) for η 1 sufficiently small. In addition, if η 1 is chosen sufficiently small, from (6.45) we have the positivity of b 2 . Let us finally prove the positivity of b 3 . From Lemma 5.3, we have for η 1 sufficiently small

s 2 (x ′ , ξ ′ , τ, σ) = s(x ′ , ξ ′ ) -s(x ′ , τd x ′ ϕ) -κσ 2 λ 2 T,τ . Moreover, 4|s 1 (x, ξ ′ , τ)r(x ′ , x n = 0, ξ ′ , d x ′ ϕ)| τ|ξ ′ | 2 |d x ′ ϕ| 2 ν 2 0 τ|ξ ′ | 2 |∂ x n ϕ| 2 , (6.46)
since we have (4.15), and again for ν 0 sufficiently small, we obtain b 3 τλ 2 T,τ and using again that λ T,τ τ in the region E 0 , we conclude the proof. We can now apply the microlocal Gårding inequality in (6.43), and taking τ sufficiently large we obtain, for an arbitrary

N ∈ N B(w) ≥ C(δ 2 |γ 0 (w)| 2 2,τ + δ|γ 0 (w)| 2 3/2,τ + |γ 0 (w)| 2 1,τ ) -C ′ |Kγ 0 (w)| 0,τ |G 1 | 0,τ + |γ 0 (w)| 1,τ |G 1 | 0,τ + |G 1 | 2 0,τ -C N |γ 0 (v)| 2 -N,τ . (6.47)
By the Young inequality, the right hand side of (6.47) reads

|Kγ 0 (w)| 0,τ |G 1 | 0,τ + |γ 0 (w)| 1,τ |G 1 | 0,τ + |G 1 | 2 0,τ δ ′ (δ 2 |γ 0 (w)| 2 2,τ + τ 2 |γ 0 (w)| 2 0,τ + |γ 0 (w)| 2 1,τ ) + δ ′-1 |G 1 | 2 0,τ , (6.48) 
for all δ ′ > 0. From (6.38), (6.47) and (6.48), we obtain

τ||w|| 2 1,τ + τ δ 2 |γ 0 (w)| 2 2,τ + |γ 0 (w)| 2 1,τ ||P ϕ,σ w|| 2 0,τ + τ|G 1 | 2 0,τ + C N τ|γ 0 (v)| 2 -N,τ .
Using the estimate of |G 1 | 0,τ in (6.40) we obtain the sought result.

Estimate in E -

In this region, we have µ < -η 1 implying |ξ ′ | τ, and the operator at the boundary S ϕ,σ is not elliptic. However, in the case where ∂ x n ϕ > 0, the two roots of p ϕ,σ are of negative imaginary parts, and we can estimate the two traces at the boundary with no observation term. Proposition 6.8. Let V be an open neighborhood of 0 in R d , and ϕ be a weight function satisfying the conditions of Section 4.2 in V, and χ(x, ξ ′ , τ, σ) ∈ S 0 T be such that supp(χ) ⊂ E -. Assume moreover that ∂ x n ϕ ≥ C ′ > 0 on V. Then, there exist τ 0 > 0 and C > 0 such that

|| Op T (χ)v|| 2 2,τ + τ| Op T (χ)v |x n =0 | 2 1,τ + τ|D n Op T (χ)v | xn=0 | 2 0,τ ≤ C ||P ϕ,σ v|| 2 0,τ + ||v|| 2 1,τ , for all |σ| ≥ 1, for all τ ≥ τ 0 |σ|, u ∈ C ∞ 0 (V + ) and δ ∈ (0, 1].
Proof. We follow the proof of the microlocal estimate in the E + region to (6.12) and (6.13). We remark that the integral along the contour β is identically 0, because the integrand is holomorphic and the two poles have a non-positive imaginary part. We then have w = E M (P ϕ,σ w) + g 1 , (6.49)

where g 1 is a remainder coming from microlocalisations. We recall that it can be estimated by (6.9). Thus, (6.49)

yields ||w|| 2,τ ||P ϕ,σ v|| L 2 + ||v|| 1,τ .
Taking the γ 0 -trace on {x n = 0} in (6.49), and thanks to the trace inequality (3.2)

τ 1/2 |w| 1,τ ||P ϕ,σ v|| L 2 + ||v|| 1,τ ,
and finally taking the γ 1 -trace

τ 1/2 |D n w| 0 ||P ϕ,σ v|| L 2 + ||v|| 1,τ .
Patching these three estimates, we obtain the sought result.

Proof of the local Carleman estimates 7.1 A local Carleman estimate from the interior up to the boundary

From the three microlocal estimates of the previous section, we shall derive a local Carleman estimate with observation from the interior, that is, with the condition ∂ x n ϕ > 0. With this sign condition, from Propositions 6.1, 6.5 and 6.8, we recall that we have the three following estimates: (7.3) where the cut-off functions χ + , χ -and χ 0 are respectively supported in E + , E -and E 0 , and for η 1 chosen sufficiently small. We recall that P ϕ,σ and Θ are defined in Section 4.1. We shall denote respectively equalities (7.1), (7.2) and (7.3) by

|| Op T (χ -)v|| 2,τ + τ 1/2 | Op T (χ -)v | xn=0 | 1,τ + τ 1/2 |D n Op T (χ -)v | xn=0 | 0,τ ||P ϕ,σ v|| 0,τ + ||v|| 1,τ , (7.1) 
τ 1/2 || Op T (χ 0 )v|| 1,τ + δτ 1/2 | Op T (χ 0 )v |x n =0 | 2,τ + τ 1/2 | Op T (χ 0 )v | xn =0 | 1,τ + |D n Op T (χ 0 )v | xn =0 | 0,τ ||P ϕ,σ v|| 0,τ + ||v|| 1,τ + δτ 1/2 |v | xn=0 | 1,τ + τ 1/2 |v | xn =0 | 0,τ + τ 1/2 |Θ| 0,τ , (7.2) τ|| Op T (χ + )v|| 1,τ + (τ 1/2 + δτ 3/2 )| Op T (χ + )v | xn=0 | 1,τ + τ 1/2 |D n Op T (χ + )v | xn =0 | 0,τ ||P ϕ,σ v|| 0,τ + ||v|| 1,τ + τ 1/2 |Θ| 0,τ + τ -1/2 (|v | xn=0 | 1,τ + |D n v | xn =0 | 0,τ ),
LHS -(v) RHS -(v), LHS 0 (v) RHS 0 (v), LHS + (v) RHS + (v). (7.4)
Due to the critical term δτ 1/2 |v| x n =0 | 1,τ on the right hand side of (7.2) and (7.4), we cannot patch directly these estimates and absorb some of the terms on the right hand side by other terms on the left hand side by chosen parameters approprietely. This is the reason for the introduction of an additionnal small parameter ε > 0, independent of δ, τ and σ. Now, we take a partition of unity:

χ -+ χ 0 + χ + = 1 satisfying χ + , χ -, χ 0 ∈ S 0 T,τ and moreover supp(χ + ) ⊂ E + , supp(χ 0 ) ⊂ E 0 , supp(χ -) ⊂ E -.
For the construction of χ + , χ -and χ 0 , take for instance

ζ 0 ∈ C ∞ 0 (R), such that ζ 0 = 1 on [-η 1 , η 1 ], supp(ζ 0 ) ⊂ (-2η 1 , 2η 1 ) and set χ 0 = ζ 0 ( µ λ 2 T,τ ), χ -= 1 (-∞,0] (µ)(1 -χ 0 ), χ + = 1 [0,+∞) (µ)(1 -χ 0 ).
Observe that this construction yields indeed tangential symbols in S 0 T,τ by adapting [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF]Theorem 18.1.10].

We then write, for 0 < ε ≤ 1

LHS -(v) + εLHS 0 (v) + LHS + (v) LHS -(v) + εRHS 0 (v) + LHS + (v) (7.5)
Consider the critical term εδτ 1/2 |v | xn=0 | 1,τ on the right hand side of (7.5). We write

εδτ 1/2 |v |x n =0 | 1,τ ≤εδτ 1/2 | Op T (χ -)v | xn =0 | 1,τ + | Op T (χ 0 )v | xn =0 | 1,τ + | Op T (χ + )v | xn=0 | 1,τ . ≤εLHS -(v) + τ -1 εLHS 0 (v) + ετ -1 LHS + (v)
By choosing ε = ε 1 > 0 sufficiently small and τ sufficiently large, we obtain

LHS -(v) + LHS 0 (v) + LHS + (v) ||P ϕ,σ v|| 0,τ + ||v|| 1,τ + τ 1/2 |Θ| 0,τ + τ 1/2 |v | xn =0 | 1,τ + |D n v| 0,τ .
We conclude by taking τ sufficiently large, and we obtain the following Carleman estimate in the neighborhood of the boundary

τ 1/2 ||v|| 1,τ + τ 1/2 |v | xn=0 | 1,τ + τ 1/2 |D n v | xn =0 | 0,τ ||P ϕ,σ v|| 0,τ + τ 1/2 |(D n -K)v | xn =0 | 0,τ .
Then coming back to u = e -τϕ v yields

τ 3/2 ||e τϕ u|| L 2 + τ 1/2 ||e τϕ Du|| L 2 + τ 3/2 |e τϕ u | xn=0 | L 2 + τ 1/2 |e τϕ Du | xn =0 | L 2 ||e τϕ P σ u|| L 2 + τ 1/2 |e τϕ (∂ x n -δS σ )u| L 2 .
This concludes the proof of the second part of Theorem 1.5. As the conditions imposed to the weight function in Section 4.2 are invariant under change of coordinates, we naturally obtain (1.25) in the neighborhood of a point of the boundary ∂Ω.

