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We introduce a nonparametric regression estimator for a tail heaviness parameter in an integrated conditional Pareto-Weibull-type model. The estimator is based on local log excesses over a high random threshold. Asymptotic properties are derived under proper regularity conditions.

Introduction

In the recent years, a lot of attention in extreme value theory has been devoted to situations where the variable of interest Y is observed together with a random covariate X. [START_REF] Goegebeur | Nonparametric regression estimation of conditional tails -the random covariate case[END_REF] introduced an estimator for the conditional extreme value index γ(x) when γ(x) > 0, while de Wet et al. (2015) introduced an estimator for the conditional Weibull-tail coefficient.

In both of these cases, a weighted average of the log-excesses over a threshold is used, where the threshold is considered to be non-random. The aim of the present paper is to construct an estimator that can be used for both conditional Weibull-tail distributions and Pareto-type

F (y; x) = exp -D ← τ (x) (ln H (y; x)) , (1) 
where

• y > y * (x) with y * (x) > 0,

• D τ (x) (y) = y 1 u τ (x)-1 du, with τ (x) ∈ [0, 1],
• H is an increasing function that satisfies H ← (t; x) := inf{y : H(y; x) ≥ t} = t θ(x) (t; x), where θ(x) > 0, and is a slowly varying function at infinity, i.e. (λy;x) (y;x) → 1 as y → ∞ for all λ > 0.

As noted in [START_REF] Gardes | Weibull tail-distributions revisited: A new look at some tail estimators[END_REF], this model includes Weibull-tail distributions with Weibull-tail coefficient θ(x) if τ (x) = 0, and Pareto-type tails with extreme value index θ(x) if τ (x) = 1, while τ (x) ∈ (0, 1) is an intermediate class of distributions. In the following, we let (X i , Y i ), i = 1, . . . , n, be independent copies of the random vector (X, Y ) ∈ R q ×R + with q ≥ 1, where the conditional distribution of Y given X = x satisfies (1). Furthermore, let x ∈ R q be arbitrary and denote by B(x, h), the ball with center x and radius h, i.e. B(x, h) := {z ∈ R q : d(x, z) ≤ h}, with d(x, z) being the distance between x and z. The number of observations in the ball is given by N n,x,h := n i=1 1l {X i ∈B(x,h)} , where 1l {•} is the indicator function, and denote by n x the expected number of observations in B(x, h), i.e. n x := nP (X ∈ B(x, h)).

Conditional on N n,x,h = p, p ≥ 1, we introduce Z j , j = 1, . . . , p, as the response variables for which the covariate X j is in the ball B(x, h), and denote by Z 1,p ≤ . . . ≤ Z p,p the associated order statistics. In this setting we define our estimator of θ(x) as

θ(k x ; x) := 1 µ τ (x) ln p kx 1 k x kx i=1 [ln Z p-i+1,p -ln Z p-kx,p ] with µ τ (x) (t) := ∞ 0 D τ (x) (u + t) -D τ (x) (t) exp(-u)du,
and assuming that k x ∈ {1, . . . , p -1}. This estimator is an adaptation of the estimator proposed by [START_REF] Gardes | Weibull tail-distributions revisited: A new look at some tail estimators[END_REF] to the regression context. It consists mainly in averaging the log-spacings between the upper order statistics of the response variables for which the covariates are in the ball centered at x.

In the following, we will let U h (t; x) and U (t; x) be the tail quantile functions corresponding to the conditional distribution function F h (y; x) := P(Y ≤ y|X ∈ B(x, h)) and F (y; x), respectively, i.e. U h (.; x) := (1/F h (.; x)) ← and U (.; x) := (1/F (.; x)) ← , where the superscript ← denotes the generalised inverse as introduced above. In order to control the difference between U h (t; x) and U (t; x), we define ω(u, v, x, h)

:= sup z∈[u,v] |log U h (z; x) -log U (z; x)|, with u ≤ v.
The asymptotic properties of θ(k x ; x) will be examined under the following second order condition.

