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This paper deals with an hyperbolic inverse problem of determining a time-dependent coefficient a appearing in a dissipative wave equation, from boundary observations. We prove in dimension n greater than two, that a can be uniquely determined in a precise subset of the domain, from the knowledge of the Dirichlet-to-Neumann map.

RÉSUMÉ.

Dans ce travail, on étudie le probl ème inverse de la détermination d'un coefficient dépendant de la variable d'espace et du temps apparaissant dans une équation d'onde dissipative, à partir des mesures faites sur tout le bord du domaine. On démontre que ce coefficient peut être déterminé d'une manière unique dans une partie précise du domaine à partir des mesures de type Neumann.

Introduction 1.Statement of the problem

The present paper is devoted to the study of the following hyperbolic inverse problem: Given T > 0 and a bounded domain Ω ⊂ R n , n ≥ 2, with C ∞ boundary Γ = BΩ, determine the absorbing coefficient a present in the following initial boundary value problem for the wave equation from boundary observations

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ B 2 t u -∆u + a(x, t)B t u = 0 in Q = Ω × (0, T ), u(x, 0) = 0, B t u(x, 0) = 0 in Ω, u(x, t) = f (x, t) on Σ = Γ × (0, T ), (1) 
where f ∈ H 1 (Σ), and the coefficient a ∈ C 2 (Q) is assumed to be real valued. It is well known (see [START_REF] Ikawa | Hyperbolic Partial Differential Equations and Wave Phenomena[END_REF] and [START_REF] Ikawa | A mixed problem for hyperbolic equations of second order with a first order derivative boundary condition[END_REF] ) that if the compatibility condition is satisfied, that is f (⋅, 0) = 0, then, there exists a unique solution u to the equation ( 1) that belongs to the following space u ∈ C([0, T ], H 1 (Ω)) ∩ C 1 ([0, T ], L 2 (Ω)).

Moreover, there exists a constant C > 0 such that we have

B ν u L 2 (Σ) ≤ f H 1 (Σ) , (2) 
where ν denotes the unit outward normal to Γ at x and B ν u stands for ∇u⋅ν. In the present paper, we focus on the uniqueness issue in the study of the inverse problem of determining the time-dependent absorbing coefficient a from the knowledge of the Dirichlet-to-Neumann map. From a physical view point, the inverse problem under consideration consists in recovering the absorbing coefficient a in an homogeneous medium by probing it with disturbances generated on the boundary. The data are the responses of the medium to these disturbances measured on all the boundary. Here the coefficient a can be seen as one of the medium properties and we aim to recover it in a specific subset of the domain from boundary measurements, after probing the medium by a Dirichlet data f . The medium is assumed to be quiet initially.

The problem of recovering coefficients that depend only on the spatial variable is considered by many authors. In [START_REF] Rakesh | Uniqueness for an inverse problem for the wave equation[END_REF] Rakesh and Symes proved a uniqueness result in recovering a time-independent potential appearing in a wave equation from measurements made on the whole boundary. The main tools in the derivation of this result are first, the construction of geometric optics solutions and second, the relation linking the hyperbolic Dirichlet-to-Neumann map to the X-ray transform. As for the uniqueness from local Neumann measurements, we refer to Eskin [START_REF] Eskin | A new approach to hyperbolic inverse problems[END_REF]. One can also see the paper of Isakov [START_REF] Isakov | An inverse hyperblic problem with many boundary measurements[END_REF], in which a uniqueness result was proved in the determination of two time-independent coefficients appearing in a dissipative wave equation.

The stability in the case where the Neumann data are observed on a subdomain of the boundary was considered by Bellassoued, Choulli and Yamamoto [START_REF] Bellassoued | Stability estimate for an inverse wave equation and a multidimensional Borg-Levinson theorem[END_REF], where a stability estimate of log-type was proved in recovering a time-independent coefficient appearing in a wave equation. In [START_REF] Isakov | Stability estimates for hyperbolic inverse problems with local boundary data[END_REF], Isakov and Sun established a stability result of Hölder type in determining a coefficient in a subdomain from local Neumann data. As for the stability in the case where Neumann data are observed on the whole boundary, we refer to Sun [START_REF] Sun | On continuous dependence for an inverse initial boundary value problem for the wave equation[END_REF], Cipolatti and Lopez [START_REF] Cipolatti | Determination of coefficients for a dissipative wave equation via boundary measurements[END_REF].

