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Abstract

We present families of nonparametric estimators for the conditional tail index of a Pareto-
type distribution in presence of random covariates. These families are constructed from
locally weighted sums of power transformations of excesses over a high threshold. The
asymptotic properties of the proposed estimators are derived under some assumptions on
the conditional response distribution, the weight function and the density function of the
covariates. We also introduce bias-corrected versions of the estimators for the conditional tail
index, and propose in this context a consistent estimator for the second order tail parameter.
The finite sample performance of some specific examples from our classes of estimators is
illustrated with a small simulation experiment.
Keywords: tail index, Pareto-type distribution, regression, kernel statistic, bias-correction.

1 Introduction

In the area of extreme value statistics, the tail index of a distribution function assumes a central
position, and therefore a vast literature has been dedicated to the estimation of this parameter.
We refer to Beirlant et al. (2004), and de Haan and Ferreira (2006) for recent accounts on
univariate tail index estimation. Obtaining an estimate for the tail index is in general a first
step in an extreme value analysis. For instance, when interest is in the estimation of extreme
quantiles, i.e. quantiles of order αn, with αn > 1 − 1/n, where n denotes the sample size, one
has to extrapolate beyond the available data by means of an extreme value model depending on
the tail index. In this paper we will consider tail index estimation for heavy tailed models when
a random covariate X is recorded simultaneously with the variable of interest Y .
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Let F (y;x) denote the conditional distribution function of the response variable Y given X = x,
and let g denote the density function of X. We assume that the conditional response distribution
is of Pareto-type, i.e. there exists a positive function γ(x) such that F̄ (y;x) := 1− F (y;x) is of
the form

F̄ (y;x) = y−1/γ(x)`(y;x), y > 0, (1)

where ` is a slowly varying function at infinity, so

lim
y→∞

`(λy;x)

`(y;x)
= 1, for all λ > 0. (2)

The tail function γ(x) describes the tail heaviness of the conditional response distribution, and
is a function that needs to be adequately estimated from the available data.

The estimation of the tail index in a regression context with fixed, nonrandom covariates, has
been addressed in the recent extreme value literature, though not to the same extent as univariate
tail index estimation with independent and identically distributed random variables.
Parametric models based on the generalized extreme value distribution or the generalized Pareto
distribution, extended to regression models by assuming specific functional forms for each of their
parameters, were proposed in Smith (1989), and Davison and Smith (1990). Beirlant and Goege-
beur (2003) introduced a semi-parametric model by extending the representation for scaled-log
spacings of successive order statistics of Beirlant et al. (1999) to the regression context. Fully
nonparametric methods like local estimation and penalized likelihood estimation can be found in
e.g. Davison and Ramesh (2000), Hall and Tajvidi (2000), Pauli and Coles (2001), Beirlant and
Goegebeur (2004), Chavez-Demoulin and Davison (2005), Gardes and Girard (2008, 2010) and
Goegebeur and de Wet (2012). Despite these contributions for the fixed covariate case, condi-
tional tail index estimation with random covariates received only little attention. Wang and Tsai
(2009) considered maximum likelihood estimation within the Hall subclass of the Pareto-type
models (Hall, 1982) where the tail index is related to the covariates through a log link function.
Daouia et al. (2011) studied the estimation of extreme quantiles under a conditional Pareto-type
model with random covariates, and used a fixed number of such quantile estimates in classical
estimators for γ, like the Pickands (Pickands, 1975) and the Hill (Hill, 1975) estimators. The
aim of this paper is to introduce flexible classes of estimators for γ(x) in the random covariate
case, by considering weighted sums of power transformations of excesses over a high threshold.

The remainder of this paper is organized as follows. In Section 2 we introduce our main kernel
statistic and derive its asymptotic properties under some conditions. Based on these results
we introduce two classes of estimators for the conditional tail index γ(x) and establish their
limiting distributions. Bias-correction of the estimators for γ(x) is studied in Section 3, where
we also introduce a consistent estimator for the second order rate parameter. The finite sample
behavior of our estimators is illustrated in Section 4 by means of a small simulation experiment.
The proofs of all results are deferred to the appendix.
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2 Construction of the estimator and asymptotic properties

Let (Xi, Yi), i = 1, . . . , n, be independent realizations of the random vector (X,Y ) ∈ Rp×R+
0 ,

where X has a distribution with joint density function g, and the conditional survival function
of Y given X = x is of the form (1).

The idea is to construct estimators for the conditional tail index γ(x) on the basis of statistics
of the form

T (s,t)
n (x,K) :=

1

n

n∑
i=1

Ks
h(x−Xi)(lnYi − lnωn)t+1{Yi > ωn}, (3)

where s ≥ 1, t ≥ 0, Kh(x) := K(x/h)/hp, K is a joint density function on Rp, h = hn is a non-
random sequence with hn → 0 for n→∞, 1{A} is the indicator function on the event A, and ωn
is a local non-random threshold sequence for estimation with ωn →∞ for n→∞. Here, a local
threshold means a threshold depending on the point x in the covariate space where
the estimation takes place, though the threshold is constant in a neighborhood of
x. Clearly, the growth of the threshold should be related to n and as such also
to h, in order to ensure that within the window observations are available for the
estimation. The required growth conditions will become clear when studying the
asymptotic behavior of the statistic. The bandwidth parameter h is taken to be
equal in each dimension of the covariate for mathematical convenience, though such
an assumption may not always be in line with the spread of the observations in the
covariate space. The proofs of the results can be adjusted to the use of e.g. product
kernels, involving a separate bandwidth for each component of X, but given that
the selection of bandwidth parameters is challenging in the extreme value context,
we propose to stick to a single bandwidth parameter, and to accommodate possible
different diffusions of the covariates by a rescaling to an identity covariance matrix.
We refer to Givens and Hoeting (2005) for more details on this. The bandwidth
can be selected locally or globally. The asymptotic results that follow are for a
specific location x in the covariate space, and as such the bandwidth is local. One
could for instance minimize the asymptotic mean squared error of the estimator for
γ(x) with respect to the bandwidth, which would give a bandwidth that takes the
density value g(x) into account, so as such the method is locally adaptive. Note that
for t = 0 the statistic simplifies to

T (s,0)
n (x,K) :=

1

n

n∑
i=1

Ks
h(x−Xi)1{Yi > ωn},

which is proportional to the kernel estimator for F̄ (y;x), proposed in Daouia et al. (2011).

In order to obtain the limiting distribution of T
(s,t)
n (x,K) we have to impose a further condition

on the behavior of the tail of F̄ (y;x), the second order condition.
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Second order condition (R2): There exists a positive function γ(x), a function ρ(x) < 0 and
a rate function b(.;x) with b(y;x) → 0 for y → ∞, of constant sign for large values of y, such
that for all v > 0

lim
y→∞

F̄ (vy;x)
F̄ (y;x)

− v−1/γ(x)

b(y;x)
= v−1/γ(x) v

ρ(x)/γ(x) − 1

γ(x)ρ(x)
. (4)

This condition is not too restrictive and is commonly accepted within extreme value statistics. In
fact, after some straightforward simplification of (4), one easily sees that condition (R2) makes
the convergence in (2) explicit. We refer to Bingham et al. (1987) and de Haan and Ferreira
(2006) for further details.

We also need some Lipschitz conditions. In these, for all x, z ∈ Rp, the Euclidean distance
between x and z is denoted by d(x, z).

(G) There exists cg > 0 such that |g(x)− g(z)| ≤ cgd(x, z).

(F) There exists cF̄ > 0 and y0 > 1 such that

sup
y≥y0

∣∣∣∣ ln F̄ (y;x)

ln F̄ (y; z)
− 1

∣∣∣∣ ≤ cF̄d(x, z).

Note that (i) (F) controls the oscillation of ln F̄ (y;x) with respect to its second ar-
gument x, and (ii) the Lipschitz norms in conditions (G) and (F) could be taken
differently, without complicating the proofs of the results considerably. Finally, we
impose a condition on the kernel function K.

(K)K is a bounded density function on Rp, with support Ω included in the unit hypersphere of Rp.

We start by introducing two lemmas that will enable us to obtain the asymptotic expansion of

E[T
(s,t)
n (x,K)] under the above conditions. Let

mn(x; t) := E[(lnY − lnωn)t+1{Y > ωn}|X = x].

Lemma 1 Assume (R2), then for ωn →∞ we have that

mn(x; t) =

{
γt(x)Γ(t+ 1)F̄ (ωn;x)

{
1 + b(ωn;x)

γ(x)ρ(x)

[
1

(1−ρ(x))t − 1
]

(1 + o(1))
}
, t > 0

F̄ (ωn;x), t = 0.

Now consider

m̃n(x; t, s) := E[Ks
h(x−X)(lnY − lnωn)t+1{Y > ωn}].

