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Abstract. This paper focuses primarily on temperature extremes measured at 24 european stations with
at least 90 years of data. Here, the term extremes refers to rare excesses of daily maxima and minima.
As mean temperatures in this region have been warming over the last century, it is mechanical that this
positive shift can be detected also in extremes. After removing this warming trend, we focus on the
question of determining if other changes are still detectable in such extreme events. As we do not want to
hypothesize any parametric form of such possible changes, we propose a new non-parametric estimator
based on the Kullback-Leibler divergence tailored for extreme events. The properties of our estimator
are studied theoretically and tested with a simulation study. Our approach is also applied to seasonal
extremes of daily maxima and minima for our 24 selected stations.

1. Introduction

In a global warming context, climatologists, flood planners, insurers and risk modellers have been
increasingly interested in determining whether the upper tail distribution of some meteorological
quantity has changed over time at some specific places (Zwiers et al., 2011; Kharin et al., 2007). As
a motivating example, we focus on 24 weather stations that have at least 90 years of daily maxima
and minima temperature measurements, see Table 1 and black dots in Figure 1.

A typical inquiry in impact studies is to wonder if high temperatures over the current climatology
(i.e. the last thirty years) significantly differ from the ones measured during previous time periods.
As a positive shift in the mean behaviour of temperatures has been observed (e.g., see Figure 1 in
Abarca-Del-Rio and Mestre, 2006), such a warming automatically translates into higher absolute
temperatures (e.g., Shaby and Reich, 2013; Jarušková and Rencová, 2008; Dupuis, 2012). This
mean behaviour being removed, is it still possible to detect changes in high extreme temperatures
over the last century? This important climatological question can be related to the investigation of
Hoang et al. (2009) who wondered if the trends in extremes are only due to trends in mean and
variance of the whole dataset. Our scope is different here. We neither aim at identifying smooth
trends in extremes nor at linking changes between variances and upper quantiles. Our objective
differs in the sense that we only want to determine if there is a change in extremes distributions.
To explore such a question, we would like to assume very few distributional hypotheses, i.e. not
imposing a specific parametric density, and to propose a fast statistical non-parametric approach
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Table 1. Characteristics of 24 weather stations from the European Climate Assessment & Dataset
project http://eca.knmi.nl/dailydata/predefinedseries.php. The heights are expressed in
meters.

Austria
Station name Latitude Longitude Height First year Last year Missing years

Kremsmunster +48:03:00 +014:07:59 383 1876 2011 -
Graz +47:04:59 +015:27:00 366 1894 2011 2

Salzburg +47:48:00 +013:00:00 437 1874 2011 5
Sonnblick +47:03:00 +012:57:00 3106 1887 2011 -

Wien +48:13:59 +016:21:00 199 1856 2011 2
Denmark

Station name Latitude Longitude Height First year Last year Missing years
Koebenhavn +55:40:59 +012:31:59 9 1874 2011 -

France
Station name Latitude Longitude Height First year Last year Missing years

Montsouris +48:49:00 +002:19:59 77 1900 2010 -
Germany

Station name Latitude Longitude Height First year Last year Missing years
Bamberg +49:52:31 +010:55:18 240 1879 2011 -

Berlin +52:27:50 +013:18:06 51 1876 2011 1
Bremen +53:02:47 +008:47:57 4 1890 2011 1
Dresden +51:07:00 +013:40:59 246 1917 2011 -

Frankfurt +50:02:47 +008:35:54 112 1870 2011 1
Hamburg +53:38:06 +009:59:24 11 1891 2011 -
Karlsruhe +49:02:21 +008:21:54 112 1876 2011 2
Potsdam +52:22:59 +013:04:00 100 1893 2011 -

Zugspitze +47:25:00 +010:58:59 2960 1901 2011 1
Italy

Station name Latitude Longitude Height First year Last year Missing years
Bologna +44:30:00 +011:20:45 53 1814 2010 -

Netherlands
Station name Latitude Longitude Height First year Last year Missing years

De Bilt +52:05:56 +005:10:46 2 1906 2011 -
Den Helder +52:58:00 +004:45:00 4 1901 2011 -

Eelde +53:07:24 +006:35:04 5 1907 2011 -
Vlissingen +51:26:29 +003:35:44 8 1906 2011 2

Slovenia
Station name Latitude Longitude Height First year Last year Missing years

Ljubjana +46:03:56 +014:31:01 299 1900 2011 5
Switzerland

Station name Latitude Longitude Height First year Last year Missing years
Basel +47:33:00 +007:34:59 316 1901 2011 -

Lugano +46:00:00 +008:58:00 300 1901 2011 -
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Figure 1. Weather station locations described in Table 1 (source: ECA&D database).

that could be implemented to large datasets. Although no large outputs from Global climate models
will be treated here, we keep in mind computational issues when proposing the statistical tools
developed therein.

One popular approach used in climatology consists in building a series of so-called extreme
weather indicators and in studying their temporal variabilities in terms of frequency and intensity
(e.g., Alexander et al., 2006; Frich et al., 2002). A limit of working with such indices is that they of-
ten focus on the “moderate extremes" (90% quantile or below), but not on upper extremes (above the
95% quantile). In addition, their statistical properties have rarely been derived. A more statistically
oriented approach to analyze large extremes is to take advantage of Extreme Value Theory (EVT).
According to Fisher and Tippett’s theorem (1928), if (X1, . . . ,Xn) is an independent and identically
distributed sample of random variables and if there exists two sequences an > 0 and bn ∈ R and a
non degenerate distribution Gµ,σ,ξ such that