A local Carleman estimate with a boundary observation

Here, we prove (1.24), that is, an estimation with a boundary observation. this will be used below to prove Theorem 1.3 in the case a = 0 and b 0 (see (1.9) and (1.16)). There, b is a non-negative bounded function satisfying b ≥ C > 0 on an open subset ω B of ∂Ω. We then have to observe from the boundary and thus the weight function is chosen such that ∂ ν ϕ > 0 in a neighborhood of a point of ω B . Hence, it is sufficient to prove a Carleman estimate where there are no assumptions about the sign of ∂ ν ϕ, yet assuming ∂ ν ϕ 0. Observing that Proposition 6.1 is independent of the sign of ∂ ν ϕ, it remains to prove an estimate in the region F := E 0 ∪ E -. Proposition 7.1. Let V be an open neighborhood of 0 in R d , and ϕ be a weight function satisfying the conditions of Section 4.2 in V with in particular |∂ ν ϕ| ≥ C 0 > 0, and χ ∈ S 0 T be such that supp χ ⊂ F . Then there exists C > 0 and τ 0 > 0 such that τ|| Op T (χ)v|| 2 1,τ

+ τ|D n Op T (χ)v | xn =0 | 2 0,τ ≤ C ||P ϕ,σ v|| 2 0,τ + ||v|| 2 1,τ + (δ 2 τ 5 + τ 3 )|v | xn =0 | 2 0,τ + τ|Θ| 2 0,τ . (7.6) for all |σ| ≥ 1, τ ≥ τ 0 |σ| and v ∈ C ∞ 0 (V + ).
Proof. We set w := Op T (χ)v. Using Proposition 4.3, there exists τ 0 > 0 such that

τ||w|| 2 1,τ + τ Re B(w) ||P ϕ,σ w|| 2 0,τ ||P ϕ,σ v|| 2 0,τ + ||v|| 2 1,τ , (7.7) 
for τ ≥ τ 0 |σ|, where the boundary form B reads

B(w) = ∂ x n ϕD n w | xn =0 , D n w | xn =0 L 2 (R n-1 ) + A 1 w | xn =0 , D n w | xn =0 L 2 (R n-1 ) + D n w | xn =0 , A ′ 1 w | xn =0 L 2 (R n-1 ) + A 2 w | xn =0 , w | xn =0 L 2 (R n-1
) .

Observe that, by symbolic calculus, for all N ∈ N,

A j • Op T (χ) = Op T (c j ) + A N j (resp. A ′ j • Op T (χ) = Op T (c ′ j ) + A ′N j ) with c j (resp. c ′ j ) ∈ S j T,τ , supp(c j ) (resp. supp(c ′ j )) ⊂ supp(χ), A N j (resp. A ′N j ) ∈ Ψ -N T,τ
. Moreover, as |ξ ′ | τ in supp(χ) by Lemma 5.2, we have c j , c ′ j ∈ τ j S 0 T,τ . Hence, we have the estimate

|B(w)| |(D n Op T (χ)v) | xn=0 | 2 0,τ + τ 2 |v | xn=0 | 2 0,τ . (7.8) W + x 0 • {d β (x -x 0 ) = r 3 } {d β (x -x 0 ) = r 2 } x n x ′ r 0 r 1 {d β (x -x 0 ) = r 4 } {d β (x -x 0 ) = r 5 }
Figure 4: Geometry of the cut-off functions near (0, 0). The grey zone corresponds to the region where χ 0 χ 1 varies.

• r 3 is small enough to have B β (x 0 , r 3 ) ∩ W + = ∅, where B β denotes the open ball associated with the distance d β ;

• r 1 small enough and r 0 < r 4 < r 5 are such that {x ∈ R n + | x n ≤ r 1 } ∩ {r 4 ≤ d β (x, x 0 ) ≤ r 5 } ⊂ W + . The geometry of the supports of the cut-off functions is represented in Figure 4. As ∂ x n ϕ ≥ C > 0 on supp χ 0 χ 1 , we can apply the Carleman estimate (1.25) on W + to w = χ 0 χ 1 u: there exist τ 0 > 0 such that

τ 3 ||e τϕ w|| 2 L 2 (W + ) + τ||e τϕ Dw|| 2 L 2 (W + ) + τ 3 |e τϕ w | xn =0 | 2 L 2 (W 0 ) + τ|e τϕ D ′ w | xn =0 | 2 L 2 (W 0 ) ||e τϕ P σ w|| 2 L 2 (W + ) + τ|(e τϕ (∂ x n -δS σ )w) | xn=0 | 2 L 2 (W 0 ) , (8.2 
) for all τ ≥ τ 0 |σ|, where W 0 = W ∩ {x n = 0}.The right hand side can be estimated as follows

||e τϕ P σ w|| L 2 (W + ) ||e τϕ P σ u|| L 2 (W + ) + ||e τϕ [P σ , χ 0 χ 1 ]u|| L 2 (W + ) e τC 3 ||P σ u|| L 2 (W + ) + e τC 3 ||u|| H 1 (W + ∩{x n ∈[r 1 /2,r 1 ]}) + e τC 1 ||u|| H 1 (W + ) ,
with C 3 > e -λ(r 0 -r 1 ) and C 1 = e -λr 4 . Observe that C 1 < C 3 . Here, we used that the weight function ϕ is radial with respect to the distance d β to x 0 and decreasing as x moves away from x 0 , and the commutator [P σ , χ 0 χ 1 ] is a differential operator of order 1 supported in the region were χ 0 χ 1 varies (represented in grey in Figure 4). In the same spirit, using that δ ≤ 1

|(e τϕ (∂ x n -δS σ )w) | xn =0 | L 2 (W 0 ) e τC 3 |(∂ x n -δS σ )u | xn=0 | L 2 (W 0 ) + e τC 1 |u | xn=0 | L 2 (W 0 ) + |D ′ u | xn=0 | L 2 (W 0 ) .
Finally, we can restrict the left hand side of the Carleman estimate to W := B(0, r 6 ) ∩ {x n > 0} with r 6 > 0 taken sufficiently small to have χ 0 χ 1 = 1 on B(0, r 6 ) and this yields, for τ ≥ 1, (8.3) where C 2 = inf W ϕ. We finally obtain, coming back to the original coordinates, for some η > 0, (8.4) where V is an open neighborhood of y 0 ∈ ∂Ω in Ω. Note that we have 0 < C 1 < C 2 < C 3 . Optimizing this inequality by applying the following lemma, which proof is given in Appendix D.5 concludes the proof. Lemma 8.4. Let A, B, C ≥ 0 such that A ≤ C. Suppose there exists τ, β, γ > 0 such that A ≤ e βτ B + e -γτ C for all τ ≥ τ. Then A ≤ KB µ C 1-µ , with K = max((γ/β)

τ 3/2 ||e τϕ χ 0 χ 1 u|| L 2 ( W) + τ 1/2 ||e τϕ Dχ 0 χ 1 u|| L 2 ( W) + τ 3/2 |e τϕ χ 0 χ 1 u | xn=0 | L 2 (∂ W∩{x n =0}) + τ 1/2 |e τϕ D ′ χ 0 χ 1 u | xn=0 | L 2 (∂ W∩{x n =0}) e τC 2 (||u|| H 1 ( W) + |u | xn=0 | H 1 (∂ W∩{x n =0}) ),
||u|| H 1 (V) + |u | ∂Ω | H 1 (V∩∂Ω) e τ(C 3 -C 2 ) ||P σ u|| L 2 (Ω) + |(∂ ν + δS σ )u | ∂Ω | L 2 (∂Ω) + ||u|| H 1 (Ω η ) + e -τ(C 2 -C 1 ) ||u|| H 1 (Ω) + |u | ∂Ω | H 1 (∂Ω) ,
β β+γ + (β/γ) γ β+γ , (β/γ)
γ β+γ e γτ ) and µ = γ β+γ .

We end this section by the proof of the theorem. Proof of Theorem 8.1 We shall in fact prove the stronger estimate

||u|| H 1 (Ω) + |u | ∂Ω | H 1 (∂Ω) e C|σ| ||P ϕ,σ u|| L 2 (Ω) + |∂ ν u | ∂Ω + S σ u | ∂Ω | L 2 (∂Ω) + ||u|| L 2 (ω I ) . (8.5) 
As δ ≤ 1, the result follows. Observe that we can assume that u satisfies

     ||P σ u|| L 2 (Ω) ≤ ||u|| H 1 (Ω) + |u | ∂Ω | H 1 (∂Ω) |∂ ν u | ∂Ω + δS σ u | ∂Ω | L 2 (∂Ω) ≤ ||u|| H 1 (Ω) + |u | ∂Ω | H 1 (∂Ω) , (8.6) 
otherwise (8.5) follows immediatly. From Lemma 8.2 and by a compactness argument, we can find η ′ > 0, η ′′ > 0, C > 0 and µ ′ > 0 such that

||u|| H 1 (Ω η ′ ) + |u | ∂Ω | H 1 (∂Ω) e C|σ| ||u|| H 1 (Ω) + |u | ∂Ω | H 1 (∂Ω) 1-µ ′ (||P σ u|| L 2 (Ω) + |∂ ν u | ∂Ω + δS σ u | ∂Ω | L 2 (∂Ω) + ||u|| H 1 (Ω η ) ) µ ′ , (8.7) 
for all |σ| ≥ 1 and δ ∈ (0, 1] and all 0 < η ≤ η ′′ (observing that Ω η increases as η decreases). By Lemma 8.3, for all η > 0, there exists C ′ > 0 such that

||u|| H 1 (Ω η ) e C ′ |σ| ||u|| 1-µ H 1 (Ω) ||P σ u|| L 2 (Ω) + ||u|| L 2 (ω I ) µ , (8.8) 
for all |σ| ≥ 1 and δ ∈ (0, 1]. Using (8.6) and (8.8), we have

||u|| H 1 (Ω η ) + ||P σ u|| L 2 (Ω) + |∂ n u | ∂Ω + δS σ u | ∂Ω | L 2 (∂Ω) e C ′ |σ| ||u|| H 1 (Ω) + |u | ∂Ω | H 1 (∂Ω) 1-µ × ||P σ u|| L 2 (Ω) + |∂ ν u | ∂Ω + δS σ u | ∂Ω | L 2 (∂Ω) + ||u|| L 2 (ω I ) µ . (8.9) 
Injecting estimate (8.9) in (8.7), we obtain (8.5).

