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Abstract—Modern signal processing (SP) methods rely very
heavily on probability and statistics to solve challenging SP
problems. SP methods are now expected to deal with ever more
complex models, requiring ever more sophisticated computa-
tional inference techniques. This has driven the development
of statistical SP methods based on stochastic simulation and
optimization. Stochastic simulation and optimization algorithms
are computationally intensive tools for performing statistical
inference in models that are analytically intractable and beyond
the scope of deterministic inference methods. They have been
recently successfully applied to many difficult problems involving
complex statistical models and sophisticated (often Bayesian)
statistical inference techniques. This survey paper offers an in-
troduction to stochastic simulation and optimization methods in
signal and image processing. The paper addresses a variety of
high-dimensional Markov chain Monte Carlo (MCMC) methods
as well as deterministic surrogate methods, such as variational
Bayes, the Bethe approach, belief and expectation propagation
and approximate message passing algorithms. It also discusses a
range of optimization methods that have been adopted to solve sto-
chastic problems, as well as stochastic methods for deterministic
optimization. Subsequently, areas of overlap between simulation
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and optimization, in particular optimization-within-MCMC and
MCMC-driven optimization are discussed.
Index Terms—Bayesian inference, Markov chain Monte Carlo,

proximal optimization algorithms, variational algorithms for ap-
proximate inference.

I. INTRODUCTION

M ODERN signal processing (SP) methods, (we use SP
here to cover all relevant signal and image processing

problems), rely very heavily on probabilistic and statistical
tools; for example, they use stochastic models to represent the
data observation process and the prior knowledge available,
and they obtain solutions by performing statistical inference
(e.g., using maximum likelihood or Bayesian strategies). Sta-
tistical SP methods are, in particular, routinely applied to many
and varied tasks and signal modalities, ranging from resolu-
tion enhancement of medical images to hyperspectral image
unmixing; from user rating prediction to change detection in
social networks; and from source separation in music analysis
to speech recognition.
However, the expectations and demands on the performance

of such methods are constantly rising. SP methods are now
expected to deal with challenging problems that require ever
more complex models, and more importantly, ever more so-
phisticated computational inference techniques. This has driven
the development of computationally intensive SP methods
based on stochastic simulation and optimization. Stochastic
simulation and optimization algorithms are computationally
intensive tools for performing statistical inference in models
that are analytically intractable and beyond the scope of
deterministic inference methods. They have been recently
successfully applied to many difficult SP problems involving
complex statistical models and sophisticated (often Bayesian)
statistical inference analyses. These problems can generally be
formulated as inverse problems involving partially unknown
observation processes and imprecise prior knowledge, for
which they delivered accurate and insightful results. These
stochastic algorithms are also closely related to the random-
ized, variational Bayes and message passing algorithms that
are pushing forward the state of the art in approximate statis-
tical inference for very large-scale problems. The key thread
that makes stochastic simulation and optimization methods
appropriate for these applications is the complexity and high
dimensionality involved. For example in the case of hyper-
spectral imaging the data being processed can involve images

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/



of 2048 by 1024 pixels across up to hundreds or thousands of
wavelengths.
This survey paper offers an introduction to stochastic simula-

tion and optimization methods in signal and image processing.
The paper addresses a variety of high-dimensional Markov
chain Monte Carlo (MCMC) methods as well as determin-
istic surrogate methods, such as variational Bayes, the Bethe
approach, belief and expectation propagation and approxi-
mate message passing algorithms. It also discusses a range
of stochastic optimization approaches. Subsequently, areas of
overlap between simulation and optimization, in particular
optimization-within-MCMC and MCMC-driven optimization
are discussed. Some methods such as sequential Monte Carlo
methods or methods based on importance sampling are not
considered in this survey mainly due to space limitations.
This paper seeks to provide a survey of a variety of the algo-

rithmic approaches in a tutorial fashion, as well as to highlight
the state of the art, relationships between the methods, and po-
tential future directions of research. In order to set the scene
and inform our notation, consider an unknown random vector
of interest and an observed data vector

, related to by a statistical model with like-
lihood function potentially parametrized by a deter-
ministic vector of parameters . Following a Bayesian inference
approach, we model our prior knowledge about with a prior
distribution , and our knowledge about after observing
with the posterior distribution

(1)

where the normalizing constant

(2)

is known as the “evidence”, model likelihood, or the partition
function. Although the integral in (2) suggests that all are
continuous random variables, we allow any random variable
to be either continuous or discrete, and replace the integral with
a sum as required.
In many applications, we would like to evaluate the posterior

or some summary of it, for instance point estimates of
such as the conditional mean (i.e., MMSE estimate)
, uncertainty reports such as the conditional variance
, or expected log statistics as used in the expectation maxi-

mization (EM) algorithm [1]–[3]

(3)

where the expectation is taken with respect to . How-
ever, when the signal dimensionality is large, the integral
in (2), as well as those used in the posterior summaries, are
often computationally intractable. Hence, the interest in compu-
tationally efficient alternatives. An alternative that has received
a lot of attention in the statistical SP community is maximum-a-
posteriori (MAP) estimation. Unlike other posterior summaries,
MAP estimates can be computed by finding the value of max-
imizing , which for many models is significantly more
computationally tractable than numerical integration. In the se-
quel, we will suppress the dependence on in the notation, since
it is not of primary concern.

The paper is organized as follows. After this brief intro-
duction where we have introduced the basic notation adopted,
Section II discusses stochastic simulation methods, and in
particular a variety of MCMC methods. In Section III we
discuss deterministic surrogate methods, such as variational
Bayes, the Bethe approach, belief and expectation propagation,
and provide a brief summary of approximate message passing
algorithms. Section IV discusses a range of optimization
methods for solving stochastic problems, as well as stochastic
methods for solving deterministic optimization problems. Sub-
sequently, in Section V we discuss areas of overlap between
simulation and optimization, in particular the use of optimiza-
tion techniques within MCMC algorithms and MCMC-driven
optimization, and suggest some interesting areas worthy of
exploration. Finally, in Section VI we draw together thoughts,
observations and conclusions.

II. STOCHASTIC SIMULATION METHODS

Stochastic simulation methods are sophisticated random
number generators that allow samples to be drawn from a
user-specified target density , such as the posterior .
These samples can then be used, for example, to approximate
probabilities and expectations by Monte Carlo integration [4,
Ch. 3]. In this section we will focus on MCMC methods, an
important class of stochastic simulation techniques that operate
by constructing a Markov chain with stationary distribution
. In particular, we concentrate on Metropolis-Hastings (MH)

algorithms for high-dimensional models (see [5] for a more
general recent review of MCMC methods). It is worth empha-
sizing, however, that we do not discuss many other important
approaches to simulation that also arise often in signal pro-
cessing applications, such as “particle filters” or sequential
Monte Carlo methods [6], [7], and approximate Bayesian
computation [8].
A cornerstone of MCMC methodology is the MH algorithm

[4, Ch. 7], [9], [10], a universal machine for constructing
Markov chains with stationary density . Given some generic
proposal distribution , the generic MH algorithm
proceeds as follows.