lim
n→∞

P
(

max
i=1,...,n

Xi−bn

an
≤ x
)
= Gµ,σ,ξ (x) ,

then Gµ,σ,ξ belongs to the class of distributions

Gµ,σ,ξ(x) =

 exp
{
−
[
1+ξ

( x−µ
σ

)]− 1
ξ

+

}
if ξ 6= 0

exp
{
−exp

[
−
( x−µ

σ

)]
+

}
if ξ = 0

which is called the Generalized Extreme Value distributions (GEV). The shape parameter, often
called ξ in environmental sciences, is of primary importance. It characterizes the GEV tail behaviour
(see Coles, 2001; Beirlant et al., 2004, for more details). If one is ready to assume that temperature
maxima for a given block size (day, month, season, etc) are approximately GEV distributed, then
it is possible to study changes in the GEV parameters themselves (e.g. Fowler and Kilsby, 2003;
Kharin et al., 2007).
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This GEV based method is attractive because it takes advantage of EVT and hypothesis testing
can be clearly implemented. For example, Jarušková and Rencová (2008) studied test statistics for
detecting changes in annual maxima and minima temperature series measured at five meteorological
sites—Bruxelles, Cadiz, Milan, St. Petersburg, and Stockholm. Three limitations of such GEV-
based approaches can be identified. It is tailored for maxima and this discards all but one observation
per block, e.g. one value out of 365 days for annual maxima. It imposes a fixed GEV form that
may be too restrictive for small blocks (the GEV being a limiting distribution). Not one but three
parameters have to be studied to detect changes in a time series. Regarding the first limitation,
a classical solution in EVT (e.g., Coles, 2001) is to work with excesses above a high threshold
instead of block maxima. The tail (survival) distribution of such excesses is usually modelled by a
Generalized Pareto (GP) tail (Pickands, 1975)

Hσ,ξ(y) =

{ (
1+ξ

y
σ

)−1/ξ
, if ξ 6= 0,

exp
(
− y

σ

)
, if ξ = 0,

where the scale parameter σ is positive and y ≥ 0 if the shape parameter ξ is positive, and y ∈
[0,−σ/ξ[ when ξ < 0. Still, the two other limitations remain for the GP model.

In this paper, we move away from imposing a fixed parametric density form. Having no paramet-
ric density at our disposal obviously implies that it is impossible to monitor changes in parameters
(e.g. Grigga and Tawn, 2012). Another strategy has to be followed to compare the distributional
differences between extremes. In information theory (e.g., Burnham and Anderson, 1998) , it is
a common endeavour to compare the probability densities of two time periods by computing the
entropy (Kullback Leibler directed divergence)

I( f ;g) = E f

{
log
(

f (X)

g(X)

)}
,

where X represents the random vector with density f and g another density. Although not a true
distance, this expectation provides relevant information on how close g is from f . Kullback (1968)
coined the term “directed divergence" to distinguish it from the divergence defined by

D( f ;g) = I( f ;g)+ I(g; f ),

which is symmetric relative to f and g. We will follow this terminology. Working with the entropy
presents a lot of advantages. It is a notion shared by many different communities : physics, climatol-
ogy, statistics, computer sciences and so on. It is a concise one-dimensional summary. It is clearly
related to model selection and hypothesis testing (e.g. Burnham and Anderson, 1998). For example,
the popular Akaike criterion (Akaike, 1974) can be viewed throughout the Kullback Leibler diver-
gence lenses. For some distributions, explicit expressions of the divergence can be derived. This
is the case if g and f correspond to two Gaussian multivariate densities (e.g., Penny and Roberts,
2000). In terms of extremes, if g and f represent two univariate GP densities with identical scale
parameters and two different positive shape parameters, ξ f and ξg, then we can write

I( f ;g) =−1−ξ f + sign(ξ f −ξg)

(
1+

1
ξg

)∣∣∣∣ξ f

ξg
−1
∣∣∣∣−1/ξ f ∫ 1

ξg
ξ f

t−1/ξ f |1− t|1/ξ f−1 dt. (1)

Although we will not assume that excesses follow explicitly a GP in our method, Equation (1) will
be used in our simulations as a test case.
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In this paper, our goal is to provide and study a non-parametric estimator of the divergence for
large excesses. Fundamental features in an extreme value analysis are captured by the tail behaviour.
In its original form, the divergence is not expressed in terms of tails but in function of probability
densities. One important aspect of this work is to propose an approximation of the divergence
in terms of the tail distributions, see Section 2. This leads to a new non-parametric divergence
estimator tailored for excesses. Its properties will be studied in Section 3. The last section is
dedicated to the analysis of a few simulations and of temperature extremes recorded at the stations
plotted in Figure 1. All proofs are deferred to the Appendix.

2. Entropy for excesses

Our main interest resides in the upper tail behaviour and a first task is to make the divergence
definition relevant to this extreme values context. This is done by replacing the densities f and g by
densities of excesses above a certain high threshold u. We need a few notations to describe precisely
this adapted divergence.

DEFINITION 1. Let X and Y be two absolutely continuous random variables with density f , resp.
g, and tail F(x) = P(X > x), resp. G(y) = P(Y > y). Denote the random variable above the
threshold u as Xu = [X |X > u] with density fu(x) = f (x)/F(u) and tail Fu(x) = F(x)/F(u) for
x ∈ (u,xF) where xF is the upper endpoint of F. The same type of notations can be used for Yu =
[Y |Y > u]. A suitable version of the directed divergence for extreme values is then

I( fu;gu) = E fu

{
log
(

fu(Xu)

gu(Xu)

)}
=

1
F(u)

∫ xF

u
log
(

fu(x)
gu(x)

)
f (x)dx.

ASSUMPTION 1. We always assume in this paper that the densities f and g are chosen such that
the two directed divergences I( fu;gu) and I(gu; fu) are finite and in particular, both upper endpoints
are equal to τ = xG = xF in order to compute the ratios fu(x)

gu(x)
and gu(x)

fu(x)
for large x > u.