Lemma 2 Assume (R2), (G), (F) and (K). Then, for all x ∈ Rp such that g(x) > 0 we have
for ωn →∞ and h→ 0 with h lnωn → 0 that

m̃n(x; t, s) =
mn(x; t)

h(s−1)p
g(x)‖K‖ss(1 +O(h lnωn)).
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Note that

E[T (s,t)
n (x,K)] = m̃n(x; t, s)

= E[Ks
h(x−X)mn(X; t)].

From Lemma 1 and 2 we have that for t > 0,

E(T (1,t)
n (x,K)) = γt(x)g(x)Γ(t+ 1)F̄ (ωn;x)

×
{

1 +
b(ωn;x)

γ(x)ρ(x)

[
1

(1− ρ(x))t
− 1

]
(1 + o(1)) +O(h lnωn)

}
and

E(T (1,0)
n (x, L)) = g(x)F̄ (ωn;x)(1 +O(h lnωn)),

where L is assumed to satisfy (K), which motivates the following estimators for γ(x)

γ̂(1)
n (x, t,K,L) :=

(
T

(1,t)
n (x,K)

Γ(t+ 1)T
(1,0)
n (x, L)

)1/t

, for t > 0,

γ̂(2)
n (x, t,K,L) :=

T
(1,t+1)
n (x,K)

(t+ 1)T
(1,t)
n (x, L)

, for t ≥ 0.

Note that γ̂
(1)
n (x, 1,K, L) = γ̂

(2)
n (x, 0,K, L).

Now we study the asymptotic behavior of a vector of statistics of the form (3), when appropri-
ately normalized. Denote

T′n :=
1

F̄ (ωn;x)g(x)
[T (1,t1)
n (x,K1), . . . , T (1,tJ )

n (x,KJ)],

and let Σ be a (J × J) covariance matrix with elements

σj,k := γtj+tk(x)‖KjKk‖1Γ(tj + tk + 1).

Theorem 1 Let (X1, Y1), . . . , (Xn, Yn) be a sample of independent and identically distributed
(i.i.d.) random vectors, and assume (R2), (G), (F) and that K1, . . . ,KJ satisfy (K). For all
x ∈ Rp where g(x) > 0, we have that if h → 0, ωn → ∞ with h lnωn → 0, nhpF̄ (ωn;x) → ∞,
then √

nhpF̄ (ωn;x)g(x) [Tn − E(Tn)]
D→ NJ(0,Σ) as n→∞.

We now derive the limiting distribution of the estimator γ̂
(1)
n (x, t,K,L) and γ̂

(2)
n (x, t,K,L).

Theorem 2 Let (X1, Y1), . . . , (Xn, Yn) be a sample of i.i.d. random vectors, and assume (R2),
(G), (F) and kernel functions K and L satisfying (K). For all x ∈ Rp where g(x) > 0,
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we have that if h → 0, ωn → ∞ with nhpF̄ (ωn;x) → ∞,
√
nhpF̄ (ωn;x)b(ωn;x) → λ and√

nhpF̄ (ωn;x)h lnωn → 0, then for t > 0√
nhpF̄ (ωn;x)g(x) [γ̂(1)

n (x, t,K,L)− γ(x)]
D→ N

(
λ

√
g(x)

tρ(x)

(
1

(1− ρ(x))t
− 1

)
,

γ2(x)

t2Γ2(t+ 1)

[
Γ(2t+ 1)‖K‖22 + Γ2(t+ 1)‖L‖22 − 2Γ2(t+ 1)‖KL‖1

])
as n→∞.

Theorem 3 Under the same assumptions as in Theorem 2, we have for t ≥ 0√
nhpF̄ (ωn;x)g(x) [γ̂(2)

n (x, t,K,L)− γ(x)]
D→ N

(
λ

√
g(x)

(1− ρ(x))t+1
,

γ2(x)Γ(2t+ 1)

(t+ 1)Γ2(t+ 1)

[
2(2t+ 1)‖K‖22 + (t+ 1)‖L‖22 − 2(2t+ 1)‖KL‖1

])
as n→∞.

For K = L the asymptotic variance expressions simplify and are given by

AVar(γ̂(1)
n (x, t,K,K)) =

γ2(x)‖K‖22
t2

(
Γ(2t+ 1)

Γ2(t+ 1)
− 1

)
=: γ2(x)‖K‖22v2

1, (5)

and

AVar(γ̂(2)
n (x, t,K,K)) = γ2(x)‖K‖22

Γ(2t+ 1)

Γ2(t+ 1)
=: γ2(x)‖K‖22v2

2. (6)

In Figure 1 (a) we show the components of the asymptotic standard deviation v1 in (5) (solid
line) and v2 in (6) (dashed line) as a function of t. Clearly, no estimator performs uniformly

best in t, though the estimator γ̂
(1)
n (x, t,K,K) shows the better performance over a wide range

of values for t. Note that the asymptotic variance of the estimator γ̂
(1)
n (x, t,K,K) is minimized

for t = 1 whereas for γ̂
(2)
n (x, t,K,K) the minimum variance is reached for t = 0. Concerning

the asymptotic bias, it can be proven that the estimator γ̂
(2)
n (x, t,K,K) performs uniformly bet-

ter than γ̂
(1)
n (x, t,K,K). This is illustrated in Figure 1 (b) where we show the multiplicative

components of the asymptotic bias ((1 − ρ(x))−t − 1)/(tρ(x)) (solid line) and (1 − ρ(x))−(t+1)

(dashed line) for the case where ρ(x) = −1, as a function of t.

As mentioned before, γ̂
(1)
n (x, 1,K, L) = γ̂

(2)
n (x, 0,K, L). In this case, setting K = L = 1{S}/|S|,

where S is the p dimensional unit hypersphere with volume |S| = 2πp/2/(pΓ(p/2)), one obtains
a local Hill-type estimator, denoted γ̂H,n(x), whose asymptotic distribution is given in the
following corollary.

Corollary 1 Let (X1, Y1), . . . , (Xn, Yn) be a sample of i.i.d. random vectors, and assume (R2),
(G) and (F). For all x ∈ Rp where g(x) > 0, we have that if h→ 0, ωn →∞ with nhpF̄ (ωn;x)→
∞,

√
nhpF̄ (ωn;x)b(ωn;x)→ λ and

√
nhpF̄ (ωn;x)h lnωn → 0, then√

nhpF̄ (ωn;x)g(x) [γ̂H,n(x)− γ(x)]
D→ N

(
λ

√
g(x)

1− ρ(x)
,
γ2(x)

|S|

)
as n→∞.
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3 Bias-corrected estimation of γ(x)

In this section we will introduce bias-corrected estimators for γ(x) based on γ̂
(1)
n (x, t,K,L) and

γ̂
(2)
n (x, t,K,L), as well as a consistent estimator for the second order parameter ρ(x).

A first possibility to obtain a bias-corrected estimator for γ consists in constructing an appro-

priately chosen weighted sum of two estimators γ̂
(1)
n (x, t1,K1, L1) and γ̂

(1)
n (x, t2,K2, L2) with

t1, t2 > 0, and therefore we start by establishing the joint asymptotic behavior of these esti-
mators.

Let µ(1) be a (2× 1) vector with elements

µ
(1)
i :=

√
g(x)

tiρ(x)

(
1

(1− ρ(x))ti
− 1

)
, i = 1, 2,

and Σ̃
(1)

a (2× 2) matrix with elements

σ̃
(1)
i,i :=

γ2(x)

[tiΓ(ti + 1)]2
[
Γ(2ti + 1)‖Ki‖22 + Γ2(ti + 1)‖Li‖22 − 2Γ2(ti + 1)‖KiLi‖1

]
, i = 1, 2,

σ̃
(1)
1,2 :=

γ2(x)

t1t2Γ(t1 + 1)Γ(t2 + 1)
[Γ(t1 + t2 + 1)‖K1K2‖1 + Γ(t1 + 1)Γ(t2 + 1)‖L1L2‖1

−Γ(t1 + 1)Γ(t2 + 1)‖K1L2‖1 − Γ(t1 + 1)Γ(t2 + 1)‖K2L1‖1 ] .

Theorem 4 Let (X1, Y1), . . . , (Xn, Yn) be a sample of i.i.d. random vectors, and assume (R2),
(G), (F) and kernel functions K1, K2, L1 and L2 satisfying (K). For all x ∈ Rp where
g(x) > 0, if h → 0, ωn → ∞ with nhpF̄ (ωn;x) → ∞,

√
nhpF̄ (ωn;x)b(ωn;x) → λ and√

nhpF̄ (ωn;x)h lnωn → 0, we have for t1, t2 > 0√
nhpF̄ (ωn;x)g(x)

[
γ̂

(1)
n (x, t1,K1, L1)− γ(x)

γ̂
(1)
n (x, t2,K2, L2)− γ(x)

]
D→ N2(λµ(1), Σ̃

(1)
) as n→∞.

