
HAL Id: hal-01312801
https://hal.science/hal-01312801v1

Preprint submitted on 9 May 2016 (v1), last revised 5 Apr 2017 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A new model for nonlinear acoustic waves in a
non-uniform lattice of Helmholtz resonators

Jean-François Mercier, Bruno Lombard

To cite this version:
Jean-François Mercier, Bruno Lombard. A new model for nonlinear acoustic waves in a non-uniform
lattice of Helmholtz resonators. 2016. �hal-01312801v1�

https://hal.science/hal-01312801v1
https://hal.archives-ouvertes.fr


rspa.royalsocietypublishing.org

Research

Article submitted to journal

Subject Areas:

acoustics, mathematical physics

Keywords:

nonlinear acoustics, solitons, Burgers

equation, fractional derivatives,

diffusive representation, Helmholtz

resonators

Author for correspondence:

Jean-François Mercier

e-mail:

jean-francois.mercier@ensta-paristech.fr

A new model for nonlinear
acoustic waves in a
non-uniform lattice of
Helmholtz resonators

Jean-François Mercier1, Bruno Lombard2

1 POEMS, CNRS-INRIA-ENSTA UMR 7231, 828

Boulevard des Maréchaux, 91762 Palaiseau, France,
2 LMA, CNRS UPR 7051, Centrale Marseille,

Aix-Marseille Univ, F-13402 Marseille Cedex 20,

France

Propagation of high amplitude acoustic pulses is

studied in a 1D waveguide, connected to a lattice of

Helmholtz resonators. An homogenized model has

been proposed by Sugimoto (J. Fluid. Mech., 244

(1992)), taking into account both the nonlinear wave

propagation and various mechanisms of dissipation.

This model is extended to take into account two

important features: resonators of different strengths

and back-scattering effects. The new model is derived

and is proved to satisfy an energy balance principle.

A numerical method is developed and a better

agreement between numerical and experimental

results is obtained.
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1. Introduction
We are concerned in the dynamics of nonlinear waves in lattices. This subject has stimulated

researches in a wide range of areas, including the theory of solitons and the dynamics of

discrete networks. Numerous studies have been led in electromagnetism and optics [1], and

many physical phenomena have been highlighted, such as discrete breathers [2–4], chaotic

phenomena [5,6], dynamical multistability [7–9] and solitons or solitary waves [10–12]. We focus

more specifically on solitary waves, which have been first observed and studied for surface waves

in shallow water [13]. The main feature of these waves is that they can propagate without change

of shape and with a velocity depending of their amplitude [14]. They have been studied in many

physical systems, as in fluid dynamics, optics or plasma physics.

For elastic waves, numerous works have highlighted the existence of solitary waves in

microstructured solids [17], periodic structures such as lattices or crystals [18–20], elastic layers

[21–23], layered structures coated by film of soft material [24], periodic chains of elastics beads

[25–27] and uniform or inhomogeneous rods [28–30].

In this paper, we are primarily interested in the field of acoustics, and only a few works

dealt with this case, although experimental observations of solitary waves have been made in

the atmosphere [31–33] or in the ocean [34–36]. Such a lack is mainly explained by the fact that

the intrinsic dispersion of acoustic equations is too low to compete with the nonlinear effects,

preventing from the occurrence of solitons. To observe these waves, geometrical dispersion must

be introduced. It has been the object of the works of Sugimoto and his co-authors [37–40], where

the propagation of nonlinear waves was considered in a tube connected to an array of Helmholtz

resonators (Fig. 1). A model incorporating both the nonlinear wave propagation in the tube and

the nonlinear oscillations in the resonators has been proposed. Theoretical and experimental

investigations have shown the existence of acoustic solitary waves [37].

Sugimoto considers that all the resonators are the same, which allows to use a simplifying

homogenization process. The drawback of such a restriction is that the reflection of an incident

wave by a defect (for instance, a resonator different from the others) can not be considered. In

a same way, the case of resonators with random features can not be treated. However, the case

of variable resonators is important when studying the influence of manufacturing defects or the

influence of aging of the guiding device on wave propagation. As a remedy to Sugimoto’s model

failures, it is necessary to be able to consider resonators with different heights and it is the aim of

this paper. The present study extends the work of Sugimoto and develops a more general model

taking the geometry of the propagation medium into account, in a more realistic manner.

Figure 1. Sketch of the guide connected with Helmholtz resonators.