If those assumptions are not satisfied in practice, this does not necessarily stop us from answer-
ing our climatological question: deciding if current temperature extremes over central Europe differ
from past ones. If the difference |xF−xG| is large, then the divergence is infinite and there is no need
to develop complex statistical procedures to detect differences between current and past extremes.
If the difference |xF −xG| becomes smaller and smaller, it is more and more difficult to determine if
the divergence is infinite from a given finite sample. For the limiting case, xF = xG, the divergence
is finite and our estimate almost surely converges, see THEOREM 1. This case corresponds to our
main assumption and it is particularly relevant about temperature extremes over central Europe be-
cause it is physically possible that an upper temperature bound exists for this region, (e.g., Shaby
and Reich, 2013; Jarušková and Rencová, 2008).

As previously mentioned, we would like to express the divergence in terms of survival functions
which are more adapted to extremes than densities. The next proposition reaches this goal by
providing an approximation of the divergence in function of F and G.

PROPOSITION 1. If

lim
u→τ

τ∫
u

(
log

f (x)
F(x)

− log
g(x)
G(x)

)
( fu(x)−gu(x))dx = 0 (2)
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then the divergence D( fu;gu) = I( fu;gu)+ I(gu; fu) is equivalent, as u ↑ τ, to the quantity

K( fu;gu) =−L( fu;gu)−L(gu; fu)

where

L( fu;gu) = E f

{
log

G(X)

G(u)

∣∣∣∣X > u
}
+1. (3)

For the special case of GP densities, we can explicitly compute from (1) the true divergence
D( fu;gu) and its approximation K( fu;gu). In Figure 2, the relative error |K( fu;gu)−D( fu;gu)|/D( fu;gu)
when f and g correspond to two GP densities with a unit scale parameter and ξ f = 0.1 is displayed
for different threshold values (x-axis). The solid, dotted and dash-dotted lines correspond to shape
parameters ξg = 0.2,0.15 and 0.12, respectively.

As the threshold increases, the relative error between K( fu;gu) and D( fu;gu) rapidly becomes
small. The difference between ξ f = 0.1 and ξg does not play an important role.

The idea behind condition (2) is the following one. If log
(

f (x)·G(x)
F(x)·g(x)

)
tends to a constant rapidly

enough, then the integral
∫

τ

u cst× ( fu(x)−gu(x))dx equals zero because
∫

τ

u fu(x)dx =
∫

τ

u gu(x)dx =
1. Is condition (2) satisfied for a large class of densities? The coming two subsections answer
positively to this inquiry.

2.1. Checking condition (2)
In EVT, three types of tail behaviour (heavy, light and bounded) are possible and correspond to
the GP sign of ξ, positive, null and negative, respectively. Those three cases have been extensively
studied and they have been called the three domains of attraction, Fréchet, Gumbel and Weibull
(e.g., see Chapter 2 of Embrechts et al., 1997). The next two propositions focus on the validity of
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condition (2) for tails belonging to the Fréchet and Weibull domains of attraction, respectively. The
Gumbel case that contains a lot of classical densities like the Gamma and Gaussian ones is more
complex to deal with and we opt for a different approach based on stochastic ordering to check
condition (2) for those types of densities.

PROPOSITION 2. Suppose that the random variables X and Y belong to the Fréchet max-domain
of attraction, i.e. F and G are regularly varying,

lim
t→∞

F(tx)
F(t)

= x−α and lim
t→∞

G(tx)
G(t)

= x−β,

for all x > 0 and some α > 0 and β > 0. We also impose the following classical second order
condition (see e.g. de Haan and Stadtmüller, 1996)

lim
t→∞

F(tx)
F(t) − x−α

qF(t)
= x−α xρ−1

ρ
and lim

t→∞

G(tx)
G(t)
− x−β

qG(t)
= x−β xη−1

η
,

for some ρ < 0 and η < 0 and some functions qF 6= 0 and qG 6= 0. If the functions

B(x) =
x f (x)
F(x)

−α and C(x) =
xg(x)
G(x)

−β,

are eventually monotone, then condition (2) is satisfied.

PROPOSITION 3. Suppose that the random variables X and Y belong to the Weibull max-domain
of attraction and have the same finite upper endpoints. Condition (2) is satisfied if the assumptions
of Proposition 2 hold for the the tail functions F∗(x) := F

(
τ− x−1

)
and G∗ (x) := G

(
τ− x−1

)
.

To treat the most classical densities belonging to the Gumbel domain of attraction, we need
to recall the definition of the asymptotic stochastic ordering, (e.g., see Shaked and Shanthikumar,
1994). Having Xu ≥st Yu for large u means P(Xu > t)≥ P(Yu > t) , for all t > u and for large u.

PROPOSITION 4. Suppose that Xu ≥st Yu for large u and define

α(x) = log
(

f (x)
F(x)

)
− log

(
g(x)
G(x)

)
.

If E(Xu), E(α(Xu)) and E(α(Yu)) are finite and the derivative α′(·) is monotone and goes to zero as
x ↑ τ, then (2) is satisfied.

The proof of this proposition relies on a probabilistic version of the mean value theorem, (e.g.
di Crescenzo, 1999). Applying this proposition can be straightforward in some important cases. For
example, suppose that X and Y follow a standard exponential and standard normal distributions,
respectively. We have E(Xu) = 1+ u, E(Yu) =

φ(u)
Φ(u)

and α′ (x) = x− φ(x)
Φ(x)

which is monotone and
goes to zero as x ↑ ∞. For large u, Xu ≥st Yu. Hence, condition (2) is satisfied.

