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UNIQUENESS FOR AN INVERSE PROBLEM FOR A DISSIPATIVE WAVE EQUATION WITH
TIME DEPENDENT COEFFICIENT

MOURAD BELLASSOUED AND IBTISSEM BEN AÏCHA

ABSTRACT. This paper deals with an hyperbolic inverse problem of determining a time-dependent coefficient
a appearing in a dissipative wave equation, from boundary observations. We prove in dimension n greater than
two, that a can be uniquely determined in a precise subset of the domain, from the knowledge of the Dirichlet-
to-Neumann map.
Keywords: Inverse problems, Dissipative wave equation, Time-dependent coefficient, Uniqueness.

1. INTRODUCTION

1.1. Statement of the problem. The present paper is devoted to the study of the following hyperbolic
inverse problem: Given T ą 0 and a bounded domain Ω Ă Rn, n ě 2, with C8 boundary Γ “ BΩ,
determine the absorbing coefficient a present in the following initial boundary value problem for the wave
equation from boundary observations

(1.1)
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B2
t u´∆u` apx, tqBtu “ 0 in Q “ Ωˆ p0, T q,

upx, 0q “ 0, Btupx, 0q “ 0 in Ω,

upx, tq “ fpx, tq on Σ “ Γˆ p0, T q,

where f P H1pΣq, and the coefficient a P C2pQq is assumed to be real valued. It is well known that if
the compatibility condition is satisfied, that is fp., 0q “ u0|Γ, then, there exists a unique solution u to the
equation (1.1) that belongs to the following space

u P Cpr0, T s, H1pΩqq X C1pr0, T s, L2pΩqq.

Moreover, there exists a constant C ą 0 such that

(1.2) }Bνu}L2pΣq ď }f}H1pΣq,

where ν denotes the unit outward normal to Γ at x and Bνu stands for ∇u ¨ ν. In the present paper, we ad-
dress the uniqueness issue in the study of the inverse problem of determining the time-dependent absorbing
coefficient a from the knowledge of the Dirichlet-to-Neumann map.

From a physical view point, the inverse problem under consideration consists in recovering the absorbing
coefficient a in an homogeneous medium by probing it with disturbances generated on the boundary. The
data are the responses of the medium to these disturbances measured on all the boundary. Here the coefficient
a can be seen as one of the medium properties and we aim to recover it in a specific subset of the domain
from boundary measurements, after probing the medium by a Dirichlet data f . The medium is assumed to
be quiet initially.

The problem of recovering coefficients that depend only on the spatial variable is considered by many
authors. In [15] Rakesh and Symes proved a uniqueness result in recovering a time-independent potential
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appearing in a wave equation from measurements made on the whole boundary. The main tools in the deriva-
tion of this result are first, the construction of geometric optics solutions and second, the relation linking the
hyperbolic Dirichlet-to-Neumann map to the X-ray transform. As for the uniqueness from local Neumann
measurements, we refer to Eskin [7]. One can also see the paper of Isakov [10], in which a uniqueness
result was proved in the determination of two time-independent coefficients appearing in a dissipative wave
equation.

The stability in the case where the Neumann data are observed on a subdomain of the boundary was
considered by Bellassoued, Choulli and Yamamoto [1], where a stability estimate of log-type was proved in
recovering a time-independent coefficient appearing in a wave equation. In [12], Isakov and Sun established
a stability result of Hölder type in determining a coefficient in a subdomain from local Neumann data. As
for the stability in the case where Neumann data are observed on the whole boundary, we refer to Sun [21],
Cipolatti and Lopez [6].

When the coefficients depend also on the time variable, there is a uniqueness result proved by Ramm
and Rakesh [16], in which they proved that a time-dependent potential appearing in a wave equation can be
uniquely determined in a precise subset made of lines making an angle of 45˝ with the t-axis and meeting
the planes t “ 0 and t “ T outside Q, from global Neumann-data. It’s clear from [9] that this coefficient
can not be recovered over the whole domainQ and this is actually due to the homogeneous initial conditions
imposed in the system. However, Isakov proved in [11], that the time-dependent coefficient may be uniquely
determined over the whole domain Q, but he needed to know much more information about the solution of
the wave equation. We also refer to [8, 17, 19, 18].