Let us recall briefly the Sugimoto model. In this original model, the wave fields are split into

right-going waves (denoted +) and left-going waves (denoted -) that do not interact together

during their propagation. In particular, no reflections by the resonators are assumed. The

variables are the axial particle velocity of the gas u± and the associated excess pressure in the

resonators p±. The model involves two coupled equations for each simple wave: a nonlinear

hyperbolic-parabolic PDE (Partial Differential Equation) describing the propagation of large
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amplitude acoustic waves in the tube, and a nonlinear ODE (Ordinary Differential Equation)

describing the oscillations in the Helmholtz resonators. The equations are very similar for the

unknowns (u+, p+) (defined in Fig. 2) or (u−, p−) and they read [45] as two systems of two

x=0 x=D
x

u (x,t)

p (x,t) p (x,t)+ +

+

Figure 2. Unknowns for the right-going propagation in Sugimoto’s model.

equations (+ or −):



























∂u

∂t

±

+
∂

∂x

(

±au± + b
(u±)2

2

)

∓ c̄
∂−1/2

∂t−1/2

∂u

∂x

±

− d
∂2u

∂x2

±

=∓ē
∂p

∂t

±

, (1.1a)

∂2p

∂t2

±

+ f
∂3/2p

∂t3/2

±

+ gp± −m
∂2(p±)2

∂t2
+ n

∣

∣

∣

∣

∂p

∂t

±
∣

∣

∣

∣

∂p

∂t

±

=±hu±. (1.1b)

The definition of the constants a, b, · · · will be recalled later. The viscothermal dissipative effects

in the tube and in the throats of resonators are modeled by fractional integral and derivative [41],

that amount to convolution products with singular kernels. The coupling between (1.1a) and (1.1b)

is done by the coefficients e and h. If the resonators are suppressed, then the coefficient e→ 0: no

coupling occurs, and the classical Chester’s equation is recovered [42].

In some previous papers, we have proposed a time-domain numerical method to solve this

model [43,44] and we have studied numerically and experimentally the propagation of high

amplitude pulses in a lattice of Helmholtz resonators. The comparisons between numerical and

experimental results have validated the theoretical model [43]. However, the model (1.1) has some

shortcomings:

• it is based on an averaged description of the geometry, similar to an homogenized model,

in which the resonators are approximated as continuously distributed. The advantage

of such approach is to get equations with constant coefficients, suitable for theoretical

analysis: in particular, they can be reduced to a Korteweg-de Vries equation [38,45]. But

a drawback is that the propagation medium must be periodic, and thus it is restricted

to resonators of the same height H . In the case of resonators of height varying slowly,

this homogenized model might remain accurate but not in the case of an abrupt change

of height. An additional disadvantage is that this homogenized model is valid only if

λ≫D, where λ is the typical size of the wave (i.e. the wavelength for a propagating

wave or the spatial extent for a soliton) and D is the distance between two resonators.

• it considers only one-way propagations. Sugimoto supposed that no wave reflections by

the resonators occur, arguing that this approximation is accurate if V/AD≪ 1 [38] where

V is the volume of the resonators and A is the area of the main tube cross section.

• it is not adapted to perform an energy balance as soon as c 6= 0 [45].

In this paper, we improve the original Sugimoto’s model (1.1), and the improvements are

made in several ways. First we introduce a discrete description of the resonators by considering

variable coefficients. A consequence is that the requirement of a long wavelength is no longer
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necessary. Second, we allow the reflection of waves and we take into account the interaction of

waves propagating in both directions. Finally, we modify the fractional integral in (1.1a), which

leads to a formulation suitable for an energy balance. The new model we will establish in (2.30) is

a single system coupling the three unknowns u+, u− and p:







































∂u

∂t

+

+
∂

∂x

(

au+ + b
(u+)2

2

)

+
c(x)

a

∂1/2u+

∂t1/2
− d

∂2u

∂x2

+

=e (x)(1− 2mp)
∂p

∂t
,

∂u

∂t

−

+
∂

∂x

(

−au− + b
(u−)2

2

)

+
c(x)

a

∂1/2u−

∂t1/2
− d

∂2u

∂x2

−

= e(x)(1− 2mp)
∂p

∂t
,

∂2p

∂t2
+ f

∂3/2p

∂t3/2
+ g(x)p−m

∂2(p2)

∂t2
+ n(x)

∣

∣

∣

∣

∂p

∂t

∣

∣

∣

∣

∂p

∂t
= h(x)(u+ − u−).

The paper is organized as follows. In section 2, the general equations in the tube and in

the resonators are given and the new model (2.30) is derived. Moreover, comparison with the

Sugimoto model are proposed. In section 3, we derive a first-order formulation (3.6) of the new

model, for two purposes: to determine an energy balance and also to build a numerical scheme.

In section 4, numerical results are presented to validate and to show the improvements related

with the new model.

2. The new model
In this section, we will establish the new model (2.30), improving Sugimoto’s model (1.1) [38].

The improvements will be added sequentially: first the extension to counterpropagating waves

and to a local description of the geometry. Then the links with the original model, using a one-

way approximation and an homogenized description, will be precised. Last, a modification of the

fractional integral will be introduced. Notably, thanks to the last step, we will be able to derive an

energy balance for the new model.

The configuration under study is made up of an air-filled tube connected with uniformly

distributed cylindrical Helmholtz resonators (see Fig. 1). The geometrical parameters are the

radius of the guide R, the axial spacing between successive resonators D, the radius of the neck

r, the length of the neck L, the radius of the cavity rh and the height of the cavity H , which can

vary from one resonator to the other. The cross-sectional area of the guide is A= π R2 and that of

the neck is B = π r2, the volume of each resonator is V = π r2h H .