Assumption A(ρ(x)) There exist ρ(x) < 0 and b(y; x) → 0 for y → ∞ such that ln (λy; x)

(y; x) = b(y; x)D ρ(x) (λ)(1 + o(1)), where o(1) is uniform on λ ∈ [1, ∞).
Note that this assumption immediately implies that the function |b(y; x)| is regularly varying with index ρ(x).

Asymptotic properties

In this section we examine the asymptotic properties of our estimator. We start by establishing the consistency of θ(k x ; x). kx nx → 0 in such a way that for some δ > 0, 1

µ τ (x) ln nx kx ω n x (1 + δ)k x , n 1+δ x , x, h -→ 0, then θ(k x ; x) P -→ θ(x).
Proof:

Let I x := N ∩ [(1 -n -1/4 x )n x , (1 + n -1/4 x )n x ]. According to Lemma 1 in Stupfler (2013),
one has that P(N n,x,h ∈ I x ) → 1 as n x → ∞. For any t > 0, define the event

S(t; x) := θ (k x ; x) -θ(x) > t .
Note that after applying the law of total probability one obtains the inequality

P(S(t; x)) ≤ sup p∈Ix P (S(t; x)|N n,x,h = p) + P(N n,x,h / ∈ I x ).
We have thus to show that sup p∈Ix P (S(t; x)|N n,x,h = p) → 0.

To this aim, let T i , i = 1, . . . , p, be unit Pareto random variables, with T 1,p ≤ . . . ≤ T p,p the associated order statistics. Given N n,x,h = p ≥ 1, the distribution of the random vector (Z 1 , . . . , Z p ), is the same as that of the random vector (U h (T 1 ; x) , . . . , U h (T p ; x)); see Lemma 2 in Stupfler (2013). Thus, denoting

θ(k x ; x) := 1 µ τ (x) ln p kx 1 k x kx i=1 [ln U h (T p-i+1,p ; x) -ln U h (T p-kx,p ; x)] , θ(k x ; x) := 1 µ τ (x) ln p kx 1 k x kx i=1 [ln U (T p-i+1,p ; x) -ln U (T p-kx,p ; x)] ,
and

R p (x) := 1 µ τ (x) ln p kx 1 k x kx i=1 [ln U h (T p-i+1,p ; x) -ln U h (T p-kx,p ; x) -(ln U (T p-i+1,p ; x) -ln U (T p-kx,p ; x))] ,
we have

P (S(t; x)|N n,x,h = p) = P θ(k x ; x) -θ(x) > t ≤ P θ(k x ; x) -θ(x) > t 2 + P |R p (x)| > t 2 . (2) 
The two probabilities on the right-hand side of ( 2) are now studied separately. Concerning the first one, note that, with

T * i (p) := T p-i+1,p T p-kx,p , i = 1, . . . , k x , θ(k x ; x) = θ(x) 1 µ τ (x) ln p kx 1 k x kx i=1 D τ (x) (ln T p-kx,p + ln T * i (p)) -D τ (x) (ln T p-kx,p ) + 1 µ τ (x) ln p kx 1 k x kx i=1 ln exp D τ (x) (ln T p-kx,p + ln T * i (p)) ; x exp D τ (x) (ln T p-kx,p ) ; x =: θ 1 (k x ; x) + θ 2 (k x ; x). For the sequel, it is important to keep in mind that (T * kx-i+1 (p), i = 1, . . . , k x ) D = (T 1,kx , . . . , T kx,kx ),
independently of T p-kx,p . Application of a Taylor series expansion to θ 1 (k x ; x) gives