Observation from the boundary

We shall prove here the following theorem (which is the counterpart of Theorem 8.1 in the boundary case). 

||u|| V δ ≤ Ce C|σ| ||P σ u|| L 2 (Ω) + |∂ ν u | ∂Ω + δS σ u | ∂Ω | L 2 (∂Ω) + |u | ∂Ω | L 2 (ω B ) , for all |σ| ≥ 1, u ∈ H 2 (Ω) such that u | ∂Ω ∈ H 2 (∂Ω).
Proof. Observe first that we can assume

||P σ u|| L 2 (Ω) + |∂ ν u | ∂Ω + δS σ u | ∂Ω | L 2 (∂Ω) ≤ ||u|| V δ (Ω) , (8.10) 
otherwise, the estimate is immediate. We use normal geodesic coordinates (x ′ , x n ) in a neighborhood V of a point y 0 ∈ ω B such that V ⊂ ω B . Hence, we consider an open neighborhood W of (0, 0) in R n such that W ∩ {x n = 0} ⊂ V, and we set ϕ = e λψ , where ψ(x) = -d β (x, x 0 ), x 0 = (0, -r 0 ), r 0 > 0 will be fixed below and d β denotes the anisotropic distance defined in (8.1). Observe that for λ sufficiently large and β sufficiently small, ϕ fulfills the weight function properties required in Section 4.2 in W ∩ R n + . We now define the following C ∞ 0 cut-off function

χ(x) = 1 if d β (x, x 0 ) < r 1 0 if d β (x, x 0 ) > r 2 ,
where the r j are such that

r 0 < r 1 < r 2 and {x ∈ R n , x n ≥ 0 , d β (x, x 0 ) ≤ r 2 } ⊂ W + . We recall that W + = W ∩{x n > 0} and W 0 = W ∩ {x n = 0}.
We can then apply the Carleman estimate (1.24) to χu in W + , as in the present case ∂ ν ϕ ≥ C > 0. We have

τ 3 ||e τϕ χu|| 2 L 2 (W + ) + τ||e τϕ ∇χu|| 2 L 2 (W + ) ||e τϕ P σ χu|| 2 L 2 (W + ) + τ|(∂ x n -δS σ )χu | xn=0 | L 2 (W 0 ) + τ 5 |e τϕ χu | xn =0 | L 2 (W 0 )
. The right hand side can be estimated as follows (using the fact that commutators are supported in regions where χ varies)

||e τϕ P σ (χu)|| 2 L 2 (W + ) + τ|(∂ x n -δS σ )χu | xn=0 | L 2 (W 0 ) + τ 5 |e τϕ χu | xn=0 | L 2 (W 0 ) e τC 3 ||P σ u|| L 2 (W + ) + |(∂ x n -δS σ )u | xn=0 | L 2 (W 0 ) + |u | xn=0 | L 2 (W 0 ) + e τC 1 ||u|| H 1 (W + ) + |u | xn=0 | H 1 (W 0 ) .
with C 3 > ϕ(0, r 0 ) and C 1 = ϕ(0, r 1 ). We can restrict the left hand side to W, an open subset compactly embedded in

W + ∩ {x ∈ R n , 0 < d β (x 0,x ) < r 1 }, to obtain ||u|| H 1 ( W) ≤ e τ(C 3 -C 2 ) ||P σ u|| L 2 (W + ) + |(∂ x n -δS σ )u | xn=0 | L 2 (ω B ) + |u | xn=0 | L 2 (w B ) + e -τ(C 2 -C 1 ) ||u|| H 1 (W + ) + |u | xn=0 | H 1 (ω B ) .
where C 2 = e λd β (x 0 , W) . Observe that C 1 < C 2 < C 3 . Coming back to the original coordinates in the neighborhood of y 0 , and optimizing this estimate using Lemma 8.4, we obtain that there exist 1 ≥ µ > 0 and C > 0 such that

||u|| L 2 (O) ≤ Ce C|σ| (||u|| H 1 (Ω) + |u | ∂Ω | H 1 (∂Ω) ) 1-µ ||P σ u|| L 2 (Ω) + |∂ ν u | ∂Ω + δS σ u | ∂Ω | L 2 (∂Ω) + |u | ∂Ω | L 2 (ω B ) µ ,
where O is an open subset compactly embedded in Ω. Then, we apply Theorem 8.1, and we find

||u|| H 1 (Ω) + |u | ∂Ω | H 1 (∂Ω) e C|σ| ||P σ u|| L 2 (Ω) + |∂ ν u | ∂Ω + δS σ u | ∂Ω | L 2 (∂Ω) + e C ′ |σ| ||u|| H 1 (Ω) + |u | ∂Ω | H 1 (∂Ω) 1-µ ||P σ u|| L 2 (Ω) + |∂ ν u | ∂Ω + δS σ u | ∂Ω | L 2 (∂Ω) + |u | ∂Ω | L 2 (ω B ) µ . (8.11) 
This, and assumption (8.10) ends the proof.

A resolvent estimate 8.2.1 The boundary static case

We use the notation of Section 2.1. We recall that A δ is the operator defined by:

A δ := 0 -Id -∆ g a(x)
where a is a function satisfying a ≥ C I > 0 on an open subset ω I of Ω, of domain

D(A δ ) := {(u 0 , u 1 ) | u 0 ∈ H 2 (Ω), u 0 | ∂Ω ∈ H 2 (∂Ω), u 1 ∈ V δ (∂Ω), ∂ ν u 0 + δΣu 0 + bu 1 = 0},
where b is a bounded function satisfying b ≥ C B > 0 on an open subset ω B of ∂Ω. In fact, we can allow a or b be identically zero, that is ω I = ∅ of ω B = ∅. We shall prove the first part of Theorem 1.3. Let U = (u 0 , u 1 ) ∈ D(A δ ) be such that (iσ Id +A δ )U = F := ( f 0 , f 1 ) ∈ H δ . This gives

iσu 0 -u 1 = f 0 , (iσ + a(x))u 1 -∆ g u 0 = f 1 ,
which is equivalent to

u 1 = -f 0 + iσu 0 , -∆ g u 0 -σ 2 u 0 + iσa(x)u 0 = f 1 + a(x) f 0 + iσ f 0 . (8.12) 
This yields that u 0 satisfies

(-∆ g -σ 2 )u 0 + iσa(x)u 0 = f in Ω ∂ ν u 0 + δΣu 0 + iσb(x)u 0 = g in ∂Ω (8.13) 
where f = f 1 + a(x) f 0 + iσ f 0 and g = b f 0| ∂Ω . Observe that in this case, in the definition of S σ (see the beginning of Section 1.3.2), κ is equal to 0. We multiply the first equation of (8.13) by u 0 and integrate over Ω, and this yields

||∇ g u 0 || 2 L 2 (Ω) + δ Σu 0 , u 0 H -1 (∂Ω),H 1 (∂Ω) -σ 2 ||u 0 || 2 L 2 (Ω) + iσ au 0 , u 0 L 2 (Ω) + iσ bu 0| ∂Ω , u 0| ∂Ω L 2 (∂Ω) = f , u 0 L 2 (Ω) + g, u 0| ∂Ω L 2 (∂Ω) . (8.14) 
Taking the imaginary part, we obtain

C I |σ| ||u 0 || 2 L 2 (ω I ) + C B |σ| |u 0| ∂Ω | 2 L 2 (∂Ω) ≤|σ| au 0 , u 0 L 2 (Ω) + |σ| bu 0| ∂Ω , u 0| ∂Ω L 2 (∂Ω) = Im f , u 0 L 2 (Ω) + Im g, u 0 L 2 (∂Ω) . (8.15) 
Now we apply Theorems 8.1 and 8.5, (since iσa and iσb are low order terms (see Remark 1.6), the Carleman estimates of Theorem 1.5 holds with P σ and S σ replaced by -∆ gσ 2 + iσa and δΣ + iσb, and Theorems 8.1 and 8.5 applies for u 0 ), and there exists C > 0 such that

||u 0 || V δ (Ω) ≤ Ce C|σ| || f || L 2 (Ω) + | g| L 2 (∂Ω) + ||u 0 || L 2 (ω I ) + |u 0| ∂Ω | L 2 (ω B ) (8.16) 
for all |σ| ≥ 1. Using (8.15) and (8.16), we have for |σ| ≥ 1,

(C I + C B )||u|| 2 V δ e C|σ| || f || 2 L 2 (Ω) + | g| 2 L 2 (∂Ω) + Im f , u 0 L 2 (Ω) + Im g, u 0| ∂Ω L 2 (∂Ω) .
The young inequality yields

g, u 0| ∂Ω L 2 (∂Ω) + f , u 0 L 2 (Ω) ε -1 (C I + C B ) -1 e C|σ| (|| f || 2 L 2 (Ω) + | g| 2 L 2 (∂Ω) ) + ε(C I + C B )e -C|σ| (||u 0 || 2 L 2 (Ω) + |u 0| ∂Ω | 2 L 2 (∂Ω) ), for all δ ′ > 0. Using the trace theorem |u 0| ∂Ω | L 2 (∂Ω) ||u 0 || H 1 , we obtain for ε > 0 sufficiently small, ||u|| V δ (Ω) e C|σ| || f || L 2 (Ω) + | g| L 2 (∂Ω) ,
for |σ| ≥ 1. Using now the definition of f and g below (8.12), we have

e C|σ| || f || L 2 (Ω) + | g| 2 L 2 (∂Ω) e C|σ| || f 1 || L 2 (Ω) + (1 + |σ|)|| f 0 || L 2 (Ω) + | f 0| ∂Ω | L 2 (∂Ω) e C ′ |σ| ||( f 0 , f 1 )|| H δ ,
and this ends the proof of (1.18) in Theorem 1.3.