Consider now a weighted sum of two estimators with t1 6= t2 and α ∈ R :

γ̂(1)
n (x, α) := γ̂(1)

n (x, α, t1, t2,K1,K2, L1, L2)

:= αγ̂(1)
n (x, t1,K1, L1) + (1− α)γ̂(1)

n (x, t2,K2, L2).

From Theorem 4 we obtain the asymptotic bias of such weighted estimators to be

αλ

√
g(x)

t1ρ(x)

(
1

(1− ρ(x))t1
− 1

)
+ (1− α)λ

√
g(x)

t2ρ(x)

(
1

(1− ρ(x))t2
− 1

)
,

which can be eliminated by taking the weight α as

α
(1)
BC(ρ(x)) :=

1

1− β[1− ρ(x)]t2−t1
with β :=

t2
t1

1− [1− ρ(x)]t1

1− [1− ρ(x)]t2
.

The result is formalized in the following corollary. Let α′1 = [α
(1)
BC(ρ(x)), 1− α(1)

BC(ρ(x))].
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Corollary 2 Under the conditions of Theorem 4 we have that√
nhpF̄ (ωn;x)g(x) [γ̂(1)

n (x, α
(1)
BC(ρ(x)))− γ(x)]

D→ N(0,α′1Σ̃
(1)
α1) as n→∞.

The elimination of bias by the construction of an appropriately weighted sum of two estimators
is also referred to as the generalized Jackknife methodology; see Gray and Schucany (1972) for
further details.

We now turn to the construction of a bias-corrected estimator based on a weighted sum of two
estimators of the type γ̂(2)(x, t,K,L).

Let µ(2) be a (2× 1) vector with elements

µ
(2)
i :=

√
g(x)

(1− ρ(x))ti+1
, i = 1, 2,

and Σ̃
(2)

a (2× 2) matrix with elements

σ̃
(2)
i,i :=

γ2(x)Γ(2ti + 1)

(ti + 1)Γ2(ti + 1)

[
2(2ti + 1)‖Ki‖22 + (ti + 1)‖Li‖22 − 2(2ti + 1)‖KiLi‖1

]
, i = 1, 2,

σ̃
(2)
1,2 :=

γ2(x)Γ(t1 + t2 + 1)

Γ(t1 + 2)Γ(t2 + 2)
[(t1 + t2 + 1)(t1 + t2 + 2)‖K1K2‖1 − (t2 + 1)(t1 + t2 + 1)‖K1L2‖1

−(t1 + 1)(t1 + t2 + 1)‖K2L1‖1 + (t1 + 1)(t2 + 1)‖L1L2‖1] .

Theorem 5 Let (X1, Y1), . . . , (Xn, Yn) be a sample of i.i.d. random vectors, and assume (R2),
(G), (F) and kernel functions K1, K2, L1 and L2 satisfying (K). For all x ∈ Rp where
g(x) > 0, if h → 0, ωn → ∞ with nhpF̄ (ωn;x) → ∞,

√
nhpF̄ (ωn;x)b(ωn;x) → λ and√

nhpF̄ (ωn;x)h lnωn → 0, we have for t1, t2 ≥ 0√
nhpF̄ (ωn;x)g(x)

[
γ̂

(2)
n (x, t1,K1, L1)− γ(x)

γ̂
(2)
n (x, t2,K2, L2)− γ(x)

]
D→ N2(λµ(2), Σ̃

(2)
) as n→∞.

For a weighted estimator

γ̂(2)
n (x, α) := γ̂(2)

n (x, α, t1, t2,K1,K2, L1, L2)

:= αγ̂(2)
n (x, t1,K1, L1) + (1− α)γ̂(2)

n (x, t2,K2, L2),

with t1 6= t2 and α ∈ R, we obtain from Theorem 5 that its asymptotic bias is given by

αλ

√
g(x)

(1− ρ(x))t1+1
+ (1− α)λ

√
g(x)

(1− ρ(x))t2+1
,

which vanishes if α is taken as

α
(2)
BC(ρ(x)) :=

1

1− (1− ρ(x))t2−t1
.

Let α′2 = [α
(2)
BC(ρ(x)), 1− α(2)

BC(ρ(x))].
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Corollary 3 Under the conditions of Theorem 5 we have that√
nhpF̄ (ωn;x)g(x) [γ̂(2)

n (x, α
(2)
BC(ρ(x)))− γ(x)]

D→ N(0,α′2Σ̃
(2)
α2) as n→∞.

From the above discussion it is clear that the bias-correcting weights α
(1)
BC(ρ(x)) and α

(2)
BC(ρ(x))

depend on the second order parameter ρ(x), which is typically unknown, and therefore we intro-
duce next a consistent estimator for this parameter. In the univariate context, several estimators
have been proposed that show good practical performance, for instance, the estimators by Gomes
et al. (2002), Fraga Alves et al. (2003), Ciuperca and Mercadier (2010) and Goegebeur et al.
(2010).

Let K := (K1,K2,K3) and L := (L1, L2, L3) be kernel functions satisfying (K). Inspired by
Fraga Alves et al. (2003) and Caeiro and Gomes (2006), we introduce the following class of
estimators for ρ(x), parameterized in terms of a tuning parameter τ ∈ R:

ρ̂n(x;K,L, τ) :=
3(Rn(x;K,L, τ)− 1)

Rn(x;K,L, τ)− 3
,

provided 1 ≤ Rn(x;K,L, τ) < 3, where

Rn(x;K,L, τ) :=

(
T

(1,1)
n (x,K1)

T
(1,0)
n (x,L1)

)τ
−
(
T

(1,2)
n (x,K2)

2T
(1,0)
n (x,L2)

)τ/2
(
T

(1,2)
n (x,K2)

2T
(1,0)
n (x,L2)

)τ/2
−
(
T

(1,3)
n (x,K3)

6T
(1,0)
n (x,L3)

)τ/3
and with the notation abτ := b ln a whenever τ = 0. The consistency of ρ̂n(x;K,L, τ) for ρ(x) is
established in the following theorem.

Theorem 6 Let (X1, Y1), . . . , (Xn, Yn) be a sample of i.i.d. random vectors, and assume (R2),
(G), (F) and kernel functions K1, K2, K3, L1, L2 and L3 satisfying (K). For all x ∈ Rp where
g(x) > 0, if h → 0, ωn → ∞ with

√
nhpF̄ (ωn;x)b(ωn;x) → ∞ and h lnωn = o(b(ωn;x)), we

have that ρ̂n(x;K,L, τ)
P→ ρ(x) as n→∞.

The condition
√
nhpF̄ (ωn;x)b(ωn;x)→∞ in Theorem 6 is quite natural: for instance

in the classical framework of extreme value index estimation, where the rate of
convergence in the random threshold case is

√
k, we have to impose

√
kb(n/k) → ∞

to obtain consistency of estimators for the second order parameter ρ. Here we
have to replace

√
k by the rate of convergence of our estimator. The condition

h lnωn = o(b(ωn;x)) is new and specific for the local estimation of ρ(x), and is needed
to make the term involving b(ωn;x) the dominant one in the asymptotic expansions.
The condition h lnωn = o(b(ωn;x)) for the estimation of ρ(x) is generally not more re-
strictive compared to that used in the estimation of γ(x): for instance in Theorems
2 and 3 one requires

√
nhpF̄ (ωn;x)b(ωn;x)→ λ and

√
nhpF̄ (ωn;x)h lnωn → 0, so in case

λ 6= 0 one also has that h lnωn = o(b(ωn;x)).
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The next two lemma’s state that replacing ρ(x) in γ̂
(1)
n (x, α

(1)
BC(ρ(x))) and γ̂

(2)
n (x, α

(2)
BC(ρ(x)))

by a consistent estimator ρ̂n(x) does not change the limiting distribution of the bias-corrected
estimators.

Corollary 4 Under the conditions of Theorem 4, and with ρ̂n(x) being a consistent estimator
for ρ(x), we have that√

nhpF̄ (ωn;x)g(x) [γ̂(1)
n (x, α

(1)
BC(ρ̂n(x)))− γ(x)]

D→ N(0,α′1Σ̃
(1)
α1) as n→∞.

Corollary 5 Under the conditions of Theorem 5, and with ρ̂n(x) being a consistent estimator
for ρ(x), we have that√

nhpF̄ (ωn;x)g(x) [γ̂(2)
n (x, α

(2)
BC(ρ̂n(x)))− γ(x)]

D→ N(0,α′2Σ̃
(2)
α2) as n→∞.

The corollaries follow from a straightforward application of Taylor’s theorem to γ̂
(1)
n (x, α

(1)
BC(ρ̂n(x)))

and γ̂
(2)
n (x, α

(2)
BC(ρ̂n(x))), respectively, and for brevity we omit their proofs.