θ 1 (k x ; x) = θ(x) (ln T p-kx,p ) τ (x)-1 ln p kx τ (x)-1 ln p kx τ (x)-1 µ τ (x) ln p kx 1 k x kx i=1 ln T * i (p) + θ(x) 2 τ (x) -1 µ τ (x) ln p kx 1 k x kx i=1 ln T p-kx,p + ln T i (p) τ (x)-2 (ln T * i (p)) 2 =: θ 11 (k x ; x) + θ 12 (k x ; x)
where ln T i (p) is a random value between 0 and ln T * i (p). The cases τ (x) = 1 and τ (x) = 1 can now be studied separately. If τ (x) = 1, we have that θ 11 (k x ; x) = θ(x) 1 kx kx i=1 ln T * i (p) and θ 12 (k x ; x) = 0, and thus for any t > 0

sup p∈Ix P θ 1 (k x ; x) -θ(x) > t = sup p∈Ix P θ(x) 1 k x kx i=1 ln T * i (p) -θ(x) > t = sup p∈Ix P θ(x) 1 k x kx i=1 ln T kx-i+1,kx -θ(x) > t = P θ(x) 1 k x kx i=1 ln T i -θ(x) > t -→ 0,
by the law of large numbers. Otherwise, if τ (x) < 1, by combining Lemma 6 in [START_REF] Stupfler | A moment estimator for the conditional extreme value index[END_REF] with our Lemmas 1 and 3, we deduce that

sup p∈Ix P θ 11 (k x ; x) -θ(x) > t -→ 0, while concerning θ 12 (k x ; x), θ 12 (k x ; x) ≤ θ(x) 2 (ln T p-kx,p ) -1 (ln T p-kx,p ) τ (x)-1 ln p kx τ (x)-1 ln p kx τ (x)-1 µ τ (x) ln p kx 1 k x kx i=1 (ln T * i (p)) 2 .
Using again the law of large numbers combining with the convergence sup p∈Ix P (ln T p-kx,p ) -1 > t → 0 and our Lemma 3, we deduce that

sup p∈Ix P θ 12 (k x ; x) > t -→ 0.
This leads also for τ (x) < 1 to

sup p∈Ix P θ 1 (k x ; x) -θ(x) > t -→ 0. ( 3 
)
Concerning now θ 2 (k x ; x), we have to use assumption A(ρ(x)) which ensures that

θ 2 (k x ; x) = 1 µ τ (x) ln p kx • 1 k x kx i=1 ln exp D τ (x) (ln T p-kx,p + ln T * i (p)) -D τ (x) (ln T p-kx,p ) exp D τ (x) (ln T p-kx,p ) ; x exp D τ (x) (ln T p-kx,p ) ; x = b exp D τ (x) (ln T p-kx,p ) ; x µ τ (x) ln p kx • 1 k x kx i=1 D ρ(x) exp D τ (x) (ln (T p-kx,p T * i (p))) -D τ (x) (ln (T p-kx,p )) (1 + δ n )
where δ n P -→ 0 uniformly in i and p. An application of the mean value theorem, shows that

D ρ(x) exp D τ (x) (ln (T p-kx,p T * i (p))) -D τ (x) (ln (T p-kx,p )) = exp D τ (x) (ln T i (p) + ln T p-kx,p ) -D τ (x) (ln T p-kx,p ) ρ(x) ln T i (p) + ln T p-kx,p τ (x)-1 ln T * i (p),
where ln T i (p) is a random value between 0 and ln

T * i (p). Since exp D τ (x) (ln T i (p) + ln T p-kx,p ) -D τ (x) (ln T p-kx,p ) ρ(x) ≤ 1, it follows that θ 2 (k x ; x) ≤ (1 + δ n ) (ln T p-kx,p ) τ (x)-1 ln p kx τ (x)-1 ln p kx τ (x)-1 µ τ (x) ln p kx b exp D τ (x) (ln T p-kx,p ) ; x 1 k x kx i=1 ln T * i (p) .
Clearly, 

sup p∈Ix P (|(1 + δ n ) -1| > t) -→
|R p (x)| ≤ 2ω(T p-kx,p , T p,p , x, h) µ τ (x) ln nx kx µ τ (x) ln nx kx µ τ (x) ln p kx . (4) 
Since ω(u, v, x, h) is a decreasing function in u and an increasing function in v, it is clear that for all t > 0,

