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Abstract. Many scientific computing applications demand massive nu-
merical computations on parallel architectures such as Graphics Pro-
cessing Units (GPUs). Usually, either floating-point single or double
precision arithmetic is used. Higher precision is generally not available
in hardware, and software extended precision libraries are much slower
and rarely supported on GPUs. We develop CAMPARY: a multiple-
precision arithmetic library, using the CUDA programming language for
the NVidia GPU platform. In our approach, the precision is extended
by representing real numbers as the unevaluated sum of several stan-
dard machine precision floating-point numbers. We make use of error-free
transforms algorithms, which are based only on native precision opera-
tions, but keep track of all rounding errors that occur when performing
a sequence of additions and multiplications. This offers the simplicity
of using hardware highly optimized floating-point operations, while also
allowing for rigorously proven rounding error bounds. This also allows
for easy implementation of an interval arithmetic. Currently, all basic
multiple-precision arithmetic operations are supported. Our target ap-
plications are in chaotic dynamical systems or automatic control.

Keywords: floating-point arithmetic, multiple precision library, GPGPU
computing, error-free transform, floating-point expansions, dynamical
systems, Hénon map, semi-definite programming

1 Introduction

CAMPARY is a multiple-precision arithmetic library which targets mainly appli-
cations deployed on NVIDIA GPU platforms (compute capability 2.0 or greater).
Both a CPU version (in C++ language) and a GPU version (written in CUDA
C programming language [1]) are freely available at http://homepages.laas.

fr/mmjoldes/campary/. Our library provides extended precisions on the or-
der of a few hundreds of bits. Currently, all basic multiple-precision arithmetic
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operations (+,−, ∗, /,√) are supported. Our implementation is very flexible: we
provide templated precision sizes and overloaded operators. The library contains
two levels of algorithms: (i) certified algorithms with rigorous error bounds and
output constraints; (ii) “quick-and-dirty” algorithms that perform well for the
average case, but do not consider the corner cases (i.e. cancellation prone com-
putations). The later one also comes with a code generation module that allows
for optimal performance.

The library was initially developed and tuned for long time iteration of
chaotic dynamical systems in extended precision. At present, we aim at han-
dling applications which require both extended precision and high performance
computing.

2 Context and related software

Currently most floating-point (FP) calculations are done using single-precision
(also called binary32) or double-precision (also called binary64) arithmetic. The
majority of today’s available processors (including GPUs) offer very fast imple-
mentations of FP arithmetic in these two formats, and comply with the IEEE
754-2008 standard for FP arithmetic [2]. This standard defines five rounding
functions (round downwards, upwards, towards zero, to the nearest “ties to
even”, and to the nearest “ties to away”). An arithmetic operation should return
the result as if computed using infinite precision and then applying the rounding
function. Such an operation is said to be correctly rounded. The IEEE 754-2008
standard enforces the correct rounding of all basic arithmetic operations (addi-
tion, multiplication, division and square root). This requirement improves the
portability of numerical software and also makes it possible and relatively easy
to build an interval arithmetic (i.e., we get sure lower and upper bounds on the
exact result).

However, several high-performance computing (HPC) problems require higher
precision (also called multiple precision), up to a few hundred bits. For instance,
in the field of chaotic dynamical systems, such problems appear in both mathe-
matical questions (e.g., the study of strange attractors such as the Hénon attrac-
tor [3], in bifurcation analysis and stability of periodic orbits) and in applications
to celestial mechanics (e.g., long-term stability of the solar system [4]). Multi-
ple precision is also used in computational geometry (several techniques we use
were initially developed for this domain) [6]. An example in experimental math-
ematics is the high-accuracy computation of kissing numbers, i.e. the maximal
number of non-overlapping unit spheres that simultaneously can touch a central
unit sphere [9]. That approach is based on very accurate solving of numerically
sensitive semi-definite optimization problems (SDP). A recent increased inter-
est in high precision SDP libraries comes also from ill-conditioned problems in
quantum chemistry or control theory [10].

As of today, higher precision, such as quad-precision (binary128) or more has
not yet been implemented in hardware on widely distributed processors, and the
most common solution is software emulation. Arbitrary precision, i.e., the user’s
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ability to choose the precision for each calculation, is now available in most
computer algebra systems such as Mathematica, Maple or Sage. Furthermore,
GNU MPFR [7] is an open source library written in C, that provides, besides
arbitrary precision, correct rounding for each atomic basic operation. However,
the versatility of such multiple precision libraries, which are able to manipulate
numbers with tens of thousands –or even more– of bits, can sometimes be a
quite heavy alternative to use, when a precision up to a few hundred bits is
sufficient and we have strong performance requirements. Moreover, these libraries
are rather difficult to port to recent highly parallel architectures, such as GPUs,
since they implement very complex arithmetic algorithms, and they employ non-
trivial memory management. Their complexity also makes them very difficult to
prove formally.