4 Simulation results

In this section we illustrate our results by a small simulation study. For the practical implemen-
tation of our estimators we have to determine the bandwidth parameter h and the threshold ωn,
where we take, as usual in extreme value statistics, the latter as the (k+ 1)−th largest response
observation in the ball B(x, h). We propose two algorithms for the purpose of selecting (h, k):
(i) an oracle strategy and (ii) a completely data driven method.

As proposed in Daouia et al. (2011), the oracle strategy consists in selecting (h, k) as follows

(ho, ko) := arg min
h∈Ho,k∈Ko

∆ (γ̂(·), γ(·)) , (7)

where Ho and Ko are grids of values for h and k, respectively, and

∆2 (γ̂(·), γ(·)) :=
1

M

M∑
m=1

(γ̂(zm)− γ(zm))2 ,

where z1, . . . , zM are regularly spaced in the covariate space. Note that this method requires
knowledge of the function γ(x), which is unknown in practical situations.

To solve this issue we introduce our second approach which is completely data driven, and
based on a two steps procedure. First we select the bandwidth parameter h using the following
cross-validation criterion

hcv := arg min
h∈H

n∑
i=1

n∑
j=1

(
1{Yi ≤ Yj} − F̂n,−i(Yj |Xi)

)2
,
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where H is a grid of values for h and

F̂n,−i(y|x) :=

∑n
j=1,j 6=iKh(x−Xj)1{Yj ≤ y}∑n

j=1,j 6=iKh(x−Xj)
.

This criterion was introduced in Yao (1999), implemented by Gannoun et al. (2002), and con-
sidered in an extreme value context by Daouia et al. (2011, 2012). Using this bandwidth we
determine in the second step the number of extremes k with a stability criterion of the estimates
for γ(x). The algorithm that is used is as follows:

For all x under consideration

• compute the estimates for γ(x) with k = 5, . . . ,mx − 1 (mx is the number of observations
in B(x, h)),

• split the range of k into several blocks of same size,

• calculate the standard deviation of the estimates for γ(x) in each block,

• the block with minimal standard deviation determines the k to be used (in particular we
take the median of the k values in that block).

Note that in the data driven method h is selected globally while k is selected locally.

In the simulations we consider the estimator γ̂
(2)
n (x, 0,K, L) and its bias-corrected version

γ̂
(2)
n (x, α

(2)
BC(ρ(x))), with t1 = 0 and t2 = 1. All kernel functions are taken as the bi-quadratic

kernel function

K(x) =
15

16
(1− x2)21{x ∈ [−1, 1]}.

We assume that the conditional distribution of Y given X = x is the following Burr distribution:

1− F (y;x) =
(

1 + y−ρ(x)/γ(x)
)1/ρ(x)

,

where ρ(x) < 0 is the second order parameter, and X is uniformly distributed on (0, 1). We fix
ρ(x) = −1 and the function γ(·) is, as in Daouia et al. (2011), taken as

γ(x) =
1

2

(
1

10
+ sin(πx)

)(
11

10
− 1

2
exp

(
−64

(
x− 1

2

)2
))

.

We simulate N = 100 samples of size n = 1000.

In Figure 2 we show the boxplots of the 100 realizations of the estimates of γ(x) and ρ(x) for
different values of x, as obtained with the oracle method. The minimization (7) is performed on a
grid of h ∈ [0.05, 0.5] and of k ∈ {2, . . . ,mx−1}, with M = 35. For the bias-corrected estimator
for γ(x), different values for ρ(x) have been used namely, the true value ρ(x) = −1, a mis-
specification at ρ(x) = −2 and −5, and an estimation of ρ(x) using ρ̂n(x;K,K, τ) with τ = 0.5.
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The value 0.5 for the tuning parameter τ can be motived by the simulation results
reported in Fraga Alves et al. (2003) for the univariate i.i.d. context, where it gave
a reasonable performance for a wide range of models. In case ρ(x) is estimated, we use
an oracle strategy, similar to the one discussed above, with a grid of h ∈ [0.05, 0.5], but this

time k ∈ {mx/4, . . . ,mx−1}. As expected, the bias-corrected estimator γ̂
(2)
n (x, α

(2)
BC(ρ(x))) out-

performs the uncorrected version γ̂
(2)
n (x, 0,K,K) in terms of bias, even with a mis-specification

of ρ(x). The estimator for ρ(x) has a reasonable performance, despite the small local sample
sizes. In Table 1 we compare the errors ∆2(γ̂(.), γ(.)), averaged over the 100 simulated data

sets. Also in terms of these, γ̂
(2)
n (x, α

(2)
BC(ρ(x))) typically works better than γ̂

(2)
n (x, 0,K,K), ex-

cept when ρ(x) is estimated. In this case, the variability of the estimator for ρ(x)

may compensate for the bias-correction by γ̂
(2)
n (x, α

(2)
BC(ρ̂n(x;K,K, 0.5))), leading to a

slightly larger error.

In Figure 3 we show the corresponding results obtained with the data driven method. Con-
cerning the estimation of γ(x), we select the optimal value of the bandwidth h in a set
H = {h1 ≤ . . . ≤ h10} where the points h1, . . . , h10 are regularly spaced in [0.05, 0.5], and
the selection of k is along the above described algorithm with a block size of 40. For the estima-
tion of ρ(x), we select h as above with leave-one-out cross-validation, but we set k = m0.975

x ,
see e.g. Caeiro et al. (2009). Clearly, all implementations of the bias-corrected estimator
outperform the uncorrected estimator in terms of bias, even with a severe mis-specification at
ρ(x) = −5. The superior performance is also reflected in the errors reported in Table 1. Note

in particular that the error of γ̂
(2)
n (x, α

(2)
BC(ρ(x))) with an estimation of ρ(x) is close to the one

with the true value ρ(x) = −1. Also, they are only slightly larger in the data driven setting
than in the oracle framework.

With the data driven method, the variance of the bias-corrected estimates seems to
be smaller under a mis-specification of ρ(x) compared to when the true value is used.
A possible explanation for this observation is as follows. If one uses the true value
of ρ(x), then the bias-corrected estimators for γ(x) are asymptotically unbiased, ac-
cording to Corollaries 2 and 3. If one mis-specifies ρ(x) then one typically loses the
bias correction, though the asymptotic variance of the estimator is still given by the
expressions in Corollaries 2 and 3, though with ρ(x) replaced by its mis-specified
value, and this variance is smaller when |ρ(x)| is large, see Figure 4 where we show
the asymptotic standard deviation of the implemented bias-corrected estimator for
γ(x) as a function of ρ(x). A similar phenomenon is observed in the univariate i.i.d.
case: the asymptotic variance of an asymptotically unbiased estimator is typically
given by γ2(1 − ρ)2/ρ2, which is a decreasing function of |ρ|. This variance expres-
sion remains valid if one mis-specifies ρ at ρ∗, giving γ2(1 − ρ∗)2/ρ∗2 as asymptotic
variance. This could also explain the results obtained when ρ(x) is replaced by its
estimator since the estimator for ρ(x) suffers somehow from a negative bias over the
complete range of x. The oracle results do not show the dependency of the variance
of the bias-corrected estimator on the second order parameter as clearly, but this
could be due to a different implementation: in the oracle method both h and k are
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chosen globally, whereas in the data-driven method h is chosen globally and k locally.

From the simulation results, the variance of the tail index estimates tends to de-
crease near the boundaries. Note that at the theoretical level, the asymptotic
variance of the proposed tail index estimators is increasing in γ(x). We refer to
Theorems 2 and 3 for general local kernel estimators, and to Corollary 1 for the
case of the local Hill estimator. These findings also apply for the bias-corrected
estimators, as is clear from Theorems 4 and 5, and associated corollaries. In finite
samples, this can also be seen in Figures 2 and 3, where the whiskers are generally
shorter for the smaller values of γ(x). The smallest values of γ(x) occur in this
simulation setting near the boundaries, and it seems that the smaller asymptotic
variance is thus more important than possible boundary effects, that could e.g. lead
to smaller local values of k near the boundaries.