   2ω nx (1+δ)kx , n 1+δ x , x, h µ τ (x) ln nx kx ≤ t    ∩ T p-kx,p ≥ n x (1 + δ)k x ∩ T p,p ≤ n 1+δ x ⊆    2ω(T p-kx,p , T p,p , x, h) µ τ (x) ln nx kx ≤ t    .
By considering the complementary event, we have

   2ω(T p-kx,p , T p,p , x, h) µ τ (x) ln nx kx > t    ⊆    2ω nx (1+δ)kx , n 1+δ x , x, h µ τ (x) ln nx kx > t    ∪ T p-kx,p < n x (1 + δ)k x ∪ T p,p > n 1+δ
x .

Taking n x sufficiently large, under the assumption of Theorem 1, we have

sup p∈Ix P   2ω(T p-kx,p , T p,p , x, h) µ τ (x) ln nx kx > t   ≤ sup p∈Ix P T p-kx,p < n x (1 + δ)k x + sup p∈Ix P T p,p > n 1+δ
x -→ 0, by Lemma 6 in Stupfler (2013) and using the properties of the largest order statistic T p,p . This ensures then under our Lemma 2 that

sup p∈Ix P (|R p (x)| > t) -→ 0.
Combining the above results, Theorem 1 follows.

Now we establish the asymptotic normality of θ(k x ; x), when properly normalised.

Theorem 2 Assume that F (.; x) satisfies (1) and that A(ρ(x)) holds. If n x → ∞, k x → ∞ and kx nx → 0 in such a way that for some δ > 0,

√ k x µ τ (x) ln nx kx ω n x (1 + δ)k x , n 1+δ x , x, h -→ 0,
and if additionally

k x b exp D τ (x) ln n x k x ; x -→ λ ∈ R and for τ (x) < 1 √ k x ln nx kx -→ 0 then k x θ(k x ; x) -θ(x) D → N λ 1 -ρ(x) 1l {τ (x)=1} + λ1l {τ (x)<1} , θ 2 (x) . Proof: Given N n,x,h = p ≥ 1, the distribution of √ k x ( θ(k x ; x) -θ(x)) is the same as that of √ k x ( θ(k x ; x) -θ(x))
. Thus according to Lemma 5 in [START_REF] Stupfler | A moment estimator for the conditional extreme value index[END_REF], it is sufficient to prove that the latter has the same distribution as a triangular array of the form

D n + φ np where D n D → N λ 1-ρ(x) 1l {τ (x)=1} + λ1l {τ (x)<1}
, θ 2 (x) and sup p∈Ix P (|φ np | > t) → 0 for all t > 0, as n x → ∞. We can use the same decomposition of θ(k x ; x) as in the proof of Theorem 1, that is in terms of θ 11 (k x ; x), θ 12 (k x ; x), θ 2 (k x ; x) and R p (x). Expanding further on the term θ 11 (k x ; x)

gives θ 11 (k x ; x) D = θ(x) 1 k x kx i=1 ln T i + θ(x)    (ln T p-kx,p ) τ (x)-1 ln p kx τ (x)-1 ln p kx τ (x)-1 µ τ (x) ln p kx -1    1 k x kx i=1 ln T i =: θ 111 (k x ; x) + θ 112 (k x ; x).
The first term θ 111 (k x ; x) can be dealt with directly with the central limit theorem

k x θ 111 (k x ; x) -θ(x) D → N 0, θ 2 (x) .
Note that θ 112 (k x ; x) = 0 if τ (x) = 1, so we only need to consider the case τ (x) < 1. For θ 112 (k x ; x), we have thus to show that for all t > 0