Algorithm 1Metropolis-Hastings algorithm (generic version)

Set an initial state
for to do

Generate a candidate state from a proposal
Compute the acceptance probability

Generate
if then

Accept the candidate and set
else

Reject the candidate and set
end if

end for



Under mild conditions on , the chains generated by Algo. 1
are ergodic and converge to the stationary distribution [11],
[12]. An important feature of this algorithm is that computing
the acceptance probabilities does not require knowledge of
the normalization constant of (which is often not available in
Bayesian inference problems). The intuition for the MH algo-
rithm is that the algorithm proposes a stochastic perturbation to
the state of the chain and applies a carefully defined decision
rule to decide if this perturbation should be accepted or not.
This decision rule, given by the random accept-reject step in
Algo. 1, ensures that at equilibrium the samples of the Markov
chain have as marginal distribution.
The specific choice of will of course determine the effi-

ciency and the convergence properties of the algorithm. Ideally
one should choose to obtain a perfect sampler (i.e., with
candidates accepted with probability 1); this is of course not
practically feasible since the objective is to avoid the complexity
of directly simulating from . In the remainder of this section we
review strategies for specifying for high-dimensional models,
and discuss relative advantages and disadvantages. In order to
compare and optimize the choice of , a performance criterion
needs to be chosen. A natural criterion is the stationary inte-
grated autocorrelation time for some relevant scalar summary
statistic , i.e.,

(4)

with , and where denotes the correlation op-
erator. This criterion is directly related to the effective number
of independent Monte Carlo samples produced by the MH algo-
rithm, and therefore to the mean squared error of the resulting
Monte Carlo estimates. Unfortunately drawing conclusions di-
rectly from (4) is generally not possible because is highly de-
pendent on the choice of , with different choices often leading
to contradictory results. Instead, MH algorithms are generally
studied asymptotically in the infinite-dimensional model limit.
More precisely, in the limit , the algorithms can be
studied using diffusion process theory, where the dependence on
vanishes and all measures of efficiency become proportional

to the diffusion speed. The “complexity” of the algorithms can
then be defined as the rate at which efficiency deteriorates as

, e.g., (see [13] for an introduction to this topic
and details about the relationship between the efficiency of MH
algorithms and their average acceptance probabilities or accep-
tance rates)1.
Finally, it is worth mentioning that despite the generality of

this approach, there are some specific models for which conven-
tional MH sampling is not possible because the computation of

is intractable (e.g., when involves an intractable function
of , such as the partition function of the Potts-Markov random
field). This issue has received a lot of attention in the recent
MCMC literature, and there are now several variations of the
MH construction for intractable models [8], [14]–[16].

1Notice that this measure of complexity of MCMC algorithms does not take
into account the computational costs related to generating candidate states and
evaluating their Metropolis-Hastings acceptance probabilities, which typically
also scale at least linearly with the problem dimension .

A. Random Walk Metropolis-Hastings Algorithms
The so-called random walk Metropolis-Hastings (RWMH)

algorithm is based on proposals of the form
, where typically for some positive-definite co-

variance matrix [4, Ch. 7.5]. This algorithm is one of the most
widely used MCMC methods, perhaps because it has very ro-
bust convergence properties and a relatively low computational
cost per iteration. It can be shown that the RWMH algorithm
is geometrically ergodic under mild conditions on [17]. Geo-
metric ergodicity is important because it guarantees a central
limit theorem for the chains, and therefore that the samples can
be used for Monte Carlo integration. However, the myopic na-
ture of the randomwalk proposal means that the algorithm often
requires a large number of iterations to explore the parameter
space, and will tend to generate samples that are highly corre-
lated, particularly if the dimension is large (the performance
of this algorithm generally deteriorates at rate , which is
worse than other more advanced stochastic simulation MH al-
gorithms [18]). This drawback can be partially mitigated by ad-
justing the matrix to approximate the covariance structure of
, and some adaptive versions of RWHM perform this adapta-

tion automatically. For sufficiently smooth target densities, per-
formance is further optimized by scaling to achieve an accep-
tance probability of approximately 20% – 25% [18].

B. Metropolis Adjusted Langevin Algorithms
The Metropolis adjusted Langevin algorithm (MALA) is an

advanced MH algorithm inspired by the Langevin diffusion
process on , defined as the solution to the stochastic differ-
ential equation [19]

(5)

where is the Brownian motion process on and
denotes some initial condition. Under appropriate stability con-
ditions, converges in distribution to as , and
is therefore potentially interesting for drawing samples from .
Since direct simulation from is only possible in very spe-
cific cases, we consider a discrete-time forward Euler approxi-
mation to (5) given by

(6)

where the parameter controls the discrete-time increment.
Under certain conditions on and , (6) produces a good
approximation of and converges to a stationary density
which is close to . In MALA this approximation error is
corrected by introducing an MH accept-reject step that guaran-
tees convergence to the correct target density . The resulting
algorithm is equivalent to Algo. 1 above, with proposal

(7)

By analyzing the proposal (7) we notice that, in addition to the
Langevin interpretation, MALA can also be interpreted as an
MH algorithm that, at each iteration , draws a candidate from



a local quadratic approximation to around , with
as an approximation to the Hessian matrix.

In addition, the MALA proposal can also be defined using
a matrix-valued time step . This modification is related to
redefining (6) in an Euclidean space with the inner product

[20]. Again, the matrix should capture the cor-
relation structure of to improve efficiency. For example,
can be the spectrally-positive version of the inverse Hessian
matrix of [21], or the inverse Fisher information matrix
of the statistical observation model [20]. Note that, in a similar
fashion to preconditioning in optimization, using the exact full
Hessian or Fisher information matrix is often too computation-
ally expensive in high-dimensional settings and more efficient
representations must be used instead. Alternatively, adaptive
versions of MALA can learn a representation of the covariance
structure online [22]. For sufficiently smooth target densities,
MALA’s performance can be further optimized by scaling
(or ) to achieve an acceptance probability of approximately
50% – 60% [23].
Finally, there has been significant empirical evidence that

MALA can be very efficient for some models, particularly
in high-dimensional settings and when the cost of computing
the gradient is low. Theoretically, for sufficiently
smooth , the complexity of MALA scales at rate
[23], comparing very favorably to the rate of RWMH
algorithms. However, the convergence properties of the con-
ventional MALA are not as robust as those of the RWMH
algorithm. In particular, MALA may fail to converge if the
tails of are super-Gaussian or heavy-tailed, or if is chosen
too large [19]. Similarly, MALA might also perform poorly
if is not sufficiently smooth, or multi-modal. Improving
MALA’s convergence properties is an active research topic.
Many limitations of the original MALA algorithm can now be
avoided by using more advanced versions [20], [24]–[27].