The boundary dynamic case

We now treat the dynamic boundary case, i.e we prove a resolvent estimate for the operator

B δ :=               0 -Id 0 0 -∆ g a 0 0 0 0 0 -Id 1 δ γ 1 0 Σ 1 δ b              
, defined precisely in Section 1.2. Note that a and b are as above, that is, one of them can be identically zero. We shall see that everything we did in the previous case can be done, i.e prove and use the same Carleman estimate. Indeed, let us consider U := (u 0 , u 1 , y 0 , y 1 ) ∈ D(B δ ) and F := ( f 0 , f 1 , g 0 , g 1 ) ∈ K δ , such that

(iσ Id +B δ )U = F
This equality is equivalent to the following system (8.17) where f = f 1 + (iσ + a) f 0 and g = δg 1 + (δiσ + b)g 0 . As above, we can multiply the second line by u 0 , integrate by parts, use the transmission condition u 0| ∂Ω = y 0 , and take the imaginary part to obtain

               u 1 = iσu 0 -f 0 -∆ g u 0 -σ 2 u 0 + iσau 0 = f y 1 = iσy 0 -g 0 γ 1 (u 0 ) + δΣy 0 -δσ 2 y 0 + iσby 0 = g,
σ au 0 , u 0 L 2 (Ω) + σ bu 0 |∂Ω , u 0| ∂Ω L 2 (Ω) = Im f , u 0 L 2 (Ω) + Im g, u 0| ∂Ω L 2 (∂Ω) .
It is then sufficient to derive a local Carleman estimate for the solution u 0 of the following problem Using the definitions of f and g, and the fact that δ ≥ 1, we have

(-∆ g -σ 2 )u 0 = f ∂ ν u 0 + δ(S -σ 2 )u 0 =
|| f || L 2 (Ω) + | g| L 2 (∂Ω) || f 0 || H 1 (Ω) + || f 1 || L 2 (Ω) + δ 1/2 |g 0 | H 1 (∂Ω) + |g 1 | L 2 (Ω) ||( f 0 , f 1 , g 0 , g 1 )|| K δ , (8.19) 
as g 0 = f 0| ∂Ω . From (8.17), we obtain

||u 0 || H 1 (Ω) + ||u 1 || L 2 (Ω) + δ 1/2 |y 0 | H 1 (∂Ω) + |y 1 | L 2 (∂Ω) (1 + |σ|)||u 0 || H 1 (Ω) + || f 0 || L 2 (Ω) + δ 1/2 (1 + |σ|)|u 0| ∂Ω | H 1 (∂Ω) + |g 0 | L 2 (∂Ω) (1 + |σ|)||u 0 || V δ + || f 0 || L 2 (Ω) + δ 1/2 |g 0 | L 2 (∂Ω) .
This, associated with (8.18) and (8.19) ends the proof of Theorem 1.3.

A Heuristic derivation of the model

In this section, we derive the Ventcel boundary conditions from a transmission problem in an open subset of R n . Transmission conditions occurs at the interface of a thin layer that surrounds the boundary ∂Ω. The Ventcel boundary condition arises after some approximation. For the sake of simplicity, we consider the case Ω = R n + with boundary ∂Ω = {x n = 0}. We set Ω δ = {x ∈ R n | x n ∈ (-δ, 0)}, where δ > 0, that describe a layer at the boundary ∂Ω. We also set ∂Ω δ = {x n = -δ}. We then consider the following elliptic problem

(-∂ 2 x n -∆ T g )u 1 = f 1 on Ω, (-∂ x n c∂ x n -∆ T g )u 2 = f 2 on Ω δ , (A.1)
where c is a smooth function on Ω δ , with homogeneous Neumann boundary condition at {x n = -δ} and transmission condition at {x n = 0}

∂ x n u 2| xn =-δ = 0, u 1| xn=0 = u 2| xn =0 , ∂ x n u 1| xn =0 = c(x ′ , 0)∂ x n u 2| xn=0 . (A.2)
Multiplying the second equation of (A.1) by 1 δ , and integrating with respect to the variable x n from -δ to 0 we obtain

- 1 δ (c∂ x n u 2 ) | xn=0 -- 1 δ 0 -δ ∆ T g u 2 dx n = 1 δ 0 -δ f 2 dx := g. (A.3)
Using the transmission condition and setting v = 1 δ 0 -δ u 2 dx n , that is averaging u 2 over Ω δ in the x n -direction, (A.3) reads

- 1 δ ∂ x n u 1| xn =0 -∆ T g v = g.
If we make the approximation v ≈ u 1| xn=0 which is meaningfull for δ > 0 small as u 1| xn=0 + = u 2| xn=0 -(we identify the function u 2 and its average on a small domain), we obtain the following transmission condition at

{x n = 0 + } - 1 δ ∂ x n u 1| xn=0 + -∆ ′ g u 1| xn=0 + = g.
The transmission condition at the interface for (A.1) thus yields a Ventcel-type boundary condition for u 1 if we consider the problem from the side of Ω. The approximation v ≈ u 1| xn=0 + is only reasonable for a small value of δ. The Ventcel boundary condition can be seen as a good model for a thin layer structure at the boundary.

B Well-posedness results

B.1 Proof of Proposition 2.1.

We first prove that the operator is coercive. For λ ∈ R, the equation

(A δ + λI)U = F, with U = (u, v) ∈ D(A δ ) and F = ( f, g) ∈ H δ , reads v = λu -f Pu + (a + λ)λu = h, (B.1) 
where h = g + (a + λ) f , with boundary conditions

∂ ν u + δS u + λbu = h on ∂Ω
where h = b f | ∂Ω . We recall that P and S are defined in (1.20). Taking the L 2 -inner product of the left hand side of the second line of (B.1) with some ũ ∈ V δ , we obtain

(P + λ(a + λ))u, ũ L 2 (Ω) = -∆ g u, ũ L 2 (Ω) + λ(a + λ)u, ũ L 2 (Ω) + c∇ g u, ũ L 2 (Ω) + du, ũ L 2 (Ω) = ∇ g u, ∇ g ũ L 2 (Ω) -∂ ν u | ∂Ω , ũ| ∂Ω L 2 (∂Ω) + λ(a + λ)u, ũ L 2 (Ω) + c∇ g u, ũ L 2 (Ω) + du, ũ L 2 (Ω) = ∇ g u, ∇ g ũ L 2 (Ω) + δ Σu | ∂Ω , ũ| ∂Ω H -1 (∂Ω),H 1 (∂Ω) + δ c T ∇ T g u | ∂Ω , ũ| ∂Ω L 2 (∂Ω) -h, ũ| ∂Ω L 2 (∂Ω) +δ d T u | ∂Ω , ũ| ∂Ω L 2 (∂Ω) + λ(a + λ)u, ũ L 2 (Ω) + c∇ g u, ũ L 2 (Ω) + du, ũ L 2 (Ω) + λbu | ∂Ω , ũ| ∂Ω L 2 (∂Ω) =: a δ (u, ũ) -h, ũ| ∂Ω L 2 (∂Ω) .
This leads to the following variational problem, for all ϕ ∈ V δ :

a δ (u, ϕ) = l(ϕ), (B.2)
where l(ϕ) = Ω hϕ+ ∂Ω hϕ | ∂Ω . Let us prove the coercivity of a δ for λ large. Recalling that |.| 2 L 2 (∂Ω) + Σ., . H -1 (∂Ω),H 1 (∂Ω) provides an norm equivalent to |.| H 1 (∂Ω) , by the Young inequality, there exists C 0 > 0 such that

c∇ g u, u L 2 (Ω) + δ c T ∇ T g u | ∂Ω , u | ∂Ω L 2 (∂Ω) + du, u L 2 (Ω) + δ d T u | ∂Ω , u | ∂Ω L 2 (∂Ω) ≤ ||c|| L ∞ ε 2 ||∇ g u|| 2 L 2 (Ω) + ε -2 ||u|| 2 L 2 (Ω) + δC 0 |c T | L ∞ ε 2 Σu | ∂Ω , u | ∂Ω H -1 (∂Ω),H 1 (∂Ω) + ε -2 |u | ∂Ω | 2 L 2 (∂Ω) + ||d|| L ∞ ||u|| 2 L 2 (Ω) + δ|d T | L ∞ |u | ∂Ω | 2 L 2 (∂Ω) ,
for all ε > 0, and for all u ∈ V δ . In particular, we choose ε sufficiently small such that

1 -ε 2 ||c|| L ∞ ≥ 1 2 and 1 -C 0 ε 2 |c T | L ∞ ≥ 1 2 , (B.3)
and we keep the value of ε fixed in what follows. We shall need the following trace lemma.

Lemma B.1. For all u ∈ H 1 (Ω) we have

|u| 2 L 2 (∂Ω) ≤ 1 ε ′2 ||u|| 2 L 2 (Ω) + ε ′2 ||∇ g u|| 2 L 2 (Ω) ,
for all ε ′ ∈ (0, 1].

Proof. By locally straightening the boundary, it is sufficient to prove the inequality in the case where

Ω = R n + and ∂Ω = R n . We then have for v ∈ C ∞ 0 (R n + ), u(x ′ , x n ) 2 = - +∞ 0 ∂ x n (u(x ′ , x n ) 2 ) dx n = -2 +∞ 0 u∂ x n u dx n .
Applying the Young inequality yields the result. For ε fixed by (B.3), we can now apply Lemma B.1 to have

(C 0 ε -2 |c T | L ∞ + |d T | L ∞ )|u| 2 L 2 (∂Ω) ≤ (C 0 ε -2 |c T | L ∞ + |d T | L ∞ )(ε ′2 ||∇ g u|| 2 L 2 (Ω) + 1 ε ′2 ||u|| 2 L 2 (Ω) ).
for all ε ′ > 0. In particular, we can take