Finally, we comment on the behavior of the local estimator for ρ(x). From panel
(f) in Figures 2 and 3 it is clear that the proposed estimator suffers from some
negative bias. Concerning this issue, it should be noted that the original estimator
for ρ proposed by Fraga Alves et al. (2003) in the i.i.d. univariate case shows, when
implemented with τ = 0.5, often a negative bias in cases where −2 < ρ < 0. We refer
to the simulation results in the Fraga Alves et al. (2003) paper for further details.
In Goegebeur et al. (2010), several estimators for the second order parameter ρ
were compared in a simulation experiment, and from the results reported there it
seems that they all suffer from a negative bias when −2 < ρ < 0. These findings
are consistent with the results in the present paper where the estimator for ρ(x)
also shows a negative bias over the whole range of x-values. That the bias seems
to be more severe at the boundaries is harder to explain. On the one hand, the
leading terms of the asymptotic bias of the estimator for ρ(x) will probably show
a dependence on the tail index γ(x), as was also observed in the univariate i.i.d.
case (we refer again to the above mentioned papers). In fact, from the Figures 2
and 3 one can see already that the bias of ρ(x) indeed follows the behavior of γ(x).
On the other hand, the typical boundary bias that appears in local estimation can
be playing here. We would though want to mention that the smallest and largest
values in our grid for x were 0.1 and 0.9, respectively, whereas the distribution of the
covariates was U(0, 1), meaning that we stayed somehow away from the boundary.
Whatever the reason, we see that in the data-driven method, which is the practically
relevant method, despite the negative bias in the estimation of ρ(x), the boundary
bias of the bias-corrected estimator for γ(x) is not worse compared to the case where
the true value ρ(x) = −1 was used.
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Appendix: Proofs

Proof of Lemma 1

First consider the case t > 0. From the definition of conditional expectation one easily obtains

mn(x; t) = t

∫ ∞
ωn

(ln y − lnωn)t−1 1

y
F̄ (y;x)dy

= tF̄ (ωn;x)

∫ ∞
ωn

(ln y − lnωn)t−1 F̄ (y;x)

yF̄ (ωn;x)
dy

= tF̄ (ωn;x)

∫ ∞
1

(ln z)t−1 F̄ (ωnz;x)

zF̄ (ωn;x)
dz.

Concerning the ratio F̄ (ωnz;x)/F̄ (ωn;x) we invoke condition (R2). From Theorem B.2.18 in
de Haan and Ferreira (2006), see also Drees (1998), we have that for a function b0, possibly
different from the function b, though with b0(ωn;x) ∼ b(ωn;x), ωn → ∞, and for each ε, δ > 0
there exists a ωn,0 such that for ωn ≥ ωn,0, z > 1,∣∣∣∣∣∣γ2(x)

z1/γ(x) F̄ (ωnz;x)
F̄ (ωn;x)

− 1

b0(ωn;x)
− zρ(x)/γ(x) − 1

ρ(x)/γ(x)

∣∣∣∣∣∣ ≤ εzρ(x)/γ(x)+δ. (8)

Motivated by (8), we write

mn(x; t) = tF̄ (ωn;x)

{∫ ∞
1

(ln z)t−1z−1/γ(x)−1dz

+
b0(ωn;x)

γ2(x)

∫ ∞
1

(ln z)t−1z−1/γ(x)−1 z
ρ(x)/γ(x) − 1

ρ(x)/γ(x)
dz

+
b0(ωn;x)

γ2(x)

∫ ∞
1

(ln z)t−1z−1/γ(x)−1

γ2(x)
z1/γ(x) F̄ (ωnz;x)

F̄ (ωn;x)
− 1

b0(ωn;x)
− zρ(x)/γ(x) − 1

ρ(x)/γ(x)

 dz


=: tF̄ (ωn;x)

{
I1 +

b0(ωn;x)

γ2(x)
(I2 + I3)

}
.

For I1 and I2 one obtains easily

I1 = γt(x)Γ(t),

I2 =
γt+1(x)Γ(t)

ρ(x)

[
1

(1− ρ(x))t
− 1

]
.
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Concerning I3 we use (8). Hence, for all ε > 0 we have that there exists an ωn,0 such that for
ωn > ωn,0

|I3| ≤ ε

∫ ∞
1

(ln z)t−1z−(1−ρ(x))/γ(x)+δ−1dz

= ε

∫ ∞
0

exp(−((1− ρ(x))/γ(x)− δ)u)ut−1du

= ε
Γ(t)(

1−ρ(x)
γ(x) − δ

)t ,
provided 0 < δ < (1 − ρ(x))/γ(x). We have thus that I3 = o(1) for ωn → ∞. The result for
t > 0 is then obtained by collecting the terms.

The case t = 0 follows trivially from the definition of conditional expectation.

Proof of Lemma 2

From the rule of repeated expectations we obtain

m̃n(x; t, s) = E[Ks
h(x−X)mn(X; t)]

=

∫
Rp

Ks
h(x− u)mn(u; t)g(u)du

=
‖K‖ss
h(s−1)p

∫
Ω

Ks(z)

‖K‖ss
mn(x− hz; t)g(x− hz)dz.

In case t > 0 we have

m̃n(x; t, s) =
t‖K‖ss
h(s−1)p

∫
Ω

Ks(z)

‖K‖ss

∫ ∞
ωn

(ln y − lnωn)t−1 F̄ (y;x− hz)
y

dy g(x− hz)dz,

and, consequently∣∣∣∣m̃n(x; t, s)− mn(x; t)

h(s−1)p
g(x)‖K‖ss

∣∣∣∣
≤ t‖K‖ss
h(s−1)p

{∫
Ω

Ks(z)

‖K‖ss

∫ ∞
ωn

(ln y − lnωn)t−1 F̄ (y;x)

y

∣∣∣∣ F̄ (y;x− hz)
F̄ (y;x)

− 1

∣∣∣∣ dy g(x)dz

+

∫
Ω

Ks(z)

‖K‖ss

∫ ∞
ωn

(ln y − lnωn)t−1 F̄ (y;x)

y
dy |g(x− hz)− g(x)|dz

+

∫
Ω

Ks(z)

‖K‖ss

∫ ∞
ωn

(ln y − lnωn)t−1 F̄ (y;x)

y

∣∣∣∣ F̄ (y;x− hz)
F̄ (y;x)

− 1

∣∣∣∣ dy |g(x− hz)− g(x)|dz
}

=:
t‖K‖ss
h(s−1)p

{I4 + I5 + I6} .

Concerning I4, let

Ĩ4 :=

∫ ∞
ωn

(ln y − lnωn)t−1 F̄ (y;x)

y

∣∣∣∣ F̄ (y;x− hz)
F̄ (y;x)

− 1

∣∣∣∣ dy,
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note that

F̄ (y;x− hz)
F̄ (y;x)

= exp

[
ln F̄ (y;x)

(
ln F̄ (y;x− hz)

ln F̄ (y;x)
− 1

)]
,

and, by using (F) and the property that ln `(y;x)/ ln y → 0 as y → ∞, we have that if ωn is
sufficiently large then

| ln F̄ (y;x)|
∣∣∣∣ ln F̄ (y;x− hz)

ln F̄ (y;x)
− 1

∣∣∣∣ ≤ Ch ln y,

for some constant C > 0. Now use the well known inequality | exp(w) − 1| ≤ |w| + 1
2(1 +

exp(|w|))w2 to obtain for ωn sufficiently large

Ĩ4 ≤ Ch

∫ ∞
ωn

(ln y − lnωn)t−1 F̄ (y;x)

y
ln y dy

+
C2h2

2

∫ ∞
ωn

(ln y − lnωn)t−1 F̄ (y;x)

y
ln2 y dy

+
C2h2

2

∫ ∞
ωn

(ln y − lnωn)t−1 F̄ (y;x)

y
exp(Ch ln y) ln2 y dy

=: Ĩ4,1 + Ĩ4,2 + Ĩ4,3.

From Lemma 1 we have that

Ĩ4,1 =
mn(x; t)

t
O(h lnωn),

Ĩ4,2 =
mn(x; t)

t
O(h2 ln2 ωn).

Concerning Ĩ4,3, by the substitution v = y/ωn and a straightforward expansion

Ĩ4,3 =
C2h2 exp(Ch lnωn)

2

{
ln2 ωn

∫ ∞
1

(ln v)t−1 F̄ (ωnv;x)

v
exp(Ch ln v)dv

+

∫ ∞
1

(ln v)t+1 F̄ (ωnv;x)

v
exp(Ch ln v)dv

+2 lnωn

∫ ∞
1

(ln v)t
F̄ (ωnv;x)

v
exp(Ch ln v)dv

}
=:

C2h2 exp(Ch lnωn)

2

{
ln2 ωn Ĩ4,3,1 + Ĩ4,3,2 + 2 lnωn Ĩ4,3,3

}
.
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Since all the integrals in the right hand side of the expression are of the same form, we will only
consider the first of them. Again, inspired by (8), we write

Ĩ4,3,1 = F̄ (ωn;x)

{∫ ∞
1

(ln v)t−1vCh−1−1/γ(x)dv

+
b0(ωn;x)

γ2(x)

∫ ∞
1

(ln v)t−1vCh−1−1/γ(x) v
ρ(x)/γ(x) − 1

ρ(x)/γ(x)
dv

+
b0(ωn;x)

γ2(x)

∫ ∞
1

(ln v)t−1vCh−1−1/γ(x)

γ2(x)
v1/γ(x) F̄ (ωnv;x)

F̄ (ωn;x)
− 1

b0(ωn;x)
− vρ(x)/γ(x) − 1

ρ(x)/γ(x)

 dv


=: F̄ (ωn;x)

{
Ĩ4,3,1,1 +

b0(ωn;x)

γ2(x)
(Ĩ4,3,1,2 + Ĩ4,3,1,3)

}
.