C. Hamiltonian Monte Carlo

The Hamiltonian Monte Carlo (HMC) method is a very el-
egant and successful instance of an MH algorithm based on
auxiliary variables [28]. Let , positive
definite, and consider the augmented target density

, which admits the desired target
density as marginal. The HMC method is based on the
observation that the trajectories defined by the so-called Hamil-
tonian dynamics preserve the level sets of . A point

that evolves according to the set of differential
equations (8) during some simulation time period

(8)

yields a point that verifies . In
MCMC terms, the deterministic proposal (8) has as in-
variant distribution. Exploiting this property for stochastic sim-
ulation, the HMC algorithm combines (8) with a stochastic sam-
pling step, , that also has invariant distribution

, and that will produce an ergodic chain. Finally, as with
the Langevin diffusion (5), it is generally not possible to solve

the Hamiltonian (8) exactly. Instead, we use a leap-frog approx-
imation detailed in [28]

(9)

where again the parameter controls the discrete-time incre-
ment. The approximation error introduced by (9) is then cor-
rected with an MH step targeting . This algorithm is
summarized in Algo. 2 below (see [28] for details about the
derivation of the acceptance probability).

Algorithm 2 Hamiltonian Monte Carlo (with leap-frog)

Set an initial state , , and .
for to do

Refresh the auxiliary variable .
Generate a candidate by propagating the current
state with leap-frog steps of length
defined in (9).
Compute the acceptance probability

Generate .
if then

Accept the candidate and set .
else

Reject the candidate and set .
end if

end for

Note that to obtain samples from the marginal it is suf-
ficient to project the augmented samples onto the
original space of (i.e., by discarding the auxiliary variables

). It is also worth mentioning that under some regularity
condition on , the leap-frog approximation (9) is time-re-
versible and volume-preserving, and that these properties are
key to the validity of the HMC algorithm [28].
Finally, there has been a large body of empirical evidence

supporting HMC, particularly for high-dimensional models.
Unfortunately, its theoretical convergence properties are much
less well understood [29]. It has been recently established that
for certain target densities the complexity of HMC scales at rate

, comparing favorably with MALA’s rate
[30]. However, it has also been observed that, as with MALA,
HMC may fail to converge if the tails of are super-Gaussian
or heavy-tailed, or if is chosen too large. HMC may also
perform poorly if is multi-modal, or not sufficiently smooth.
Of course, the practical performance of HMC also depends

strongly on the algorithm parameters , and [29]. The co-
variance matrix should be designed to model the correlation
structure of , which can be determined by performing pilot
runs, or alternatively by using the strategies described in [20],
[21], [31]. The parameters and should be adjusted to obtain



an average acceptance probability of approximately 60% – 70%
[30]. Again, this can be achieved by performing pilot runs, or by
using an adaptive HMC algorithm that adjusts these parameters
automatically [32], [33].

D. Gibbs Sampling

The Gibbs sampler (GS) is another very widely used MH al-
gorithm which operates by updating the elements of individ-
ually, or by groups, using the appropriate conditional distribu-
tions [4, Ch. 10]. This divide-and-conquer strategy often leads
to important efficiency gains, particularly if the conditional den-
sities involved are “simple”, in the sense that it is computation-
ally straightforward to draw samples from them. For illustra-
tion, suppose that we split the elements of in three groups

, and that by doing so we obtain three con-
ditional densities , , and
that are “simple” to sample. Using this decomposition, the GS
targeting proceeds as in Algo. 3. The Markov kernel resulting
from concatenating the component-wise kernels admits
as joint invariant distribution, and thus the chain produced by
Algo. 3 has the desired target density (see [4, Ch. 10] for a
review of the theory behind this algorithm). This fundamental
property holds even if the simulation from the conditionals is
done by using other MCMC algorithms (e.g., RWMH, MALA
or HMC steps targeting the conditional densities), though this
may result in a deterioration of the algorithm convergence rate.
Similarly, the property also holds if the frequency and order of
the updates is scheduled randomly and adaptively to improve
the overall performance.

Algorithm 3 Gibbs sampler algorithm

Set an initial state
for to do

Generate

Generate

Generate

end for

As with other MH algorithms, the performance of the GS de-
pends on the correlation structure of . Efficient samplers seek
to update simultaneously the elements of that are highly cor-
related with each other, and to update “slow-moving” elements
more frequently. The structure of can be determined by pilot
runs, or alternatively by using an adaptive GS that learns it on-
line and that adapts the updating schedule accordingly as de-
scribed in [34]. However, updating elements in parallel often
involves simulating from more complicated conditional distri-
butions, and thus introduces a computational overhead. Finally,
it is worth noting that the GS is very useful for SPmodels, which
typically have sparse conditional independence structures (e.g.,
Markovian properties) and conjugate priors and hyper-priors
from the exponential family. This often leads to simple one-di-
mensional conditional distributions that can be updated in par-
allel by groups [16], [35].

E. Partially Collapsed Gibbs Sampling
The partially collapsed Gibbs sampler (PCGS) is a recent de-

velopment in MCMC theory that seeks to address some of the
limitations of the conventional GS [36]. As mentioned previ-
ously, the GS performs poorly if strongly correlated elements of
are updated separately, as this leads to chains that are highly

correlated and to an inefficient exploration of the parameter
space. However, updating several elements together can also be
computationally expensive, particularly if it requires simulating
from difficult conditional distributions. In collapsed samplers,
this drawback is addressed by carefully replacing one or sev-
eral conditional densities by partially collapsed, or marginal-
ized conditional distributions.
For illustration, suppose that in our previous example the sub-

vectors and exhibit strong dependencies, and that as a
result the GS of Algo. 3 performs poorly. Assume that we are
able to draw samples from the marginalized conditional density

, which does not depend on .
This leads to the PCGS described in Algo. 4 to sample from ,
which “partially collapses” Algo. 3 by replacing
with .

Algorithm 4 Partially collapsed Gibbs sampler

Set an initial state
for to do

Generate

Generate

Generate
end for

Van Dyk and Park [36] established that the PCGS is always
at least as efficient as the conventional GS, and it has been ob-
served that the PCGS is remarkably efficient for some statistical
models [37], [38]. Unfortunately, PCGSs are not as widely ap-
plicable as GSs because they require simulating exactly from the
partially collapsed conditional distributions. In general, using
MCMC simulation (e.g., MH steps) within a PCGS will lead to
an incorrect MCMC algorithm [39]. Similarly, altering the order
of the updates (e.g., by permuting the simulations of and
in Algo. 4) may also alter the target density [36].

III. SURROGATES FOR STOCHASTIC SIMULATION

A. Variational Bayes
In the variational Bayes (VB) approach described in [40],

[41], the true posterior is approximated by a density
, where is a subset of valid densities on . In

particular,

(10)

where denotes the Kullback-Leibler (KL) divergence
between and . As a result of the optimization in (10) over a
function, this is termed “variational Bayes” because of the re-
lation to the calculus of variations [42]. Recalling that
reaches its minimum value of zero if and only if [43],



we see that when includes all valid densi-
ties on . However, the premise is that is too difficult to
work with, and so is chosen as a balance between fidelity and
tractability.
Note that the use of , rather than , implies a

search for a that agrees with the true posterior over
the set of where is large. We will revisit this choice
when discussing expectation propagation in Section III-E.
Rather than working with the KL divergence directly, it is

common to decompose it as follows

(11)

where

(12)

is known as the Gibbs free energy or variational free energy.
Rearranging (11), we see that

(13)

as a consequence of . Thus, can
be interpreted as an upper bound on the negative log partition.
Also, because is invariant to , the optimization (10) can
be rewritten as

(14)

which avoids the difficult integral in (2). In the sequel, we will
discuss several strategies to solve the variational optimization
problem (14).