ε ′ such that 1 2 -ε ′2 C 0 ε 2 |c T | L ∞ + |d T | L ∞ ≥ 1 4 . Hence, there exists C 1 > 0 such that a δ (u, u) ≥||∇ g u|| 2 L 2 (Ω) (1 -ε 2 ||c|| L ∞ -δε ′2 (C 0 ε -2 |c T | L ∞ + |d T | L ∞ )) + ||u|| 2 L 2 (Ω) (λ 2 -||d|| L ∞ -ε -2 -δε ′-2 (C 0 ε -2 |c T | L ∞ + |d T | L ∞ )) + δ Σu | ∂Ω , u | ∂Ω H -1 (∂Ω),H 1 (∂Ω) (1 -C 0 ε 2 ||c T || L ∞ ) ≥ 1 4 ||∇ g u|| 2 L 2 (Ω) + δ 2 Σu | ∂Ω , u | ∂Ω H -1 (∂Ω),H 1 (∂Ω) + ||u|| 2 L 2 (Ω) (λ 2 -C 1 ).
Therefore, taking λ sufficiently large yield the coercivity of the bilinear form a δ , uniformly in δ. Let us prove that l is continuous. We have

|l(ϕ)| ≤ | Ω (g + (a + λ) f )ϕ| + | ∂Ω b f | ∂Ω ϕ | ∂Ω | || f || L 2 (Ω) + ||g|| L 2 (Ω) + |b| L ∞ (∂Ω) || f || H 1 (Ω) ||ϕ|| V δ .
We can then apply the Lax-Milgram theorem to obtain existence and uniqueness of a weak solution u ∈ V δ of the variational formulation (B.2), and we have the bound

||u|| V δ || f || L 2 (Ω) + ||g|| L 2 (Ω) + |b| L ∞ (∂Ω) || f || H 1 (Ω) . (B.4)
In fact, H 2 regularity holds in the interior (see [START_REF] Brezis | Analyse fonctionnelle[END_REF]) by standard elliptic theory. It now suffices to prove that for any x 0 ∈ ∂Ω there exists a neighborhood V of x 0 in Ω and θ ∈ C ∞ (Ω) with supp θ ⊂ V such that θu ∈ D(A δ ). In addition, we can impose ∂ ν θ | ∂Ω = 0. We set w = θu. From (B.2), w satisfy for all ϕ ∈ V δ (Ω ∩ V):

a δ (w, ϕ) = Ω∩V t 1 ϕ + ∂Ω∩V t 2 ϕ. (B.5)
where t 1 := θh -∇ g θ • ∇ g u -div g (u∇ g θ) + c∇ g θu ∈ L 2 (Ω ∩ V), and

t 2 := θ | ∂Ω h + δ[S , θ | ∂Ω ]u | ∂Ω ∈ L 2 (∂Ω ∩ V).
We choose V as in Section 4 and use the local normal geodesic coordinates x = (x 1 , . . . , x n ) described therein. In this coordinates ∂Ω = {x n = 0} and Ω = R n + . We set

V 0 = V ∩ {x n = 0}. Below, we shall denote V(V) := {u ∈ H 1 (V), u | xn=0 ∈ H 1 (V 0 )}. With θ as above, (B.5) reads V A∇w.∇ψ + δ V 0 A ′ ∇ T w | V 0 .∇ T ψ | V 0 = V t1 ψ + δ V 0 t2 ψ | V 0 , ψ ∈ V(V), (B.6)
where K, K ′ , k, k ′ 0 are bounded functions, and, because of the form of h, t2 can be written

t2 = z 1 + δz 2 with |z 1 | L 2 (∂Ω) |b| W 1,∞ (∂Ω) || f || H 1 (Ω)
, and z 2 ∈ δL 2 (Ω). (B.7)

where A(x) (resp. A ′ (x)) is the matrix corresponding to the metric g (resp. g | ∂Ω ) satisfying the following ellipticity condition: ∃C > 0 independent of x, ∀ξ ∈ R n (resp. R n-1 ), we have

|ξ| 2 ≤ CAξ.ξ (resp.|ξ ′ | 2 ≤ CA ′ ξ ′ .ξ ′ ),
where we denoted ξ = (ξ ′ , ξ n ). Let e k be an element of the cannonical basis of R n , k n, and set h = |h|e k , and D h u(x) = 1 |h| (u(x + h)u(x)), and |h| sufficiently small so that supp(w(• + h)) ⊂ V. We choose ψ = D -h D h w in (B.5). We obtain

V D h (A∇w) • D h (∇w) + δ V 0 D h (A ′ ∇ T w | V 0 ) • D h ∇ T w | V 0 = V t1 D -h D h w + V 0 t2 D -h D h w | V 0 . (B.8)
We shall need the following estimation:

||D h v|| L 2 (Ω) ≤ ||∇v|| L 2 (Ω) . (B.9)
A proof can be found in [START_REF] Brezis | Analyse fonctionnelle[END_REF]Lemma IX.6]. Using (B.9), the right hand side of (B.8) reads

V t1 D -h D h w ≤ ||t 1 || L 2 (V) ||∇D h w|| L 2 (V) ≤ ||t 1 || L 2 (V) ||D h w|| H 1 (V) ,
and with (B.7) and trace formula

V 0 t2 D -h D h w |z 1 | H 1/2 (V 0 ) |D -h D h w | V 0 | H -1/2 (V 0 ) + δ|z 2 | L 2 (V 0 ) |D -h D h w | V 0 | L 2 (V 0 ) |b| W 1,∞ (∂Ω) || f || H 1 (Ω) ||D h w|| H 1 (V) + δ|t 2 | L 2 (V 0 ) |D h w | V 0 | H 1 (V 0 ) .
Observe that we have the following Leibniz rule

D h (B∇ζ) = B(• + h)D h ∇ζ + (D h B)∇ζ,
for all matrices B and functions ζ. Then, (B.8) yields ãδ (D h w, D h w)

||t 1 || L 2 (V) + δ 1/2 |t 2 | L 2 (V 0 ) + |b| W 1,∞ (∂Ω) || f || H 1 (Ω) ||D h w|| V δ ,
where ãδ is the bilinear form defined by

ãδ (u, v) = U A(x + h)∇u • ∇v dx + δ V 0 A ′ (x + h)∇ T u | V 0 • ∇ T v | V 0 dx ′ .
Observe that ãδ is coercive with the same argumentation used to prove that a δ is coercive. Then, we can derive the inequality

||D h w|| 2 H 1 (V) + δ|D h ∇ T w| 2 L 2 (U 0 ) T ||D h w|| V δ . with T = ||t 1 || L 2 (V) + |t 2 | L 2 (V 0 ) + |b| W 1,∞ (∂Ω) || f || H 1 (Ω)
, and then

||D h w|| H 1 (V) + δ 1/2 |D h ∇ T w| L 2 (V 0 ) T. (B.10) Now, for ψ ∈ C ∞ 0 (V), ψ ∈ C ∞ 0 (V 0 )
, and for all j ∈ {1, . . . , n},l ∈ {1, . . . , n -1}, we have from (B.10)

| V wD -h ∂ x j ψ| = | V D h ∂ x j wψ| T ||ψ|| L 2 (V) (B.11) | V 0 w | V 0 D -h ∂ x l ψ| = | V 0 D h ∂ x l w | V 0 ψ| δ -1/2 T | ψ| L 2 (V 0 ) . (B.12)
Taking the limit h -→ 0, we obtain w | V 0 ∈ H 2 (V 0 ) and ∂ 2 x j x k w ∈ L 2 (V), and ∀ j ∈ {1, . . . , n}, k ∈ {1, . . . , n -1}.

It remains to show that ∂ 2

x n w ∈ L 2 (V). As we are working with normal geodesic coordinates, the coefficient A of the n-th raw and n-th column is a nn = 1. Then (B.6) reads, for ψ

∈ C ∞ 0 (V), V ∂ x n w∂ x n ψ = V t1 ψ - (k,l) (n,n) V a kl ∂ x k w∂ x l ψ.
and with (B.11), this yields

| V ∂ n w∂ n ψ| ≤ CT || ψ|| L 2 . Moreover, T |b| W 1,∞ (∂Ω) || f || H 1 + || f || L 2 (Ω) + ||g|| L 2 (Ω) , since we have (B.4), we have proved ||u|| 2 H 2 (Ω) + δ|u |∂Ω | 2 H 2 (∂Ω) |b| W 1,∞ (∂Ω) || f || 2 H 1 (Ω) + || f || L 2 (Ω) + ||g|| 2 L 2 (Ω)
. Using (B.1), we obtain the sought result.

B.2 Proof of Proposition 2.5

The proof is essentially the same as in Section B.1. Here, we only prove the existence and uniqueness of the announced variationnal problem in K δ . The elliptic regularity can then be proved in the same way as in section in B.1 by the Nirenberg translation method. Let U = (u 0 , u 1 , y 0 , y 1 ) ∈ D(B δ ) and F

= ( f 0 , f 1 , g 0 , g 1 ) ∈ K δ . Then (B δ + λ Id) U = F reads                -u 1 + λu 0 = f 0 Pu 0 + (a + λ)u 1 = f 1 -y 1 + λy 0 = g 0 1 δ ∂ ν u 0| ∂Ω + S y 0 + ( 1 δ b + λ)y 1 = g 1 ⇐⇒                u 1 = λu 0 -f 0 Pu 0 + λ(a + λ)u 0 = h 0 y 1 = λy 0 -g 0 ∂ ν u 0| ∂Ω + δS y 0 + λ(b + δλ)y 0 = h 1 ,
where h 0 := f 1 + (a + λ) f 0 and h 1 := δg 1 + (b + δλ)g 0 . Thus, it is sufficient to prove the existence and uniqueness of a solution (u, y) ∈ H 1 (Ω) × H 1 (∂Ω) such that u | ∂Ω = y of the following system

Pu + λ(a + λ)u = h 0 ∂ ν u | ∂Ω + δS y + λ(b + δλ)y = h 1 . (B.13)
Taking the inner product of the first equation with ũ yields, with integration by parts,