sup p∈Ix P k x ln T p-kx,p ln p/k x τ (x)-1 -1 > t -→ 0.
From the mean value theorem we get

sup p∈Ix P k x ln T p-kx,p ln p/k x τ (x)-1 -1 > t ≤ sup p∈Ix P   1 - ln( kx p T p-kx,p ) ln(p/k x ) τ (x)-2 √ k x ln[(1 -n -1/4 x )n x /k x ] ln k x p T p-kx,p > t   .
Taylor's theorem gives now

sup p∈Ix P ln k x p T p-kx,p > t ≤ sup p∈Ix P   kx p T p-kx,p -1 1 -kx p T p-kx,p -1 > t   = sup p∈Ix P k x p T p-kx,p -1 > t 1 + t ,
which tends to zero by Lemma 6 in Stupfler (2013), and, with a > 1,

sup p∈Ix P   1 - ln( kx p T p-kx,p ) ln(p/k x ) τ (x)-2 -1 > t   ≤ sup p∈Ix P 1 - ln T p-kx,p ln(p/k x ) -1 τ (x)-3 > a + sup p∈Ix P ln T p-kx,p ln(p/k x ) -1 > t 2a = sup p∈Ix P ln T p-kx,p ln(p/k x ) -1 > 1 -a 1 τ (x)-3 + sup p∈Ix P ln T p-kx,p ln(p/k x ) -1 > t 2a → 0.
Concerning now the term θ 12 (k x ; x) (which only needs to be considered in case τ (x) < 1), remark that

k x θ 12 (k x ; x) ≤ θ(x) 2 √ k x ln nx kx ln nx kx ln T p-kx,p (ln T p-kx,p ) τ (x)-1 ln p kx τ (x)-1 ln p kx τ (x)-1 µ τ (x) ln p kx 1 k x kx i=1 (ln T * i (p)) 2 .
Combining again Lemma 6 in Stupfler (2013) with our Lemmas 1 and 3 together with our assumptions, we infer that

sup p∈Ix P k x θ 12 (k x ; x) > t -→ 0.
For θ 2 (k x ; x), we need also to distinguish between the two cases τ (x) = 1 and τ (x) < 1. We first consider the case τ (x) = 1, where we use the fact that b(.; x) is regularly varying at infinity combining with Lemma 6 in [START_REF] Stupfler | A moment estimator for the conditional extreme value index[END_REF] and the law of large numbers according to which

sup p∈Ix P 1 k x kx i=1 (T * i (p)) ρ(x) -1 ρ(x) - 1 1 -ρ(x) > t = P 1 k x kx i=1 T ρ(x) i -1 ρ(x) - 1 1 -ρ(x) > t -→ 0.
The convergence

sup p∈Ix P k x θ 2 (k x ; x) - λ 1 -ρ(x)
> t -→ 0 then follows from our assumptions and our Lemma 3. In the case where τ (x) < 1, using the same arguments as in the proof of Theorem 1, we have the following decomposition

θ 2 (k x ; x) =: θ 21 (k x ; x) + θ 22 (k x ; x) + θ 23 (k x ; x),
where

θ 21 (k x ; x) := (1 + δ n ) b exp D τ (x) (ln T p-kx,p ) ; x (ln T p-kx,p ) τ (x)-1 µ τ (x) ln p kx 1 k x kx i=1 ln T * i (p) θ 22 (k x ; x) := (1 + δ n ) b exp D τ (x) (ln T p-kx,p ) ; x µ τ (x) ln p kx 1 k x kx i=1 ln T * i (p)
•e ρ(x)[D τ (x) (ln T i (p)+ln T p-kx,p )-D τ (x) (ln T p-kx,p )] ln T p-kx,p + ln T i (p)

τ (x)-1 -(ln T p-kx,p ) τ (x)-1 θ 23 (k x ; x) := (1 + δ n ) b exp D τ (x) (ln T p-kx,p ) ; x (ln T p-kx,p ) τ (x)-1 µ τ (x) ln p kx • 1 k x kx i=1
ln T * i (p) e ρ(x)[D τ (x) (ln T i (p)+ln T p-kx,p )-D τ (x) (ln T p-kx,p )] -1 .