In a recent works, Waters [22] proved in the Riemmanian case and by taking inspiration from the work
of Bellassoued and Dos Santos [2], that one can stably recover the X-ray transform of a lower order term
present in a wave equation from the knowledge of the Dirichlet-to-Neumann map. Inspired by the works
of Bellassoued-Jellali-Yamammoto [3, 4], In Ben Aïcha [5] and Kian [13, 14], showed recently stability
estimates for the recovery of a zeroth order coefficient appearing in a wave equation in the euclidian case.

In this paper, we prove that the time-dependent absorbing coefficient a can be uniquely determined with
respect to the Dirichlet-to-Neumann map in a specific subset of the domain Q. This is provided that a is
known outside this subset.

1.2. Main results. In order to state our main result we first introduce the following notations.

Let r ą 0 be such that T ą 2r and Ω Ď Bp0, r{2q “
!

x P Rn, |x| ă r{2
)

. We set Qr “ Bp0, r{2q. We
consider the annular region around the domain Ω,

Ar “

!

x P Rn,
r

2
ă |x| ă T ´

r

2

)

,

and the forward and backward light cones:

C`r “
!

px, tq P Qr, |x| ă t´
r

2
, t ą

r

2

)

,

C´r “
!

px, tq P Qr, |x| ă T ´
r

2
´ t, T ´

r

2
ą t

)

,

Cr “
!

px, tq P Qr, |x| ď
r

2
´ t, 0 ď t ď

r

2

)

.

Finally, we denote
Q˚r “ C`r X C´r and Qr,˚ “ QXQ˚r .
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We remark that the open subset Qr,˚ is made of lines making an angle of 45˝ with the t-axis and meeting
the planes t “ 0 and t “ T outside Qr. We notice that Qr,˚ Ă Q. Note, that in the particular case where
Ω “ Bp0, r{2q, we have Qr,˚ “ Q˚r (see Figure 1 in [5]).

Our set of data will be given by the the Dirichlet-to-Neumann map Λa,b defined as follows

Λa : H1pΣq ÝÑ L2pΣq
f ÞÝÑ Bνu,

By (1.2) we have that Λa is continuous fromH1pΣq toL2pΣq. We denote by }Λa} its norm in LpH1pΣq, L2pΣqq.
Let us now introduce the admissible set of the absorbing coefficients a. Given a0 P C2pQrq and M ą 0 we
set

Apa0,Mq “ ta P C2pQrq, a “ a0 in QrzQr,˚, }a}C2pQq ďMu.

Having said that we may state the main results of this paper

Theorem 1.1. (Non uniqueness) For any a P Apa0,Mq such that supppaq Ă Cr, we have Λa “ Λ0.

Theorem 1.2. (Uniqueness) Let T ą 2DiampΩq and ai P Apa0,Mq, i “ 1, 2. Then, we have

Λa2 “ Λa1 implies a2 “ a1 on Qr,˚.

The outline of this paper is as follows. In Section 2, we develop the proof of Theorem 1.1. Section 3
is devoted to the construction of geometric optics solutions to the equation (1.1). Using these particular
solutions, we prove in Section 3 Theorem 1.2.

2. NON UNIQUENESS IN DETERMINING THE TIME-DEPENDENT COEFFICIENT

In this section we aim to explain why it is hopeless to recover the time-dependent coefficient a over the
whole domain in the case where the initial conditions are frozen to zero.

2.1. Preliminary. This section is devoted to the proof of a fundamental result which is borrowed from [9].
Let us first introduce the following notations. We define

V “
ď

0ďτďt1

Dpτq “
ď

0ďτďt1

pCr X tt “ τuq.

where 0 ă t1 ă r{2. Moreover, we denote by

S “ BCr X pΩˆs0, t
1rq, and BV “ S YDpt1q YDp0q.

Lemma 2.1. Let us denote by u the solution of the dissipative wave equation
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B2
t ´∆` apx, tqBt

˘

upx, tq “ 0, inQ

upx, 0q “ 0 “ Btupx, 0q, in Ω.

upx, tq “ fpx, tq, on Σ.