Overall, condition (2) appears to be satisfied for most practical cases. In a nutshell, this condition
tells us that our approximation can be used whenever the two densities of interest are comparable in
their upper tails. For the few cases for which this condition is not satisfied, the discrepancy between
the two tails is likely to be large and they can be easily handled for our climatological applications
by just watching the two plotted time series under investigation and deduce that they are different.
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3. Estimation of the divergence

In terms of inference, the key element given by Proposition 1 is captured by Equation (3). This
expectation only depends on G(X) and consequently, one can easily plug in an empirical estimator
of G to infer (3). More precisely, suppose that we have at our disposal two independent samples
of size n and m, X = (X1, . . . ,Xn)

T and Y = (Y1, . . . ,Ym)
T . In our climate example, this could

correspond to temperatures before 1980 and after 1980. To estimate G(t), we denote Gm(t) =
∑

m
j=1 1l{Y j>t}/m the classical empirical tail. To avoid taking the logarithm of zero in logG(X), we

slightly modify it by introducing

G̃m(t) := 1− 1
m+1

m

∑
j=1

1l{Y j≤t} =
m

m+1
Gm(t)+

1
m+1

.

Our estimator of (3) is then simply defined by

L̂( fu;gu) = 1+
1

Nn

n

∑
i=1

log

(
G̃m(Xi∨u)

G̃m(u)

)
, and K̂( fu;gu) =−L̂( fu;gu)− L̂(gu; fu), (4)

where Nn represents the number of data points above the threshold u in the sample X. To avoid
dividing by zero when calculating L̂( fu;gu), we use the convention 0/0 = 0 whenever Nn is equal to
zero in (4). The estimator L̂( fu;gu) is non-parametric and it has the advantage of being extremely
fast to compute. Its asymptotic properties need to be derived. One non trivial element for this
theoretical task comes from the mixing of the two samples in (4) that makes the random variables
Gm(Xi∨u) dependent.

THEOREM 1. Assume that F and G are continuous. Let u < τ fixed and suppose that the means

E f

(
log
(

G(X ∨u)
G(u)

)2
)

and Eg

(
log
(

F(Y ∨u)
F(u)

)2
)

are finite, n
m → c ∈ (0,∞) and that there exists two non increasing sequences of positive numbers,

kn/n and `m/m, satisfying

kn ≥max
(

logn,8nF
(

G←
(
`m

m

)))
,

kn

n
logn→ 0 and

`m

log logm
→ ∞.

Then we have
L̂( fu;gu)−L( fu;gu) = o(1) a.s.

and
K̂( fu;gu)−K( fu;gu) = o(1) a.s.

This theorem requires the existence of four sequences k(1)n , `
(1)
m and k(2)m , `

(2)
n . In the specific case

of strict Pareto tails F(x) = x−α and G(x) = x−β with α,β > 0, a possible choice for these sequences
is

k(1)n =
n

logn log logn
and `

(1)
m =

m
(8logm log logm)β/α

k(2)m =
m

logm log logm
and `

(2)
n =

n
(8logn log logn)α/β

.
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4. Applications

4.1. Simulations
To compute K̂( fu;gu) in (4) in our simulation study, we need to generate excesses from two differ-
ent densities. A first choice is to choose two unit scale parameter GP densities with different shape
parameters because we have the explicit expressions of L( f ;g), and K( f ;g) for such distributions
(see Equation (1)). To explore the Fréchet case, we arbitrarily set ξ f = 0.15. This corresponds to
a typical value for daily precipitation extremes (e.g., see Table 1 in Katz et al., 2002). Concerning
the shape parameter for g, it varies from ξg = 0.05 to 0.3. For each value of ξ f = 0.15 and ξg, two
samples with m = n are simulated and our estimator K̂( fu;gu) defined from (4) can be calculated.
We repeat this experiment 500 times for three different sample sizes n ∈ {500,1000,5000}. The
classical Mean Square Error (MSE) can be inferred from the 500 estimates of K̂( fu;gu). The result-
ing MSE is plotted in the left panel of Figure 3. As expected, the MSE decreases as the sample size
increases. The estimation of K( f ;g) improves whenever the two shape parameters are close to each
other.
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Figure 3. Mean Square Error of K̂( fu;gu) based on (4) and computed from 500 simulations of two GP dis-
tributed samples of sizes n ∈ {500,1000,5000} and n = m. The left and right panels correspond to a Fréchet
and Weibull cases, ξ f = 0.15 and ξ f =−0.15, respectively. The x-axis corresponds to different shape param-
eter values of ξg.

The same type of conclusions can be drawn for the Weibull domain. For this case, we set ξ f =
−0.15. Shape parameter values for temperature extremes usually belong to the interval [−0.3,−0.1]
(e.g., see tables 6 and 7 in Jarušková and Rencová, 2008). In our simulations, ξg varies from−0.3 to
−0.05 in the right panel of Figure 3. Overall, those MSE are small, but the two compared densities
are GP distributed. To move away from this ideal situation, we keep the same GP density for g(·)
with ξg = 0.1 (or ξg =−0.1 for the Weibull case) but f corresponds to a Burr with survival function

F(x) =
( 1

1+xτ

)λ
for x > 0 or to a reverse Burr defined by F(x) =

(
1

1+(1−x)−τ

)λ

for x < 1. We fix
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λ = .5 and τ = 20 in order to have ξ = 1
λτ

= 0.1 for the Burr and ξ = − 1
λτ

= −0.1 for the Reverse
Burr. This design allows to assess the impact of the threshold choice that is represented in terms of
quantiles on the x-axis of Figure 4.
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Figure 4. Mean Square Error of K̂( fu;gu) based on (4) and computed from 500 simulations with sizes
n ∈ {500,1000,5000} and n = m. The left panel compares a GP distribution with ξ f = 0.1 and a Burr dis-
tribution. The right panel compares a GP distribution with ξ f =−0.1 and a reverse Burr distribution. The x-axis
corresponds to different thresholds (expressed as the mean of the 95% quantiles of the X’s and Y’s samples).