In order to take advantage of the availability and efficiency of standard
floating-point operations, our approach consists in representing higher precision
numbers as unevaluated sums of several FP numbers (of different magnitudes).
This representation is called double-double when the numbers are made up with
two double-precision numbers, triple-double for three double-precision numbers,
etc., and floating-point expansion in the general case (an arbitrary number of
terms). The arithmetic operations on such representations are based on the use
of error-free transforms, namely algorithms that allow one to compute the error
of a FP addition or multiplication exactly. For instance, the sum of two FP num-
bers can be represented exactly as a FP number which is the correct rounding of
the sum, plus a second FP number corresponding to the rounding error. Under
certain assumptions, this decomposition can be computed at a very low cost by
a simple sequence of standard precision FP operations. For instance, assuming
that a and b are two FP numbers and that the rounding function, denoted RN,
is one of the two round-to-nearest functions defined by IEEE 754-2008, a simple
algorithm (called 2Sum and due to Knuth [11]) computes the decomposition of
a+ b using only 6 FP operations (see Algorithm 1). Similarly, if a FMA opera-
tor4 is available, 2ProdFMA returns π and the error e (namely ab− π) in 2 FP
operations (see Algorithm 2). Algorithms like this can be extended to be used
with arbitrary precision computations by chaining, resulting into the so called
distillation algorithms [12].

Algorithm 1 2Sum(a, b)

s← RN(a+ b)
a′ ← RN(s− b)
b′ ← RN(s− a′)
δa ← RN(a− a′)
δb ← RN(b− b′)
t← RN(δa + δb)
return s, t

Algorithm 2 2ProdFMA(a, b)

π ← RN(ab)
e← RN(ab− π)
return π, e

4 A FMA (Fused Multiply-Add) operator evaluates an expression of the form xy + t
with one final rounding only.
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It is thus possible to compute very accurate values even when rounding occurs
at the intermediate operation’s level. However, proving correctness and comput-
ing error bounds for this kind of algorithms is quite tricky and often their formal
proof is necessary. Currently, the only available and easily portable code for ma-
nipulating such floating-point expansions is Bailey’s QD library [8]. It provides
double-double (DD) and quad-double (QD) arithmetic. It is known that most
operations implemented in this library do not come with proven error bounds
and correct or directed rounding is not supported. It is thus usually impossible
to assess the final accuracy of these operations and no interval arithmetic can
be constructed based on this library. However, the performance results of QD
are very good on tested problems (e.g. on SDP instances [10]).

We generalize or modify this kind of algorithms in order to prove their cor-
rectness and keep good performances. We provide intermediary formats (such
as triple-double) and also we generalize the use of expansions to those based on
single-precision (for some processors which support only this format).

3 Key features

CAMPARY is fully supported on and suitable for GPUs. This is because most
available GPUs are compliant with the IEEE 754-2008 standard for FP arith-
metic for both single and double precision; all rounding modes are provided
and dynamic rounding mode change is supported without penalties. The fma

instruction is supported in all devices with CUDA compute capability ≥ 2.0.

We implemented and proved new algorithms for normalizing, adding, mul-
tiplying, dividing and square rooting FP expansions. The method we use for
computing the reciprocal and the square root of a FP expansion is based on
an adapted Newton-Raphson iteration, where the intermediate calculations are
done using “truncated” operations (additions, multiplications) involving FP ex-
pansions. We gave a thorough error analysis showing that it allows for very
accurate computations (see [13]). We also introduced a new multiplication al-
gorithm for FP expansions with arbitrary precision, up to the order of tens of
FP elements in mind. The main feature consists in the partial products being
accumulated in a specially designed data structure that has the regularity of a
fixed-point representation while allowing the computation to be naturally carried
out using native FP types. This allows us to easily avoid unnecessary computa-
tion and to obtain a rigorous accuracy analysis. The correctness and accuracy
proofs of the algorithm and performance comparisons with existing libraries are
presented in [14].

Fully certified algorithms like the aforementioned usually come with a per-
formance cost. Thus, we chose to offer besides these, some so-called “quick-
and-dirty” algorithms. (i) The certified ones 5 come with correctness proofs and
they ensure the resulted expansion to be non-overlapping. Roughly speaking this
means that an FP expansion carries sufficient information by ensuring that the

5 Certified algorithms are available in multi prec certified.h file
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each two consecutive terms, say ui and ui+1 are sufficiently far apart; for exam-
ple, |ui+1| ≤ ulp(ui), where ulp is the unit in the last place [11, Chap.2]. This is
achieved by using different re-normalization algorithms, depending on the meth-
ods used for computing. Moreover, these algorithms offer a very tight error bound
on the result. (ii) The “quick-and-dirty”6 use faster versions of re-normalization
algorithms. In most cases the result is going to be the same as obtained when
computing with the certified level, even the non-overlapping condition can be
achieved. The result may be uncertain if cancellation happens during interme-
diate computations; this can generate intermediate 0s or even non-monotonic
expansions in the result. Also the worst case error bounds that we are able to
prove are not as tight as in the certified level. We recommend the use of the
“quick-and-dirty” if the performance requirements are strong, especially if there
is a possibility to a posteriori check the correctness of the numerical result.