When the coefficients depend also on the time variable, there is a uniqueness result proved by Ramm and Rakesh [START_REF] Ramm | Property C and an Inverse Problem for a Hyperbolic Equation[END_REF], in which they proved that a time-dependent potential appearing in a wave equation can be uniquely determined in a precise subset made of lines making an angle of 45 ○ with the t-axis and meeting the planes t = 0 and t = T outside Q, from global Neumann-data. It's clear from [START_REF] Ikawa | Hyperbolic Partial Differential Equations and Wave Phenomena[END_REF] that this coefficient can not be recovered over the whole domain Q and this is actually due to the homogeneous initial conditions imposed in the system. However, Isakov proved in [START_REF] Isakov | Completeness of products of solutions and some inverse problems for PDE[END_REF], that the time-dependent coefficient may be uniquely determined over the whole domain Q, but he needed to know much more information about the solution of the wave equation. We can also refer to [START_REF] Eskin | Inverse hyperbolic problems with time-dependent coefficients[END_REF][START_REF] Ramm | An inverse problem of the wave equation[END_REF][START_REF] Salazar | Determination of time-dependent coefficients for a hyperbolic inverse problem[END_REF][START_REF] Stefanov | Uniqueness of the multi-dimentionnal inverse scattering problem for timedependent potentials[END_REF].

Inspired by the work of Bellassoued and Dos Santos [START_REF] Bellassoued | Stability estimates for the anisotripic wave equation from the Dirichlet-to-Neumann map[END_REF], Waters [START_REF] Waters | Stable determination of X-ray transforms of time-dependent potentials from partial boundary data[END_REF] proved recently that one can stably recover the X-ray transform of a time-dependent lower order term present in a wave equation from the knowledge of the Dirichlet-to-Neumann map, in the Riemmanian case. In the euclidian case, Ben Aïcha [START_REF] Ben | Stability estimate for a hyperbolic inverse problem with timedependent coefficient[END_REF] and Kian [START_REF] Kian | Unique determination of a time-dependent potential for wave equations from partial data[END_REF][START_REF] Kian | Stability in the determination of a time-dependent coefficient for wave equations from partial data[END_REF], showed by taking inspiration from the work of Bellassoued-Jellali-Yamammoto [START_REF] Bellassoued | Lipschitz stability for a hyperbolic inverse problem by finite local boundary data[END_REF][START_REF] Bellassoued | Stability estimate for the hyperbolic inverse boundary value problem by local Dirichlet-to-Neumann map[END_REF], stability results in the recovery of a zeroth order time-dependent coefficient appearing in a wave equation.

In this paper, we prove that the time-dependent absorbing coefficient a can be uniquely determined with respect to the Dirichlet-to-Neumann map in a specific subset of the domain Q, provided that a is known outside this subset.

Main results

In order to state our main result we first introduce the following notations. Let r > 0 be such that T > 2r and Ω ⊆ B(0, r 2) = x ∈ R n , x < r 2 . We set Q r = B(0, r 2) × (0, T ). We consider the annular region around the domain Ω,

A r = x ∈ R n , r 2 < x < T - r 2 ,
and the forward and backward light cones:

C + r = (x, t) ∈ Q r , x < t - r 2 , t > r 2 , C - r = (x, t) ∈ Q r , x < T - r 2 -t, T - r 2 > t , C r = (x, t) ∈ Q r , x ≤ r 2 -t, 0 ≤ t ≤ r 2 .
Finally, we denote

Q * r = C + r ∩ C - r and Q r, * = Q ∩ Q * r .
We remark that the open subset Q r, * is made of lines making an angle of 45 ○ with the t-axis and meeting the planes t = 0 and t = T outside Q r . We notice that Q r, * ⊂ Q. Note, that in the particular case where Ω = B(0, r 2), we have Q r, * = Q * r (see Figure 1 in [START_REF] Ben | Stability estimate for a hyperbolic inverse problem with timedependent coefficient[END_REF]). Our set of data will be given by the the Dirichlet-to-Neumann map Λ a defined as follows

Λ a ∶ H 1 (Σ) → L 2 (Σ) f → B ν u, By (2) we have that Λ a is continuous from H 1 (Σ) to L 2 (Σ). We denote by Λ a its norm in L(H 1 (Σ), L 2 (Σ)).
Let us now introduce the admissible set of the absorbing coefficients a. Given a 0 ∈ C 2 (Q r ) and M > 0 we set