If the sample size is large, the MSE remains constant over a wide range of thresholds. For small
sample sizes, special caution have to be applied for the heavy tail case. The right panel of Figure 4
dealing with the Weibull case clearly shows a rapid increase of the MSE for n = 500.

Concerning our main question on how to decide if two time series have different extremes,
Table 2 displays the number of false positive (grey columns) and negative at a confidence level of
95% for four different GP distributions situations: the so-called Weibull-Weibull case (ξ f = −.1
and ξg < 0), the Fréchet-Fréchet case (ξ f = .1 and ξg > 0), the Gumbel-Weibull case (ξ f = 0 and
ξg < 0) and the Gumbel-Fréchet case (ξ f = 0 and ξg > 0). The scale parameter σ is taken as −ξ

in the Weibull-Weibull case (to make sure that the endpoints of the two distributions are the same)
and set to one in all other cases. To see the influence of the sample sizes, m = n can take five values
(see the first column of Table 2). For each row of n and each column of ξg, the divergence K̂( fu;gu)
between the two samples is computed. To derive significance levels, we use a random permutation
procedure (e.g., Davis et al., 2012). By randomly permuting observations between two samples,
the type I error under the null of no distributional difference can be controlled. Repeating 200 times
this type of resampling leads to 200 values of K̂H0( fu;gu) for which the 95% quantile level can be
inferred. The original K̂( fu;gu) can be compared to this quantile and a decision can then be made.
The bold values in Table 2 correspond to the number of wrong decisions made by the test based on
the divergence. As we have implemented our procedure on 1000 replicas, we expect in average to
count 50 false positives at the 95% level, i.e. the grey column should contain a number close to 50.
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Outside of the grey columns, a value near zero indicates a good performance.
To benchmark our approach, we have also computed the classical non-parametric Kolmogorov-

Smirnov, Wilcoxon rank sum and Wilcoxon signed rank tests (non bold values in Table 2) and
they can be compared to our divergence based approach. Table 2 can teach us a few lessons. The
Kolmogorov-Smirnov and Wilcoxon rank sum tests are overall worse than the others, especially
the Wilcoxon rank sum. The Wilcoxon signed rank test and our approach provide similar results
for the Weibull-Weibull case. With a sample size of 200, one can distinguish ξ f = −.1 from ξg ∈
{−.2,−.05}, but not from ξg ∈ {−.15,−.08}, those values being too close to −.1. For larger
sample sizes, both approaches work well. The story is very different for the heavy tail case (Fréchet-
Fréchet). One cannot expect differentiating ξ f = .1 from any of the values of ξg of the table for small
and moderate sample sizes. For n = 10,000, our divergence estimate is able to identify a difference
when ξg ∈ {.05,0.15, .2}. This is not the case for the Wilcoxon signed rank test which is only able
to detect a difference when ξg = 0.2. Finally, if we are in the Gumbel case (ξ f = 0), the statistic
K̂( fu;gu) works adequately for n = 200 if ξg ≤−0.3. It is also the case for n = 500 and ξg ≥ .2. In
comparison, the Wilcoxon test has a much smaller validity range.

In summary, besides telling us that classical tests do not perform well but for Weibull-Weibull
case, Table 2 emphasizes the difficulty of identifying small changes in non-negative shape parame-
ters. For such a task, very large sample sizes are needed. Concerning our temperatures application,
previous studies (e.g., Jarušková and Rencová, 2008) showed that the shape parameter of daily
maxima is either below or equal to zero, i.e. we are in a Weibull-Weibull or a Gumbel-Weibull case.
In the coming application section, we will deal with 3× 30× 90 = 8,100 daily measurements per
season (a season has three months, a month around thirty days and we have about 90 years of data
for most stations). We will compare periods of 30 years and work with a 95% quantile threshold
which will provide approximately 130 extremes per season for each period. According to Table
2, this will enable us to explore the Weibull-Weibull case and the Gumbel-Weibull case since the
results given by the divergence-based test are acceptable in these two cases for this kind of sample
size.
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Figure 5. Paris weather station: evolution of the divergence estimator (black curve), K̂( fu;gu), in function of
the years [1900+ t,1929+ t] with t ∈ {1, ...,80}. The reference period is the current climatology, [1981, 2010].
The dotted line represents the 95% significant level obtained by a random permutation procedure.

4.2. Extreme temperatures

In geosciences, the yardstick period called a climatology is made of 30 years. So, we would like to
know how temperature maxima climatologies have varied over different 30 year periods. To reach
this goal, for any t ∈ {1, ...,80}, we compare the period [1900+ t,1929+ t] with the current clima-
tology [1981, 2010]. All our daily maxima and minima come from the ECA&D database (European
Climate Assessment & Dataset project http://eca.knmi.nl/dailydata/predefinedseries.php).
This database contains thousands of stations over Europe, but most measurement records are very
short or incomplete and consequently, not adapted to the question of detecting changes in extremes.
In this context, we only study stations that have at least 90 years of data, i.e. the black dots in Figure
1. As previously mentioned in the Introduction section, a smooth seasonal trend was removed in
order to discard warming trends due to mean temperature changes. This was done by applying a
classical smoothing spline with years as covariate for each season and station (R-package mgcv).
The resulting trends appear to be coherent with mean temperature behaviour observed at the na-
tional and north-hemispheric levels (e.g., see Figure 5 in Abarca-Del-Rio and Mestre, 2006): an
overall warming trend with local changes around 1940 and around 1970.

As a threshold needs to be chosen, we set it as the mean of the 95% quantiles of the two cli-
matologies of interest. We first focus on one single location, the Montsouris station in Paris, where
daily maxima of temperatures have been recorded for at least one century. Figure 5 displays the
estimated K̂( fu;gu) on the y-axis and years on the x-axis with t ∈ {1, ...,80}. We are going to use
this example to explain how the grey circles on figures 6 and 7 have been obtained.