4 Applications

In what follows we briefly describe two applications (one achieved and one on-
going work) for CAMPARY.

4.1 Hénon map iteration

In [3], we studied the behavior of the Hénon map, a classical two-parameter,
invertible map h(x, y) = (1 + y − ax2, bx). Depending on the two parameters
a and b, this map can be chaotic, regular (the attractor of the map is a stable
periodic orbit, also called sink), or a combination of these. We were interested
in observing whether near the classical parameters a = 1.4 and b = 0.3, the
Hénon map is chaotic and supports a strange attractor. This property has been
observed numerically, but the question whether the Hénon attractor is indeed
chaotic (trajectories belonging to the attractor are aperiodic and sensitive to ini-
tial conditions) or not remains open. In order to disprove this conjecture and find
sinks for parameters close to the classical ones, we need to compute very long
orbits for a large amount of initial points and parameters. Iterating the map for
various initial points is a classical SIMD parallel problem, so a GPU implemen-
tation was done. For a double-precision implementation we obtain a significant
speed-up of 21.5x compared to a multi-threaded CPU implementation. In order
to tackle the conjecture, we used CAMPARY. The strategy for locating sinks is
briefly the following: (1) We long term iterate the map (106 ∼ 109 iterations)
for various combinations of parameters and initial points in order to identify
(using some additional tricks) some “numerical periodic orbits”. A GPU code
snippet for iterating the map is in Figure 1. This very computationally intensive
search process is parallelized;(2)At the end of the search, we rigorously prove
the existence of periodic orbits using methods from interval analysis. This part
is checked “on-line” on a CPU architecture. A performance results comparison

6 ”Quick-and-dirty” algorithms are available inmulti prec.h file
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with QD and MPFR is given in Table 1 (the “quick-and-dirty” version of the
algorithms is used for CAMPARY).

#define prec 4

/*device fct to be run using prec*doubles precision*/

__host__ __device__ void henon_iterate(double x0, double y0,

double a, double b, long int ITER) {

/*init multi_prec template vars*/

multi_prec<prec,double> x_i(x0);

multi_prec<prec,double> y_i(y0);

multi_prec<prec,double> x_old;

for (long int i=1; i <= ITER; i++) {

/*Compute iterates*/

x_i = y_i + 1.0 - a*x_i*x_i;

y_i = b*x_old;

}

}

Fig. 1: Example of usage of template multi prec types and operations with 4-
doubles precision in a host or device code that performs Hénon map iterations

Prec CAMPARY QD

double 102398

2-d 7608 4539

4-d 1788 618

Prec CAMPARY MPFR

2 doubles (106 bits) 227 11.8
3 doubles (159 bits) 76 10.6
4 doubles (212 bits) 37 10.1
6 doubles (318 bits) 15 8.9
8 doubles (424 bits) 8 7.9

Table 1: Peak number of Hénon map orbits/second for double vs. extended
precision obtained using 106 iterations/orbit: (left) CAMPARY vs. QD library
on a Tesla GPU[C2075]; (right) CAMPARY vs. MPFR (both parallelized with
OpenMP on 8 threads) on Intel i7-3820 @3.60GHz.

4.2 SDP programming

We currently consider the large-scale numerically sensitive semi-definite pro-
grams (SDP) on linear matrix inequalities (LMI). SDP can be seen as an ex-
tension of linear programming to the cone of symmetric matrices with posi-
tive eigenvalues, and where the linear vector inequalities are replaced by LMI.
LMI are an important modeling tool in various areas of signal processing or
automatic control. Currently, SDPA [10] is the leading multiple precision HPC
SDP solver. Versions of SDPA (SDPA-GMP, SDPA-DD, SDPA-QD) use differ-
ent multiple-precision libraries for performing accurate computations. Among
those, SDPA-DD and SDPA-QD are reported to be the fastest on the market.
In our present study, we replaced QD with CAMPARY at the compilation step
of SDPA (no other tuning performed). We considered test problems from [15]
where the performances of the previously mentioned libraries are compared. Pre-
liminary results given in Table 2 show that CAMPARY is competitive for this
kind of application also.
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Problem SDPA-DD SDPA-QD
SDPA-CAMPARY