B. The Mean-Field Approximation
A common choice of is the set of fully factorizable densi-

ties, resulting in the mean-field approximation [44], [45]

(15)

Substituting (15) into (12) yields the mean-field free energy

(16)

where denotes the differen-
tial entropy. Furthermore, for , (16) can be written
as

(17)

(18)

where for .
Equation (17) implies the optimality condition

(19)

where and where is defined
as in (18) but with in place of . Equation (19)
suggests an iterative coordinate-ascent algorithm: update each
component of while holding the others fixed. But
this requires solving the integral in (18). A solution arises when

the conditionals belong to the same exponential
family of distributions [46], i.e.,

(20)

where the sufficient statistic parameterizes the family.
The exponential family encompasses a broad range of distribu-
tions, notably jointly Gaussian and multinomial . Plug-
ging and (20) into (18) imme-
diately gives

(21)

where the expectation is taken over .
Thus, if each is chosen from the same family, i.e.,

, then (19) reduces to the
moment-matching condition

(22)

where is the optimal value of .

C. The Bethe Approach
In many cases, the fully factored model (15) yields too gross

of an approximation. As an alternative, one might try to fit a
model that has a similar dependency structure as .
In the sequel, we assume that the true posterior factors as

(23)

where are subvectors of (sometimes called cliques or
outer clusters) and are non-negative potential functions.
Note that the factorization (23) defines a Gibbs random field
when . When a collection of variables always
appears together in a factor, we can collect them into , an
inner cluster, although it is not necessary to do so. For sim-
plicity we will assume that these are non-overlapping (i.e.,

), so that represents a partition of
. The factorization (23) can then be drawn as a factor graph

to help visualize the structure of the posterior, as in Fig. 1.
We now seek a tractable way to build an approximation

with the same dependency structure as (23). But rather than
designing as a whole, we design the cluster marginals,

and , which must be non-negative, normal-
ized, and consistent

(24)

(25)

(26)

where gathers the components of that are contained in
the cluster and not in the cluster , and denotes the neigh-



Fig. 1. An example of a factor graph, which is a bipartite graph consisting
of variable nodes, (circles/ovals), and factor nodes, (boxes). In this example,

, , . There are several
choices for the inner clusters . One is the full factorization ,
, , and . Another is the partial factorization ,

, and , which results in the “super node” in the dashed
oval. Another is no factorization: , resulting in the “super
node” in the dotted oval. In the latter case, we redefine each factor to have
the full domain (with trivial dependencies where needed).

borhood of the factor ( i.e., the set of inner clusters con-
nected to ).
In general, it is difficult to specify from its cluster

marginals. However, in the special case that the factor graph
has a tree structure (i.e., there is at most one path from one
node in the graph to another), we have [47]

(27)

where is the neighborhood size of the cluster . In
this case, the free energy (12) simplifies to

(28)

where is known as the Bethe free energy (BFE) [47].
Clearly, if the true posterior has a tree structure, and no

constraints beyond (24)–(26) are placed on the cluster marginals
, then minimization of will recover

the cluster marginals of the true posterior. But even when
is not a tree, can be used as an approximation
of the Gibbs free energy , and minimizing can be inter-
preted as designing a that locally matches the true posterior.
The remaining question is how to efficiently minimize

subject to the (linear) constraints (24)–(26).
Complicating matters is the fact that is the sum
of convex KL divergences and concave entropies. One option
is direct minimization using a “double loop” approach like the
concave-convex procedure (CCCP) [48], where the outer loop
linearizes the concave term about the current estimate and the
inner loop solves the resulting convex optimization problem
(typically with an iterative technique). Another option is belief
propagation, which is described below.

D. Belief Propagation

Belief propagation (BP) [49], [50] is an algorithm for com-
puting (or approximating) marginal probability density func-
tions (pdfs)2 like and by propagating messages
on a factor graph. The standard form of BP is given by the

2Note that another form of BP exists to compute the maximum a posteriori
(MAP) estimate known as the “max-product” or “min-sum”
algorithm [50]. However, this approach does not address the problem of com-
puting surrogates for stochastic methods, and so is not discussed further.

sum-product algorithm (SPA) [51], which computes the fol-
lowing messages from each factor node to each variable
(super) node and vice versa

(29)
(30)

These messages are then used to compute the beliefs

(31)

(32)

which must be normalized in accordance with (25). The mes-
sages (29)-(30) do not need to be normalized, although it is often
done in practice to prevent numerical overflow.
When the factor graph has a tree structure, the BP-com-

putedmarginals coincide with the truemarginals after one round
of forward and backward message passes. Thus, BP on a tree-
graph is sometimes referred to as the forward-backward algo-
rithm, particularly in the context of hiddenMarkov models [52].
In the tree case, BP is akin to a dynamic programming algorithm
that organizes the computations needed for marginal evaluation
in a tractable manner.
When the factor graph has cycles or “loops,” BP can

still be applied by iterating the message computations (29)-(30)
until convergence (not guaranteed), which is known as loopy
BP (LBP). However, the corresponding beliefs (31)-(32) are in
general only approximations of the true marginals. This sub-
optimality is expected because exact marginal computation on
a loopy graph is an NP-hard problem [53]. Still, the answers
computed by LBP are in many cases very accurate [54]. For ex-
ample, LBPmethods have been successfully applied to commu-
nication and SP problems such as: turbo decoding [55], LDPC
decoding [49], [56], inference on Markov random fields [57],
multiuser detection [58], and compressive sensing [59], [60].
Although the excellent performance of LBP was at first a

mystery, it was later established that LBP minimizes the con-
strained BFE. More precisely, the fixed points of LBP coincide
with the stationary points of from (28) under
the constraints (24)-(26) [47]. The link between LBP and BFE
can be established through the Lagrangian formalism, which
converts constrained BFE minimization to an unconstrained
minimization through the incorporation of additional variables
known as Lagrange multipliers [61]. By setting the derivatives
of the Lagrangian to zero, one obtains a set of equations that are
equivalent to the message updates (29)-(30) [47]. In particular,
the stationary-point versions of the Lagrange multipliers equal
the fixed-point versions of the loopy SPA log-messages.
Note that, unlike the mean-field approach (15), the

cluster-based nature of LBP does not facilitate an explicit
description of the joint-posterior approximation from
(10). The reason is that, when the factor graph is loopy, there is
no straightforward relationship between the joint posterior
and the cluster marginals , as explained



before (27). Instead, it is better to interpret LBP as an efficient
implementation of the Bethe approach from Section III-C,
which aims for a local approximation of the true posterior.
In summary, by constructing a factor graph with low-dimen-

sional and applying BP or LBP, we trade the high-dimen-
sional integral for a sequence of low-
dimensional message computations (29)-(30). But (29)-(30) are
themselves tractable only for a few families of . Typically,

are limited to members of the exponential family closed
under marginalization (see [62]), so that the updates of the mes-
sage pdfs (29)-(30) reduce to updates of the natural parameters
(i.e., in (20)). The two most common instances are multi-
variate Gaussian pdfs and multinomial probability mass func-
tions (pmfs). For both of these cases, when LBP converges, it
tends to be much faster than double-loop algorithms like CCCP
(see, e.g., [63]). However, LBP does not always converge [54].