Similarly to our simulation study, a random permutation procedure with 200 replicas is run to
derive the 95% confidence level. One slight difference with our simulation study is that instead
of resampling days we have randomly resampled years in order to take care of serial temporal
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Figure 6. The black dots represent the 24 locations described in Table 1 and come from the ECA&D database.
The way the circles are built is explained in Section 4.2.

correlations (it is unlikely that daily maxima are dependent from year to year). From Figure 5, the
Fall season in Paris appears to be significantly different at the beginning of the 20th century than
today. To quantify this information, it is easy to compute how long and how much the divergence
is significantly positive. More precisely, we count the number of years for which K̂( fu;gu) resides
above the dotted line, and we sum up the divergence during those years (divided by the total number
of years). Those two statistics can be derived for each station and for each season. In figures 6 and
7, the circle width and diameter correspond to the number of significant years and to the cumulative
divergence over those years, respectively. For example, temperature maxima at the Montsouris
station in Figure 5 often appear significantly different during Spring time (the border of the circle is
thick in Figure 6) but the corresponding divergences are not very high on average. On the contrary,
there are very few significant years during the Fall season, but the corresponding divergences are
much higher (larger diameters with thinner border in Figure 6). This spatial representation tends
to indicate that there are geographical and seasonal differences. For daily maxima, few locations
witnessed significant changes in Summer. In contrast, the Winter season appears to have witnessed
extremes changes during the last century. This is also true for the Spring season, but to a lesser
degree. Daily minima divergences plotted in Figure 7 basically follows an opposite pattern, the
Summer and Fall seasons appear to have undergone the most detectable changes.
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Figure 7. Same as Figure 6, but for daily minima.
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5. Discussions

Recently, there have been a series of articles dealing with temperature extremes over Europe (e.g.,
Shaby and Reich, 2013; Jarušková and Rencová, 2008) and it is natural to wonder if our results
differ from those past studies. The two main differences are the object of study and the variable of
interest. Here, the latter corresponds to seasonal excesses obtained after removing a trend and the
former focuses on determining if current excesses are different from the past ones (albeit the warm-
ing trend present in mean temperatures). Shaby and Reich (2013) aimed at a different objective.
They solely focused on yearly maxima (not seasonal component) and took advantage of a flexible
spatial max-stable model to pool information from around 1,000 stations (most of the sites appear
after 1950 and this puts a stronger weight on the last 50 years). They found that “the distribution
of extreme high temperatures seems to have shifted to the right (indicating warmer temperatures) in
central Europe and Italy, while the distribution seems to have shifted to the left in Denmark, large
swaths of Eastern Europe, and small pockets of Western Europe." It is not clear, if those shifts are
due to changes in their GEV location parameters or to other alterations of the overall distribution
shape. Hence, our study provides a complementary view by zooming on second order characteris-
tics. Modifications of the distribution shape could have potentially dire straits consequences. We
lack the spatial component for two reasons. Practically, stations with a very long record are very
few and it is difficult to infer a reasonable spatial structure. Theoretically, statistical estimation tech-
niques for excesses processes (e.g., Ferreira and de Haan, 2012) are still very rare, especially if we
want to stay within a non-parametric framework. Future developments are needed to explore this
theoretical and applied question.
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Appendix

Proof of Proposition 1
For x > u, using the decomposition

log
(

fu(x)
gu(x)

)
= log

(
f (x)
F(x)

)
+ log

(
F(x)
F(u)

)
+ log

(
G(u)
G(x)

)
+ log

(
G(x)
g(x)

)
,

together with the fact that E fu
{

logFu(Xu)
}
= −1, the Kullback Leibler distance D( fu;gu) can be

rewritten as

D( fu;gu) =
∫

τ

u

(
log

f (x)
F(x)

− log
g(x)
G(x)

)
( fu(x)−gu(x))dx−2

−E f

{
log

G(X)

G(u)

∣∣∣∣X > u
}
−Eg

{
log

F(Y )
F(u)

∣∣∣∣Y > u
}
.

Using (2), Proposition 1 follows.
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Proof of Proposition 2
Let (un)n∈N be a sequence tending to infinity. We want to prove that∫

hun(x)dx :=
∫ (

log
x f (x)
αF(x)

− log
xg(x)
βG(x)

)
f (x)

F(un)
1l{x>un}dx−→ 0 as n→ ∞.

Combining the remark following the proof of Theorem 1 in de Haan (1996) with the second order
condition stated in Proposition 2 and the fact that B(·) and C(·) are eventually monotone, we deduce
that these functions are of constant sign for large values of x, go to 0, and that their absolute value
is regularly varying with index ρ (respectively η).

Thus 
x f (x)
αF(x) = 1+ xρLρ(x)
xg(x)
βG(x)

= 1+ xηLη(x)
(5)

where Lρ(·) and Lη(·) are two slowly varying functions. It is then clear that for x > un

hun(x)−→ 0.

Now, remark that for a sufficiently large sequence un we have the bound

|hun(x)| ≤ xζLζ(x)
f (x)
F(x)

1l{x>1} ≤Cxζ−1Lζ(x)1l{x>1}

where ζ < 0 and C a suitable constant. Thus this bound is integrable.
Condition (2) follows by the dominated convergence theorem.

Proof of Proposition 3
Similar to the proof of Proposition 2 with F and G replaced by F∗ and G∗ respectively.

Proof of Proposition 4
Note that

∆(u) :=
τ∫

u

α(x)( fu(x)−gu(x))dx = E [α(Xu)]−E [α(Yu)] .

Moreover, the stochastic ordering implies that if E(Xu) and E(Yu) exist, then we have the inequality

E(Xu)≥ E(Yu).