(2D) (3D) (4D)

gpp124-1 optimal: −7.3430762652465377
relative gap 7.72e− 04 1.91e− 18 7.46e− 04 6.72e− 12 1.43e− 18
p.feas.error 5.42e− 20 2.86e− 41 2.71e− 20 2.72e− 29 6.88e− 41
d.feas.error 4.40e− 14 3.48e− 21 1.25e− 14 2.72e− 16 6.41e− 21

iteration 24 57 24 39 66
time (s) 3.580 94.58 13.25 55.57 127.52

gpp250-1 optimal: −1.5444916882934067e+ 01
relative gap 5.29e− 04 4.75e− 18 5.22e− 04 5.42e− 12 5.03e− 18
p.feas.error 3.89e− 20 2.58e− 41 1.35e− 20 1.18e− 30 6.43e− 42
d.feas.error 9.78e− 14 1.64e− 21 3.52e− 14 5.92e− 16 1.14e− 21

iteration 25 58 25 46 56
time (s) 28.93 762.89 132.1 527.33 856.16

gpp500-1 optimal: −2.5320543879075787e+ 01
relative gap 1.008e− 03 2.13e− 18 3.67e− 04 5.78e− 12 8.52e− 18
p.feas.error 1.01e− 20 5.73e− 39 1.35e− 20 2.01e− 28 3.76e− 42
d.feas.error 5.29e− 14 1.70e− 21 1.47e− 13 1.03e− 16 3.81e− 21

iteration 25 55 26 42 58
time (s) 230.05 5738.42 1027 3759.72 7146.72

qap10 optimal: −1.0926074684462389e+ 03
relative gap 3.84e− 05 2.06e− 14 9.82e− 05 2.40e− 10 3.86e− 14
p.feas.error 2.54e− 21 1.09e− 46 8.27e− 22 2.64e− 34 9.85e− 47
d.feas.error 4.91e− 14 2.97e− 30 2.62e− 13 1.98e− 22 1.18e− 29

iteration 20 36 19 29 36
time (s) 30.46 645.28 115.3 371.88 762.53

hinf3 optimal: 5.6940778009669388e+ 01
relative gap 1.35e− 08 5.30e− 31 2.59e− 06 2.47e− 24 1.98e− 31
p.feas.error 2.75e− 24 1.18e− 54 1.65e− 23 7.10e− 39 2.37e− 55
d.feas.error 3.82e− 14 1.74e− 38 3.66e− 14 1.79e− 29 7.89e− 42

iteration 30 47 24 46 48
time (s) 0.02 0.11 0.03 0.07 0.12

Table 2: The optimal value, relative gaps, primal/dual feasible errors, iterations
and time for solving some ill-posed problems from SDPLIB by SDPA-QD, -DD, -
CAMPARY

5 Conclusion and Future Developments

Although initially used as a prototype for extended precision iterations of dy-
namical systems, CAMPARY has become a self-contained multiple precision
arithmetic library mainly tuned for NVidia GPUs. We provide support for all
arithmetic operations, so the first extension is to use and test it in the context of
programs that make use of linear algebra, like SDP programming. Preliminary
CPU implementations show good results. On short term, we intend to provide
a GPU implementation for SDPA-CAMPARY. Concerning the certified part, a
current ongoing work aims at formally proving our arithmetic algorithms using
the Coq proof assistant [16]. A first proof of the renormalization algorithm is
almost completed. A long term goal is to provide elementary functions also.
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7. L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier and P. Zimmermann. MPFR: A
multiple-precision binary floating-point library with correct rounding. ACM Trans-
actions on Mathematical Software 33, 2 (2007), Art.13, 115.

8. Y. Hida, X.S. Li and D.H Bailey. Algorithms for quad-double precision floating-point
arithmetic. In Proceedings of the 15th IEEE Symposium on Computer Arithmetic
(ARITH-16) (Vail, CO, June 2001), N. Burgess and L. Ciminiera, Eds., pp. 155162.

9. H.D. Mittelmann and F. Vallentin. High-Accuracy Semidefinite Programming
Bounds for Kissing Numbers, Experimental Mathematics, 19:2 (2010), 175-179.

10. M. Yamashita, K. Fujisawa, M. Fukuda, K. Kobayashi, K. Nakata, and M. Nakata.
Latest Developments in the SDPA Family for Solving Large-Scale SDPs. In Miguel
F.Anjos and Jean B. Lasserre, editors, Handbook on Semidefinite, Conic and Poly-
nomial Optimization, vol.166 of International Series in Operations Research & Man-
agement Science, pages 687713. Springer US, 2012.

11. J.-M. Muller, N. Brisebarre, F. de Dinechin, C.-P. Jeannerod, V. Lefèvre,
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