(P + λ(a + λ)) u, ũ L 2 (Ω) = -∆ g u, ũ L 2 (Ω) + c∇ g u, ũ L 2 (Ω) + du, ũ L 2 (Ω) + λ (a + λ)u, ũ L 2 (Ω) = ∇ g u, ∇ g ũ L 2 (Ω) + λ(a + λ)u, ũ L 2 (Ω) + c∇ g u, ũ L 2 (Ω) + du, ũ L 2 (Ω) + δ Σu | ∂Ω , ũ| ∂Ω H -1 (∂Ω),H 1 (∂Ω) + δλ (b + λ)u | ∂Ω , ũ| ∂Ω L 2 (∂Ω) + δ c T ∇ T g u | ∂Ω , ũ| ∂Ω L 2 (∂Ω) + δ d T u | ∂Ω , ũ| ∂Ω L 2 (∂Ω) -h 1 , ũ| ∂Ω L 2 (∂Ω) :=b δ (u, ũ) -h 1 , ũ| ∂Ω L 2 (∂Ω) .
This leads to the variationnal problem b δ (u, ϕ) = l(ϕ), where l(ϕ) = Ω h 0 ϕ + ∂Ω h 1 ϕ | ∂Ω . Note that Σu, u H -1 (∂Ω),H 1 (∂Ω) + |u| 2 L 2 (∂Ω) provides an equivalent norm to |u| 2 H 1 (∂Ω) . We now claim that the bilinear form b δ is coercive. Indeed, observe that as a and b are non-negative functions, we have (au, u) L 2 (Ω) ≥ 0 and (bu | ∂Ω , u | ∂Ω ) L 2 (∂Ω) ≥ 0. We can now apply the Young inequality to obtain

c∇ g u, u L 2 (Ω) + δ c T ∇ T g u | ∂Ω , u | ∂Ω L 2 (∂Ω) ≤ ||c|| L ∞ ε 2 ||∇ g u|| 2 L 2 (Ω) + ε -2 ||u|| 2 L 2 (Ω) + δ|c T | L ∞ ε 2 C|∇ T g u | ∂Ω | 2 L 2 (∂Ω) + ε -2 |u | ∂Ω | 2 L 2 (Ω) . (B.14) for all ε > 0. Taking ε sufficiently small to have 1 -||c|| L ∞ δ ′ ≥ 1 2 and 1 -C|c T | L ∞ δ ′ ≥ 1 2
, and now taking λ sufficiently large, we prove the coercivity of the bilinear form b δ . It remains to prove that the linear form l is continuous on V δ . We have

| Ω h 0 ϕ| ≤ ||h 0 || L 2 (Ω) ||ϕ|| L 2 (Ω) and because of the form of h 1 , we have | ∂Ω h 1 ϕ | ∂Ω | ≤ |g 0 | L 2 (Ω) ||ϕ|| H 1 (Ω) + δ|g 1 | L 2 (Ω) |ϕ| L 2 (∂Ω)
. These two estimates yields the continuity of l. Proof. We use the normal normal geodesic coordinates introduced in Section 4 in a neighborhood of y 0 ∈ ω B . In these coordinates, y 0 = 0 and ∂Ω = {x n = 0}. Consider U an open neighborhood of 0 in R n such that U ∩ {x n = 0} ⊂ ω B . Let x 0 = (x ′ = 0, -r 0 ), with r 0 > 0 to be chosen below. Let ψ(x) = |x 0 -x| 2 , and define ϕ(x) = e -λψ(x) . Let r 1 > 0 and r 2 > 0 be such that

C Unique continuation property from the boundary

• {x = (x ′ , x n ) | x n > 0, |x 0 -x| < r 2 } ⊂ U + , • r 0 < r 1 < r 2 ,
where U + := U ∩ R n + . Observe that for λ > 0 chosen sufficiently large, ϕ satisfies the sub-ellipticity condition (4.14). Define the cut-off function χ ∈ C ∞ 0 (R n ):

χ(x) = 1 if |x 0 -x| < r 1 χ(x) = 0 if |x 0 -x| > r 2 .
From Proposition 4.3, there exists τ 0 > 0 such that for τ ≥ τ 0

τ 3 ||e τϕ χu|| 2 L 2 (U + ) + τ||e τϕ Dχu|| 2 L 2 (U + ) ||e τϕ Pχu|| 2 L 2 (U + ) + τ|e τϕ ∂ x n χu | xn =0 | 2 L 2 (U 0 ) + τ 3 |e τϕ χu | xn =0 | 2 L 2 (U 0 ) , (C.2) for all u ∈ C ∞ 0 (U + ), where V 0 := V ∩ {x n = 0}. Note that |e τϕ χu | xn =0 | 2 L 2 (U 0 ) = 0 as U ⊂ ω B . Observing that Pχu = χPu + [P, χ]u and Dχu = χDu + [D, χ]u, with assumption (C.1), estimate (C.2) reads τ 3 ||e τϕ χu|| 2 L 2 (V + ) + τ||e τϕ χDu|| 2 L 2 (V + ) ||e τϕ χu|| + ||e τϕ χDu|| 2 L 2 (V + ) + ||e τϕ [P, χ]u|| 2 L 2 (V + ) + τ|e τϕ [D, χ]u|| 2 L 2 (V + ) + τ|e τϕ ∂ x n χu | xn =0 | 2 L 2 (V 0 )
. Taking τ sufficiently large, we may ignore the first two terms on the right hand side. Now, observing that the commutators [P, χ] and [D, χ] are supported in the region where χ varies, we obtain

||e τϕ [P, χ]u|| 2 L 2 (V + ) + ||e τϕ [D, χ]u|| 2 L 2 (V + ) e τC 1 ||u|| 2 H 1 (V + ) ,
with C 1 = e -λr 1 . Furthermore, note that

|e τϕ (∂ x n χu) | xn=0 | 2 L 2 (V 0 ) ≤ |e τϕ [∂ x n , χ] | xn =0 u | xn =0 | 2 L 2 (V 0 ) + |e τϕ χ | xn =0 S u | xn =0 | 2 L 2 (V 0 ) = 0,
by assumption. We then can restrict the left hand side of (C.2) to W := 

x = (x ′ , x n ) | x n > 0, |x 0 -x| < r ′ 1 , where r ′ 1 is such that r ′ 1 <

C.1 Proof of Proposition 2.8

Below, we shall denote by H and V the spaces V δ=1 and H δ=1 . We recall that V δ and V (resp. H δ and H) are homeomorphic for each δ. However, only the injection V δ ֒→ V (resp. H δ ֒→ H) is continuous uniformly in δ. In particular, V ′ δ and V ′ are homeomorphic and only the injection

V ′ ֒→ V ′ δ is continuous uniformly in δ. Observe that f δ ⇀ f in L 2 (0, T ; L 2 (Ω)) implies || f δ || L 2 (0,T ;L 2 (Ω)) ≤ C uniformly in δ. Consider first U 0 δ ∈ D(A δ )
. Multiplying (2.4) by ∂ t u δ and integrating by parts over Ω yields

d dt ||∂ t u δ || 2 L 2 (Ω) + ||u δ || 2 H 1 (Ω) + δ|∇ T g u δ| ∂Ω | 2 L 2 (∂Ω) + Ω a|∂ t u δ | 2 + ∂Ω b|∂ t u δ| ∂Ω | 2 = Ω f δ u δ .
Integrate in time between 0 and t, and using Proposition 2.2,

||∂ t u δ (t)|| 2 L 2 (Ω) + ||u δ (t)|| 2 H 1 (Ω) + δ|∇ T g u δ| ∂Ω (t)| 2 L 2 (∂Ω) + |a 1/2 |∂ t u δ | 2 L 2 (0,T ;L 2 (Ω)) + |b 1/2 ∂ t u δ| ∂Ω | 2 L 2 (0,T ;L 2 (∂Ω)) ≤ ||U 0 δ || 2 H + T 0 || f δ || 2 L 2 (Ω) ≤ C, (C.4)
from the assumptions on f δ (constants may change from one line to an other). Now, consider w ∈ L 2 (0, T, V). Multiplying (2.4) with U 0 δ ∈ D(A δ) by w and integrating by parts over (0, T ) × Ω yields the following variational formulation 

u δ k ⇀ u in L 2 (0, T ; H 1 (Ω)), u δ k ⇀ u in H 1 (0, T ; L 2 (Ω)), u δ k ⇀ u in H 2 (0, T ; V ′ ), b 1/2 ∂ t u δ k | ∂Ω ⇀ b 1/2 ∂ t u | ∂Ω in L 2 (0, T ; L 2 (∂Ω).
We also can extract a subsequence to u δ k , denoted again by u δ k such that δ 1/2 k ∇ T g u δ k is weakly convergent in L 2 (∂Ω). In particular, we have |∇ T g u δ k | L 2 (Ω) = O(δ -1/2 ). Taking the limit in (C.5), we thus have | ||w|| H 1 (Ω) , for all w ∈ V. As V is dense in H 1 (Ω) we obtain that ∂ 2 t u can be extended as a linear form defined on H 1 (Ω). We obtain the variational formulation associated with the problem (2.5). We can deduce by existence and uniqueness of the solution of (C.6) that the limit does not depend on the chosen subsequence. This ends the proof. On the one hand, as d x ψ 0, there exists C 0 > 0 such that R 1 ≥ C 0 , and, on the other hand, we observe that p ϕ,σ (x, ξ, τ) = 0, in particular p 2 (x, ξ, τ, σ) = 0, implies p(x, ξ) = σ 2 +p(x, τd x ϕ), which yields 1+ and thus p ϕ,σ = 0 =⇒ {p 2 , p 1 } > 0. In particular, it holds on the compact set {p ϕ,σ = 0} ∩ {λ τ = 1}. We then conclude by homogeneity. Note that the condition τ ≥ c|σ| with c ≥ 1 λ inf ϕ implies |α| β ≤ 1.

D Proof of technical results

D.2 Proof of Proposition 4.3

We have

||P ϕ,σ v|| 2 L 2 (R n + ) = ||P 2 v|| 2 L 2 (R n + ) + ||P 1 v|| 2 L 2 (R n + ) + i P 1 v, P 2 v L 2 (R n + ) -P 2 v, P 1 v L 2 (R n + )
.

Using the forms of P 1 and P 2 in (4.2) and ( 4.3) we obtain by integration by parts

i P 1 v, P 2 v L 2 (R n + ) -P 2 v, P 1 v L 2 (R n + ) = Re i[P 2 , P 1 ]v, v L 2 (R n + ) + Re P 1 v | xn=0 , D n v | xn =0 L 2 (R n-1 ) + Re (D n P 1 -2τ(∂ x n ϕ)P 2 )v | xn=0 , v | xn=0 L 2 (R n-1
) .