Thus an application of a probabilistic version of the mean value theorem leads to

∆(u) = E
[
α
′ (Zu)

]
{E(Xu)−E(Yu)} , (6)

where Zu corresponds to a non-negative random variable with density

fZu (z) =
P [X > z | X > u]−P [Y > z | Y > u]

E(Xu)−E(Yu)
, ∀z > u
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(see Theorem 4.1 in di Crescenzo, 1999). Note that we implicitly assume that E(Xu) > E(Yu).
Otherwise Proposition 4 is trivial since E(Xu) =E(Yu) combined with Xu ≥st Yu implies that Xu =Yu
in distribution.

To conclude the proof, we only need to show that E[α′(Zu)]→ 0 as u→ τ. Since α′(·) is
monotone and tends to 0 at τ, |α′(·)| is decreasing. Thus

∣∣E[α′ (Zu)
]∣∣= ∣∣∣∣∫ τ

u
α
′(x) fZu(x)dx

∣∣∣∣≤ ∫
τ

u

∣∣α′(x) fZu(x)
∣∣dx≤

∣∣α′(u)∣∣→ 0.

The proof of Proposition 4 is then achieved.

Proof of Theorem 1

We will use the notation

G̃(t) := 1− n
n+1

G(t) =
n

n+1
G(t)+

1
n+1

.

We start by decomposing the difference L̂( fu;gu)−L( fu;gu) into 6 terms :

L̂( fu;gu)−L( fu;gu) =
1

Nn

n

∑
i=1

log

(
G̃m(Xi∨u)

G̃m(u)

)
−E f

(
log

G(X)

G(u)

∣∣∣∣∣X > u

)

=
1

Nn

n

∑
i=1

log

(
G̃(Xi∨u)

G̃(u)

)
−E f

(
log

G(X)

G(u)

∣∣∣∣∣X > u

)

+
1

Nn

n

∑
i=1

log

(
G̃m(Xi∨u)

G̃(Xi∨u)

)
− n

Nn
log

(
G̃m(u)

G̃(u)

)

=
1

Fn(u)

[
1
n

n

∑
i=1

log

(
G̃(Xi∨u)

G̃(u)

)
−E f

(
log

G(X ∨u)
G(u)

)]

+

(
1

Fn(u)
− 1

F(u)

)
E f

(
log

G(X ∨u)
G(u)

)

+
1

Nn

n−kn

∑
i=1

G̃m(Xi,n∨u)− G̃(Xi,n∨u)

G̃(Xi,n∨u)

+
1

Nn

n−kn

∑
i=1

[
log

(
1+

G̃m(Xi,n∨u)− G̃(Xi,n∨u)

G̃(Xi,n∨u)

)
−

G̃m(Xi,n∨u)− G̃(Xi,n∨u)

G̃(Xi,n∨u)

]

+
1

Nn

n

∑
i=n−kn+1

log

(
G̃m(Xi,n∨u)

G̃(Xi,n∨u)

)

− n
Nn

log

(
G̃m(u)

G̃(u)

)

=:
6

∑
`=1

Q`,n,m.
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We study each term separately.
Term Q1,n,m.

Q1,n,m =
1

Fn(u)

[
1
n

n

∑
i=1

log

(
n

n+1 G(Xi∨u)+ 1
n+1

n
n+1 G(u)+ 1

n+1

)
−E f

(
log

G(X ∨u)
G(u)

)]

=
1

Fn(u)

[
1
n

n

∑
i=1

log

(
G(Xi∨u)+ 1

n

G(u)+ 1
n

)
−E f

(
log

G(X ∨u)
G(u)

)]

=
1

Fn(u)

[
1
n

n

∑
i=1

{
log

(
G(Xi∨u)+ 1

n

G(u)+ 1
n

)
−E f

(
log

G(X ∨u)+ 1
n

G(u)+ 1
n

)}]

+
1

Fn(u)
E f

(
log

(
G(X ∨u)+ 1

n

G(u)+ 1
n

G(u)
G(X ∨u)

))
=: Q(1)

1,n,m +Q(2)
1,n,m.

Denote by

Z(n)
i := log

(
G(Xi∨u)+ 1

n

G(u)+ 1
n

)
−E f

(
log

G(X ∨u)+ 1
n

G(u)+ 1
n

)
.

Clearly Z(n)
i is an array of centred random variables that are identically distributed and rowwise

independent. Thus, according to the strong law for arrays (see e.g. Chow and Teicher, 1978, p.
393), we have

1
n

n

∑
i=1

Z(n)
i = o(1) a.s.

as soon as E f (Z
(1)
i )2 < ∞. Now remark that log

(
G(u)+ 1

n
G(X∨u)+ 1

n

)
is a positive increasing function of n,

thus

0≤ log
(

G(u)+1
G(X ∨u)+1

)
≤ log

(
G(u)

G(X ∨u)

)
=⇒ E f (Z

(1)
i )2 ≤ E f

(
log2

(
G(u)

G(X ∨u)

))
< ∞

by assumption. Consequently
Q(1)

1,n,m = o(1) a.s.

Now

Q(2)
1,n,m =− 1

Fn(u)

{
E f

(
log

(
G(u)+ 1

n

G(X ∨u)+ 1
n

))
+E f

(
log
(

G(X ∨u)
G(u)

))}
.

Using again the fact that log
(

G(u)+ 1
n

G(X∨u)+ 1
n

)
is a positive increasing function of n, by the dominated

convergence theorem, we deduce that

lim
n
E f

(
log

(
G(u)+ 1

n

G(X ∨u)+ 1
n

))
= E f

(
lim

n

(
log

(
G(u)+ 1

n

G(X ∨u)+ 1
n

)))
= E f

(
log

G(u)
G(X ∨u)

)
.
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This implies that
Q(2)

1,n,m = o(1) a.s.,

and thus
Q1,n,m = o(1) a.s.