A(a 0 , M ) = {a ∈ C 2 (Q r ), a = a 0 in Q r ∖ Q r, * , a C 2 (Q) ≤ M }.
Having said that we may state the main results of this paper Theorem 1.1 (Non uniqueness) For any a ∈ A(a 0 , M ) such that Supp(a) ⊂ C r , we have

Λ a = Λ 0 . Theorem 1.2 (Uniqueness) Let T > 2Diam(Ω) and a i ∈ A(a 0 , M ), i = 1, 2. Then, we have Λ a2 = Λ a1 implies a 2 = a 1 on Q r, * .
The outline of this paper is as follows. In Section 2, we develop the proof of Theorem 1.1. Section 3 is devoted to the construction of geometric optics solutions to the equation [START_REF] Bellassoued | Stability estimate for an inverse wave equation and a multidimensional Borg-Levinson theorem[END_REF]. Using these particular solutions, we prove in Section 3 Theorem 1.2.

Non uniqueness in determining the time-dependent coefficient

In this section we aim to show that it is hopeless to recover the time-dependent coefficient a over the whole domain in the case where the initial conditions are zero.

Preliminary

This section is devoted to the proof of a fundamental result which is borrowed from [START_REF] Ikawa | Hyperbolic Partial Differential Equations and Wave Phenomena[END_REF]. Let us first introduce the following notations. We define

V = ⋃ 0≤τ ≤t ′ D(τ ) = ⋃ 0≤τ ≤t ′ (C r ∩ {t = τ }),
where 0 < t ′ < r 2. Moreover, we denote by 

S = BC r ∩ (Ω×]0, t ′ [), and BV = S ∪ D(t ′ ) ∪ D(0).
⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ B 2 t -∆ + a(x, t)B t u(x, t) = 0 in Q, u(x, 0) = 0 = B t u(x, 0) in Ω, u(x, t) = f (x, t) on Σ.
Then, u(x, t) = 0 on the set C r .

We denote by P = B 2 t -∆ + a(x, t)B t . A simple calculation gives us

V 2P u(x, t) B t u(x, t) dx dt = V 2B 2 t u(x, t)B t u(x, t) dx dt - V 2∆u(x, t) B t u(x, t) dx dt + V 2a(x, t) B t u(x, t) 2 dx dt = V B t B t 2 + ∇u 2 dx dt + V n j=1 B j (B t u B j u) dx dt + V 2a(x, t) B t u(x, t) 2 dx dt.
Then, using the above identity, we see that

V 2P u(x, t)B t u(x, t) dx dt = V B t e(x, t) dx dt+ V n j=1 B j X j (x, t) dx dt+ V 2a(x, t) B t u(x, t) 2 dx dt,
where e(x, t) = B t u(x, t) 2 + ∇u(x, t) 2 and X j (x, t) = -2B t u(x, t)B j u(x, t). Next, by applying the divergence theorem, one gets

V 2P u(x, t)B t u(x, t) dx dt = S e(x, t)η + n j=1 X j (x, t)µ j dσ + D(t ′ ) e(x, t ′ ) dx - D(0)
e(x, 0) dx

+ V 2a(x, t) B t u(x, t) 2 dx dt, (3) 
where dσ denotes the surface element of S and the vector (η, µ 1 , µ 2 , ..., µ n ) ∈ R n+1 is the outward unit normal vector at (x, t) ∈ S such that

η = ⎛ ⎝ n j=1 µ 2 j ⎞ ⎠ 1 2 . (4) 
On the other hand, from Cauchy-Schwarz inequality and (4), we can see that

S (e(x, t)η + n j=1 X j (x, t)µ j ) dσ ≥ S B t u(x, t) 2 + ∇u(x, t) 2 η -2 B t u(x, t) ∇u(x, t) η dσ ≥ 0. (5) 
Then, since e(x, 0) = 0 we get from (3) and ( 5) this estimation

D(t ′ ) e(x, t ′ ) dx ≤ V 2P u B t u(x, t) dx dt - V 2a(x, t) B t u(x, t) 2 dx dt
Now, using the fact that P u(x, t) = 0 for any (x, t) ∈ V , we get

D(t ′ ) e(x, t ′ ) dx ≤ C t ′ 0 D(t) e(x, t) + u(x, t) 2 dx dt, (6) 
where, the positive constant C is depending on M . Now bearing in mind that

u(x, t ′ ) 2 = u(x, 0) 2 + t ′ 0 B t ( u(x, t) 2 ) dt ≤ t ′ 0 e(x, t) dx. (7) 
Thus, from ( 6) and ( 7) we deduce that

D(t ′ ) e(x, t ′ ) + u(x, t ′ ) 2 dx ≤ t ′ 0 D(t)
e(x, t) + u(x, t) 2 dx dt.