E. Expectation Propagation

Expectation propagation (EP) [64] (see also the overviews
[62], [65]) is an iterative method of approximate inference that
is reminiscent of LBP but hasmuchmore flexibility with regards
to the modeling distributions. In EP, the true posterior ,
which is assumed to factorize as in (23), is approximated by

such that

(33)

where are the same as in (23) and are referred to as “site
approximations.” Although no constraints are imposed on the
true-posterior factors , the approximation is restricted
to a factorized exponential family. In particular,

(34)

(35)

with some given base measure. We note that our description of
EP applies to arbitrary partitions , from the trivial partition

to the full partition .
The EP algorithm iterates the following updates over all fac-

tors until convergence (not guaranteed)

(36)

(37)
(38)

(39)

(40)
(41)

where in (38) refers to the set of obeying (34)-(35). Es-
sentially, (36) removes the th site approximation from the
posterior model , and (37) replaces it with the true factor .
Here, is known as the “cavity” distribution. The quantity

is then projected onto the exponential family in (38). The
site approximation is then updated in (39), and the old quantities

are overwritten in (40)-(41). Note that the right side of (39) de-
pends only on because and differ only over

. Note also that the KL divergence in (38) is reversed relative
to (10).
The EP updates (37)–(41) can be simplified by leveraging

the factorized exponential family structure in (34)-(35). First,
for (33) to be consistent with (34)-(35), each site approximation
must factor into exponential-family terms, i.e.,

(42)

(43)

It can then be shown [62] that (36)–(38) reduce to

(44)

for all , which can be interpreted as the moment
matching condition . Further-
more, (39) reduces to

(45)

for all . Finally, (40) and (41) reduce to and
, respectively, for all .

Interestingly, in the case that the true factors are mem-
bers of an exponential family closed under marginalization, the
version of EP described above is equivalent to the SPA up to a
change in message schedule. In particular, for each given factor
node , the SPA updates the outgoingmessage towards one vari-
able node per iteration, whereas EP simultaneously updates
the outgoing messages in all directions, resulting in (see,
e.g., [41]). By restricting the optimization in (39) to a single
factor , EP can be made equivalent to the SPA. On the other
hand, for generic factors , EP can be viewed as a tractable
approximation of the (intractable) SPA.
Although the above form of EP iterates serially through the

factor nodes , it is also possible to perform the updates in par-
allel, resulting in what is known as the expectation consistent
(EC) approximation algorithm [66].
EP and EC have an interesting BFE interpretation. Whereas

the fixed points of LBP coincide with the stationary points of the
BFE (28) subject to (24)-(25) and strong consistency (26), the
fixed points of EP and EC coincide with the stationary points of
the BFE (28) subject to (24)-(25) and the weak consistency (i.e.,
moment-matching) constraint [67]

(46)

EP, like LBP, is not guaranteed to converge. Hence, provably
convergence double-loop algorithms have been proposed that
directly minimize the weakly constrained BFE, e.g., [67].

F. Approximate Message Passing
So-called approximate message passing (AMP) algorithms

[59], [60] have recently been developed for the separable gen-
eralized linear model

(47)



where the prior is fully factorizable, as is the con-
ditional pdf relating the observation vector to
the (hidden) transform output vector , where

is a known linear transform.
Like EP, AMP allows tractable inference under generic3 and

.
AMP can be derived as an approximation of LBP on the

factor graph constructed with inner clusters for
, with outer clusters for

and for , and with factors

. (48)

In the large-system limit (LSL), i.e., for fixed ratio
, the LBP beliefs simplify to

(49)

where and are iteratively updated parameters. Simi-
larly, for , the belief on , denoted by ,
simplifies to

(50)

where and are iteratively updated parameters.
Each AMP iteration requires only one evaluation of the mean
and variance of (49)–(50), one multiplication by and ,
and relatively few iterations, making it very computationally
efficient, especially when these multiplications have fast im-
plementations (e.g., using fast Fourier transforms and discrete
wavelet transforms ).
In the LSL under i.i.d sub-Gaussian , AMP is fully char-

acterized by a scalar state evolution (SE). When this SE has
a unique fixed point, the marginal posterior approximations
(49)–(50) are known to be exact [68], [69].
For generic , AMP’s fixed points coincide with the sta-

tionary points of an LSL version of the BFE [70], [71]. When
AMP converges, its posterior approximations are often very ac-
curate (e.g., [72]), but AMP does not always converge. In the
special case of Gaussian likelihood and prior , AMP con-
vergence is fully understood: convergence depends on the ratio
of peak-to-average squared singular values of , and conver-
gence can be guaranteed for any with appropriate damping
[73]. For generic and , damping greatly helps convergence
[74] but theoretical guarantees are lacking. A double-loop algo-
rithm to directly minimize the LSL-BFE was recently proposed
and shown to have global convergence for strictly log-concave

and under generic [75].

IV. OPTIMIZATION METHODS

A. Optimization Problem
The Monte Carlo methods described in Section II provide a

general approach for estimating reliably posterior probabilities
and expectations. However, their high computational cost often
makes them unattractive for applications involving very high di-
mensionality or tight computing time constraints. One alterna-
tive strategy is to perform inference approximately by using de-

3More precisely, the AMP algorithm [59] handles Gaussian while the
generalized AMP (GAMP) algorithm [60] handles arbitrary .

terministic surrogates as described in Section III. Unfortunately,
these faster inference methods are not as generally applicable,
and because they rely on approximations, the resulting infer-
ences can suffer from estimation bias. As already mentioned, if
one focuses on the MAP estimator, efficient optimization tech-
niques can be employed, which are often more computationally
tractable thanMCMCmethods and, for which strong guarantees
of convergence exist. In many SP applications, the computation
of the MAP estimator of can be formulated as an optimization
problem having the following form

(51)

where , ,
, and with . For example,

may be a linear operator modeling a degradation of the signal
of interest, a vector of observed data, a least-squares cri-
terion corresponding to the negative log-likelihood associated
with an additive zero-mean white Gaussian noise, a sparsity
promoting measure, e.g., an norm, and a frame analysis
transform or a gradient operator.
Often, is an additively separable function, i.e.,

(52)

where . Under this condition, the previous
optimization problem becomes an instance of the more general
stochastic one

(53)

involving the expectation

(54)

where , , and are now assumed to be random variables and
the expectation is computed with respect to the joint distribu-
tion of , with the -th line of . More precisely,
when (52) holds, (51) is then a special case of (53) with uni-
formly distributed over and deterministic.
Conversely, it is also possible to consider that is deterministic
and that for every , , and
are identically distributed random variables. In this second sce-
nario, because of the separability condition (52), the optimiza-
tion problem (51) can be regarded as a proxy for (53), where the
expectation is approximated by a sample estimate (or sto-
chastic approximation under suitable mixing assumptions). All
these remarks illustrate the existing connections between prob-
lems (51) and (53).
Note that the stochastic optimization problem defined in (53)

has been extensively investigated in two communities: machine
learning, and adaptive filtering, often under quite different prac-
tical assumptions on the forms of the functions and .
In machine learning [76]–[78], indeed represents the vector
of parameters of a classifier which has to be learnt, whereas in
adaptive filtering [79], [80], it is generally the impulse response
of an unknown filter which needs to be identified and possibly
tracked. In order to simplify our presentation, in the rest of this



section, we will assume that the functions are convex
and Lipschitz-differentiable with respect to their first argument
(for example, they may be logistic functions).