Then, upx, tq “ 0 on the set Cr.
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Proof. We denote by P “ B2
t ´∆` apx, tqBt. A simple calculation gives us

ż

V
2Pupx, tq Btupx, tq dx dt “

ż

V
2B2
t upx, tqBtupx, tq dx dt´

ż

V
2∆upx, tq Btupx, tq dx dt

`

ż

V
2apx, tq|Btupx, tq|

2 dx dt

“

ż

V
Bt
`

|Bt|
2 ` |∇u|2

˘

dx dt`

ż

V

n
ÿ

j“1

BjpBtu Bjuq dx dt

`

ż

V
2apx, tq|Btupx, tq|

2 dx dt

Then, using the above identity, we see that
ż

V
2Pupx, tqBtupx, tq dx dt “

ż

V
Btepx, tq dx dt`

ż

V

n
ÿ

j“1

BjXjpx, tq dx dt`

ż

V
2apx, tq|Btupx, tq|

2 dx dt

where epx, tq “ |Btupx, tq|
2 ` |∇upx, tq|2 and Xjpx, tq “ ´2Btupx, tqBjupx, tq. Next, by applying the

divergence theorem, one gets
ż

V
2Pupx, tqBtupx, tq dx dt “

ż

S
epx, tqη `

n
ÿ

j“1

Xjpx, tqµj dσ `

ż

Dpt1q
epx, t1q dx´

ż

Dp0q
epx, 0q dx

`

ż

V
2apx, tq|Btupx, tq|

2 dx dt(2.3)

where dσ denotes the surface element of the surface S and the vector pη, µ1, µ2, ..., µnq P Rn`1 is the
outward unit normal vector at px, tq P S such that

(2.4) η “

˜

n
ÿ

j“1

µ2
j

¸1{2

.

On the other hand, from Cauchy-Schwartz inequality and (2.4), we can see that
ż

S
pepx, tqη `

n
ÿ

j“1

Xjpx, tqµjq dσ ě

ż

S

`

|Btupx, tq|
2 ` |∇upx, tq|2

˘

η ´ 2|Btupx, tq||∇upx, tq| η dσ

ě 0.(2.5)

Then, since epx, 0q “ 0 we get from (2.3) and (2.5) this estimation
ż

Dpt1q
epx, t1q dx ď

ż

V
2Pu Btupx, tq dx dt´

ż

V
2apx, tq|Btupx, tq|

2 dx dt

Now, using the fact that Pupx, tq “ 0 for any px, tq P V , we get

(2.6)
ż

Dpt1q
epx, t1q dx ď C

ż t1

0

ż

Dptq
epx, tq ` |upx, tq|2 dx dt,

where, the positive constant C is depending on M . Now bearing in mind that

(2.7) |upx, t1q|2 “ |upx, 0q|2 `

ż t1

0
Btp|upx, tq|

2q dt ď

ż t1

0
epx, tq dx,

Thus, from (2.6) and (2.7) we deduce that
ż

Dpt1q

´

epx, t1q ` |upx, t1q|2
¯

dx ď

ż t1

0

ż

Dptq

´

epx, tq ` |upx, tq|2
¯

dx dt.
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In view of Gronwall’s Lemma we end up deducing that upx, tq “ 0 for any x P Dpt1q and t1 P p0, r{2q. This
completes the proof of the lemma. �

2.2. Proof of Theorem 1.1. Let a P Apa0,Mq such that supppaq Ă Cr. Let f P H1pΣq and u satisfy
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B2
t u´∆u` apx, tqBtu “ 0 in Q,

upx, 0q “ 0, Btupx, 0q “ 0 in Ω,

u “ f on Σ,

Since from Lemma 3.1, u “ 0 in the conic set C , then u solves also the following hyperbolic boundary-value
problem
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B2
t v ´∆v “ 0 in Q,

vpx, 0q “ 0, Btvpx, 0q “ 0 in Ω,

v “ f on Σ.

Then, we conclude that Λapfq “ Λ0pfq for all f P H1pΣq.

3. CONSTRUCTION OF GEOMETRIC OPTICS SOLUTIONS

The present section is devoted to the construction of suitable geometrical optics solutions for the dissipa-
tive wave equation (1.1), which are key ingredients to the proof of our main results. The construction here
is a modification of a similar result in [5]. We shall first state the following lemma which is needed to prove
the main statement of this section.

Lemma 3.1. Let T, M1, M2 ą 0, a P L8pQq and b P L8pQq, such that }a}L8pQq ďM1 and }b}L8pQq ď

M2. Assume that F P L1p0, T ;L2pΩqq. Then, there exists a unique solution u to the following equation

(3.8)

$
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B2
t u´∆u` apx, tqBtu` bpx, tqupx, tq “ F px, tq in Q,

upx, 0q “ 0 “ Btupx, 0q in Ω,

upx, tq “ 0 on Σ,

such that
u P Cpr0, T s;H1

0 pΩqq X C1pr0, T s;L2pΩqq,

Moreover, there exists a constant C ą 0 such that

(3.9) }Btup., tq}L2pΩq ` }∇up., tq}L2pΩq ď C}F }L1p0,T ;L2pΩqq.