Term Q2,n,m.
By the strong law of large numbers, we have

Q2,n,m = o(1) a.s.

Term Q3,n,m.
We need to use the sequences kn and `m to treat this term. Since kn ≥ logn, F←(1− kn/(8n)) is
eventually a.s. larger that F←n (1− kn/n), hence than Xn−kn,n.
Here is a quick way to see this : If we set Tn = F←(1− pεn) for some 0 < p < 1 and let ‘Bin(r,q)’
stand for a binomial (r,q) random variable, then the properties of quantile functions imply that
P
{

F←n (1− εn) > F←(1− pεn)
}
≤ P

{
Bin(n, pεn) > nεn

}
, which is dominated by

( enpεn
nεn

)nεn =

(ep)nεn = nnεn log(ep)/ log(n) (Giné and Zinn, 1984, Remark 4.7); if p = 1/8 and nεn ≥ logn then
the series ∑(ep)nεn converges.
Thus, if we rewrite∣∣∣∣∣ G̃m(t)− G̃(t)

G̃(t)

∣∣∣∣∣= m
n

n+1
m+1

G(t)
G(t)+ 1

n

∣∣∣∣Gm(t)−G(t)
G(t)

−
1− n

m
n+1

G(t)
G(t)

∣∣∣∣ (7)

for n and m sufficiently large, we have

|Q3,n,m| ≤
2

Nn

n−kn

∑
i=1

∣∣∣∣Gm(Xi,n∨u)−G(Xi,n∨u)
G(Xi,n∨u)

∣∣∣∣+ 2
n+1

∣∣∣1− n
m

∣∣∣ 1
Nn

n−kn

∑
i=1

1
G(Xi,n∨u)

.

Remark now that

1
Nn

n−kn

∑
i=1

1
G(Xi,n∨u)

≤ 1
Fn(u)

n− kn

n
1

G(Xn−kn,n∨u)

≤ 1
Fn(u)

n− kn

n

{
1

G(Xn−kn,n)
+

1
G(u)

}
≤ 1

Fn(u)
n− kn

n

{
m
`m

+
1

G(u)

}
a.s.

Consequently, since n
m → c ∈ (0,∞):

|Q3,n,m| ≤
2

Nn

n−kn

∑
i=1

∣∣∣∣Gm(Xi,n∨u)−G(Xi,n∨u)
G(Xi,n∨u)

∣∣∣∣+o(1) a.s.

≤ n− kn

n
2

Fn(u)
sup

t≤Xn−kn,n∨u

∣∣∣∣Gm(t)−G(t)
G(t)

∣∣∣∣+o(1) a.s.

≤ n− kn

n
2

Fn(u)
max

(
sup

t≤Xn−kn ,n

∣∣∣∣Gm(t)−G(t)
G(t)

∣∣∣∣ ,sup
t≤u

∣∣∣∣Gm(t)−G(t)
G(t)

∣∣∣∣
)
+o(1) a.s.
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Thus, by our choice of sequences kn and `m, we have

sup
t≤Xn−kn ,n

∣∣∣∣Gm(t)−G(t)
G(t)

∣∣∣∣ ≤ sup
t≤F←(1−kn/(8n))

∣∣∣∣Gm(t)−G(t)
G(t)

∣∣∣∣≤ sup
t≤G←(`m/m)

∣∣∣∣Gm(t)−G(t)
G(t)

∣∣∣∣
= sup

t≥ `m
m

∣∣∣∣Um(t)− t
t

∣∣∣∣= o(1) a.s.

where Um denotes the empirical distribution function of m uniform (0, 1) random variables (see
Corollary 1 in Wellner, 1978).
Also ∀T < τ, we have:

sup
t≤T

∣∣∣∣Gm(t)−G(t)
G(t)

∣∣∣∣= o(1) a.s.

which leads to

|Q3,n,m|= o(1) a.s.

Term Q4,n,m.
Now, following the lines of proof of the term Q3,n,m, for i = 1, ...,kn, we have∣∣∣∣∣ G̃m(Xi,n∨u)− G̃(Xi,n∨u)

G̃(Xi,n∨u)

∣∣∣∣∣= o(1) a.s.

and thus using the inequality ∀x≥− 1
2 , | log(1+ x)− x| ≤ x2, we deduce that

|Q4,n,m| ≤
1

Nn

n−kn

∑
i=1

∣∣∣∣∣ G̃m(Xi,n∨u)− G̃(Xi,n∨u)

G̃(Xi,n∨u)

∣∣∣∣∣
2

= o(1) a.s.

Term Q5,n,m.
This term can be rewritten as :

Q5,n,m =
1

Nn

n

∑
i=n−kn+1

log

(
1

m+1 +
m

m+1 Gm(Xi,n∨u)
1

n+1 +
n

n+1 G(Xi,n∨u)

)
.

Remark that
1

m+1
≤

1
m+1 +

m
m+1 Gm(Xi,n∨u)

1
n+1 +

n
n+1 G(Xi,n∨u)

≤ n+1

which implies that

|Q5,n,m| ≤
kn

n
1

Fn(u)
max(log(n+1), log(m+1)) = o(1) a.s.

Term Q6,n,m.
Finally, remark that

Q6,n,m =− 1
Fn(u)

log

(
1

m+1 +
m

m+1 Gm(u)
1

n+1 +
n

n+1 G(u)

)
=− 1

Fn(u)
log

(
m
n

n+1
m+1

1
m +Gm(u)

1
n +G(u)

)
= o(1) a.s.

Combining all these results, Theorem 1 follows since

K̂( fu;gu)−K( fu;gu) =−
(

L̂( fu;gu)−L( fu;gu)
)
−
(

L̂(gu; fu)−L(gu; fu)
)
.
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