B. Optimization Algorithms for Solving Stochastic Problems
The main difficulty arising in the resolution of the stochastic

optimization problem (53) is that the integral involved in the ex-
pectation term often cannot be computed in practice since it is
generally high-dimensional and the underlying probability mea-
sure is usually unknown. Two main computational approaches
have been proposed in the literature to overcome this issue. The
first idea is to approximate the expected loss function by using a
finite set of observations and to minimize the associated empir-
ical loss (51). The resulting deterministic optimization problem
can then be solved by using either deterministic or stochastic
algorithms, the latter being the topic of Section IV-C. Here,
we focus on the second family of methods grounded in sto-
chastic approximation techniques to handle the expectation in
(54). More precisely, a sequence of identically distributed sam-
ples is drawn, which are processed sequentially ac-
cording to some update rule. The iterative algorithm aims to
produce a sequence of random iterates converging to
a solution to (53).
We begin with a group of online learning algorithms based

on extensions of the well-known stochastic gradient descent
(SGD) approach. Then we will turn our attention to stochastic
optimization techniques developed in the context of adaptive
filtering.
1) Online Learning Methods Based on SGD: Let us assume

that an estimate of the gradient of at is avail-
able at each iteration . A popular strategy for solving
(53) in this context leverages the gradient estimates to derive
a so-called stochastic forward-backward (SFB) scheme, (also
sometimes called stochastic proximal gradient algorithm)

(55)

where is a sequence of positive stepsize values and
is a sequence of relaxation parameters in . Here-

above, denotes the proximity operator at of
a lower-semicontinuous convex function
with nonempty domain, i.e., the unique minimizer of

(see [81] and the references therein), and
. A convergence analysis of the SFB scheme

has been conducted in [82]–[85], under various assumptions
on the functions , , on the stepsize sequence, and on the
statistical properties of . For example, if is set to a
given (deterministic) value, the sequence generated by
(55) is guaranteed to converge almost surely to a solution of
Problem (53) under the following technical assumptions [84]
(i) has a -Lipschitzian gradient with , is

a lower-semicontinuous convex function, and
is strongly convex.

(ii) For every ,

X
X

where X , and and are positive
values such that with .

(iii) We have

where, for every ,
and is the solution of Problem (53).

When , the SFB algorithm in (55) becomes equivalent
to SGD [86]–[89]. According to the above result, the conver-
gence of SGD is ensured as soon as and

. In the unrelaxed case defined by ,
we then retrieve a particular case of the decaying condition

with usually imposed on the step-
size in the convergence studies of SGD under slightly different
assumptions on the gradient estimates (see [90], [91]
for more details). Note also that better convergence properties
can be obtained, if a Polyak-Ruppert averaging approach is per-
formed, i.e., the averaged sequence , defined as

for every , is considered instead of
in the convergence analysis [90], [92].
We now comment on approaches related to SFB that have

been proposed in the literature to solve (53). It should first be
noted that a simple alternative strategy to deal with a possibly
nonsmooth term is to incorporate a subgradient step into the
previously mentioned SGD algorithm [93]. However, this ap-
proach, like its deterministic version, may suffer from a slow
convergence rate [94]. Another family ofmethods, close to SFB,
adopt the regularized dual averaging (RDA) strategy, first intro-
duced in [94]. The principal difference between SFB and RDA
methods is that the latter rely on iterative averaging of the sto-
chastic gradient estimates, which consists of replacing in the
update rule (55), by where, for every ,

. The advantage is that it provides conver-
gence guarantees for nondecaying stepsize sequences. Finally,
the so-called composite mirror descent methods, introduced in
[95], can be viewed as extended versions of the SFB algorithm
where the proximity operator is computed with respect to a non
Euclidean distance (typically, a Bregman divergence).
In the last few years, a great deal of effort has been made

to modify SFB when the proximity operator of does not
have a simple expression, but when can be split into sev-
eral terms whose proximity operators are explicit. We can men-
tion the stochastic proximal averaging strategy from [96], the
stochastic alternating direction method of mutipliers (ADMM)
from [97]–[99] and the alternating block strategy from [100]
suited to the case when is a separable function.
Another active research area addresses the search for strate-

gies to improve the convergence rate of SFB. Two main ap-
proaches can be distinguished in the literature. The first, adopted
for example in [83], [101]–[103], relies on subspace acceler-
ation. In such methods, usually reminiscent of Nesterov’s ac-
celeration techniques in the deterministic case, the convergence
rate is improved by using information from previous iterates for
the construction of the new estimate. Another efficient way to
accelerate the convergence of SFB is to incorporate in the up-
date rule second-order information one may have on the cost



functions. For instance, the method described in [104] incorpo-
rates quasi-Newton metrics into the SFB and RDA algorithms,
and the natural gradient method from [105] can be viewed as a
preconditioned SGD algorithm. The two strategies can be com-
bined, as for example, in [106].
2) Adaptive Filtering Methods: In adaptive filtering, sto-

chastic gradient-like methods have been quite popular for a long
time [107], [108]. In this field, the functions often re-
duce to a least squares criterion

(56)

where is the unknown impulse response. However, a specific
difficulty to be addressed is that the designed algorithms must
be able to deal with dynamical problems the optimal solution of
which may be time-varying due to some changes in the statistics
of the available data. In this context, it may be useful to adopt a
multivariate formulation by imposing, at each iteration

(57)

where , ,
and . This technique, reminiscent of mini-batch pro-
cedures in machine learning, constitutes the principle of affine
projection algorithms, the purpose of which is to accelerate the
convergence speed [109]. Our focus now switches to recent
work which aims to impose some sparse structure on the de-
sired solution.
A simple method for imposing sparsity is to introduce a

suitable adaptive preconditioning strategy in the stochastic
gradient iteration, leading to the so-called proportionate least
mean square method [110], [111], which can be combined
with affine projection techniques [112], [113]. Similarly to
the work already mentioned that has been developed in the
machine learning community, a second approach proceeds
by minimizing penalized criteria such as (53) where is a
sparsity measure and . In [114], [115], zero-attracting
algorithms are developed which are based on the stochastic
subgradient method. These algorithms have been further ex-
tended to affine projection techniques in [116]–[118]. Proximal
methods have also been proposed in the context of adaptive
filtering, grounded on the use of the forward-backward algo-
rithm [119], an accelerated version of it [120], or primal-dual
approaches [121]. It is interesting to note that proportionate
affine projection algorithms can be viewed as special cases of
these methods [119]. Other types of algorithms have been pro-
posed which provide extensions of the recursive least squares
method, which is known for its fast convergence properties
[106], [122], [123]. Instead of minimizing a sparsity promoting
criterion, it is also possible to formulate the problem as a
feasibility problem where, at iteration , one searches for
a vector satisfying both and

, where denotes the (possibly weighted) norm
and . Over-relaxed projection algorithms
allow such kind of problems to be solved efficiently [124],
[125].