Using with symbols C 0 , C0 ∈ D 0 T,τ = D 0 τ and C 1 ∈ D 1 T,τ . Now, we treat the commutator term in (D.3). Its principal symbol is {p 2 , p 1 }, a polynomial function of degree 3 in (ξ, τ), and from (4.7), we know that p 1 reads p 1 (x, ξ, τ) = τq 1 (x, ξ), where q 1 is a polynomial of order one in ξ. Thus, the Poisson bracket reads {p 2 , p 1 } = τξ 2 n b0 (x, ξ ′ , τ) + τξ n b1 (x, ξ ′ , τ) + τ b2 (x, ξ ′ , τ), (D.5) where b j is a polynomial function of order j in (ξ ′ , τ), j = 0, 1, 2. As we imposed ∂ x n ϕ ≥ C ′ > 0, using (4.6) and (4.7), we have where C 3 = e -λr/4 and C 1 = e -λ13r/4 . Here, we used that [P σ , χ] is an differential operator of order 1, supported in the region where χ varies, and that ϕ decreases as |xx j | increases. We can restrict the left hand side of (D.24) to B(x j , 3r) \ B(x j , r) =: Ṽ, where χ = 1. This yields 

||e

  Let a ∈ S m τ and b ∈ S m ′ τ , m, m ′ ∈ R, we have Op(a) • Op(b) = Op(a#b), for some a#b ∈ S m+m ′ τ

Proposition 4 . 3 .

 43 Let V be an open neighborhood of 0 in R n and let ϕ be a weight function satisfying the subellipticity condition (4.14) in V + , and assume that |∂ x n ϕ| ≥ C > 0 on V. Then there exists τ 0 > 0 and C ′ > 0 such that C ′ τ||v|| 2 1,τ + τ Re B(v) ≤ ||P ϕ,σ v|| 2 0,τ for all v ∈ C ∞ 0 (V + ), |σ| ≥ 1 and τ ≥ τ 0 |σ|, where

Figure 1 :

 1 Figure 1: Position of the roots of p ϕ,σ as µ varies.

Figure 2 :

 2 Figure 2: Representation of the three microlocal regions.

Figure 3 :

 3 Figure 3: Representation of the different conic neighborhoods.

Theorem 8 . 5 .

 85 Let ω B ⊂ ∂Ω be an open subset of the boundary. Then there exists C > 0 such that

  g, which corresponds to Theorem 1.5 in the case κ = 1. This allows us to repeat what is done above, and obtain||u 0 || V δ e C|σ| || f || L 2 (Ω) + | g| L 2 (∂Ω)(8.18) 

Theorem C. 1 .. 1 )

 11 Let u ∈ H 2 (Ω) be such that |Pu(x)| ≤ |u(x)| + |∇ g u(x)| a.e on Ω, and ∂ ν u | ∂Ω + S u | ∂Ω = 0 on ∂Ω. (CAssume moreover that u | ∂Ω = 0 on an open subset ω B of ∂Ω. Then u = 0 on Ω.

  δ| ∂Ω , w | ∂Ω L 2 (∂Ω) V δ + || f δ || L 2 (Ω) + ||a

  | ∂Ω , w | ∂Ω L 2 (∂Ω)

D. 1 R 2 =

 12 Proof of Proposition 4.2Observe that the parameter σ does not appear in the Poisson bracket {p 2 , p 1 }. We set β(x) = λτϕ(x) and ζ = β -1 ξ. After computations of the Poisson bracket, we obtain{p 2 , p 1 }(x, ξ, τ) = β 3 (x)(λR 1 + R 2 ), where R 1 = 4p(x, d x ψ(x)) 2 + (∂ x ψ∂ ξ p(x, ζ)) 2 and 2∂ ξ p(x, ζ)∂ x p(x, ζ, d x ψ(x)) + d 2 x ψ(x)(∂ ξ p(x, ζ), ∂ ξ p(x, ζ)) -∂ x p(x, ζ)∂ ξ p(x, d x ψ(x)) + ∂ x p(x, d x ψ(x))∂ ξ p(x, d x ψ(x)) + d 2x ψ(x)(∂ ξ p(x, d x ψ(x)), ∂ ξ p(x, d x ψ(x))). (D.1)

=L 2

 2 (4.2) and (4.4), the operator D n P 1 -2τ(∂ x n ϕ)P 2 readsD n P 1 -2τ(∂ x n ϕ)P 2 = 2r(x, τd x ′ ϕ, D ′ )D n -2τ∂ x n ϕ r(x, D ′ )p(x, τd x ϕ)σ 2 mod τ(D 0 D n + D 1 τ Re i[P 2 , P 1 ]v, v v) = 2 ∂ x n ϕD n v | xn =0 , D n v | xn =0 L 2 (R n-1 ) + 2 r(x, d x ′ ϕ, D ′ )v | xn=0 , D n v | xn =0 L 2 (R n-1 ) + 2 r(x, d x ′ ϕ, D ′ )D n v | xn =0 , v | xn =0 L 2 (R n-1 ) -2 ∂ x n ϕ r(x, D ′ )p(x, τd x ϕ)σ 2 v | xn =0 , v | xn =0 L 2 (R n-1 ) + C 0 v | xn =0 , D n v | xn =0 L 2 (R n-1 ) + ( C0 D n + C 1 )v | xn =0 , v | xn =0 L 2 (R n-1 ), (D.4)

ξ 2 n. 6 ) ξ n = 1 ∂ 2 L 2 (R n + ) = ||P 2 v|| 2 L 2 (R n + ) + ||P 1 v|| 2 L 2 + 8 ) 2 +L 2 (R n- 1 )=L 2 (R n- 1 )+ 2 = 2 =

 26122222282212122 = p 2 (x, ξ, τ, σ) + σ 2r(x, ξ ′ ) + τ 2 ∂ x n ϕ 2 + r(x, τd x ′ ϕ), (Dx n ϕ ((2τ) -1 p 1 (x, ξ, τ) -r(x, d x ′ ϕ, ξ ′ )).(D.7)With (D.6) and (D.7), the bracket (D.5) reads {p 2 , p 1 } = τb 0 (x)p 2 (x, ξ, τ, σ)+ b 1 (x, ξ ′ , τ)p 1 (x, ξ, τ) + τb 2 (x, ξ ′ , τ, σ), (D.8)where b j are polynomial functions of degree j in (ξ ′ , τ), j = 0, 1, and b 2 is a polynomial function of degree 2 in (ξ ′ , τ, σ). We can then writei[P 2 , P 1 ] = τb 0 P 2 + Op T (b 1 )P 1 + τ Op(c ′ 1 ) + τ Op T (b 2 ),where Op(c ′ 1 ) ∈ D 1 τ . This yields||P ϕ,σ v|| (R n + ) + Re τ Op T (b 2 )v, v L 2 (R n + )+ τ Re B(v) Re τb 0 P 2 + Op T (b 1 )P 1 + τ Op(c ′ 1 ) and the sub-ellipticity property, we observep 2 (x, ξ, τ, σ) = p 1 (x, ξ, τ) = 0 ⇒ τb 2 (x, ξ ′ , τ, σ) λ 3 following quantity γ(x, ξ ′ , τ, σ) = p1 (x, ξ ′ , τ) 2τ (∂ x n ϕ) 2 p2 (x, ξ ′ , τ, σ), Op T (γ) ∈ D 2 T,τ , (D.11)where p2 and p1 are defined in (4.10) and (4.11). Observing thatp 1 (x, ξ, τ) = 0 is equivalent to ξ n = -(∂ x n ϕ) -1 r(x, ξ, d x ′ ϕ), we obtain, for x ∈ V, ξ ∈ R n , |σ| ≥ 1, τ ≥ τ 0 |σ|, γ(x, ξ ′ , τ, σ) = 0 ξ n = -(∂ x n ϕ) -1 r(x, ξ, d x ′ ϕ) ⇐⇒ p 2 (x, ξ, τ, σ) = p 1 (x, ξ, τ) = 0 =⇒ τb 2 (x, ξ ′ , τ, σ) λ 3 T,τ . and finally for x ∈ V, ξ ′ ∈ R n-1 , |σ| ≥ 1, τ ≥ τ 0 |σ|, γ(x, ξ ′ , τ, σ) = 0 =⇒ τb 2 (x, ξ ′ , τ, σ) λ 3 T,τ . (D.12)as both sides of the implication do not involve the variable ξ n . Moreover, if γ = 0, taking τ sufficiently large with respect to |σ| ≥ 1, we have τ 2 |ξ ′ | 2 τ 2 and (D.12) yieldsγ(x, ξ ′ , τ, σ) = 0 =⇒ b 2 (x, ξ ′ , τ, σ) λ 2 T,τ . (D.13)We may now state the following positivity result:Lemma D.1. There exists m 0 > 0, τ 0 > 0 and C > 0 such thatmλ -2 T,τ γ(x, ξ ′ , τ, σ) 2 + b 2 (x, ξ ′ , τ, σ) ≥ Cλ 2 T,τ for all (x, ξ ′ ) ∈ V + × R n-1 , |σ| ≥ 1, τ ≥ τ 0 |σ| and m ≥ m 0 .The proof is given in Appendix D.3. We can apply the Gårding inequality in the tangential directions to obtain, for m = m 0 to remain fixed in what follows,m Re Op T (λ -2 T,τ γ 2 )v, v L 2 (R n-1 ) + Re Op T (b 2 )v, v L 2 (R n-1 ) |v| 2 1,τ . (D.14)Then, by symbolic calculus Op T (λ -2 T,τ γ 2 ) = Op T (λ -2 T,τ γ) Op T (γ) mod Ψ 1 T,τ , and thus there exist c 0 ∈ S 0 T,τ and c 1 ∈ S 1 T,τ such thatm Op T (λ -2 T,τ γ 2 )v, v Op T (γ)v, Op T (c 0 )v Op T (c 1 )v, v L 2 (R n-1 ) . (D.15)In terms of the symbols p 2 and p 1 , from (D.11), γ readsγ(x, ξ ′ , τ, σ) = (∂ x n ϕ) 2 p2 (x, ξ ′ , τ, σ) + p1 (x, ξ ′ , τ) 2τ (∂ x n ϕ) 2 p 2 (x, ξ, τ, σ)ξ 2 n + τ -1 2p 1 (x, ξ, τ)ξ n ∂ x n ϕ (∂ x n ϕ) 2 p 2 (x, ξ, τ, σ) + τ -1 p 1 (x, ξ, τ) τ -1 4 p 1 (x, ξ, τ)ξ n ∂ x n ϕ = (∂ x n ϕ) 2 p 2 (x, ξ, τ, σ) + τ -1 r 1 (x, ξ)p 1 (x, ξ, τ),

e τ(C 3 -C 2 ) 4 First 1 β+γ.