Armed with the above lemma, we may now construct suitable geometrical optics solutions to the dissi-
pative wave equation (1.1) and to its retrograde problem. For this purpose, we consider ϕ P C80 pRnq and
notice that for all ω P Sn´1 the function φ given by

(3.10) φpx, tq “ ϕpx` tωq,

solves the following transport equation

(3.11) pBt ´ ω ¨∇qφpx, tq “ 0.

We are now in position to prove the following statement
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Lemma 3.2. Let M1, M2 ą 0, a P W 2,8pQq and b P W 1,8pQq, such that }a}W 2,8pQq ď M1 and
}b}W 1,8pQq ď M2. Given ω P Sn´1 and ϕ P C80 pRnq, we consider the function φ defined by (3.10). Then,
for any λ ą 0, the following equation

(3.12) B2
t u´∆u` apx, tqBtu` bpx, tqu “ 0 in Q,

admits a unique solution
u` P Cpr0, T s;H1pΩqq X C1p0, T ;L2pΩqq,

of the following form

(3.13) u`px, tq “ φpx, tqA`px, tqeiλpx¨ω`tq ` r`px, tq,

where A`px, tq is given by

(3.14) A`px, tq “ exp
´

´
1

2

ż t

0
apx` pt´ sqω, sq ds

¯

,

and r`px, tq satisfies

(3.15) r`px, 0q “ Btr
`px, 0q “ 0, in Ω, r`px, tq “ 0 on Σ.

Moreover, there exists a positive constant C ą 0 such that

(3.16) λ}r`}L2pQq ` }Btr
`}L2pQq ď C}ϕ}H3pRnq.

Proof. We proceed as in the proof of a similar result in [5]. We put

gpx, tq “ ´
´

B2
t ´∆` apx, tqBt ` bpx, tq

¯´

φpx, tqA`px, tqeiλpx¨ω`tq
¯

.

In light of (3.12) and (3.13), to prove this lemma, it will be enough to prove the existence of r` satisfying

(3.17)

$

’

’

’

’

’

&

’

’

’

’

’

%

´

B2
t ´∆` apx, tqBt ` bpx, tq

¯

r` “ gpx, tq,

r`px, 0q “ Btr
`px, 0q “ 0,

r`px, tq “ 0,

and obeying the estimate (3.16). From (3.11) and using the fact that A`px, tq solves the following equation

2BtA
`px, tq ´ 2ω ¨∇A`px, tq “ ´apx, tqA`px, tq,

we obtain the following identity

gpx, tq “ ´eiλpx¨ω`tq
´

B2
t ´∆` apx, tqBt ` bpx, tq

¯´

φpx, tqA`px, tq
¯

“ ´eiλpx¨ω`tqg0px, tq,

where g0 P L
1p0, T, L2pΩqq. Thus, in view of Lemma 3.1, there exists a unique solution

r` P Cpr0, T s;H1
0 pΩqq X C1pr0, T s;L2pΩqq,

satisfying (3.17). Let us now define by w the following function

(3.18) wpx, tq “

ż t

0
r`px, sq ds.
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We integrate the equation (3.17) over r0, ts, for t P p0, T q. Then, in view of (3.18), we have
´

B2
t ´∆` apx, tqBt ` bpx, tq

¯

wpx, tq “

ż t

0
gpx, sq ds`

ż t

0

´

bpx, tq ´ bpx, sq
¯

r`px, sq ds

`

ż t

0
Bsapx, sqr

`px, sq ds,

Therefore, w is a solution to the following equation
$

’

’

’

’

’

&

’

’

’

’

’

%

´

B2
t ´∆` apx, tqBt ` bpx, tq

¯

wpx, tq “ F1px, tq ` F2px, tq in Q,

wpx, 0q “ 0 “ Btwpx, 0q in Ω,

wpx, tq “ 0 on Σ,

where F1 and F2 are given by

(3.19) F1px, tq “

ż t

0
gpx, sq ds,

and

F2px, tq “

ż t

0

´

bpx, tq ´ bpx, sq
¯

r`px, sq ds`

ż t

0
Bsapx, sqr

`px, sq ds.