C. Stochastic Algorithms for Solving Deterministic
Optimization Problems

We now consider the deterministic optimization problem de-
fined by (51) and (52). Of particular interest is the case when the
dimensions and/or are very large (for instance, in [126],

and in [127], ).
1) Incremental Gradient Algorithms: Let us start with in-

cremental methods, which are dedicated to the solution of (51)
when is large, so that one prefers to exploit at each itera-
tion a single term , usually through its gradient, rather than
the global function . There are many variants of incremental
algorithms, which differ in the assumptions made on the func-
tions involved, on the stepsize sequence, and on the way of ac-
tivating the functions . This order could follow ei-
ther a deterministic [128] or a randomized rule. However, it
should be noted that the use of randomization in the selection
of the components presents some benefits in terms of conver-
gence rates [129] which are of particular interest in the context
of machine learning [130], [131], where the user can only afford
few full passes over the data. Among randomized incremental
methods, the SAGA algorithm [132], presented below, allows
the problem defined in (51) to be solved when the function is
not necessarily smooth, by making use of the proximity operator
introduced previously. The -th iteration of SAGA reads as

(58)

where , for all , , and
is drawn from an i.i.d. uniform distribution on .

Note that, although the storage of the variables
can be avoided in this method, it is necessary to store the
gradient vectors . The convergence
of Algorithm (58) has been analyzed in [132]. If the functions

are -Lipschitz differentiable and -strongly
convex with and the stepsize equals

, then goes to zero ge-
ometrically with rate , where is the solution to Problem
(51). When only convexity is assumed, a weaker convergence
result is available.
The relationship between Algorithm (58) and other stochastic

incremental methods existing in the literature is worthy of
comment. The main distinction arises in the way of building the
gradient estimates . The standard incremental gradient
algorithm, analyzed for instance in [129], relies on simply
defining, at iteration , . How-
ever, this approach, while leading to a smaller computational
complexity per iteration and to a lower memory requirement,
gives rise to suboptimal convergence rates [91], [129], mainly
due to the fact that its convergence requires a stepsize sequence

decaying to zero. Motivated by this observation, much



recent work [126], [130]–[134] has been dedicated to the de-
velopment of fast incremental gradient methods, which would
benefit from the same convergence rates as batch optimization
methods, while using a randomized incremental approach. A
first class of methods relies on a variance reduction approach
[130], [132]–[134] which aims at diminishing the variance
in successive estimates . All of the aforementioned
algorithms are based on iterations which are similar to (58).
In the stochastic variance reduction gradient method and the
semi-stochastic gradient descent method proposed in [133],
[134], a full gradient step is made at every iterations,

, so that a single vector is used instead of
in the update rule. This so-called mini-batch strategy leads to a
reduced memory requirement at the expense of more gradient
evaluations. As pointed out in [132], the choice between one
strategy or another may depend on the problem size and on
the computer architecture. In the stochastic average gradient
algorithm (SAGA) from [130], a multiplicative factor is
placed in front of the gradient differences, leading to a lower
variance counterbalanced by a bias in the gradient estimates. It
should be emphasized that the work in [130], [133] is limited to
the case when . A second class of methods, closely related
to SAGA, consists of applying the proximal step to ,
where is the average of the variables (which
thus need to be stored). This approach is retained for instance
in the Finito algorithm [131] as well as in some instances of the
minimization by incremental surrogate optimization (MISO)
algorithm, proposed in [126]. These methods are of particular
interest when the extra storage cost is negligible with respect
to the high computational cost of the gradients. Note that
the MISO algorithm relying on the majoration-minimization
framework employs a more generic update rule than Finito and
has proven convergence guarantees even when is nonzero.
2) Block Coordinate Approaches: In the spirit of the

Gauss-Seidel method, an efficient approach for dealing with
Problem (51) when is large consists of resorting to block
coordinate alternating strategies. Sometimes, such a block
alternation can be performed in a deterministic manner [135],
[136]. However, many optimization methods are based on fixed
point algorithms, and it can be shown that with deterministic
block coordinate strategies, the contraction properties which
are required to guarantee the convergence of such algorithms
are generally no longer satisfied. In turn, by resorting to sto-
chastic techniques, these properties can be retrieved in some
probabilistic sense [85]. In addition, using stochastic rules for
activating the different blocks of variables often turns out to be
more flexible.
To illustrate why there is interest in block coordinate ap-

proaches, let us split the target variable as ,
where, for every , is the -th block of
variables with reduced dimension (with
). Let us further assume that the regularization function can

be blockwise decomposed as

(59)

where, for every , is a matrix in ,
and and
are proper lower-semicontinuous convex functions. Then, the
stochastic primal-dual proximal algorithm allowing us to solve
Problem (51) is given by

Algorithm 5 Stochastic primal-dual proximal algorithm

for do
for to do

with probability do

otherwise
.

end for
end for

In the algorithm above, for every , the scalar
product has been rewritten in a blockwise manner as

. Under some stability conditions on the choice
of the positive step sizes and ,
converges almost surely to a solution of the minimization
problem, as (see [137] for more technical details). It
is important to note that the convergence result was established
for arbitrary probabilities , provided that the
block activation probabilities are positive and independent
of . Note that the various blocks can also be activated in a
dependent manner at a given iteration . Like its determin-
istic counterparts (see [138] and the references therein), this
algorithm enjoys the property of not requiring any matrix
inversion, which is of paramount importance when the matrices

are of large size and do not have some simple
forms.
When , the random block coordinate forward-back-

ward algorithm is recovered as an instance of Algorithm 5 since
the dual variables can be set to 0 and the con-
stant becomes useless. An extensive literature exists on the
latter algorithm and its variants. In particular, its almost sure
convergence was established in [85] under general conditions,
whereas some worst case convergence rates were derived in
[139]–[143]. In addition, if , the random block coor-
dinate descent algorithm is obtained [144].
When the objective function minimized in Problem (51) is

strongly convex, the random block coordinate forward-back-
ward algorithm can be applied to the dual problem, in a sim-
ilar fashion to the dual forward-backward method used in the
deterministic case [145]. This leads to so-called dual ascent
strategies which have become quite popular in machine learning
[146]–[149].



Random block coordinate versions of other proximal algo-
rithms such as the Douglas-Rachford algorithm and ADMM
have also been proposed [85], [150]. Finally, it is worth em-
phasizing that asynchronous distributed algorithms can be
deduced from various randomly activated block coordinate
methods [137], [151]. As well as dual ascent methods, the latter
algorithms can also be viewed as incremental methods.