In view of Gronwall's Lemma we end up deducing that u(x, t) = 0 for any x ∈ D(t ′ ) and t ′ ∈ (0, r 2). This completes the proof of the lemma.

Proof of Theorem 1.1

Let a ∈ A(a 0 , M ) such that Supp(a) ⊂ C r . Let f ∈ H 1 (Σ) and u satisfy

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ B 2 t u -∆u + a(x, t)B t u = 0 in Q, u(x, 0) = 0, B t u(x, 0) = 0 in Ω, u = f on Σ,
Since from Lemma 2.1, we have u = 0 in the conic set C r and using the fact that Supp(a) ⊂ C r , we deduce that u solves also the following hyperbolic boundary-value problem

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ B 2 t v -∆v = 0 in Q, v(x, 0) = 0, B t v(x, 0) = 0 in Ω, v = f on Σ.
Then, we conclude that Λ a (f ) = Λ 0 (f ) for all f ∈ H 1 (Σ).

Construction of geometric optics solutions

In this section, we construct suitable geometrical optics solutions for the dissipative wave equation [START_REF] Bellassoued | Stability estimate for an inverse wave equation and a multidimensional Borg-Levinson theorem[END_REF], which are key ingredients to the proof of our main result. We first state the following lemma that will be used in order to prove the main statement of this section. Lemma 3.1 (see [START_REF] Ikawa | Hyperbolic Partial Differential Equations and Wave Phenomena[END_REF]

) Let T, M 1 , M 2 > 0, a ∈ L ∞ (Q) and b ∈ L ∞ (Q), such that a L ∞ (Q) ≤ M 1 and b L ∞ (Q) ≤ M 2 . Assume that F ∈ L 1 (0, T ; L 2 (Ω)).
Then, there exists a unique solution u to the following equation

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ B 2 t u -∆u + a(x, t)B t u + b(x, t)u(x, t) = F (x, t) in Q, u(x, 0) = 0 = B t u(x, 0) in Ω, u(x, t) = 0 on Σ, (8) 
such that u ∈ C([0, T ]; H 1 0 (Ω)) ∩ C 1 ([0, T ]; L 2 (Ω)
). Moreover, there exists a constant C > 0 such that for t ∈ (0, T ) we have

B t u(⋅, t) L 2 (Ω) + ∇u(⋅, t) L 2 (Ω) ≤ C F L 1 (0,T ;L 2 (Ω)) . (9) 
By the use of the above lemma, we may construct suitable geometrical optics solutions to the equation ( 1) and to the retrograde problem. We shall first consider a function ϕ ∈ C ∞ 0 (R n ). Notice that for all ω ∈ S n-1 the function φ given by φ(x, t) = ϕ(x + tω), [START_REF] Ikawa | Hyperbolic Partial Differential Equations and Wave Phenomena[END_REF] solves the following transport equation

(B t -ω ⋅ ∇)φ(x, t) = 0. ( 11 
)
Let us now prove the following Lemma.

Lemma 3.2 Let M 1 , M 2 > 0, a ∈ A(a 0 , M 1 ) and b ∈ W 1,∞ (Q) such that b W 1,∞ (Q) ≤ M 2 . Given ω ∈ S n-1 and ϕ ∈ C ∞ 0 (R n ),
we consider the function φ defined by [START_REF] Ikawa | Hyperbolic Partial Differential Equations and Wave Phenomena[END_REF]. Then, for any λ > 0, the following equation

B 2 t u -∆u + a(x, t)B t u + b(x, t)u = 0 in Q, ( 12 
)
admits a unique solution

u + ∈ C([0, T ]; H 1 (Ω)) ∩ C 1 ([0, T ]; L 2 (Ω)),
of the following form

u + (x, t) = φ(x, t)ã + (x, t)e iλ(x⋅ω+t) + r + (x, t), ( 13 
)
where ã+ (x, t) is given by