Taking into account that Ch can be made arbitrarily small we have that

Ĩ4,3,1,1 = γt(x)Γ(t) + o(1),

Ĩ4,3,1,2 =
γt+1(x)Γ(t)

ρ(x)

[
1

(1− ρ(x))t
− 1

]
+ o(1).

Concerning Ĩ4,3,1,3 we assume that Ch < δ′. Then, again, by (8) we have that for all ε > 0
there exists an ωn,0 such that for ωn > ωn,0

|Ĩ4,3,1,3| ≤ ε

∫ ∞
1

(ln v)t−1v−(1−ρ(x))/γ(x)+δ′+δ−1dv

= ε
Γ(t)(

1−ρ(x)
γ(x) − δ′ − δ

)t ,
provided 0 < δ + δ′ < (1− ρ(x))/γ(x). Hence Ĩ4,3,1,3 = o(1) under the conditions of the lemma.
Thus

Ĩ4,3,1 = F̄ (ωn;x)γt(x)Γ(t)

{
1 + o(1) +

b(ωn;x)

γ(x)ρ(x)

[
1

(1− ρ(x))t
− 1

]
(1 + o(1))

}
=

mn(x; t)

t
(1 + o(1)).

Collecting the above results gives that

Ĩ4,3 =
mn(x; t)

t
O(h2 ln2 ωn).

Combined,

I4 =
1

t
g(x)mn(x; t)O(h lnωn),
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using the fact that Ks(.)/‖K‖ss satisfies (K).
Concerning I5, we use (G) and (K) to obtain

I5 ≤ cg

∫
Ω

Ks(z)

‖K‖ss
d(0, hz)dz

∫ ∞
ωn

(ln y − lnωn)t−1 F̄ (y;x)

y
dy

=
1

t
g(x)mn(x; t)O(h).

Similarly, by using (F), (G) and (K) we have that, for ωn sufficiently large,

I6 =
1

t
g(x)mn(x; t)O(h2 lnωn).

Combining the above establishes the result for the case t > 0.

We now turn to the case t = 0. We have

m̃n(x; 0, s) =
‖K‖ss
h(s−1)p

∫
Ω

Ks(z)

‖K‖ss
F̄ (ωn;x− hz)g(x− hz)dz.

Further, ∣∣∣∣m̃n(x; 0, s)− mn(x; 0)

h(s−1)p
g(x)‖K‖ss

∣∣∣∣
≤ ‖K‖

s
s

h(s−1)p

{
F̄ (ωn;x)g(x)

∫
Ω

Ks(z)

‖K‖ss

∣∣∣∣ F̄ (ωn;x− hz)
F̄ (ωn;x)

− 1

∣∣∣∣ dz
+F̄ (ωn;x)

∫
Ω

Ks(z)

‖K‖ss
|g(x− hz)− g(x)|dz

+F̄ (ωn;x)

∫
Ω

Ks(z)

‖K‖ss

∣∣∣∣ F̄ (ωn;x− hz)
F̄ (ωn;x)

− 1

∣∣∣∣ |g(x− hz)− g(x)|dz
}
.

The result for the case t = 0 can now be established along a similar line of arguments as
used for the case t > 0.

Proof of Theorem 1

To prove Theorem 1 we make use of the Cramér-Wold device (see e.g. van der Vaart, 1998, p
16), according to which it is sufficient to prove that for all ξ ∈ RJ , ‖ξ‖ 6= 0, we have
that

Λn :=
√
nhpF̄ (ωn;x)g(x) ξ′[Tn − E(Tn)]

D→ N(0, ξ′Σξ).
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From straightforward calculations we obtain

Λn =
n∑
i=1

√
hp

nF̄ (ωn;x)g(x)

 J∑
j=1

ξjKj,h(x−Xi)(lnYi − lnωn)
tj
+1{Yi > ωn}

−E

 J∑
j=1

ξjKj,h(x−Xi)(lnYi − lnωn)
tj
+1{Yi > ωn}


=:

n∑
i=1

Vi.

Note that V1, . . . , Vn are i.i.d. random variables, and hence Var(Λn) = nVar(V1). Now

Var(V1) =
hp

nF̄ (ωn;x)g(x)

J∑
j=1

J∑
k=1

ξjξkCov
(
Kj,h(x−X1)(lnY1 − lnωn)

tj
+1{Y1 > ωn},

Kk,h(x−X1)(lnY1 − lnωn)tk+ 1{Y1 > ωn}
)

=:
hp

nF̄ (ωn;x)g(x)

J∑
j=1

J∑
k=1

ξjξkCj,k,

and

Cj,k = E
[
Kj,h(x−X1)Kk,h(x−X1)(lnY1 − lnωn)

tj+tk
+ 1{Y1 > ωn}

]
−E

[
Kj,h(x−X1)(lnY1 − lnωn)

tj
+1{Y1 > ωn}

]
E
[
Kk,h(x−X1)(lnY1 − lnωn)tk+ 1{Y1 > ωn}

]
=
‖KjKk‖1

hp
E
[

1

hp‖KjKk‖1
Kj

(
x−X1

h

)
Kk

(
x−X1

h

)
(lnY1 − lnωn)

tj+tk
+ 1{Y1 > ωn}

]
−E

[
Kj,h(x−X1)(lnY1 − lnωn)

tj
+1{Y1 > ωn}

]
E
[
Kk,h(x−X1)(lnY1 − lnωn)tk+ 1{Y1 > ωn}

]
.

Using Lemma 1 and 2 we obtain that

Cj,k =
‖KjKk‖1

hp
γtj+tk(x)F̄ (ωn;x)g(x)Γ(tj + tk + 1)(1 + o(1)),

and consequently Var(Λn) = ξ′Σξ(1 + o(1)).

To establish the asymptotic normality of Λn we verify Lyapounov’s criterion for triangular arrays
of random variables, see e.g. Billingsley (1995). In the present context this simplifies to proving
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that
∑n

i=1 E|Vi|3 = nE|V1|3 → 0. We have

E|V1|3 ≤
(

hp

nF̄ (ωn;x)g(x)

)3/2
E

 J∑
j=1

|ξj |Kj,h(x−X1)(lnY1 − lnωn)
tj
+1{Y1 > ωn}

3
+3E

 J∑
j=1

|ξj |Kj,h(x−X1)(lnY1 − lnωn)
tj
+1{Y1 > ωn}

2
×E

 J∑
j=1

|ξj |Kj,h(x−X1)(lnY1 − lnωn)
tj
+1{Y1 > ωn}


+4

E
 J∑
j=1

|ξj |Kj,h(x−X1)(lnY1 − lnωn)
tj
+1{Y1 > ωn}

3 .

Again by using Lemma 1 and 2 we obtain that

E|V1|3 = O

((
n
√
nhpF̄ (ωn;x)

)−1
)
, (9)

and hence, under the conditions of the theorem nE|V1|3 → 0.

Proof of Theorem 2

Let rn :=
√
nhpF̄ (ωn;x)g(x). Write

rn

(
T

(1,t)
n (x,K)

Γ(t+ 1)T
(1,0)
n (x, L)

− γt(x)

)

=
F̄ (ωn;x)g(x)

T
(1,0)
n (x, L)

{
rn

[
T

(1,t)
n (x,K)

Γ(t+ 1)F̄ (ωn;x)g(x)
− E

(
T

(1,t)
n (x,K)

Γ(t+ 1)F̄ (ωn;x)g(x)

)]

−γt(x)rn

[
T

(1,0)
n (x, L)

F̄ (ωn;x)g(x)
− E

(
T

(1,0)
n (x, L)

F̄ (ωn;x)g(x)

)]

+rn

[
E(T

(1,t)
n (x,K))− γt(x)Γ(t+ 1)E(T

(1,0)
n (x, L))

Γ(t+ 1)F̄ (ωn;x)g(x)

]}

=:
F̄ (ωn;x)g(x)

T
(1,0)
n (x, L)

{T1 + T2 + T3} .

From Theorem 1, we have

T1 + T2
D→ N

(
0,

γ2t(x)

Γ2(t+ 1)

[
Γ(2t+ 1)‖K‖22 + Γ2(t+ 1)‖L‖22 − 2Γ2(t+ 1)‖KL‖1

])
.
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Concerning T3, by using Lemma 1 and 2

T3 = rnγ
t(x)

{
b(ωn;x)

γ(x)ρ(x)

(
1

(1− ρ(x))t
− 1

)
(1 + o(1)) +O(h lnωn)

}
,

and hence under our assumptions, T3 → λ
√
g(x) γt−1(x)

ρ(x)

(
1

(1−ρ(x))t − 1
)
.

Further, from Theorem 1 we have that T
(1,0)
n (x, L)/(F̄ (ωn;x)g(x)) = 1 + oP(1).

Combined, the above gives that

rn

(
T

(1,t)
n (x,K)

Γ(t+ 1)T
(1,0)
n (x, L)

− γt(x)

)
D→ N

(
λ
√
g(x)

γt−1(x)

ρ(x)

(
1

(1− ρ(x))t
− 1

)
,

γ2t(x)

Γ2(t+ 1)

[
Γ(2t+ 1)‖K‖22 + Γ2(t+ 1)‖L‖22 − 2Γ2(t+ 1)‖KL‖1

])
.

Finally, after a straightforward application of the δ−method, Theorem 2 follows.

Proof of Theorem 3

First write

rn

(
T

(1,t+1)
n (x,K)

(t+ 1)T
(1,t)
n (x, L)

− γ(x)

)

=
F̄ (ωn;x)g(x)

T
(1,t)
n (x, L)

{
rn

[
T

(1,t+1)
n (x,K)

(t+ 1)F̄ (ωn;x)g(x)
− E

(
T

(1,t+1)
n (x,K)

(t+ 1)F̄ (ωn;x)g(x)

)]

−γ(x)rn

[
T

(1,t)
n (x, L)

F̄ (ωn;x)g(x)
− E

(
T

(1,t)
n (x, L)

F̄ (ωn;x)g(x)

)]

+rn

[
E(T

(1,t+1)
n (x,K))− γ(x)(t+ 1)E(T

(1,t)
n (x, L))

(t+ 1)F̄ (ωn;x)g(x)

]}

=:
F̄ (ωn;x)g(x)

T
(1,t)
n (x, L)

{T4 + T5 + T6} .

From Theorem 1, we have

T4 + T5
D→ N

(
0,
γ2t+2(x)Γ(2t+ 1)

t+ 1

[
2(2t+ 1)‖K‖22 + (t+ 1)‖L‖22 − 2(2t+ 1)‖KL‖1

])
.

Concerning T6, using Lemma 1 and 2, we have

T6 = rn

{
γt(x)Γ(t+ 1)b(ωn;x)

(1− ρ(x))t+1
(1 + o(1)) +O(h lnωn)

}
,

and hence under our assumptions, we have T6 → λ
√
g(x) γt(x)Γ(t+1)

(1−ρ(x))t+1 .

Now, according to Theorem 1, T
(1,t)
n (x, L)/(F̄ (ωn;x)g(x)) = γt(x)Γ(t+ 1) +oP(1). This achieves

the proof of Theorem 3.
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Proof of Theorem 4

First we will show that under the conditions of the theorem

rn

 T
(1,t1)
n (x,K1)

Γ(t1+1)T
(1,0)
n (x,L1)

− γt1(x)

T
(1,t2)
n (x,K2)

Γ(t2+1)T
(1,0)
n (x,L2)

− γt2(x)

 D→ N2(δ,Ω) (10)

whereafter the result will follow by a straightforward application of the δ–method. Using the
Cramér-Wold device, to establish (10) it is sufficient to show that for all ξ ∈ R2, ‖ξ‖ 6= 0,
we have that

ξ′rn

 T
(1,t1)
n (x,K1)

Γ(t1+1)T
(1,0)
n (x,L1)

− γt1(x)

T
(1,t2)
n (x,K2)

Γ(t2+1)T
(1,0)
n (x,L2)

− γt2(x)

 D→ N(ξ′δ, ξ′Ωξ). (11)

From Lemma 1 and 2, and Theorem 1 we have that T
(1,0)
n (x, Li)/(F̄ (ωn;x)g(x)) = 1 + oP(1),

i = 1, 2, and consequently, by the line of arguments of Theorem 2 we obtain

ξ′rn

 T
(1,t1)
n (x,K1)

Γ(t1+1)T
(1,0)
n (x,L1)

− γt1(x)

T
(1,t2)
n (x,K2)

Γ(t2+1)T
(1,0)
n (x,L2)

− γt2(x)

 = ξ1rn
T

(1,t1)
n (x,K1)− γt1(x)Γ(t1 + 1)T

(1,0)
n (x, L1)

Γ(t1 + 1)F̄ (ωn;x)g(x)

+ξ2rn
T

(1,t2)
n (x,K2)− γt2(x)Γ(t2 + 1)T

(1,0)
n (x, L2)

Γ(t2 + 1)F̄ (ωn;x)g(x)

+oP(1),

which can be further decomposed as

ξ′rn

 T
(1,t1)
n (x,K1)

Γ(t1+1)T
(1,0)
n (x,L1)

− γt1(x)

T
(1,t2)
n (x,K2)

Γ(t2+1)T
(1,0)
n (x,L2)

− γt2(x)

 =
ξ1

Γ(t1 + 1)
rn

[
T

(1,t1)
n (x,K1)

F̄ (ωn;x)g(x)
− E

(
T

(1,t1)
n (x,K1)

F̄ (ωn;x)g(x)

)]

−ξ1γ
t1(x) rn

[
T

(1,0)
n (x, L1)

F̄ (ωn;x)g(x)
− E

(
T

(1,0)
n (x, L1)

F̄ (ωn;x)g(x)

)]

+
ξ2

Γ(t2 + 1)
rn

[
T

(1,t2)
n (x,K2)

F̄ (ωn;x)g(x)
− E

(
T

(1,t2)
n (x,K2)

F̄ (ωn;x)g(x)

)]

−ξ2γ
t2(x) rn

[
T

(1,0)
n (x, L2)

F̄ (ωn;x)g(x)
− E

(
T

(1,0)
n (x, L2)

F̄ (ωn;x)g(x)

)]

+ξ1rn
E(T

(1,t1)
n (x,K1))− γt1(x)Γ(t1 + 1)E(T

(1,0)
n (x, L1))

Γ(t1 + 1)F̄ (ωn;x)g(x)

+ξ2rn
E(T

(1,t2)
n (x,K2))− γt2(x)Γ(t2 + 1)E(T

(1,0)
n (x, L2))

Γ(t2 + 1)F̄ (ωn;x)g(x)

+oP(1)

=: T7 + T8 + T9 + T10 + T11 + T12 + oP(1).
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From Theorem 1 we have that

T7 + T8 + T9 + T10
D→ N(0, ξ′Ωξ),

where Ω is a (2× 2) matrix with elements

ωi,i :=
γ2ti(x)

Γ2(ti + 1)

[
Γ(2ti + 1)‖Ki‖22 + Γ2(ti + 1)‖Li‖22 − 2Γ2(ti + 1)‖KiLi‖1

]
, i = 1, 2,

ω1,2 :=
γt1+t2(x)

Γ(t1 + 1)Γ(t2 + 1)
[Γ(t1 + t2 + 1)‖K1K2‖1 + Γ(t1 + 1)Γ(t2 + 1)‖L1L2‖1

−Γ(t1 + 1)Γ(t2 + 1)‖K1L2‖1 − Γ(t1 + 1)Γ(t2 + 1)‖K2L1‖1] ,

and by Lemma 1 and 2

T11 → ξ1δ1 := ξ1λ

√
g(x)γt1−1(x)

ρ(x)

(
1

(1− ρ(x))t1
− 1

)
T12 → ξ2δ2 := ξ2λ

√
g(x)γt2−1(x)

ρ(x)

(
1

(1− ρ(x))t2
− 1

)
.

Thus, we have established (11), with δ′ = (δ1, δ2), and, by the Cramér-Wold device, also (10).
Now, denoting

D :=

[
γ1−t1(x)/t1 0

0 γ1−t2(x)/t2

]
,

a straightforward application of the δ–method gives

rn

[
γ̂

(1)
n (x, t1,K1, L1)− γ(x)

γ̂
(1)
n (x, t2,K2, L2)− γ(x)

]
D→ N2(Dδ,DΩD),

which is the desired result.

Proof of Theorem 5

To establish the bivariate asymptotic normality we invoke the Cramér-Wold device, according
to which it is sufficient that for all ξ ∈ R2, ‖ξ‖ 6= 0, we have that

ξ′rn

[
γ̂

(2)
n (x, t1,K1, L1)− γ(x)

γ̂
(2)
n (x, t2,K2, L2)− γ(x)

]
D→ N2(λξ′µ(2), ξ′Σ̃

(2)
ξ).

First write

ξ′rn

[
γ̂

(2)
n (x, t1,K1, L1)− γ(x)

γ̂
(2)
n (x, t2,K2, L2)− γ(x)

]

=
F̄ (ωn;x)g(x)

T
(1,t1)
n (x, L1)

ξ1rn
T

(1,t1+1)
n (x,K1)− γ(x)(t1 + 1)T

(1,t1)
n (x, L1)

(t1 + 1)F̄ (ωn;x)g(x)

+
F̄ (ωn;x)g(x)

T
(1,t2)
n (x, L2)

ξ2rn
T

(1,t2+1)
n (x,K2)− γ(x)(t2 + 1)T

(1,t2)
n (x, L2)

(t2 + 1)F̄ (ωn;x)g(x)
.

23



From Lemma 1 and 2, and Theorem 1 we have that

T
(1,ti)
n (x, Li)

F̄ (ωn;x)g(x)
= γti(x)Γ(ti + 1)(1 + oP(1)), i = 1, 2,

and hence, by using the line of arguments of Theorem 3, we obtain that

ξ′rn

[
γ̂

(2)
n (x, t1,K1, L1)− γ(x)

γ̂
(2)
n (x, t2,K2, L2)− γ(x)

]
= ξ1rn

T
(1,t1+1)
n (x,K1)− γ(x)(t1 + 1)T

(1,t1)
n (x, L1)

γt1(x)Γ(t1 + 2)F̄ (ωn;x)g(x)

+ξ2rn
T

(1,t2+1)
n (x,K2)− γ(x)(t2 + 1)T

(1,t2)
n (x, L2)

γt2(x)Γ(t2 + 2)F̄ (ωn;x)g(x)

+oP(1),

which can be rewritten as

ξ′rn

[
γ̂

(2)
n (x, t1,K1, L1)− γ(x)

γ̂
(2)
n (x, t2,K2, L2)− γ(x)

]

=
ξ1

γt1(x)Γ(t1 + 2)
rn

[
T

(1,t1+1)
n (x,K1)

F̄ (ωn;x)g(x)
− E

(
T

(1,t1+1)
n (x,K1)

F̄ (ωn;x)g(x)

)]

− ξ1γ(x)(t1 + 1)

γt1(x)Γ(t1 + 2)
rn

[
T

(1,t1)
n (x, L1)

F̄ (ωn;x)g(x)
− E

(
T

(1,t1)
n (x, L1)

F̄ (ωn;x)g(x)

)]

+
ξ2

γt2(x)Γ(t2 + 2)
rn

[
T

(1,t2+1)
n (x,K2)

F̄ (ωn;x)g(x)
− E

(
T

(1,t2+1)
n (x,K2)

F̄ (ωn;x)g(x)

)]

− ξ2γ(x)(t2 + 1)

γt2(x)Γ(t2 + 2)
rn

[
T

(1,t2)
n (x, L2)

F̄ (ωn;x)g(x)
− E

(
T

(1,t2)
n (x, L2)

F̄ (ωn;x)g(x)

)]

+ξ1rn
E(T

(1,t1+1)
n (x,K1))− γ(x)(t1 + 1)E(T

(1,t1)
n (x, L1))

γt1(x)Γ(t1 + 2)F̄ (ωn;x)g(x)

+ξ2rn
E(T

(1,t2+1)
n (x,K2))− γ(x)(t2 + 1)E(T

(1,t2)
n (x, L2))

γt2(x)Γ(t2 + 2)F̄ (ωn;x)g(x)
+ oP(1)

=: T13 + T14 + T15 + T16 + T17 + T18 + oP(1).

From Theorem 1 we have that

T13 + T14 + T15 + T16
D→ N(0, ξ′Σ̃

(2)
ξ),

and, by Lemma 1 and 2,

T17 → ξ1λ

√
g(x)

(1− ρ(x))t1+1
, and T18 → ξ2λ

√
g(x)

(1− ρ(x))t2+1
.

By combining the above results we have that

ξ′rn

[
γ̂

(2)
n (x, t1,K1, L1)− γ(x)

γ̂
(2)
n (x, t2,K2, L2)− γ(x)

]
D→ N2(λξ′µ(2), ξ′Σ̃

(2)
ξ),

from which the theorem follows.
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Proof of Theorem 6

We only give the proof of the result for the case where τ 6= 0. The case τ = 0 can be obtained
in an analogous way and is for brevity omitted from the paper.

Using Lemma 1 and 2, and Theorem 1, we obtain

T
(1,1)
n (x,K1)

T
(1,0)
n (x, L1)

= γ(x)

{
1 +

b(ωn;x)

γ(x)ρ(x)

[
1

1− ρ(x)
− 1

]
(1 + o(1)) +O(h lnωn) +OP

(
1

rn

)}
,

and, by Taylor’s theorem,(
T

(1,1)
n (x,K1)

T
(1,0)
n (x, L1)

)τ
= γτ (x)

{
1 +

τb(ωn;x)

γ(x)ρ(x)

[
1

1− ρ(x)
− 1

]
(1 + o(1)) +O(h lnωn) +OP

(
1

rn

)}
.

Similarly(
T

(1,2)
n (x,K2)

2T
(1,0)
n (x, L2)

)τ/2
= γτ (x)

{
1 +

τb(ωn;x)

2γ(x)ρ(x)

[
1

(1− ρ(x))2
− 1

]
(1 + o(1))

+O(h lnωn) +OP

(
1

rn

)}
,(

T
(1,3)
n (x,K3)

6T
(1,0)
n (x, L3)

)τ/3
= γτ (x)

{
1 +

τb(ωn;x)

3γ(x)ρ(x)

[
1

(1− ρ(x))3
− 1

]
(1 + o(1))

+O(h lnωn) +OP

(
1

rn

)}
.

We now easily obtain that under the conditions of the theorem(
T

(1,1)
n (x,K1)

T
(1,0)
n (x,L1)

)τ
−
(
T

(1,2)
n (x,K2)

2T
(1,0)
n (x,L2)

)τ/2
b(ωn;x)

P→ −τγτ−1(x)
ρ(x)

2(1− ρ(x))2
,(

T
(1,2)
n (x,K2)

2T
(1,0)
n (x,L2)

)τ/2
−
(
T

(1,3)
n (x,K3)

6T
(1,0)
n (x,L3)

)τ/3
b(ωn;x)

P→ −τγτ−1(x)
ρ(x)(3− ρ(x))

6(1− ρ(x))3
,

and hence

Rn(x;K,L, τ)
P→ 3(1− ρ(x))

3− ρ(x)
.

Finally, the consistency of ρ̂n(x;K,L, τ) follows from a straightforward application of the con-
tinuous mapping theorem.
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Figure 1: (a) Components of the asymptotic standard deviation v1 (solid line) and v2 (dashed
line) as a function of t, (b) multiplicative components of the asymptotic bias ((1− ρ(x))−t −
1)/(tρ(x)) (solid line) and (1− ρ(x))−(t+1) (dashed line), for ρ(x) = −1, as a function of t.

Estimator Oracle Data-driven

γ̂
(2)
n (x, 0,K,K) 0.00555 0.01930

γ̂
(2)
n (x, α

(2)
BC(−1)) 0.00266 0.00608

γ̂
(2)
n (x, α

(2)
BC(−2)) 0.00468 0.00648

γ̂
(2)
n (x, α

(2)
BC(−5)) 0.00532 0.00729

γ̂
(2)
n (x, α

(2)
BC(ρ̂n(x;K,K, 0.5))) 0.00691 0.00621

Table 1: Average of ∆2(γ̂(.), γ(.)) for γ̂
(2)
n (x, 0,K,K) and γ̂

(2)
n (x, αBC(ρ(x))) with oracle and

data driven methods.

29



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Benchmark: ρ(x) = −1 (True Value)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) No bias correction

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(c) Mis-specified: ρ(x) = −2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d) Using Estimated Second Order Param-
eter

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(e) Mis-specified: ρ(x) = −5

0.0 0.2 0.4 0.6 0.8 1.0

5
4

3
2

1
0

1

(f) Estimated Second Order Parameter

Figure 2: Burr simulation, oracle criterion: boxplots of (a) γ̂
(2)
n (x, α

(2)
BC(−1)) , (b)

γ̂
(2)
n (x, 0,K,K), (c) γ̂

(2)
n (x, α

(2)
BC(−2)), (d) γ̂

(2)
n (x, α

(2)
BC(ρ̂n(x;K,K, 0.5))), (e) γ̂

(2)
n (x, α

(2)
BC(−5))

and (f) ρ̂n(x;K,K, 0.5).
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Figure 3: Burr simulation, data driven criterion: boxplots of (a) γ̂
(2)
n (x, α

(2)
BC(−1)) , (b)

γ̂
(2)
n (x, 0,K,K), (c) γ̂

(2)
n (x, α

(2)
BC(−2)), (d) γ̂

(2)
n (x, α

(2)
BC(ρ̂n(x;K,K, 0.5))), (e) γ̂

(2)
n (x, α

(2)
BC(−5))

and (f) ρ̂n(x;K,K, 0.5).
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Figure 4: Asymptotic standard deviation of γ̂
(2)
n (x, α

(2)
BC(ρ)) as a function of ρ.
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