V. AREAS OF INTERSECTION: OPTIMIZATION-WITHIN-MCMC
AND MCMC-DRIVEN OPTIMIZATION

There are many important examples of the synergy between
stochastic simulation and optimization, including global opti-
mization by simulated annealing, stochastic EM algorithms, and
adaptive MCMC samplers [4]. In this section we highlight some
of the interesting new connections between modern simulation
and optimization that we believe are particularly relevant for the
SP community, and that we hope will stimulate further research
in this community.

A. Riemannian Manifold MALA and HMC
Riemannian manifold MALA and HMC exploit differential

geometry for the problem of specifying an appropriate proposal
covariance matrix that takes into account the geometry of
the target density [20]. These new methods stem from the
observation that specifying is equivalent to formulating the
Langevin or Hamiltonian dynamics in an Euclidean parameter
space with inner product . Riemannian methods ad-
vance this observation by considering a smoothly-varying po-
sition dependent matrix , which arises naturally by formu-
lating the dynamics in a Riemannian manifold. The choice of

then becomes the more familiar problem of specifying
a metric or distance for the parameter space [20]. Notice that
the Riemannian and the canonical Euclidean gradients are re-
lated by . Therefore this problem is also
closely related to gradient preconditioning in gradient descent
optimization discussed in Section IV.B. Standard choices for
include for example the inverse Hessian matrix [21], [31],

which is closely related to Newton’s optimization method, and
the inverse Fisher information matrix [20], which is the “nat-
ural” metric from an information geometry viewpoint and is
also related to optimization by natural gradient descent [105].
These strategies have originated in the computational statistics
community, and perform well in inference problems that are not
too high-dimensional. Therefore, the challenge is to design new
metrics that are appropriate for SP statistical models (see [152],
[153] for recent work in this direction).

B. Proximal MCMC Algorithms
Most high-dimensional MCMC algorithms rely particularly

strongly on differential analysis to navigate vast parameter
spaces efficiently. Conversely, the potential of convex calculus
for MCMC simulation remains largely unexplored. This is
in sharp contrast with modern high-dimensional optimization
described in Section IV, where convex calculus in general,
and proximity operators [81], [154] in particular, are used
extensively. This raises the question as to whether convex cal-
culus and proximity operators can also be useful for stochastic
simulation, especially for high-dimensional target densities that
are log-concave, and possibly not continuously differentiable.

This question was studied recently in [24] in the context of
Langevin algorithms. As explained in Section II.B, Langevin
MCMC algorithms are derived from discrete-time approxima-
tions of the time-continuous Langevin diffusion process (5). Of
course, the stability and accuracy of the discrete approximations
determine the theoretical and practical convergence properties
of the MCMC algorithms they underpin. The approximations
commonly used in the literature are generally well-behaved and
lead to powerful MCMC methods. However, they can perform
poorly if is not sufficiently regular, for example if is not con-
tinuously differentiable, if it is heavy-tailed, or if it has lighter
tails than the Gaussian distribution. This drawback limits the
application of MCMC approaches to many SP problems, which
rely increasingly on models that are not continuously differen-
tiable or that involve constraints.
Using proximity operators, the following proximal approxi-

mation for the Langevin diffusion process (5) was recently pro-
posed in [24]

(60)

as an alternative to the standard forward Euler approximation
used in

MALA4. Similarly to MALA, the time step can be adjusted
online to achieve an acceptance probability of approximately
50%. It was established in [24] that when is log-concave, (60)
defines a remarkably stable discretization of (5) with optimal
theoretical convergence properties. Moreover, the “proximal”
MALA resulting from combining (60) with an MH step has
very good geometric ergodicity properties. In [24], the algo-
rithm efficiency was demonstrated empirically on challenging
models that are not well addressed by other MALA or HMC
methodologies, including an image resolution enhancement
model with a total-variation prior. Further practical assessments
of proximal MALA algorithms would therefore be a welcome
area of research.
Proximity operators have also been used recently in [155] for

HMC sampling from log-concave densities that are not contin-
uously differentiable. The experiments reported in [155] show
that this approach can be very efficient, in particular for SP
models involving high-dimensionality and non-smooth priors.
Unfortunately, theoretically analyzing HMC methods is diffi-
cult, and the precise theoretical convergence properties of this
algorithm are not yet fully understood.We hope future work will
focus on this topic.

C. Optimization-Driven Gaussian Simulation
The standard approach for simulating from a multivariate

Gaussian distribution with precision matrix is to
perform a Cholesky factorization , generate an aux-
iliary Gaussian vector , and then obtain the de-
sired sample by solving the linear system [156]. The
computational complexity of this approach generally scales at
a prohibitive rate with the model dimension , making
it impractical for large problems, (note however that there are
specific cases with lower complexity, for instance when is
Toeplitz [157], circulant [158] or sparse [156]).

4Recall that denotes the proximity operator of evaluated at
[81], [154].



Optimization-driven Gaussian simulators arise from the ob-
servation that the samples can also be obtained by minimizing a
carefully designed stochastic cost function [159], [160]. For il-
lustration, consider a Bayesian model with Gaussian likelihood

and Gaussian prior , for
some linear observation operator , prior mean

, and positive definite covariance matrices and
. The posterior distribution is Gaussian

with mean and precision matrix given by

Simulating samples by Cholesky factoriza-
tion of can be computationally expensive when is large.
Instead, optimization-driven simulators generate samples by
solving the following “random” minimization problem

(61)

with random vectors and . It
is easy to check that if (61) is solved exactly, then is a sample
from the desired posterior distribution . From a compu-
tational viewpoint, however, it is significantly more efficient to
solve (61) approximately, for example by using a few linear con-
jugate gradient iterations [160]. The approximation error can
then be corrected by using an MH step [161], at the expense of
introducing some correlation between the samples and therefore
reducing the total effective sample size. Fortunately, there is an
elegant strategy to determine automatically the optimal number
of conjugate gradient iterations that maximizes the overall effi-
ciency of the algorithm [161].

VI. CONCLUSIONS AND OBSERVATIONS

In writing this paper we have sought to provide an intro-
duction to stochastic simulation and optimization methods in
a tutorial format, but which also raised some interesting topics
for future research. We have addressed a variety of MCMC
methods and discussed surrogate methods, such as variational
Bayes, the Bethe approach, belief and expectation propaga-
tion, and approximate message passing. We also discussed a
range of recent advances in optimization methods that have
been proposed to solve stochastic problems, as well as sto-
chastic methods for deterministic optimization. Subsequently,
we highlighted new methods that combine simulation and
optimization, such as proximal MCMC algorithms and opti-
mization-driven Gaussian simulators. Our expectation is that
future methodologies will become more flexible. Our commu-
nity has successfully applied computational inference methods,
as we have described, to a plethora of challenges across an
enormous range of application domains. Each problem offers
different challenges, ranging from model dimensionality and
complexity, data (too much or too little), inferences, accuracy
and computation times. Consequently, it seems not unreason-
able to speculate that the different computational methodologies
discussed in this paper will evolve to become more adaptable,
with their boundaries becoming less well defined, and with

the development of algorithms that make use of simulation,
variational approximations and optimization simultaneously.
Such an approach is more likely to be able to handle an even
wider range of models, datasets, inferences, accuracies and
computing times in a computationally efficient way.
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