ã+ (x, t) = exp - 1 2 t 0 a(x + (t -s)ω, s) ds , (14) 
and r + (x, t) satisfies

r + (x, 0) = B t r + (x, 0) = 0, in Ω, r + (x, t) = 0 on Σ. ( 15 
)
Moreover, there exists a positive constant C > 0 such that

λ r + L 2 (Q) + B t r + L 2 (Q) ≤ C ϕ H 3 (R n ) . (16) 
In order to prove this lemma, it will be enough to prove the existence of r + satisfying

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ B 2 t -∆ + a(x, t)B t + b(x, t) r + = g(x, t), r + (x, 0) = B t r + (x, 0) = 0, r + (x, t) = 0, (17) 
and obeying the estimate ( 16), where g(x, t) is given by x⋅ω+t) .

g(x, t) = -B 2 t -∆ + a(x, t)B t + b(x, t) φ(x, t)ã + (x, t)e iλ(
Bearing in mind that ã+ (x, t) solves the following equation

2(B t -ω ⋅ ∇)ã + (x, t) = -a(x, t)ã + (x, t), one can see from (11) that g(x, t) = -e iλ(x⋅ω+t) B 2 t -∆+a(x, t)B t +b(x, t) φ(x, t)ã + (x, t) = -e iλ(x⋅ω+t) g 0 (x, t),
where g 0 ∈ L 1 (0, T, L 2 (Ω)). Hence, in light of Lemma 3.1, we deduce the existence of a unique solution r + such that

r + ∈ C([0, T ]; H 1 0 (Ω)) ∩ C 1 ([0, T ]; L 2 (Ω)),
and satisfying [START_REF] Ramm | Property C and an Inverse Problem for a Hyperbolic Equation[END_REF]. We set

w(x, t) = t 0 r + (x, s) ds. (18) 
Then, in light of ( 17) and ( 18), we get

B 2 t -∆ + a(x, t)B t + b(x, t) w(x, t) = t 0 g(x, s) ds + t 0 b(x, t) -b(x, s) r + (x, s) ds + t 0 B s a(x, s)r + (x, s) ds,
Then, the function w is a solution to the following equation

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ B 2 t -∆ + a(x, t)B t + b(x, t) w(x, t) = F 1 (x, t) + F 2 (x, t) in Q, w(x, 0) = 0 = B t w(x, 0) in Ω, w(x, t) = 0 on Σ.
Here F 1 and F 2 are given by

F 1 (x, t) = t 0 g(x, s) ds, (19) 
and

F 2 (x, t) = t 0 b(x, t) -b(x, s) r + (x, s) ds + t 0 B s a(x, s)r + (x, s) ds.
Considering τ ∈ [0, T ] and applying Lemma 3.1 on the interval [0, τ ], we obtain

B t w(., τ ) 2 L 2 (Ω) ≤ C F 1 2 L 2 (Q) + T M 2 1 + 4M 2 2 τ 0 Ω t 0 r + (x, s) 2 ds dx dt .
Therefore, in view of (18), we deduce that

B t w(., τ ) 2 L 2 (Ω) ≤ C F 1 2 L 2 (Q) + τ 0 t 0 B s w(., s) 2 L 2 (Ω) ds dt ≤ C F 1 2 L 2 (Q) + T τ 0 B s w(., s) 2 L 2 (Ω) ds .
As a consequence, we find out from Gronwall's Lemma that

B t w(., τ ) 2 L 2 (Ω) ≤ C F 1 2 L 2 (Q) . Hence, from (18), one deduce that r + L 2 (Q) ≤ C F 1 L 2 (Q) .
In view of [START_REF] Salazar | Determination of time-dependent coefficients for a hyperbolic inverse problem[END_REF], one can easily see that F 1 can be written as follows Therefore, by integrating by parts with respect to s, we get

r + L 2 (Q) ≤ C λ ϕ H 3 (R n ) ,
for some C > 0. Since g L 2 (Q) ≤ C ϕ H 3 (R n ) and using the energy estimate (9) associated to the problem [START_REF] Ramm | Property C and an Inverse Problem for a Hyperbolic Equation[END_REF] we obtain the following estimation

B t r + L 2 (Q) + ∇r + L 2 (Q) ≤ C ϕ H 3 (R n ) .
This completes the proof of the lemma.

Lemma 3.3 Let M 1 , M 2 > 0, a ∈ A(a 0 , M 1 ) , and b ∈ W 1,∞ (Q) such that b W 1,∞ (Q) ≤ M 2 . Given ω ∈ S n-1 and ϕ ∈ C ∞ 0 (R n ),
we consider the function φ defined by [START_REF] Ikawa | Hyperbolic Partial Differential Equations and Wave Phenomena[END_REF]. Then, the following equation

B 2 t u -∆u -a(x, t)B t u + b(x, t)u = 0 in Q, ( 20 
)
admits a unique solution

u -∈ C([0, T ]; H 1 (Ω)) ∩ C 1 ([0, T ]; L 2 (Ω)),
of the following form

u -(x, t) = ϕ(x + tω)ã -(x, t)e -iλ(x⋅ω+t) + r -(x, t), (21) 
where ã-(x, t) is given by

ã-(x, t) = exp 1 2 t 0 a(x + (t -s)ω, s) ds , (22) 
and r -(x, t) satisfies

r -(x, T ) = B t r -(x, T ) = 0, in Ω, r -(x, t) = 0 on Σ. (23) 
Moreover, there exists a constant C > 0 such that

λ r - L 2 (Q) + B t r - L 2 (Q) ≤ C ϕ H 3 (R n ) . (24) 
We prove this result by proceeding as in the proof of Lemma 3.2. Putting g(x, t) = -B 2 t -∆a(x, t)B t + b(x, t) φ(x, t)ã -(x, t)e -iλ (x⋅ω+t) .

Then, it is easy to see that if r -(x, t) is solution to the following system 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ B 2 t -∆ -a(x, t)B t + b(x, t) r -(x, t) = g(x, t) in Q, r -(x, T ) = 0 = B t r -(x, T ) in Ω, r -(x, t) = 0 on Σ, then, r + (x, t) = r -(x, T -t)

Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2. The proof is based on the geometric optics solutions constructed in Section 3 and the following preliminary identity. We need first to introduce the following notations. Let ω ∈ S n-1 , a 1 , a 2 ∈ A(a 0 , M ). We

set ã(x, t) = (ã -ã+ )(x, t) = exp - 1 2 t 0 a(x + (t -s)ω, s) ds ,
where ã-1 and ã+ 2 are given by

ã- 1 (x, t) = exp 1 2 t 0 a 1 (x+(t-s)ω, s) ds , ã+ 2 (x, t) = exp - 1 2 t 0 a 2 (x+(t-s)ω, s) ds . Moreover, we define a in R n+1 by a = a 2 -a 1 in Q r and a = 0 on R n+1 ∖ Q r .
On the other hand, by replacing u + and u -by their expressions, we get

Q a(x, t)B t u + u -dx dt = Q a(x, t)B t ϕ(x + tω)e iλ(x⋅ω+t) ã+ 2 r -dx dt + Q a(x, t)ϕ(x + tω)e iλ(x⋅ω+t) B t ã+ 2 r -dx dt + Q a(x, t)B t ϕ(x + tω)ϕ(x + tω)(ã + 2 ã- 1 )dx dt + Q a(x, t)ϕ 2 (x + tω)B t ã+ 2 ã- 1 dx dt + iλ T 0 Ω a(x, t)ϕ(x + tω)e iλ(x⋅ω+t) ã+ 2 r -dx dt + Q a(x, t)ϕ(x + tω)e -iλ(x⋅ω+t) ã- 1 B t r + dx dt + iλ Q a(x, t)ϕ 2 (x + tω)(ã + 2 ã- 1 ) dx dt + Q a(x, t)B t r + r -dx dt = iλ Q a(x, t)ϕ 2 (x + tω)ã dx dt + I(λ),
where ã = ã+ 2 ã-1 . Then, in light of (29), we have

iλ Q a(x, t)ϕ 2 (x + tω)ã(x, t) dx dt = Σ (Λ a2 -Λ a1 )(f λ ) u -dσ dt -I(λ). (30) 
Note that for λ sufficiently large, we have

I λ ≤ C ϕ 2 H 3 (R n ) . (31) 
Hence, using the fact that Λ a2 = Λ a1 , we deduce from (30), (31) and by taking λ → +∞ the desired result.

End of the proof

In this section we complete the proof of Theorem 1.2 by the use of the results we have already obtained in the previous sections. Let us first consider the following set

E = {(ξ, τ ) ∈ R n ∖ {O R n } × R, τ < ξ },
and denote by F the Fourier transform of F ∈ L 1 (R n+1 ) as follows:

F (ξ, τ ) = R R n
F (x, t)e -ix⋅ξ e -itτ dx dt.

In light of (25), we have as λ goes to +∞, the following identity Let us now consider ξ ′ ∈ S n-1 such that ξ ⋅ ξ ′ = 0. Setting

ω = τ ξ 2 ⋅ ξ + 1 - τ 2 ξ 2 ⋅ ξ ′ ∈ S n-1 ,
then (ξ, τ ) = (ξ, ω ⋅ ξ) ∈ E. We then deduce that â(ξ, τ ) = 0 in the set E. By an argument of analyticity, we extend this result to R n+1 . Hence, by the injectivity of the Fourier transform we get the desired result. This completes the proof of Theorem 1.2.

Lemma 2 . 1

 21 Let us denote by u the solution of the dissipative wave equation

F 1 (

 1 x, s)B s (e iλ(x⋅ω+s) ) ds.

Q 2 t 0 a 2 t 0 a

 2020 a(x, t)ϕ 2 (x + tω) exp -+ (ts)ω, s) ds dx dt = 0.(32)Then, using the fact a(x, t) = 0 outside Q r, * and making this change of variables y = x + tω, one getsT 0 R n a(ytω, t)ϕ 2 (y) exp -1 (ysω, s) ds dy dt = 0.Bearing in mind that T 0 R n a(ytω, t) ϕ 2 (y) exp -1 (ysω, s) ds dy dt sω, s) ds -1 dy.

An identity for the absorbing coefficient

The main purpose of this section is to give a preliminary identity for the absorbing coefficient a . Lemma 4.1 Let ϕ ∈ C ∞ 0 (A r ) and a 1 , a 2 ∈ A(a 0 , M ). Assume that Λ a2 = Λ a1 , then, the following identity holds

In light of Lemma 3.2, there exists a geometrical optics solution u + to the equation

in the following form

corresponding to the coefficients a 2 , where r + (x, t) satisfies ( 15), [START_REF] Rakesh | Uniqueness for an inverse problem for the wave equation[END_REF]. We denote by f λ the function x⋅ω+t) . We denote by u 1 the solution of

Putting u = u 1u + . Then, u is a solution to the following system

where a = a 2 -a 1 . On the other hand Lemma 3.3 guarantees the existence of a geometrical optic solution u -to the adjoint problem of (1)

corresponding to the coefficients a 1 and -B t a 1 , in the form

where r -(x, t) satisfies ( 23), (24). Multiplying the first equation of ( 27) by u -, integrating by parts and using Green's formula, we obtain

we conclude that

Now, we consider a nonnegative function ψ ∈ C ∞ 0 (R n ) supported in the unit ball B(0, 1)

where y ∈ A r . Then, for h > 0 sufficiently small one can see that Supp ϕ h ⊂ C ∞ 0 (A r ) and satisfies Supp ϕ h ∩ Ω = ∅, and Supp

Then, as h goes to 0 we deduce from (33

On the other hand, if y ≤ r 2 , we notice that

Indeed, we have

hence, (ytω, t) ∉ C + r if t > r 2, from (37). As (ytω, t) ∉ C + r if t ≤ r 2, then we have (ytω, t) ∉ C + r ⊃ Q r, * for t ∈ R. This and the fact that a = a 2a 1 = 0 outside Q r, * , yield (36), and consequently, R a(ytω, t) dt = 0, y ≤ r 2 .

By a similar way, we prove for y

Thus, by ( 35) and (38) we find R a(ytω, t) dt = 0, a.e y ∈ R n , ω ∈ S n-1 .

We now turn our attention to the fourier transform of a. Let ξ ∈ R n . In light of (38) and by the use of Fubini's Theorem, we get R R n a(xtω, t)e -ix⋅ξ dx dt = 0.

Making the change of variables y = xtω, one gets R R n a(y, t)e -iy⋅ξ e -it(ω⋅ξ) dy dt = 0.