Let τ P r0, T s. Applying Lemma 3.1 on the interval r0, τ s, we get

}Btwp., τq}
2
L2pΩq ď C

´

}F1}
2
L2pQq ` T

`

M2
1 ` 4M2

2

˘

ż τ

0

ż

Ω

ż t

0
|r`px, sq|2 ds dx dt

¯

.

From (3.18), we get

}Btwp., τq}
2
L2pΩq ď C

´

}F1}
2
L2pQq `

ż τ

0

ż t

0
}Bswp., sq}

2
L2pΩq ds dt

¯

ď C
´

}F1}
2
L2pQq ` T

ż τ

0
}Bswp., sq}

2
L2pΩq ds

¯

.

Therefore, from Gronwall’s Lemma, we find out that

}Btwp., τq}
2
L2pΩq ď C}F1}

2
L2pQq.

As a consequence, in light of (3.18), we conclude that }r`}L2pQq ď C}F1}L2pQq. Further, according to
(3.19), F1 can be written as follows

F1px, tq “

ż t

0
gpx, sq ds “

1

iλ

ż t

0
g0px, sqBspe

iλpx¨ω`sqq ds.

Integrating by parts with respect to s, we conclude that there exists a positive constant C ą 0 such that

}r`}L2pQq ď
C

λ
}ϕ}H3pRnq.

Finally, since }g}L2pQq ď C}ϕ}H3pRnq , the energy estimate (3.9) associated to the problem (3.17) yields

}Btr
`}L2pQq ` }∇r`}L2pQq ď C}ϕ}H3pRnq.

This completes the proof of the lemma. �

As a consequence we have the following lemma
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Lemma 3.3. Let M1, M2 ą 0, a P W 2,8pQq , and b P W 1,8pQq such that }a}W 2,8pQq ď M1 and
}b}W 1,8pQq ď M2. Given ω P Sn´1 and ϕ P C80 pRnq, we consider the function φ defined by (3.10). Then,
the following equation

(3.20) B2
t u´∆u´ apx, tqBtu` bpx, tqu “ 0 in Q,

admits a unique solution
u´ P Cpr0, T s;H1pΩqq X C1pr0, T s;L2pΩqq,

of the following form

(3.21) u´px, tq “ ϕpx` tωqA´px, tqe´iλpx¨ω`tq ` r´px, tq,

where A´px, tq is given by

(3.22) A´px, tq “ exp
´1

2

ż t

0
apx` pt´ sqω, sq ds

¯

,

and r´px, tq satisfies

(3.23) r´px, T q “ Btr
´px, T q “ 0, in Ω, r´px, tq “ 0 on Σ.

Moreover, there exists a constant C ą 0 such that

(3.24) λ}r´}L2pQq ` }Btr
´}L2pQq ď C}ϕ}H3pRnq.

Proof. We prove this result by proceeding as in the proof of Lemma 3.2. Putting

rgpx, tq “ ´
´

B2
t ´∆´ apx, tqBt ` bpx, tq

¯´

φpx, tqA´px, tqe´iλpx¨ω`tq
¯

.

Then, it would be enough to see that if r´px, tq is solution to the following system
$

’

’

’

’

’

&

’

’

’

’

’

%

´

B2
t ´∆´ apx, tqBt ` bpx, tq

¯

r´px, tq “ rgpx, tq in Q,

r´px, T q “ 0 “ Btr
´px, T q in Ω,

r´px, tq “ 0 on Σ,

then, r`px, tq “ r´px, T ´ tq is a solution to (3.17) with gpx, tq “ rgpx, T ´ tq. To see this it would be
enough to take apx, tq “ apx, T ´ tq and bpx, tq “ bpx, T ´ tq. �

4. PROOF OF THEOREM 1.2

In this section we prove Theorem 2.1. The proof is based on the geometric optics solutions constructed
in Section 3 and the following preliminary identity. We need first to introduce the following notations. Let
ω P Sn´1, a1, a2 P Apa0,Mq. We set

Apx, tq “ pA´A`qpx, tq “ exp
´

´
1

2

ż t

0
apx` pt´ sqω, sq ds

¯

,

where A´ and A` are given by

A´px, tq “ exp
´1

2

ż t

0
a1px` pt´ sqω, sq ds

¯

, A`px, tq “ exp
´

´
1

2

ż t

0
a2px` pt´ sqω, sq ds

¯

.