 3241 ||P σ u|| L 2 (Ω) + ||u|| H 1 (B(x j ,r)) + e -τ(C 2 -C 1 ) ||u|| H 1 (Ω) . (D.25)Observe that C 1 < C 2 < C 3 . It remain to apply Lemma 8.4 to conclude the proof. D.5 Proof of Lemma 8.observe that C = 0 implies A = 0, and B = 0 also implies A = 0 by letting τ → +∞. We set f (τ) = e βτ B + e -γτ C for all τ ∈ R. This function reach its minimum at τ 1 satisfying e τ 1 = γC βB First assume that τ 1 ≥ τ. ThenA ≤ e βτ 1 B + e -γτ 1 C ≤ γ that τ 1 < τ. We then have γe -γτ C ≤ βe βτ B. Hence,

  Throughout this paper, we shall denote by ||.|| a norm acting on Ω, and by |.| a norm acting on ∂Ω.

	Forming the scalar product of (1.2) with ∂ t u in space and integrating by parts yield
	1
	2

d dt E(u, t) = 0, with E(u, t) := 1 2 ||∂ t u(t)|| 2 L 2 (Ω) + ||∇ g u(t)|| 2 L 2 (Ω) + δ|∇ T g u(t) | ∂Ω | 2 L 2 (∂Ω) ,

  Coming back to original coordinates, we have found a non-empty open subset O ⊂ Ω such that u | O = 0. We can conclude by applying Calderón's unique continuation theorem for elliptic operators of order two.

r 1 and such that W ∅. This finally yields e C 2 τ ||u|| 2

H 1 (W + ) e τC 1 ||u|| 2 H 1 (V + ) , (C.3) with C 2 = e -λr ′ 1 . As C 1 < C 2 , letting τ -→ +∞ in (C.

3) yields u = 0 in W.

  1/2 ∂ t u δ || L 2 (Ω) + |b 1/2 ∂ t u δ| ∂Ω | ||w|| V (||U 0 δ || H + || f δ || L 2 (0,T,L 2 (Ω)) )||w|| V .Note that by a density argument that this estimate is still valid for U 0 δ ∈ H. We thus obtain forU 0 δ ∈ H, that w → T 0 (∂ 2 t u δ , w) L 2 (Ω) ∈ V ′ and thus ∂ 2 t u δ ∈ L 2 (0, T ; V ′ ). Hence, ||∂ 2 t u δ || 2 L 2 (0,T ;V ′ ) + ||∂ t u δ || 2 L 2 (Ω) + ||u δ || 2 H 1 (Ω) + δ|∇ T g u δ| ∂Ω | 2 L 2 (∂Ω) + ||a 1/2 ∂ t u δ || L 2 (Ω) + |b 1/2 ∂ t u δ| ∂Ω | ≤ C.This allows to consider a subsequence u δ k and a function u such that

  σ 2 β 2 |ζ| 2 1+ σ 2 β 2 .Hence, there exists a constantC 1 > 0 such that |R 2 | ≤ C 1 1 + σ 2 β 2 .Now we choose λ, to be kept fixed in what follows, such that λC 0 -2C 1 ≥ 1, and if τ is such that |σ| β ≤ 1, we obtain λR 1 + R 2 ≥ λC 0 -2C 1 ≥ 1 (D.2)

  τϕ χu|| L 2 ( Ṽ) + ||e τϕ Dχu|| L 2 ( Ṽ) e τC 2 ||u|| H 1 ( Ṽ) ,where C 2 = ϕ(3r). Hence||u|| H 1 (B(x j ,3r)) ||u|| H 1 (B(x j ,r)) + ||u|| H 1 ( Ṽ)

The name of Alexander Ventcel is often spelled differently, e.g. Wentzell.

Now we shall use the boundary condition (4.12). With the same arguments as above, we have Op T (χ)K ∈ (δτ 2 + τ)ψ 0 T,τ and thus

This, in addition of (7.7) and (7.8) yields the result.

We can now conclude the proof of the first part of Theorem 1.5 by patching estimate (7.6) with estimate (6.1), since no condition on the sign of ∂ x n ϕ is needed in the region E + , and taking τ sufficiently large to absorb low order terms. Note that, as opposed to the proof of Section 7.1, there is no need for the introduction of the additional small parameter ε. In this section, following the ideas in [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF], we shall derive an interpolation inequality from the Carleman estimate (1.25). We prove the inequality in the interior, and propagate it up to the boundary. Below, we set

The proof is splitted in the two following lemmata. First, an interpolation estimate in a neighborhood of the boundary Lemma 8.2. Let y 0 ∈ ∂Ω.Then, there exist η > 0, a neighborhood V of y 0 in Ω, µ ∈ (0, 1], and C > 0 such that

µ for all u ∈ H 2 (Ω) such that u | ∂Ω ∈ H 2 (∂Ω), for all |σ| ≥ 1, and for all δ > 0.

Second, an interpolation estimate in the interior, which proof can be found in Appendix D. [START_REF] Brezis | Analyse fonctionnelle[END_REF]. A version without the parameter σ can be found in [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF].

Lemma 8.3. Let Ω be a connected open set of R n and ω I be an open set compactly embedded in Ω. Then, for all η > 0, there exists C > 0, and µ ∈ (0, 1] such that

Proof of Lemma 8.2 We shall work in normal geodesic coordinates (x ′ , x n ) ∈ R n-1 × R as in Section 4 in a neighborhood U in Ω of y 0 ∈ ∂Ω. These coordinates are chosen such that y 0 = 0. We shall still denote U the corresponding neighborhood of 0 in R n + . For β > 0, we define the following anisotropic distance on R n :

We choose r 0 > 0 such that x 0 = (0, r 0 ) ∈ U. Then we take W a neighborhood of 0 in R n such that W + := W ∩ R n + ⊂ U and such that d(x 0 , W + ) > 0. We set ϕ = e -λψ where ψ(x) = d β (x, x 0 ). Observe that ϕ is an admissible weight function on W + for λ sufficiently large (see Proposition 4.2) and for β sufficiently large (see Section 4.2). Until the end of the proof, β is kept fixed. We define the following cut-off functions χ

with 0 < r 1 < r 0 and 0 < r 2 < r 3 < r 4 < r 5 such that where r 1 (x, ξ) =

with B 1 ∈ D 1 τ . Going back to (D.14), and using (D.15) and (D. [START_REF] Rousseau | On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations[END_REF]), and integrating in the x n -variable between 0 and +∞

. (D.17) Thus, (D.9) reads

. (D.18)

Yet, using the definition of r 1 and integrating by parts with respect to x n , 2 Re Op(r 1 )P 1 v, Op T (c 0 )v

, and this is precisely the boundary quadratic form stated in the proposition. The end of the proof is devoted to the handling of the remainder terms. Using the Young inequality, we obtain

. (D.20) Injecting this estimate in (D.18), and taking τ sufficiently large, we obtain

Moreover, we have

, and this yields

, which gives, for τ sufficiently large, the sought result

D.3 Proof of Lemma D.1

We set

Observe that A m is homogeneous of order two in the variable (ξ ′ , τ, σ). We may restrict our analysis to the compact set L = V × K where

On L, we have γ 2 ≥ 0, and from (D.13), having γ = 0 implies b 2 ≥ C > 0. Observe that A m is of the form m f (y) + g(y), with y laying in L, and f and g continuous on L. In addition, f (y) = 0 implies g(y) > 0. Now consider the compact set E := {y ∈ L, f (y) = 0}. By a continuity argument there exists an open neighborhood F of E such that inf F g > 0. Then on L \ F we have m f (y) + g(y) ≥ m inf f + inf g > 0 by choosing m sufficiently large. This yields A m ≥ C > 0 on L. We then conclude by homogeneity.

D.4 Proof of Lemma 8.3

By a compactness argument, it suffices to prove the estimate with ||u|| H 1 (B(x 0 ,r 0 )) in the left hand side, for any x 0 and r 0 > 0 such that B(x 0 , r 0 ) ⋐ Ω, where B(x 0 , r 0 ) denotes the open ball centered at x 0 with radius r 0 .

First, remark that we can assume that u satisfies

otherwise the result is clear. As Ω is connected, we can choose y 0 ∈ ω I and find a continuous path Γ such that Γ(0) = x 0 and Γ(1) = y 0 .

Define r := 1 6 min(r 1 , r 2 ) where r 1 := d(∂Ω, Γ) and r 2 := d(y 0 , ∂ω I ). Now we can define a sequence (t j ) j by t 0 = 0 and t j+1 = inf E j , j ≥ 0, where E j = {t > t j | Γ(t) B(Γ(t j ), r)}. This sequence is finite by compactness, and then we can define J := min{ j ∈ N, E j = ∅} and t J = 1. Then we consider (x j ) j such that x j = Γ(t j ). Let us assume for a moment that we have the following inequality for some µ > 0 and C > 0

This, with (D.21) yields

and by induction we have, for some µ ′ > 0 and C ′ > 0

As P is elliptic we have the estimate

and this gives the result. Let us now prove (D.22). We recall that we have the following Carleman estimate away from the boundary (see for instance [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF]). Let V be an open bounded subset of R n , and ϕ be a weight function satisfying the sub-ellipticity condition in V. Then, we have

for all u ∈ C ∞ 0 (V) and τ sufficiently large with respect to σ. We shall prove here the following inequality ||u|| H 1 (B(x j ,3r)) e C|σ| ||u|| 1-µ H 1 (Ω) ||P σ u|| L 2 (Ω) + ||u|| H 1 (B(x j ,r)) µ .

Let us set ϕ = e -λψ with ψ(x) = |xx j | 2 and V = B(x j , 4r) \ B(x j , r/10). Define the cut-off function: