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Abstract. We study nonparametric robust tail coefficient estimation when the variable of interest, as-
sumed to be of Weibull-type, is observed simultaneously with a random covariate. In particular, we
introduce a robust estimator for the tail coefficient, using the idea of the density power divergence (see
Basu et al., 1998) based on the relative excesses above a high threshold. The main asymptotic properties
of our estimator are established under very general assumptions. The finite sample performance of the
proposed procedure is evaluated by a small simulation experiment.
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1 Introduction

In practical data analysis, it is not unusual to encounter outliers which may have a disturbing effect on the
estimation results. In such situations, the estimates of the model according to the maximum likelihood
approach are typically fairly unstable and this asks for robust methods. A special treatment of the outly-
ing points is then required, for instance by an adequate downweighting of their influence on the estimation.

In this paper, we focus on robust procedures in order to estimate some tail parameters in an extreme
value context. Such a topic has been recently studied in the literature. We can mention among others
Brazauskas and Serfling (2000) and Vandewalle et al. (2007) for strict Pareto and Pareto-type distribu-
tions, Dupuis and Field (1998), Peng and Welsh (2001), and Juárez and Schucany (2004) for generalized
extreme value or generalized Pareto distributions. In the sequel, we consider the Gumbel class, which is
a rich subclass of the max-domain of attraction. Although different types of tail behavior are possible, all
these distributions have in common an extreme value index equal to zero and thus differentiating them on
the basis of this parameter alone is impossible. To solve this issue, we restrict our study to Weibull-type
distributions for which the distribution functions have the following form:

F (y) := 1− F (y) = e−y
1/θ`F (y), y > 0,

where θ > 0 and `F is a slowly varying function at infinity, i.e. an ultimately positive function satisfying

lim
y→∞

`F (λy)

`F (y)
= 1, for all λ > 0.
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Here θ denotes the Weibull-tail coefficient. Different values of it allow the Weibull-type distributions to
cover a large part of the Gumbel class, and hence to constitute a flexible subgroup. The estimation of
this coefficient has been extensively studied in the literature (see e.g. Broniatowski (1993), Beirlant et
al. (1995), Gardes and Girard (2005, 2008b), Diebolt et al. (2008), Dierckx et al. (2009), Goegebeur et
al. (2010) or Goegebeur and Guillou (2011) among others) but not much attention has been paid to the
regression context with covariates.

We will consider this framework of nonparametric regression estimation of conditional tails when the
covariates are random. The case of random covariates is less explored in extreme value theory compared
to the fixed covariates, and only few papers can indeed be mentioned: Wang and Tsai (2009) with a
parametric maximum likelihood approach within the Hall subclass of Pareto-type models (Hall, 1982),
Daouia et al. (2011) in the framework of Pareto-type distributions, and Daouia et al. (2013) in the gen-
eral max-domain of attraction, but under rather restrictive assumptions on the underlying distribution
function. Here, we consider the case of Weibull-type distributions and our approach will be based on local
estimation within a narrow window around the point in the covariate space where the tail behavior of the
response variable is of interest. This local fitting is performed by an adjustment of the robust minimum
density power divergence (MDPD) estimation criterion, originally proposed by Basu et al. (1998), to
the locally weighted regression setting. This criterion has already been used for robust estimation of
Pareto-type distributions, see for instance Kim and Lee (2008), Dierckx et al. (2013a, b), but to the best
of our knowledge it is new in the Weibull-type framework.

The remainder of this paper is organized as follows. In Section 2, we introduce our robust estimator of
the conditional Weibull-tail coefficient and we state its main asymptotic properties. The finite sample
performance of our procedure is illustrated on a small simulation study in Section 3. In Section 4 we
will make some concluding remarks and discuss some possibilities for future research. The proofs of all
results can be found in the Appendix.

2 Construction and asymptotic properties

Let (Xi, Yi), i = 1, ..., n, be independent copies of a random pair (X,Y ) ∈ Rp × R+, where X has the
density function f and the conditional survival function of Y given X = x is of Weibull-type with a tail
coefficient θ(x) > 0, that is

F (y;x) = e−y
1/θ(x)`F (y;x), y > 0. (1)

This model can also be defined in terms of the generalized inverse of F , denoted Q, i.e. Q(q;x) := inf{y :
F (y;x) ≥ q}, 0 < q < 1. Indeed, under (1), we have

Q(q;x) = (− ln(1− q))θ(x)
`(− ln(1− q);x) (2)

where ` is again a slowly varying function at infinity. The function θ(x) governs the tail behavior, with
larger values indicating a slower tail decay. This function has to be adequately estimated from the data.

As is usual in an extreme value context, we base our estimation method on the relative excesses above a
high threshold un, namely Z := Y/un, which admit, under model (1), the following conditional survival
function:

P
(
Y

un
> t
∣∣∣Y > un;x

)
=
F (tun;x)

F (un;x)
' e−cn(t1/θ(x)−1) =: G(t; cn, θ(x)) for t > 1, (3)
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where cn := − ln(F (un;x)). The approximation in (3) follows from the properties of slowly varying
functions, and is valid for large values of un. We denote by g the density function associated to this
distribution G.

The proposed estimation procedure works as follows. First we estimate cn externally in a consistent
way, cf infra. Then, we estimate θ(x) with the MDPD criterion combined with a kernel approach, and
applied to the relative excesses above un. More precisely, we define the MDPD estimator as the value of
θ minimizing the empirical density power divergence:

∆̂α(θ; ĉn) :=


1
n

∑n
i=1Kh(x−Xi)1l{Yi>un}

{∫∞
1
g1+α(z)dz −

(
1 + 1

α

)
gα(Yi/un)

}
for α > 0

− 1
n

∑n
i=1Kh(x−Xi)1l{Yi>un} ln g(Yi/un) for α = 0

where ĉn is a consistent estimator for cn, Kh(x) := K(x/h)/hp, K is a joint density function on Rp,
h = hn is a positive, non-random sequence of bandwidths with h → 0 if n → ∞, 1l{A} is the indica-
tor function on the event A and un is a local non-random threshold sequence satisfying un →∞ if n→∞.

Note that a joint estimation of θ(x) and cn with the MDPD method is practically feasible, but gives
difficulties in the theoretical analysis concerning consistency and asymptotic normality, and in particular
it requires the introduction of rather restrictive conditions. For this reason we opt to estimate cn exter-
nally in a consistent way. Remark also that this density power divergence criterion is indexed by a single
non-negative parameter, α, that controls the trade-off between robustness and efficiency. In particular it
encompasses the maximum likelihood method, corresponding to α = 0, which is efficient but not robust.
Increasing the value of α increases the robustness and decreases the efficiency of the estimation.

The MDPD equation for θ is thus:

∆̂′α(θ; ĉn) =
1 + α

n

n∑
i=1

Kh(x−Xi)1l{Yi>un}

∫ ∞
1

gα(z)
∂g(z)

∂θ
dz

−1 + α

n

n∑
i=1

Kh(x−Xi)1l{Yi>un}g
α−1

(
Yi
un

)
∂g(Yi/un)

∂θ

=
1 + α

n

n∑
i=1

Kh(x−Xi)1l{Yi>un}

{
− α eĉn(1+α)ĉαθn
θα+1(1 + α)2+α(1−θ)

[
θΨ(α(1− θ) + 1, ĉn(1 + α))

+(1− θ ln((α+ 1)ĉn)Γ(α(1− θ) + 1, ĉn(1 + α))
]}

+
ĉαn
θα+1

1 + α

n

n∑
i=1

Kh(x−Xi)e
−ĉnα

[
( Yiun )

1/θ
−1

](
Yi
un

)α(1/θ−1)

1l{Yi>un}

+
ĉαn
θα+2

1 + α

n

n∑
i=1

Kh(x−Xi)e
−ĉnα

[
( Yiun )

1/θ
−1

](
Yi
un

)α(1/θ−1)

ln
Yi
un

1l{Yi>un}

− ĉ
α+1
n

θα+2

1 + α

n

n∑
i=1

Kh(x−Xi)e
−ĉnα

[
( Yiun )

1/θ
−1

](
Yi
un

)α(1/θ−1)+1/θ

ln
Yi
un

1l{Yi>un} (4)

where Γ(a, b) denotes the incomplete Gamma function

Γ(a, b) :=

∫ ∞
b

za−1 e−zdz
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and Ψ(a, b) its derivative with respect to the first argument

Ψ(a, b) :=

∫ ∞
b

ln z za−1 e−zdz.

In the functions Γ and Ψ, b is positive whereas a ∈ R.

The MDPD estimator for θ(x) satisfies the estimating equation

∆̂′α(θ; ĉn) = 0, (5)

where ĉn := − ln(F̂ (un;x)),

F̂ (un;x) :=
1
n

∑n
i=1Kh(x−Xi)1l{Yi>un}
1
n

∑n
i=1Kh(x−Xi)

,

is a kernel estimator for F (un;x), as considered also in Daouia et al. (2013) and de Wet et al. (2013).

In view of (4) we start by considering the following locally weighted sums of power-transformed excesses
over a high threshold:

Tn(K,α, β, r;x) :=
1

n

n∑
i=1

Kh(x−Xi)e
−cnα

[
( Yiun )

1/θ(x)
−1

](
Yi
un

)β (
ln
Yi
un

)r
+

1l{Yi>un} (6)

where α ≥ 0, β ∈ R, r ≥ 0, and (x)+ := max{0, x}.

To obtain the limiting behavior of (6) one has to impose some more structure on the tail of the distri-
bution. Typically one invokes a so-called second order condition, specifying the rate of convergence of
`(λy;x)/`(y;x), where ` is the slowly varying function appearing in (2), to its limit, being one, as y →∞.

Assumption (R) There exists a constant ρ(x) < 0 and a rate function b(.;x) satisfying b(y;x) → 0 as
y →∞, such that for all λ ≥ 1, we have

ln

(
`(λy;x)

`(y;x)

)
= b(y;x)Dρ(x)(λ)(1 + o(1))

with Dρ(x)(λ) :=

∫ λ

1

tρ(x)−1dt, and where o(1) is uniform in λ ≥ 1, as y →∞.

As shown in Geluk and de Haan (1987), (R) implies that |b(y;x)| is regularly varying with index ρ(x),
i.e. |b(λy;x)|/|b(y;x)| → λρ(x) as y →∞ for all λ > 0, so ρ(x) governs the rate of the first order conver-
gence of `(λy;x)/`(y;x) to one. If |ρ(x)| is small then the convergence is slow and the estimation of tail
quantities is generally difficult. Condition (R) is well accepted in the extreme value literature, see e.g.
Gardes and Girard (2008a).

As a first step in the theoretical study of estimators for θ(x), we consider the local behavior of the fol-
lowing conditional expectation:

m(un, α, β, r;x) = E

(
e
−cnα

[
( Y
un

)
1/θ(x)−1

](
Y

un

)β (
ln
Y

un

)r
+

1l{Y >un}

∣∣∣∣∣X = x

)
.
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Lemma 1 Case (i), α = β = r = 0:

m(un, 0, 0, 0;x) = F (un;x).

Case (ii), (α, β, r) ∈ R+×R×R+ \ (0, 0, 0): assume (2) and Assumption (R). We have for un →∞ that

m(un, α, β, r;x) = F (un;x)
Γ(1 + r)

(1 + α)1+r
θr(x)

{
c−rn +

θ(x)β

1 + α
c−1
n 1l{r=0} +

r − α
1 + α

b(cn;x)

θ(x)
c−rn

+o(b(cn;x)c−rn ) +O

(
1

c
(1+α)∧2
n

1l{r=0}

)
+O

(
1

c
(1+r+α−rε)∧(1+r)
n

1l{r>0}

)}
,

for ε sufficiently small.

We now turn to the derivation of the asymptotic expansion for the unconditional moment. Let

mn(K,α, β, r;x) := E

[
Kh(x−X)e

−cnα
[
( Y
un

)
1/θ(x)−1

](
Y

un

)β (
ln
Y

un

)r
+

1l{Y >un}

]
.

Note that since Tn(K,α, β, r;x) is an average of independent and identically distributed (i.i.d.) terms we
also have that mn(K,α, β, r;x) = E(Tn(K,α, β, r;x)).

We introduce the following further conditions. Let ‖.‖ be a norm on Rp.

Assumption (F) There exists Mf > 0 and ηf > 0 such that |f(x) − f(x′)| ≤ Mf‖x − x′‖ηf for all
x, x′ ∈ Rp.

Assumption (K) K is a bounded density function on Rp, with support Ω included in the unit hyper-
sphere in Rp.

Finally we introduce a condition on the oscillation of the response distribution in a neighborhood of the
point x where the estimation will take place. This condition is formulated in terms of the conditional
excess function:

Assumption (M) The conditional excess function m(un, α, β, r;x) satisfies for un → ∞, h → 0, and
some ᾱ > 0, R > 0, ξ > 0 that

Φn(x) := sup
α∈[0,ᾱ]

sup
β∈[α/θ(x)−ξ,α/θ(x)+ξ]

sup
r∈[0,R]

sup
z∈Ω

∣∣∣∣m(un, α, β, r;x− hz)
m(un, α, β, r;x)

− 1

∣∣∣∣→ 0 as n→∞.

The following lemma gives then the asymptotic expansion of mn(K,α, β, r;x).

Lemma 2 Assume (2), (R), (F), (K) and (M). For all x ∈ Rp where f(x) > 0, we have that if un →∞
and h→ 0 as n→∞ then

mn(K,α, β, r;x) = m(un, α, β, r;x)f(x)(1 +O(hηf ) +O(Φn(x))).

Let (X1, Y1), . . . , (Xn, Yn) be a sample of independent copies of the random vector (X,Y ) where Y |X = x
satisfies (2) and X ∼ f . If in addition to the previous assumptions one also has that nhpF (un;x)→∞
as n→∞ then

T̃n(K,α, β, r;x) :=
crnTn(K,α, β, r;x)

F (un;x)f(x)

P→ θr(x)Γ(1 + r)

(1 + α)1+r
as n→∞.
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The consistency of F̂ (un;x) follows now easily from Lemma 2.

Corollary 1 Let (X1, Y1), . . . , (Xn, Yn) be i.i.d. random vectors and assume (F), (K) and (M). For all
x ∈ Rp where f(x) > 0 we have that if h→ 0, un →∞ with nhpF (un;x)→∞ as n→∞, then

F̂ (un;x)

F (un;x)

P→ 1.

Note that this result holds for a general conditional survival function F (y;x), where X ∼ f , i.e. the
assumption of conditional Weibull-type behavior, and hence (R), is not needed. In our context we have

then ĉn − cn = − ln F̂ (un;x)/F (un;x)
P→ 0, by a straightforward application of the continuous mapping

theorem.

The following theorem states the existence and consistency of sequences of solutions to the estimating
equation (5). From now on we denote the true value of θ(x) by θ0(x).

Theorem 1 Let (X1, Y1), . . . , (Xn, Yn) be a sample of independent copies of the random vector (X,Y )
where Y |X = x satisfies (2), X ∼ f , and assume (R), (F), (K) and (M) hold. For all x ∈ Rp where
f(x) > 0, we have that if hn → 0, un → ∞ with nhpnF (un;x) → ∞, then with probability tending to 1

there exists sequences of solutions (θ̂n(x))n∈N of the estimating equation (5), such that θ̂n(x)
P→ θ0(x), as

n→∞.

We now derive the limiting distribution of a vector of statistics of the form (6), when properly normalized.
This result will form the basis for proving the asymptotic normality of the MDPD estimator. Let

T′n := (T̃n(K1, α1, β1, r1;x), . . . , T̃n(KJ , αJ , βJ , rJ ;x))

for some positive integer J and let Σ be a (J × J) covariance matrix with elements

σj,k :=
θ
rj+rk
0 (x)‖KjKk‖1Γ(1 + rj + rk)

(1 + αj + αk)1+rj+rk
.

Theorem 2 Let (X1, Y1), . . . , (Xn, Yn) be a sample of independent copies of the random vector (X,Y )
where Y |X = x satisfies (2) and X ∼ f , and assume (R), (F), (M) hold and kernel functions K1, . . . ,KJ

satisfying (K). For all x ∈ Rp where f(x) > 0, we have that if h → 0, un → ∞ for n → ∞, with
nhpF (un;x)→∞, then √

nhpF (un;x) [Tn − E(Tn)] NJ

(
0,

1

f(x)
Σ

)
.

With the result of Theorem 2, we can now establish the asymptotic normality of θ̂n(x), when properly
normalized.

Theorem 3 Let (X1, Y1), . . . , (Xn, Yn) be a sample of independent copies of the random vector (X,Y )

where Y |X = x satisfies (2), X ∼ f , and assume (R), (F), (K) and (M) hold. Consider (θ̂n(x))n∈N,
a consistent sequence of estimators for θ0(x) satisfying (5). For all x ∈ Rp where f(x) > 0, we have

that if h → 0 and un → ∞ as n → ∞ with nhpF (un;x) → ∞,
√
nhpF (un;x)b(cn;x) → λ ∈ R,√

nhpF (un;x)h
ηf
n → 0,

√
nhpF (un;x)Φn(x) → 0, and

√
nhpF (un;x)/c

(1+α−ε)∧1
n → 0 (for some small

ε > 0) then √
nhpF (un;x)

(
θ̂n(x)− θ0(x)

)
 N

(
λ,
θ2

0(x)(1 + α)2‖K‖22
(1 + α2)2(1 + 2α)3

(1 + 4α+ 9α2 + 14α3 + 13α4 + 8α5 + 4α6)

)
.
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Note that the mean of the limiting distribution in Theorem 3 depends only on λ and not on α nor on
the weight function K or parameters related to the distribution of Y given X = x. This is in line with
the usual asymptotic normality result in the univariate case, see e.g. Girard (2004), Gardes and Girard
(2008b) and Goegebeur et al. (2010). The asymptotic variance in Theorem 3 is increasing in α, which
reflects the decreasing efficiency of the MDPD estimation method when α increases. The maximum
likelihood estimator, corresponding to α = 0, has an asymptotic variance equal to θ2

0(x)‖K‖22, which,
apart from the factor ‖K‖22, coincides with the asymptotic variance of the Hill type estimator proposed
by Girard (2004) in the univariate context. In Figure 1 we show the asymptotic standard deviation as a
function of α when θ0(x) = 1 and K(u) = 0.5 1lu∈[−1,1].

3 Simulation results

The aim of this section is to illustrate the efficiency of our robust estimation method on a small simulation
study. As is clear from the above discussion, the computation of the estimator requires a selection for the
bandwidth parameter h and the threshold un. We select the threshold as usual in extreme value theory,
that is, we take the (k + 1) largest response observation in the ball B(x, h) for any fixed value of x. We
propose a data driven method to determine (h, k) and we compare it with a theoretical one, called Oracle
strategy, which requires the knowledge of the function θ(x). These two methods are similar to those used
in Goegebeur et al. (2013a) and are briefly recalled as follows:

The Oracle strategy, proposed in Gardes et al. (2010) consists in selecting (h, k) satisfying

(h0, k0) := argmin
h,k

∆
(
θ̂(·), θ(·)

)
, (7)

where

∆2
(
θ̂(·), θ(·)

)
:=

1

M

M∑
m=1

(
θ̂ (zm)− θ (zm)

)2

,

and z1, . . . , zM are points regularly spread in the covariate space. The retained value θ̂(x) is the one
corresponding to this pair (h0, k0).

The data driven method does not require any prior knowledge about θ(x) and thus can be directly
applied to a real data set. First, the method involves the selection of an optimal bandwidth h. To
this aim, we can use the following cross validation criterion introduced by Yao (1999), implemented by
Gannoun et al. (2002), and studied by Daouia et al. (2011) and Daouia et al. (2013) in an extreme value
context:

hcv := argmin
h∈H

n∑
i=1

n∑
j=1

(
1l{Yi≤Yj} − F̃n,−i (Yj |Xi)

)2

, (8)

where H is a grid of values for h and

F̃n,−i (y|x) :=

∑n
j=1,j 6=iKh (x−Xj) 1l{Yj≤y}∑n

j=1,j 6=iKh (x−Xj)
.

Once the bandwidth h has been chosen, we compute θ̂(x) for each k = 5, . . . , kmax where kmax is an

appropriate maximum value of the number of exceedances. The retained value θ̂ is the median of these
estimates of θ.

7



In the simulations, we use the following smooth and symmetric function

θ(x) =
1

2

(
1

10
+ sin(πx)

)(
11

10
− 1

2
exp

{
−64

(
x− 1

2

)2
})

proposed by Daouia et al. (2011), though originally in the context of Pareto-type tails, and the estimators
are based on the bi-quadratic kernel function

K(x) =
15

16

(
1− x2

)2
1{x ∈ [−1, 1]}.

The function θ(x) is differentiable and has several stationary points. As such, it is more challenging than
a monotone function. We assume that X is uniformly distributed on [0, 1] and we consider four different
settings for the conditional distribution of Y given X = x:

• The strict Weibull distribution W(ξ(x), λ),

1− F (y;x) = e−λy
ξ(x)

, y > 0; ξ(x), λ > 0,

for which θ(x) = 1/ξ(x) and ρ(x) = −∞. We consider the case λ = 1.

• The extended Weibull distribution EW(ξ(x), λ) (Klüppelberg and Villaseñor, 1993),

1− F (y;x) = r(y)e−y
ξ(x)

,

where ξ(x) > 0 and r(y) is a regularly varying function at infinity with index λ. Here θ(x) = 1/ξ(x)
and ρ(x) = −1. We choose r(y) = 1/y, so λ = −1.

• The perturbed Weibull distribution W̃(ξ(x), λ) (Dierckx et al., 2009),

1− F (y;x) = e−y
ξ(x)(C+Dyλ), ξ(x) > 0, λ < 0, C > 0, D ∈ R,

having θ(x) = 1/ξ(x) and ρ(x) = λθ(x). In this case we use λ = −5, C = 1 and D = −1.

• A contaminated distribution with Fε(y;x) = (1−ε)F (y;x)+εF̆ (y;x) where the distribution function
F is one of the three above mentioned distributions and for the contaminating distribution function
F̆ we consider

– a shifted strict Weibull distribution, i.e. it has distribution function F̆ (y;x) = 1−e−(yβ−yβc ), y >
yc. We choose β = 4/3, two different values for ε, namely 0.005 and 0.01, and yc = 1.2 times
the 95% quantile of the uncontaminated distribution F ;

– a shifted strict Pareto distribution, with distribution function F̆ (y;x) = 1 − (y/yc)
−1/γ , y >

yc. We choose γ = 1/4, the same fractions of contamination ε and two values for the shift
parameter yc: yc = 1.2 and 1.35 times the 95% quantile of the uncontaminated distribution
F .

Note that the contamination from a shifted strict Pareto distribution is more severe than that from
a shifted strict Weibull. Indeed, the strict Pareto distribution is in the max-domain of attraction of
the Fréchet distribution, for which γ > 0, and consisting of heavy-tailed distributions, whereas the
strict Weibull distribution is in fact in the same class as the main distribution function F , and thus
having γ = 0, though shifted. In the simulation experiment we also considered other values for β,
γ and yc, but those lead to similar results and therefore we do not include these here for brevity.
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Each time N = 100 samples of size n = 1000 are generated. Both methods are implemented on M = 37
values of x, equally spaced in [0, 1], namely {0.05, 0.075, ..., 0.925, 0.95}. In all the settings, the minimiza-
tion (7) is performed on a grid H = {0.05, 0.075, . . . , 0.15} and kmax = 25.

As indicators of efficiency we compute the bias, together with the mean squared error and the standard
error

Bias(θ̂(.)) :=
1

MN

M∑
m=1

N∑
i=1

∣∣∣θ̂(i)(zm)− θ(zm)
∣∣∣ , MSE(θ̂(.)) :=

1

MN

M∑
m=1

N∑
i=1

[
θ̂(i)(zm)− θ(zm)

]2
,

Sd(θ̂(.)) :=

√√√√ 1

M

M∑
m=1

1

N − 1

N∑
i=1

(
θ̂(i)(zm)− θ̂(zm)

)2

,

where θ̂(zm) = 1
N

∑N
i=1 θ̂

(i)(zm) and θ̂(i)(zm) is the estimate of θ(zm) obtained with the ith sample and

our estimator θ̂(x) is evaluated at points z1, ..., zM regularly spaced in [0, 1].

The boxplots based on the 100 simulations in the uncontaminated case are given in Figure 2 for the Or-
acle approach and Figure 3 for the data driven method. Overall, both methods perform quite well, with,
as expected, a better performance with the Oracle approach, which is also confirmed by the bias, the
standard deviation and the MSE given in Table 1. In addition, we can observe that all these indicators
slightly increase with α whatever the method used. The increase in standard deviation when α increases
is in line with the decreasing efficiency of the MDPD method for increasing α, as mentioned before.

Now we consider setting 4 where the distribution is contaminated. Figures 4 and 5 summarize the
results for ε = 0.005 with the Oracle and data driven approach, respectively, when the contamination
is generated from the shifted strict Weibull distribution. The corresponding results for the strict Pareto
contamination are shown in Figures 6 and 7 when yc = 1.2 times the 95% quantile of the uncontaminated
distribution and in Figures 8 and 9 when 1.2 is replaced by 1.35. Again the Oracle strategy outperforms
the data driven method, but the latter is still acceptable and fits quite well the curve of the function θ.
Note also that if we increase the value of yc the fit deteriorates since the contamination becomes heavier.
Similar comments can be made in terms of bias, standard deviation and MSE, reported in Tables 2 and
3, for ε = 0.005 and ε = 0.01, respectively, in case of strict Weibull contamination, and in Tables 4 and
5 in case of strict Pareto contamination with yc = 1.2 times the 95% quantile of the uncontaminated
distribution and Tables 6 and 7 when 1.2 is replaced by 1.35. Indeed, based on these tables we can draw
the following conclusions:

• The Oracle strategy clearly outperforms the data driven method, and, as expected, the estimates
obtained with both methods deteriorate in terms of bias, MSE and standard deviation when the
proportion of contamination ε increases.

• Unlike the uncontaminated cases where the smallest value of α, here 0.1, gave the best results, we
see now that a larger value of α is needed in order to deal with the contamination. For the Oracle
method the results in the tables suggest to take α = 0.25 or α = 0.5, while for the data driven
method a larger value of α seems to be needed, say α = 1 or α = 2.

• The results for the contamination from the shifted strict Weibull and strict Pareto distributions
are similar, with bias, MSE and standard deviation being of the same order of magnitude in case
where yc = 1.2 times the 95% quantile of the uncontaminated distribution. This can possibly be
explained by the fact that if we compare the mean of the first two moments of the contaminated
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samples in both cases, they are quite similar, despite the heavier tail in case of contamination by a
strict Pareto distribution. However, if we increase the contamination by increasing the value of yc,
the results deteriorate a bit while still remaining acceptable.

Summarized, we can state that the proposed MDPD estimator for the tail coefficient of Weibull-type dis-
tributions is a promising new estimator. Indeed, on uncontaminated data the estimation results do not
indicate the typical bias-issues that occur in practice when estimating Weibull-type tails, as experienced
in, among others, Gardes and Girard (2008b) and Goegebeur et al. (2010) in the univariate context. Also
in case of contamination the method continues to work well, despite the fact that the contamination was
quite severe in terms of shift and tail heaviness of the contaminating distribution.

4 Conclusion and future work

In this paper we introduced a nonparametric robust estimator for the conditional Weibull-tail coefficient,
which is obtained by the local fitting of an approximation to the distribution of the relative excesses over
a high threshold by the MDPD method. The method showed a good performance on simulated data,
both in situations with and without outliers, and does not seem to suffer from the typical bias issues that
are encountered when fitting Weibull-type tails. Our paper is a first contribution to robust estimation of
conditional Weibull-type tails with random covariates, and therefore we focused initially on the study of
local asymptotic properties, which is already challenging, but it can also be of interest to study uniform or
stochastic process properties of the proposed method. So far, uniform or stochastic process properties of
estimators of the conditional tail-index with random covariates are seldom considered in the extreme value
literature. In the framework of local estimation of conditional Pareto-type tails with random covariates
- which is generally much better explored than conditional Weibull-type tails - there are to the best of
our knowledge only two contributions on uniform convergence available: Gardes and Stupfler (2013),
who study the uniform weak consistency of a smoothed Hill estimator, and Goegebeur et al. (2013b)
where the uniform almost sure convergence of a local Hill-type estimator is established. These papers
are highly technical in nature even though they consider in fact only estimators which are in structure
quite simple - much simpler than e.g. the MDPD estimator considered in the present paper which is not
explicitly available. At this stage it remains uncertain whether in the setting of conditional Pareto-type
tails with random covariates one can obtain a weak limit for the properly normalised conditional tail
index estimator considered as a stochastic process. In future work we intend to establish the uniform
consistency of nonparametric estimators for conditional Weibull-type tails, as well as to examine their
properties when considered as stochastic processes. In first instance we will though focus on estimators
that are explicitly available and thus have a simpler structure than the MDPD estimator considered in
the present paper.
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Appendix

Proof of Lemma 1

The case α = β = r = 0 is trivial, so we only consider case (ii). Let pn := F (un;x). Remark that

m(un, α, β, r;x) = E

(
e
−cnα

[
( Q(U;x)
Q(pn;x) )

1/θ(x)
−1

](
Q(U ;x)

Q(pn;x)

)β (
ln
Q(U ;x)

Q(pn;x)

)r
+

1l{Q(U ;x)>Q(pn;x)}

)

=

∫ p̃n

pn

e
−cnα

[
( Q(u;x)
Q(pn;x) )

1/θ(x)
−1

](
Q(u;x)

Q(pn;x)

)β (
ln

Q(u;x)

Q(pn;x)

)r
du

+

∫ 1

p̃n

e
−cnα

[
( Q(u;x)
Q(pn;x) )

1/θ(x)
−1

](
Q(u;x)

Q(pn;x)

)β (
ln

Q(u;x)

Q(pn;x)

)r
du

=: m(1)(un, α, β, r;x) +m(2)(un, α, β, r;x),

where U is a uniform [0, 1] random variable and p̃n := 1− 1−pn
ln e

1−pn
.

We will study the two terms separately. First remark that

Q(u;x)

Q(pn;x)
=

(
1 +

− ln 1−u
1−pn

− ln(1− pn)

)θ(x) `

((
1 +

− ln 1−u
1−pn

− ln(1−pn)

)
(− ln(1− pn));x

)
`(− ln(1− pn);x)

. (9)

Thus by the change of variable z = 1−u
1−pn , Assumption (R) and the bound ρ(x)−1

2 z2 ≤ Dρ(x)(1+z)−z ≤ 0,
for z ≥ 0, we deduce that

m(1)(un, α, β, r;x) = (1− pn)

∫ 1

1−p̃n
1−pn

e
−cnα

[
(1+ − ln z

cn
)(1+b(cn;x)Dρ(x)(1+ − ln z

cn
)(1+o(1)))

1/θ(x)−1
]

×
(

1 +
− ln z

cn

)θ(x)β (
1 + b(cn;x)Dρ(x)

(
1 +
− ln z

cn

)
(1 + o(1))

)β
×

(
ln

[(
1 +
− ln z

cn

)θ(x)(
1 + b(cn;x)Dρ(x)

(
1 +
− ln z

cn

)
(1 + o(1))

)])r
dz

= (1− pn)

∫ 1

1−p̃n
1−pn

zα

[
θr(x)

(
− ln z

cn

)r
+ θr(x)

(
θ(x)β − r

2

)(− ln z

cn

)r+1

+rθr−1(x)

(
− ln z

cn

)r
b(cn;x)(1 + o(1))− αθr−1(x)

(− ln z)r+1

crn
b(cn;x)(1 + o(1))

+O

((
− ln z

cn

)r+2
)]

dz.

Now remark that∫ 1

1−p̃n
1−pn

zα(− ln z)rdz =
1

(1 + α)r+1
{Γ(r + 1)− Γ(r + 1, (1 + α) ln(1 + cn))} .
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Thus

m(1)(un, α, β, r;x) = (1− pn)
Γ(1 + r)

(1 + α)1+r
θr(x)

{
c−rn +

θ(x)β

1 + α
c−1
n 1l{r=0} +

r − α
1 + α

b(cn;x)

θ(x)
c−rn

−c−1−α
n 1l{r=0} + o(b(cn;x)c−rn ) +O

(
ln cn

c2+α
n

1l{r=0}

)
+O

(
1

c2n
1l{r=0}

)
+O

(
(ln cn)r

c1+r+α
n

1l{r>0}

)
+O

(
1

c1+r
n

1l{r>0}

)}
.

Now, concerning the m(2)(un, α, β, r;x) term, using the monotonicity of Q and of the exponential function
leads to the inequality

m(2)(un, α, β, r;x) ≤ e
−cnα

[
(Q(p̃n;x)
Q(pn;x) )

1/θ(x)
−1

] ∫ 1

p̃n

(
Q(u;x)

Q(pn;x)

)β (
ln

Q(u;x)

Q(pn;x)

)r
du

=: T1 × T2.

Clearly, using (9), Assumption (R) and the bound for Dρ(x)(1 + .), we have(
Q(p̃n;x)

Q(pn;x)

)1/θ(x)

= 1 +
b (cn;x)

θ(x)

ln(1 + cn)

cn
(1 + o(1)) +

ln(1 + cn)

cn
.

This implies that

T1 = e−α ln(1+cn)e−
α
θ(x)

b(cn;x) ln(1+cn)(1+o(1)) = c−αn (1 + o(1))

since ρ(x) < 0.

Now, concerning the term T2, using the tail quantile function U(y;x) := Q
(

1− 1
y ;x
)

, y > 1, combined

with the change of variables z = 1−pn
1−u , we deduce that

T2 = (1− pn)

 a
(

1
1−pn ;x

)
U
(

1
1−pn ;x

)
r ∫ ∞

1+cn

1 +
a
(

1
1−pn ;x

)
U
(

1
1−pn ;x

) U
(

z
1−pn ;x

)
− U

(
1

1−pn ;x
)

a
(

1
1−pn ;x

)
β 1

z2

×

 lnU
(

z
1−pn ;x

)
− lnU

(
1

1−pn ;x
)

a
(

1
1−pn ;x

)
/U
(

1
1−pn ;x

)
r

dz,

where a is the positive function that appears in the max-domain of attraction condition

U(tx)− U(t)

a(t)
→ lnx, as t→∞, for all x > 0.

We have to study two cases depending on the sign of β.

First case: β ≤ 0. Using the fact that U(.) is an increasing function combined with Corollary B.2.10 in
de Haan and Ferreira (2006, p. 376), we deduce that for pn sufficiently large and ε sufficiently small that

T2 ≤ (1− pn)

 a
(

1
1−pn ;x

)
U
(

1
1−pn ;x

)
r

O
(
crε−1
n

)
= O

(
1− pn
c1+r−rε
n

)
,
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where we have also used that

a
(

1
1−pn ;x

)
U
(

1
1−pn ;x

) = O

(
1

cn

)
, as pn ↑ 1,

see e.g. the proof of Lemma 1 in de Wet et al. (2013).

Second case: β > 0. Using again Corollary B.2.10 in de Haan and Ferreira (2006, p. 376) we have for

pn sufficiently large, δ and δ̃ positive constants, and ε and ε̃ sufficiently small that

T2 ≤ (1− pn)δr

 a
(

1
1−pn ;x

)
U
(

1
1−pn ;x

)
r+β

δ̃β

1 +
U
(

1
1−pn ;x

)
a
(

1
1−pn ;x

) 1

δ̃(1 + cn)ε̃

β ∫ ∞
1+cn

zβε̃+rε−2dz

= (1− pn)δr
1

(1 + cn)ε̃β

 a
(

1
1−pn ;x

)
U
(

1
1−pn ;x

)
r 1 +

a
(

1
1−pn ;x

)
U
(

1
1−pn ;x

) δ̃(1 + cn)ε̃

β ∫ ∞
1+cn

zβε̃+rε−2dz

= O

(
1− pn
c1+r−rε
n

)
.

Finally

m(2)(un, α, β, r;x) = O

(
1− pn

c1+r+α−rε
n

)
.

Combining all these results together leads to Lemma 1. �

Proof of Lemma 2

From the rule of repeated expectations we have that

mn(K,α, β, r;x) = E(Kh(x−X)m(un, α, β, r;X)).

Straightforward operations give

mn(K,α, β, r;x) =

∫
Ω

K(z)m(un, α, β, r;x− hz)f(x− hz)dz

= m(un, α, β, r;x)f(x) +m(un, α, β, r;x)

∫
Ω

K(z)(f(x− hz)− f(x))dz

+f(x)

∫
Ω

K(z)(m(un, α, β, r;x− hz)−m(un, α, β, r;x))dz

+

∫
Ω

K(z)(m(un, α, β, r;x− hz)−m(un, α, β, r;x))(f(x− hz)− f(x))dz

=: m(un, α, β, r;x)f(x) + T3 + T4 + T5.

We now analyze each of the terms separately. By (F) and (K) we have that

|T3| ≤ m(un, α, β, r;x)Mf

∫
Ω

K(z)‖hz‖ηf dz

= O(m(un, α, β, r;x)hηf ),
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and, by (M) and (K),

|T4| ≤ f(x)m(un, α, β, r;x)

∫
Ω

K(z)

∣∣∣∣m(un, αβ, r;x− hz)
m(un, α, β, r;x)

− 1

∣∣∣∣ dz
= O(m(un, α, β, r;x)Φn(x)).

Using similar arguments one obtains T5 = O(m(un, α, β, r;x)hηfΦn(x)). This proves the statement about
the unconditional expectation.

For what concerns the convergence in probability, we have already from the first part of the proof that

E
(
T̃n(K,α, β, r;x)

)
=
θr(x)Γ(1 + r)

(1 + α)1+r
(1 + o(1)).

Also, again by using the result from the first part of the proof

Var
(
T̃n(K,α, β, r;x)

)
=

c2rn Var

(
Kh(x−X)e

−cnα
[
( Y
un

)
1/θ(x)−1

] (
Y
un

)β (
ln Y

un

)r
+

1l{Y >un}

)
n(F (un;x)f(x))2

=
θ2r(x)‖K‖22Γ(1 + 2r)

(1 + 2α)1+2rnhpF (un;x)f(x)
(1 + o(1)).

Thus

Var
(
T̃n(K,α, β, r;x)

)
→ 0

under the assumptions of the lemma, and the convergence in probability follows. �

Proof of Corollary 1

First note that

f̂n(x) :=
1

n

n∑
i=1

Kh(x−Xi),

is a classical kernel density estimator for f . As shown in Parzen (1962), if nhp →∞, then for all x ∈ Rp

where f(x) > 0 one has that f̂n(x)
P→ f(x). The result follows then by noting that

F̂ (un;x)

F (un;x)
=

f(x)

f̂n(x)
T̃n(K, 0, 0, 0;x).

�

Proof of Theorem 1

To prove the theorem we will adjust the arguments used to prove existence and consistency of solutions
of the likelihood estimating equation, see e.g. Theorem 3.7 and Theorem 5.1 in Chapter 6 of Lehmann
and Casella (1998), to the MDPD framework. Rescale the objective function ∆̂α(θ; ĉn) as

∆̃α(θ; ĉn) :=
∆̂α(θ; ĉn)

F (un;x)f(x)cαn
.
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First, we will show that

Pθ0(x)(∆̃α(θ0(x); ĉn) < ∆̃α(θ; ĉn))→ 1 (10)

as n→∞, for any θ sufficiently close to θ0(x).

By Taylor’s theorem

∆̃α(θ; ĉn)− ∆̃α(θ0(x); ĉn) = ∆̃′α(θ0(x); ĉn)(θ − θ0(x)) +
1

2
∆̃′′α(θ0(x); ĉn)(θ − θ0(x))2

+
1

6
∆̃′′′α (θ̃; ĉn)(θ − θ0(x))3,

where θ̃ is a value between θ and θ0(x). The term ∆̃′α(θ0(x); ĉn) can be obtained from (4). Write

∆̃′α(θ0(x); ĉn) =: R1 +R2 +R3 −R4. For analyzing the term R1, we use the recursive relationships

Γ(a, b) = e−bba−1 + (a− 1)Γ(a− 1, b),

Ψ(a, b) = e−bba−1 ln b+ (a− 1)Ψ(a− 1, b) + Γ(a− 1, b),

Lemma 2, and the consistency of F̂ (un;x), giving

R1
P→ − α

θα+1
0 (x)(1 + α)

.

For R2 we rearrange the terms to obtain

R2 =
1 + α

θα+1
0 (x)

(1 + oP(1))

{
Tn(K,α, α(1/θ0(x)− 1), 0;x)

F (un;x)f(x)

+

1
n

∑n
i=1Kh(x−Xi)

[
e
−ĉnα

[
( Yiun )

1/θ0(x)
−1

]
− e−cnα

[
( Yiun )

1/θ0(x)
−1

]](
Yi
un

)α(1/θ0(x)−1)

1l{Yi>un}

F (un;x)f(x)


=:

1 + α

θα+1
0 (x)

(R2,1 +R2,2)(1 + oP(1)).

By Lemma 2 we have that R2,1
P→ (1 + α)−1. For the term R2,2, we use the mean value theorem to

obtain, with c̃n being a random value between cn and ĉn,

R2,2 = α ln
F̂ (un;x)

F (un;x)

 1
n

∑n
i=1Kh(x−Xi)e

−c̃nα
[
( Yiun )

1/θ0(x)
−1

] (
Yi
un

)α(1/θ0(x)−1)+1/θ0(x)

1l{Yi>un}

F (un;x)f(x)

−
1
n

∑n
i=1Kh(x−Xi)e

−c̃nα
[
( Yiun )

1/θ0(x)
−1

] (
Yi
un

)α(1/θ0(x)−1)

1l{Yi>un}

F (un;x)f(x)


=: α ln

F̂ (un;x)

F (un;x)
(R2,2,1 −R2,2,2),
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which can be easily bounded as follows

R2,2,1 ≤
1
n

∑n
i=1Kh(x−Xi)

(
Yi
un

)α(1/θ0(x)−1)+1/θ0(x)

1l{Yi>un}

F (un;x)f(x)
= OP(1),

R2,2,2 ≤
1
n

∑n
i=1Kh(x−Xi)

(
Yi
un

)α(1/θ0(x)−1)

1l{Yi>un}

F (un;x)f(x)
= OP(1),

and therefore, by the consistency of F̂ (un;x), the convergence R2,2
P→ 0 follows. Combining all results

gives

R2
P→ 1

θα+1
0 (x)

.

The terms R3 and R4 can be analyzed in an analogous way and yield

R3
P→ 0 and R4

P→ 1

θα+1
0 (x)(1 + α)

.

Thus ∆̃′α(θ0(x); ĉn)
P→ 0. Let |θ − θ0(x)| = r, r > 0. With probability tending to 1 we have that∣∣∣∆̃′α(θ0(x); ĉn)(θ − θ0(x))

∣∣∣ < r3.

We now turn to the analysis of ∆̃′′α(θ0(x); ĉn). Let

φ(a, b) :=

∫ ∞
b

ln2 z za−1e−zdz,

and

T̂n(K,α, β, r;x) :=
1

n

n∑
i=1

Kh(x−Xi)e
−ĉnα

[
( Yiun )

1/θ0(x)
−1

](
Yi
un

)β (
ln
Yi
un

)r
+

1l{Yi>un}.

Note that the function φ(a, b) satisfies the recursive relationship

φ(a, b) = e−bba−1 ln2 b+ (a− 1)φ(a− 1, b) + 2Ψ(a− 1, b). (11)
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After tedious calculations one obtains the following expression for ∆̃′′α(θ0(x); ĉn):

∆̃′′α(θ0(x); ĉn) =

Tn(K, 0, 0, 0;x)

F (un;x)f(x)

eĉn(1+α)ĉ
αθ0(x)
n

θα+2
0 (x)(1 + α)1+α(1−θ0(x))cαn

×
{
α(1 + α)Γ(α(1− θ0(x)) + 1, ĉn(1 + α)) + 2α2θ0(x)Ψ(α(1− θ0(x)) + 1, ĉn(1 + α))

+α2θ2
0(x)φ(α(1− θ0(x)) + 1, ĉn(1 + α))

−2α2θ0(x) ln(ĉn(1 + α))[Γ(α(1− θ0(x)) + 1, ĉn(1 + α)) + θ0(x)Ψ(α(1− θ0(x)) + 1, ĉn(1 + α))]

+α2θ2
0(x) ln2(ĉn(1 + α))Γ(α(1− θ0(x)) + 1, ĉn(1 + α))

}
− (α+ 1)2ĉαn
θα+2

0 (x)cαn

T̂n(K,α, α(1/θ0(x)− 1), 0;x)

F (un;x)f(x)
− 2(α+ 1)2ĉαn

θα+3
0 (x)cαn

T̂n(K,α, α(1/θ0(x)− 1), 1;x)

F (un;x)f(x)

+
2(α+ 1)2ĉα+1

n

θα+3
0 (x)cαn

T̂n(K,α, α(1/θ0(x)− 1) + 1/θ0(x), 1;x)

F (un;x)f(x)

−α(1 + α)ĉαn
θα+4

0 (x)cαn

T̂n(K,α, α(1/θ0(x)− 1), 2;x)

F (un;x)f(x)

+
(1 + 2α)(1 + α)ĉα+1

n

θα+4
0 (x)cαn

T̂n(K,α, α(1/θ0(x)− 1) + 1/θ0(x), 2;x)

F (un;x)f(x)

−α(1 + α)ĉα+2
n

θα+4
0 (x)cαn

T̂n(K,α, α(1/θ0(x)− 1) + 2/θ0(x), 2;x)

F (un;x)f(x)
.

By a line of argumentation similar to that used for ∆̃′α(θ0(x); ĉn) and also using (11) one obtains that
under the conditions of the theorem

∆̃′′α(θ0(x); ĉn)
P→ 1 + α2

θα+2
0 (x)(1 + α)2

. (12)

Write

1

2
∆̃′′α(θ0(x); ĉn)(θ − θ0(x))2 =

1 + α2

2θα+2
0 (x)(1 + α)2

(θ − θ0(x))2

+
1

2

(
∆̃′′α(θ0(x); ĉn)− 1 + α2

θα+2
0 (x)(1 + α)2

)
(θ − θ0(x))2.

The random part in the right-hand side of the above display is in absolute value less than r3 with
probability tending to 1. There exist thus a δ1 > 0 and an r0 > 0 such that for r < r0

1

2
∆̃′′α(θ0(x); ĉn)(θ − θ0(x))2 > δ1r

2

with probability tending to 1.

For the third order derivative, one can show that |∆̃′′′α (θ; ĉn)| ≤ M(V ), where

V := [(X1, Y1), . . . , (Xn, Yn)], for θ ∈ (θ0(x) − r, θ0(x) + r), with M(V )
P→ M , which is bounded.

The derivation is straightforward but lengthy and is therefore omitted from the paper. We can thus
conclude that with probability tending to 1

1

6
|∆̃′′′α (θ̃; ĉn)(θ − θ0(x))3| < 1

3
Mr3.
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Overall, we have that with probability tending to 1

∆̃α(θ; ĉn)− ∆̃α(θ0(x); ĉn) > δ1r
2 − (1 +M/3)r3,

which is positive if r < δ1/(1 +M/3), and thus (10) follows.

To complete the proof we adjust the line of argumentation of Theorem 3.7 in Chapter 6 of Lehmann and
Casella (1998). Let δ > 0 be such that θ0(x)− δ > 0, and define

Sn(δ) =
{
v : ∆̃α(θ0(x); ĉn) < ∆̃α(θ0(x)− δ; ĉn) and ∆̃α(θ0(x); ĉn) < ∆̃α(θ0(x) + δ; ĉn)

}
.

For any v ∈ Sn(δ), since ∆̃α(θ; ĉn) is differentiable with respect to θ, we have that there exists a

θ̂n,δ(x) ∈ (θ0(x)− δ, θ0(x) + δ) where ∆̃α(θ; ĉn) achieves a local minimum, so ∆̃′α(θ̂n,δ(x); ĉn) = 0. By the
first part of the proof of the theorem, Pθ0(x)(Sn(δ)) → 1 for any δ small enough, and hence there exists

a sequence δn ↓ 0 such that Pθ0(x)(Sn(δn)) → 1 as n → ∞. Now let θ̂∗n(x) = θ̂n,δn(x) if v ∈ Sn(δn) and

arbitrary otherwise. Since v ∈ Sn(δn) implies ∆̃′α(θ̂∗n(x); ĉn) = 0 we have that

Pθ0(x)(∆̃
′
α(θ̂∗n(x); ĉn) = 0) ≥ Pθ0(x)(Sn(δn))→ 1,

as n→∞, which establishes the existence part. For the consistency of the solution sequence, note that
for any fixed δ > 0 and n large enough

Pθ0(x)(|θ̂∗n(x)− θ0(x)| < δ) ≥ Pθ0(x)(|θ̂∗n(x)− θ0(x)| < δn) ≥ Pθ0(x)(Sn(δn))→ 1,

as n→∞, whence the consistency of the estimator sequence. �

Proof of Theorem 2

Let rn :=
√
nhpF (un;x). To prove the theorem we will make use of the Cramér-Wold device (see e.g.

Severini, 2005, p. 337) according to which it is sufficient to show that

Λn := ξ′rn[Tn − E(Tn)] N

(
0,

1

f(x)
ξ′Σξ

)
,

for all ξ ∈ RJ .

Take an arbitrary ξ ∈ RJ . A straightforward rearrangement of terms leads to

Λn =

n∑
i=1

√
hp

nF (un;x)

1

f(x)

 J∑
j=1

ξjc
rj
n Kj,h(x−Xi)e

−cnαj
[
( Yiun )

1/θ0(x)
−1

](
Yi
un

)βj (
ln
Yi
un

)rj
+

1l{Yi>un}

−E

 J∑
j=1

ξjc
rj
n Kj,h(x−Xi)e

−cnαj
[
( Yiun )

1/θ0(x)
−1

](
Yi
un

)βj (
ln
Yi
un

)rj
+

1l{Yi>un}


=:

n∑
i=1

Wi.

By the model assumptions, W1, . . . ,Wn are i.i.d. random variables, and therefore Var(Λn) = nVar(W1).
We have

Var(W1) =
hp

nF (un;x)f2(x)

J∑
j=1

J∑
k=1

ξjξkc
rj+rk
n Cj,k,
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with

Cj,k := E

[
Kj,h(x−X1)Kk,h(x−X1)e

−cn(αj+αk)
[
( Y1un )

1/θ0(x)−1
](

Y1

un

)βj+βk (
ln
Y1

un

)rj+rk
+

1l{Y1>un}

]

−E

[
Kj,h(x−X1)e

−cnαj
[
( Y1un )

1/θ0(x)−1
](

Y1

un

)βj (
ln
Y1

un

)rj
+

1l{Y1>un}

]
×

E

[
Kk,h(x−X1)e

−cnαk
[
( Y1un )

1/θ0(x)−1
](

Y1

un

)βk (
ln
Y1

un

)rk
+

1l{Y1>un}

]
.

By using the results of Lemmas 1 and 2 we have then

Cj,k =
F (un;x)f(x)

hpc
rj+rk
n

‖KjKk‖1Γ(1 + rj + rk)θ
rj+rk
0 (x)

(1 + αj + αk)1+rj+rk
(1 + o(1)),

which gives that Var(Λn) = 1/f(x)ξ′Σξ(1 + o(1)). To establish the convergence in distribution to a
normal random variable we have to verify the Lyapounov condition for triangular arrays of random
variables (Billingsley, 1995, p. 362). In the present context this simplifies to verifying that nE|W1|3 → 0.
We have

E|W1|3 ≤
(

hp

nF (un;x)

)3/2
1

f3(x)
×E


 J∑
j=1

|ξj |crjn Kj,h(x−X1)e
−cnαj

[
( Y1un )

1/θ0(x)−1
](

Y1

un

)βj (
ln
Y1

un

)rj
+

1l{Y1>un}

3


+3E


 J∑
j=1

|ξj |crjn Kj,h(x−X1)e
−cnαj

[
( Y1un )

1/θ0(x)−1
](

Y1

un

)βj (
ln
Y1

un

)rj
+

1l{Y1>un}

2


×E

 J∑
j=1

|ξj |crjn Kj,h(x−X1)e
−cnαj

[
( Y1un )

1/θ0(x)−1
](

Y1

un

)βj (
ln
Y1

un

)rj
+

1l{Y1>un}


+4

E
 J∑
j=1

|ξj |crjn Kj,h(x−X1)e
−cnαj

[
( Y1un )

1/θ0(x)−1
](

Y1

un

)βj (
ln
Y1

un

)rj
+

1l{Y1>un}

3
 .

Again by using Lemmas 1 and 2 we obtain that

E|W1|3 = O

((
n

√
nhpF (un;x)

)−1
)
,

and hence, nE|W1|3 → 0. �

Proof of Theorem 3

Apply a Taylor series expansion to the estimating equation ∆̃′α(θ̂n(x); ĉn) = 0 around θ0(x). This gives

0 = ∆̃′α(θ0(x); ĉn) + ∆̃′′α(θ0(x); ĉn)(θ̂n(x)− θ0(x)) +
1

2
∆̃′′′α (θ̃n(x); ĉn)(θ̂n(x)− θ0(x))2
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where θ̃n(x) is a random value between θ̂n(x) and θ0(x). A straightforward rearrangement of the terms
leads then to

rn(θ̂n(x)− θ0(x)) = − 1

∆̃′′α(θ0(x); ĉn) + 1
2∆̃′′′α (θ̃n(x); ĉn)(θ̂n(x)− θ0(x))

rn∆̃′α(θ0(x); ĉn)

= −θ
α+2
0 (x)(1 + α)2

1 + α2
rn∆̃′α(θ0(x); ĉn)(1 + oP(1)) (13)

by (12), the consistency of θ̂n(x) and the boundedness of the third derivative. Another application of
Taylor’s theorem gives

rn∆̃′α(θ0(x); ĉn) = rn∆̃′α(θ0(x); cn)− ∂

∂ĉn
∆̃′α(θ0(x); ĉn)

∣∣∣∣
c̃n

rn ln
F̂ (un;x)

F (un;x)

with c̃n being a random value between ĉn and cn. Direct computations allow us to prove that, under our
assumptions, and using the second part of Lemma 2 and arguments similar to those used in the proof of
Theorem 1, we have

∂

∂ĉn
∆̃′α(θ0(x); ĉn)

∣∣∣∣
c̃n

= oP(1).

In addition, by Theorem 2 in de Wet et al. (2013), we deduce that

rn∆̃′α(θ0(x); ĉn) = rn∆̃′α(θ0(x); cn) + oP(1)

= − α

θα+1
0 (x)(1 + α)

rn

[
T̃n(K, 0, 0, 0;x)− 1

]
+

1 + α

θα+1
0 (x)

rn

[
T̃n(K,α, α(1/θ0(x)− 1), 0;x)− 1

1 + α

]
− 1 + α

θα+2
0 (x)

rn

[
T̃n(K,α, α(1/θ0(x)− 1) + 1/θ0(x), 1;x)− θ0(x)

(1 + α)2

]
+ oP(1).

(14)

Finally, combining (13) and (14) with Theorem 2 and the delta-method, Theorem 3 follows. �
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Value of Oracle Data Driven
Distribution α Bias MSE Sd Bias MSE Sd

0.1 0.051 0.004 0.065 0.095 0.014 0.097
0.25 0.053 0.005 0.067 0.095 0.014 0.099

W(1/θ(x), 1) 0.5 0.059 0.006 0.076 0.096 0.015 0.104
1 0.070 0.008 0.088 0.098 0.016 0.109
2 0.079 0.010 0.100 0.101 0.017 0.111

0.1 0.053 0.005 0.065 0.089 0.013 0.100
0.25 0.055 0.005 0.068 0.089 0.013 0.102

EW(1/θ(x),−1) 0.5 0.060 0.006 0.075 0.091 0.014 0.107
1 0.068 0.007 0.085 0.093 0.014 0.110
2 0.068 0.007 0.085 0.093 0.014 0.110

0.1 0.062 0.006 0.062 0.077 0.009 0.084
0.25 0.063 0.006 0.066 0.077 0.009 0.084

W̃(1/θ(x),−5) 0.5 0.069 0.007 0.074 0.079 0.010 0.086
1 0.075 0.009 0.086 0.083 0.010 0.090
2 0.082 0.010 0.092 0.084 0.011 0.091

Table 1: Bias, mean squared error and standard deviation of the MDPD estimator for the three distri-
butions, the two approaches and different values of α in the case where there is no contamination.
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Value of Oracle Data Driven
Distribution F α Bias MSE Sd Bias MSE Sd

0.1 0.068 0.008 0.086 0.173 0.057 0.170
0.25 0.062 0.007 0.079 0.148 0.041 0.151

W(1/θ(x), 1) 0.5 0.064 0.007 0.081 0.130 0.031 0.138
1 0.072 0.009 0.091 0.126 0.028 0.133
2 0.080 0.011 0.102 0.130 0.029 0.132

0.1 0.069 0.008 0.089 0.179 0.058 0.175
0.25 0.062 0.006 0.079 0.150 0.040 0.154

EW(1/θ(x),−1) 0.5 0.064 0.007 0.081 0.130 0.029 0.141
1 0.071 0.008 0.089 0.124 0.026 0.135
2 0.076 0.009 0.095 0.125 0.026 0.134

0.1 0.074 0.008 0.082 0.142 0.044 0.175
0.25 0.069 0.008 0.077 0.117 0.029 0.151

W̃(1/θ(x),−5) 0.5 0.074 0.009 0.082 0.102 0.020 0.132
1 0.079 0.010 0.090 0.098 0.017 0.121
2 0.083 0.011 0.095 0.097 0.016 0.119

Table 2: Bias, mean squared error and standard deviation of the MDPD estimator for the three distribu-
tions, the two approaches and different values of α in the shifted strict Weibull contaminated case with
ε = 0.005 and β = 4/3.

Value of Oracle Data Driven
Distribution F α Bias MSE Sd Bias MSE Sd

0.1 0.082 0.012 0.099 0.257 0.117 0.208
0.25 0.069 0.008 0.087 0.228 0.094 0.200

W(1/θ(x), 1) 0.5 0.068 0.008 0.087 0.193 0.069 0.182
1 0.076 0.010 0.097 0.177 0.057 0.167
2 0.084 0.012 0.107 0.178 0.056 0.162

0.1 0.078 0.011 0.100 0.251 0.108 0.214
0.25 0.067 0.008 0.087 0.209 0.078 0.197

EW(1/θ(x),−1) 0.5 0.067 0.008 0.086 0.171 0.054 0.177
1 0.074 0.009 0.093 0.157 0.044 0.160
2 0.080 0.010 0.100 0.157 0.043 0.154

0.1 0.083 0.011 0.097 0.198 0.078 0.204
0.25 0.074 0.009 0.086 0.160 0.055 0.190

W̃(1/θ(x),−5) 0.5 0.075 0.009 0.086 0.130 0.036 0.168
1 0.080 0.010 0.093 0.118 0.027 0.149
2 0.084 0.011 0.099 0.114 0.025 0.141

Table 3: Bias, mean squared error and standard deviation of the MDPD estimator for the three distribu-
tions, the two approaches and different values of α in the shifted strict Weibull contaminated case with
ε = 0.01 and β = 4/3.
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Value of Oracle Data Driven
Distribution F α Bias MSE Sd Bias MSE Sd

0.1 0.066 0.008 0.076 0.147 0.043 0.152
0.25 0.062 0.006 0.069 0.125 0.028 0.125

W(1/θ(x), 1) 0.5 0.066 0.007 0.075 0.114 0.023 0.118
1 0.075 0.009 0.084 0.114 0.023 0.119
2 0.083 0.011 0.093 0.117 0.025 0.121

0.1 0.069 0.008 0.076 0.142 0.039 0.146
0.25 0.063 0.006 0.069 0.123 0.029 0.130

EW(1/θ(x),−1) 0.5 0.067 0.007 0.072 0.111 0.023 0.121
1 0.072 0.008 0.078 0.108 0.021 0.118
2 0.083 0.011 0.093 0.109 0.021 0.117

0.1 0.078 0.010 0.078 0.129 0.037 0.162
0.25 0.071 0.008 0.069 0.103 0.020 0.120

W̃(1/θ(x),−5) 0.5 0.076 0.009 0.073 0.097 0.016 0.107
1 0.083 0.010 0.081 0.097 0.016 0.104
2 0.088 0.012 0.086 0.096 0.015 0.104

Table 4: Bias, mean squared error and standard deviation of the MDPD estimator for the three distri-
butions, the two approaches and different values of α in the shifted strict Pareto contaminated case with
ε = 0.005, γ = 1/4, yc = 1.2 times the 95% quantile of the uncontaminated distribution.

Value of Oracle Data Driven
Distribution F α Bias MSE Sd Bias MSE Sd

0.1 0.078 0.009 0.071 0.196 0.071 0.185
0.25 0.079 0.009 0.071 0.154 0.045 0.157

W(1/θ(x), 1) 0.5 0.083 0.011 0.077 0.129 0.032 0.141
1 0.090 0.012 0.085 0.123 0.028 0.134
2 0.096 0.014 0.090 0.124 0.028 0.132

0.1 0.078 0.010 0.085 0.187 0.068 0.178
0.25 0.072 0.008 0.075 0.152 0.042 0.147

EW(1/θ(x),−1) 0.5 0.072 0.008 0.075 0.132 0.030 0.133
1 0.079 0.010 0.082 0.124 0.027 0.126
2 0.085 0.011 0.089 0.124 0.027 0.124

0.1 0.086 0.011 0.086 0.167 0.055 0.180
0.25 0.075 0.009 0.076 0.127 0.030 0.142

W̃(1/θ(x),−5) 0.5 0.078 0.009 0.078 0.110 0.021 0.122
1 0.083 0.011 0.084 0.104 0.018 0.115
2 0.088 0.012 0.089 0.102 0.018 0.113

Table 5: Bias, mean squared error and standard deviation of the MDPD estimator for the three distri-
butions, the two approaches and different values of α in the shifted strict Pareto contaminated case with
ε = 0.01, γ = 1/4, yc = 1.2 times the 95% quantile of the uncontaminated distribution.
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Value of Oracle Data Driven
Distribution F α Bias MSE Sd Bias MSE Sd

0.1 0.073 0.009 0.083 0.171 0.058 0.190
0.25 0.066 0.007 0.073 0.141 0.040 0.163

W(1/θ(x), 1) 0.5 0.067 0.007 0.073 0.123 0.030 0.148
1 0.074 0.009 0.081 0.118 0.026 0.138
2 0.083 0.011 0.090 0.121 0.026 0.136

0.1 0.074 0.009 0.082 0.173 0.061 0.196
0.25 0.068 0.007 0.073 0.145 0.041 0.168

EW(1/θ(x),−1) 0.5 0.071 0.008 0.075 0.130 0.031 0.152
1 0.076 0.009 0.082 0.124 0.027 0.145
2 0.082 0.011 0.089 0.123 0.027 0.143

0.1 0.083 0.011 0.084 0.145 0.048 0.198
0.25 0.073 0.008 0.073 0.119 0.030 0.163

W̃(1/θ(x),−5) 0.5 0.075 0.009 0.076 0.103 0.020 0.138
1 0.082 0.010 0.083 0.099 0.018 0.130
2 0.088 0.012 0.088 0.098 0.017 0.128

Table 6: Bias, mean squared error and standard deviation of the MDPD estimator for the three distri-
butions, the two approaches and different values of α in the shifted strict Pareto contaminated case with
ε = 0.005, γ = 1/4, yc = 1.35 times the 95% quantile of the uncontaminated distribution.

Value of Oracle Data Driven
Distribution F α Bias MSE Sd Bias MSE Sd

0.1 0.089 0.014 0.098 0.226 0.093 0.218
0.25 0.077 0.010 0.085 0.186 0.066 0.194

W(1/θ(x), 1) 0.5 0.076 0.009 0.082 0.154 0.046 0.173
1 0.081 0.010 0.086 0.140 0.037 0.156
2 0.087 0.012 0.094 0.141 0.036 0.151

0.1 0.089 0.013 0.099 0.237 0.104 0.233
0.25 0.080 0.010 0.085 0.195 0.072 0.206

EW(1/θ(x),−1) 0.5 0.078 0.010 0.082 0.163 0.051 0.184
1 0.083 0.011 0.086 0.148 0.041 0.169
2 0.088 0.012 0.092 0.145 0.039 0.163

0.1 0.089 0.013 0.094 0.183 0.067 0.215
0.25 0.082 0.010 0.083 0.143 0.039 0.177

W̃(1/θ(x),−5) 0.5 0.084 0.011 0.085 0.120 0.026 0.157
1 0.086 0.011 0.088 0.111 0.022 0.145
2 0.091 0.013 0.093 0.108 0.020 0.139

Table 7: Bias, mean squared error and standard deviation of the MDPD estimator for the three distri-
butions, the two approaches and different values of α in the shifted strict Pareto contaminated case with
ε = 0.01, γ = 1/4, yc = 1.35 times the 95% quantile of the uncontaminated distribution.
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Figure 1: Asymptotic standard deviation of the MDPD estimator for θ0(x) as a function of α when
θ0(x) = 1 and K(u) = 0.5 1lu∈[−1,1].
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Figure 2: Results for the Oracle method for the three distributions and different values of α. Row 1:
Strict Weibull, row 2: Extended Weibull, row 3: Perturbed Weibull; Column 1: α = 0.1, column 2:
α = 0.5, column 3: α = 1.
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Figure 3: Results for the data driven strategy for the three distributions and different values of α. Row
1: Strict Weibull, row 2: Extended Weibull, row 3: Perturbed Weibull; Column 1: α = 0.1, column 2:
α = 0.5, column 3: α = 1.
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Figure 4: Results for the Oracle method for the three distributions with shifted strict Weibull contam-
ination, ε = 0.005, β = 4/3 and different values of α. Row 1: contaminated Strict Weibull, row 2:
contaminated Extended Weibull, row 3: contaminated Perturbed Weibull; Column 1: α = 0.1, column
2: α = 0.5, column 3: α = 1.
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Figure 5: Results for the data driven strategy for the three distributions with shifted strict Weibull
contamination, ε = 0.005, β = 4/3 and different values of α. Row 1: contaminated Strict Weibull, row 2:
contaminated Extended Weibull, row 3: contaminated Perturbed Weibull; Column 1: α = 0.1, column
2: α = 0.5, column 3: α = 1.

31



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

x

θ(
x)

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●● ●

●●

●

●

●

●

●●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

x

θ(
x)

●

●

●

●

●

● ●
●
●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

x

θ(
x)

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

x

θ(
x)

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

x

θ(
x)

●

●

●

●

●

●

● ●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●●

●

●

●

●
●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

x

θ(
x)

●
●
●
●●
●
●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

x

θ(
x)

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

x

θ(
x)

●
●

●●

●
●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

x

θ(
x)

●

●

●

●●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Figure 6: Results for the Oracle method for the three distributions with shifted strict Pareto contam-
ination, ε = 0.005, γ = 1/4, yc = 1.2 times the 95% quantile of the uncontaminated distribution and
different values of α. Row 1: contaminated Strict Weibull, row 2: contaminated Extended Weibull, row
3: contaminated Perturbed Weibull; Column 1: α = 0.1, column 2: α = 0.5, column 3: α = 1.
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Figure 7: Results for the data driven strategy for the three distributions with shifted strict Pareto
contamination, ε = 0.005, γ = 1/4, yc = 1.2 times the 95% quantile of the uncontaminated distribution
and different values of α. Row 1: contaminated Strict Weibull, row 2: contaminated Extended Weibull,
row 3: contaminated Perturbed Weibull; Column 1: α = 0.1, column 2: α = 0.5, column 3: α = 1.
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Figure 8: Results for the Oracle method for the three distributions with shifted strict Pareto contami-
nation, ε = 0.005, γ = 1/4, yc = 1.35 times the 95% quantile of the uncontaminated distribution and
different values of α. Row 1: contaminated Strict Weibull, row 2: contaminated Extended Weibull, row
3: contaminated Perturbed Weibull; Column 1: α = 0.1, column 2: α = 0.5, column 3: α = 1.
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Figure 9: Results for the data driven strategy for the three distributions with shifted strict Pareto
contamination, ε = 0.005, γ = 1/4, yc = 1.35 times the 95% quantile of the uncontaminated distribution
and different values of α. Row 1: contaminated Strict Weibull, row 2: contaminated Extended Weibull,
row 3: contaminated Perturbed Weibull; Column 1: α = 0.1, column 2: α = 0.5, column 3: α = 1.
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