Moreover, we define a in Rn`1 by a “ a2 ´ a1 in Qr and a “ 0 on Rn`1zQr.
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4.1. An identity for the absorbing coefficient. The main purpose of this section is to give a preliminary
identity for the absorbing coefficient a .

Lemma 4.1. Let ϕ P C80 pArq and ai P Apa0,Mq, i “ 1, 2. Assume that Λa2 “ Λa1 , then, the following
identity holds

(4.25) iλ

ż

Q
apx, tqϕ2px` tωqApx, tq dx dt “ Ipx, t, λq,

with |Ipx, t, λq| ď C, where C is independent on λ.

Proof. In view of Lemma 3.2, there exists a geometrical optics solution u` to the equation
$

&

%

B2
t u
` ´∆u` ` a2px, tqBtu

` “ 0, inQ

u`px, 0q “ Btu
`px, 0q “ 0, in Ω,

in the following form

(4.26) u`px, tq “ ϕpx` tωqA`px, tqeiλpx¨ω`tq ` r`px, tq,

corresponding to the coefficients a2, where r`px, tq satisfies (3.15), (3.16). Next, let us denote by fλ the
function

fλpx, tq “ u`px, tq|Σ “ ϕpx` tωqA`px, tqeiλpx¨ω`tq.

We denote by u1 the solution of
$

’

’

’

’

&

’

’

’

’

%

B2
t u1 ´∆u1 ` a1px, tqBtu1 “ 0, inQ

u1px, 0q “ Btu1px, 0q “ 0, in Ω

u1 “ fλ, on Σ

Putting u “ u1 ´ u
`. Then, u is a solution to the following system

(4.27)

$

’

’

’

’

&

’

’

’

’

%

B2
t u´∆u` a1px, tqBtu “ apx, tqBtu

`, inQ

upx, 0q “ Btupx, 0q “ 0, in Ω

upx, tq “ 0, on Σ

where a “ a2 ´ a1. On the other hand Lemma 3.3 guarantees the existence of a geometrical optic solution
u´ to the adjoint problem of (1.1)

$

&

%

B2
t u
´ ´∆u´ ´ a1px, tqBtu

´ ´ Bta1px, tqu
´ “ 0, inQ

u´px, T q “ 0 “ Btu
´px, T q, in Ω.

corresponding to the coefficients a1 and ´Bta1, in the form

(4.28) u´px, tq “ ϕpx` tωqe´iλpx¨ω`tqA´px, tq ` r´px, tq,

where r´px, tq satisfies (3.23), (3.24). Multiplying the first equation of (4.27) by u´, integrating by parts
and using Green’s formula, we obtain

ż

Q
apx, tqBtu

` u´ dx dt “

ż

Σ
pΛa2 ´ Λa1qpfλqu

´ dσ dt.(4.29)
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On the other hand, by replacing u` and u´ by their expressions, we have
ż

Q
apx, tqBtu

` u´ dx dt “

ż

Q
apx, tqBtϕpx` tωqe

iλpx¨ω`tqA`r´ dx dt

`

ż

Q
apx, tqϕpx` tωqeiλpx¨ω`tqBtA

`r´ dx dt`

ż

Q
apx, tqBtϕpx` tωqϕpx` tωqpA

`A´qdx dt

`

ż

Q
apx, tqϕ2px` tωqBtA

`A´ dx dt` iλ

ż T

0

ż

Ω
apx, tqϕpx` tωqeiλpx¨ω`tqA`r´ dx dt

`

ż

Q
apx, tqϕpx` tωqe´iλpx¨ω`tqA´Btr

`dx dt` iλ

ż

Q
apx, tqϕ2px` tωqpA`A´q dx dt

`

ż

Q
apx, tqBtr

`r´ dx dt “ iλ

ż

Q
apx, tqϕ2px` tωqAdxdt` Ipx, t, λq,

where A “ A`A´. Then, in light of (4.29), we have

(4.30) iλ

ż

Q
apx, tqϕ2px` tωqApx, tq dx dt “

ż

Σ
pΛa2 ´ Λa1qpfλqu

´ dσ dt´ Ipx, t, λq.

Note that for λ sufficiently large, we have

(4.31) |Iλ| ď C}ϕ}2H3pRnq.