Using the regularly varying property of b(.; x), the law of large numbers, our Lemmas 1-3 and our assumptions, combining with the mean value theorem for θ 22 (k x ; x) and θ 23 (k x ; x), we deduce that

sup p∈Ix P k x θ 21 (k x ; x) -λ > t -→ 0, sup p∈Ix P k x θ 22 (k x ; x) > t -→ 0, sup p∈Ix P k x θ 23 (k x ; x) > t -→ 0.
For what concerns the remainder term R p (x), using the same arguments as in the proof of Theorem 1, we get for all t > 0, that

   k x 2ω(T p-kx,p , T p,p , x, h) µ τ (x) ln nx kx > t    ⊆    k x 2ω nx (1+δ)kx , n 1+δ x , x, h µ τ (x) ln nx kx > t    ∪ T p-kx,p < n x (1 + δ)k x ∪ T p,p > n 1+δ x .
Taking now n x sufficiently large, this implies by assumption that

sup p∈Ix P   k x 2ω(T p-kx,p , T p,p , x, h) µ τ (x) ln nx kx > t   ≤ sup p∈Ix P T p-kx,p < n x (1 + δ)k x + sup p∈Ix P T p,p > n 1+δ x -→ 0.
This convergence combined with (4) and Lemma 2 ensures that

sup p∈Ix P k x R p (x) > t -→ 0.
Combining all these convergences yield our Theorem 2.

Appendix

In this section we introduce some lemmas which are useful for establishing the main results.

Lemma 1 Assume that n x → ∞, k x → ∞ such that kx nx → 0. If τ (x) < 1, then there exist a constant C > 0, such that sup p∈Ix ln p kx τ (x)-1 µ τ (x) ln p kx -1 ≤ C ln n x k x -1
.

Proof: First note that we have µ

τ (x) (y) = y τ (x)-1 + R(y), with R(y) := τ (x) -1 2 y τ (x)-2 ∞ 0 (1 + ξ) τ (x)-2 u 2 e -u du,
where ξ is a value between 0 and u y . Hence | R(y)| ≤ y τ (x)-2 . Consequently 

P

  b exp D τ (x) (ln T p-kx,p ) ; x > t -→ 0, (observe that b(exp(D τ (x) (ln y)); x) is regularly varying at infinity, and apply Lemma 6 of[START_REF] Stupfler | A moment estimator for the conditional extreme value index[END_REF], from which we deduce that sup p∈Ix P θ 2 (k x ; x) > t -→ 0 according to our Lemma 3. Finally, coming back to R p (x), we have

Lemma 2 1 1 . 1 .Lemma 3

 21113 Assume that n x → ∞, k x → ∞ such that kx nx → 0. Then µ τ (x) ln p kx µ τ (x) ln nx kx → uniformly in p ∈ I x .Proof: We start by rewriting the termµ τ (x) ln p kx µ τ (x) ln nx kx -1 as µ τ (x) ln p kx µ τ (x)ln nx kx According to Lemma 2 in Gardes et al. (2011), µ τ (x) ln nx kx ∼ ln nx kx τ (x)-Thus, using a Taylor series expansion combining with the fact that uniformly in p ∈ I x , ln p nx → in p ∈ I x . Moreover, from the proof of Lemma 1, we know that µ τ (x) ln p kx p ∈ I x . Combining (5) and (6), our Lemma 2 follows. Assume that I n is some index set, and, for p ∈ I n let (X n (p)) n and (Y n (p)) n be sequences of random variables. If for all ε > 0 and some x, y ∈ R, sup p∈In P (|X n (p) -x| > ε) -→ 0
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and

Lemma 3 then follows using the subadditivity property of a probability measure.