Hence, using the fact that Λa2 “ Λa1 , we deduce from (4.30) and (4.31) the desired result. �

4.2. End of the proof. In this section we complete the proof of Theorem 1.2 by the use of the results we
have already obtained in the previous sections. Let us first consider the following set

E “ tpξ, τq P RnztORnuˆR, |τ | ă |ξ|u,

and denote by pa the Fourier transform of F P L1pRn`1q as follows:

pF pξ, τq “

ż

R

ż

Rn

F px, tqe´ix¨ξe´itτ dx dt.

In light of (4.25), we have as λ goes to `8, the following identity

(4.32)
ż

Q
apx, tqϕ2px` tωq exp

´

´
1

2

ż t

0
apx` pt´ sqω, sq ds

¯

dx dt “ 0.

Then, using the fact apx, tq “ 0 outside Qr,˚ and making this change of variables y “ x` tω, one gets
ż T

0

ż

Rn

apy ´ tω, tqϕ2pyq exp
´

´
1

2

ż t

0
apy ´ sω, sq ds

¯

dy dt “ 0.

Bearing in mind that
ż T

0

ż

Rn

apy ´ tω, tq ϕ2pyq exp
´

´
1

2

ż t

0
apy ´ sω, sq ds

¯

dy dt

“ ´2

ż T

0

ż

Rn

ϕ2pyq
d

dt

”

exp
´

´
1

2

ż t

0
apy ´ sω, sq ds

¯ı

dy dt

“ ´2

ż

Rn

ϕ2pyq
”

exp
´

´
1

2

ż T

0
apy ´ sω, sq ds

¯

´ 1
ı

dy.

we conclude that

(4.33)
ż

Rn

ϕ2pyq
”

exp
´

´
1

2

ż T

0
apy ´ sω, sq ds

¯

´ 1
ı

dy “ 0.
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Now, we consider a positive functionψ P C80 pRnq supported in the unit ballBp0, 1q and such that }ψ}L2pRnq “

1. Define

(4.34) ϕhpxq “ h´n{2ψ
´x´ y

h

¯

,

where y P Ar. Then, for h ą 0 sufficiently small we can verify that supp ϕh Ă C80 pArq and satisfies

suppϕh X Ω “ H, and suppϕh ˘ Tω X Ω “ H.

Then, as h goes to 0 we deduce from (4.33) with ϕ “ ϕh that

exp
´

´
1

2

ż T

0
apy ´ sω, sq ds

¯

´ 1 “ 0.

Since a “ a2 ´ a1 “ 0 outside Qr,˚, we then conclude that

(4.35)
ż

R
apy ´ tω, tq dt “ 0, a.e y P Ar, ω P Sn´1.

On the other hand, if |y| ď
r

2
, we notice that

(4.36) apy ´ tω, tq “ 0, @ t P R.
Indeed, we have

(4.37) |y ´ tω| ě |t| ´ |y| ě t´
r

2
,

hence, py´ tω, tq R C`r if t ą r{2, from (4.37). As py´ tω, tq R C`r if t ď r{2, then we have py´ tω, tq R
C`r Ą Qr,˚ for t P R. This and the fact that a “ a2 ´ a1 “ 0 outside Qr,˚, yield (4.36), and consequently,

ż

R
apy ´ tω, tq dt “ 0, |y| ď

r

2
.

By a similar way, we prove for |y| ě T ´ r{2, that py ´ tω, tq R C´r Ą Qr,˚, t P R, and then obtain

(4.38)
ż

R
apy ´ tω, tq dt “ 0, a.e. y R Ar, ω P Sn´1.

Thus, by (4.35) and (4.38) we find
ż

R
apy ´ tω, tq dt “ 0, a.e y P Rn, ω P Sn´1.

We now turn our attention to the fourier transform of a. Let ξ P Rn. In light of (4.38) and by the use of
Fubini Theorem, we get

ż

R

ż

Rn

apx´ tω, tqe´ix¨ξ dx dt “ 0.

Making the change of variables y “ x´ tω, one gets
ż

R

ż

Rn

apy, tqe´iy¨ξe´itpω.ξq dy dt “ 0.

Let us now consider ξ1 P Sn´1 such that ξ ¨ ξ1 “ 0. Setting

ω “
τ

|ξ|2
¨ ξ `

d

1´
τ2

|ξ|2
¨ ξ1 P Sn´1,

then pξ, τq “ pξ, ω.ξq P E. We then deduce that papξ, τq “ 0 in E. By an argument of analyticity, we
extend this result to Rn`1. Hence, by the injectivity of the Fourier transform we get the diserd result. This
completes the proof of Theorem 1.2.
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