The unknows are the velocity of the right-going wave u+, the velocity of the left-going wave

u− and p the total excess pressure in the resonators, induced by both waves. As it will be detailed

later, p is not simply p+ + p− where p± are solutions of (1.1).

(a) Equation in the tube

(i) General equations

In this part we recall briefly the general equations governing the nonlinear acoustic waves in

the tube [38]. The physical parameters are the ratio of specific heats at constant pressure and

volume γ; the pressure at equilibrium p0; the density at equilibrium ρ0; the Prandtl number Pr;

the kinematic viscosity ν; and the ratio of shear and bulk viscosities µv/µ. The linear sound speed

a0 and the sound diffusivity νd are defined by

a0 =

√

γ p0
ρ0

, νd = ν

(

4

3
+

µv

µ
+

γ − 1

Pr

)

. (2.1)

Starting from the compressible Navier-Stokes equations, Sugimoto [38] obtained the following

nonlinear equation for the horizontal velocities u±:

∂u

∂t

±

+
(

±a+ bu±
) ∂u

∂x

±

=± a0
2ρ0

F± + d
∂2u

∂x2

±

, (2.2)
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with

F±(x) =
1

A

∫
σ(x)

(ρv±n )(x, y(s), z(s))ds, (2.3)

and

a= a0, b=
γ + 1

2
, d=

νd
2
. (2.4)

In Eq. 2.2, u± represent mean axial velocities over the cross section of the tube. Eq. 2.2 is obtained

after restriction to unidirectional propagation, and under the assumption of weak nonlinearities,

which allow to use Riemann invariants along the characteristics, noted with the ± subscript

according to the way of propagation. σ(x) is a path along the boundary of a cross section of the

tube and s is the curvilinear abscissa (see Fig. 3). The diffusivity of sound in the tube is introduced

by the coefficient d. F± is the mean mass flux at position x, with v±n the small deviation of the

component of the velocity normal inward to the inner surface of the tube (v±n lies in the y − z

plane and is also precised on Fig. 4). The integral is taken along the periphery of the cross-section

at x (see Fig. 3). F± is due to the coupling between the main flow u± and two areas, represented

in grey on Fig. 4. More precisely, F± takes into account:

• the connections of the main tube with the resonators,

• the wall friction due to the presence of a viscous boundary layer on the boundary of the

tube.

ΣB

D

Σ

σ(x)

y

z

x

Figure 3. Perspective view of the tube. The unit portion Σ of the tube is connected to one resonator through the surface

ΣB . σ is the boundary of a cross section of the tube.

To precise the definition of F±, we need to introduce some notations. We note Σ a part of length

D (thus connected to only one resonator) of the tube, represented in Fig. 3. We note ΣB the part

of Σ connected to the cylindrical resonator, of area B. For simplicity, we approximate the junction

between a resonator and the main tube as a disc, the real shape (intersection of two perpendicular

tubes of different diameters) being more complicated. Sugimoto [38] obtained that:

ρv±n = −Q on ΣB ,

= ρ0v
±
b on Σ\ΣB ,

(2.5)

with

Q =
V

a20 B
(1− 2mp)

∂p

∂t
,

v±b = C
√
ν
∂−1/2

∂t−1/2

∂u

∂x

±

,

(2.6)

where

m=
γ − 1

2 γ p0
. (2.7)
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This coefficient m describes the adiabatic process in the cavity up to the second-order nonlinearity.

Q is the mass flux density over B into the resonator cavity (see Fig. 4). v±b corresponds to

v
u

v

v

n n

n

Q

z

x

Figure 4. Definition of v±n . In grey is represented the viscous boundary layer and the inside of the resonators. v±n is

defined on the boundary of this gray area.

viscothermal losses in the boundary layer of the tube [46], modeled by a fractional operator of

order -1/2, proportional to 1/(i ω)1/2 in the frequency domain, with C the dissipation in the

boundary layer:

C = 1 +
γ − 1√

Pr
.

The Riemann-Liouville fractional integral of order 1/2 of a causal function w(t) is defined by

∂−1/2

∂t−1/2
w(t) =

H(t)√
π t

∗ w=
1√
π

∫ t
0
(t− τ)−1/2w(τ) dτ, (2.8)

where * is the convolution product in time, and H(t) is the Heaviside step function [47].

(ii) Determination of the flux F±

In this part, we determine explicitly the flux F± at each position x. These results are new since,

as we will detail later, Sugimoto only considered the spatial average of F±. For convenience, Σ

is located in x∈]− r,D − r[, the part ΣB being then centered at x= 0, located in x∈]− r, r[ (see

Fig. 5). Then we can determine F± at each position x:

(a) (b)

x=0 x=D
x

D−rr−r

z
D

x=0 x=D

y

x

Figure 5. Portion of length D of the tube. View from the side (a). View from above (b).

• For x∈]r,D − r[: then σ(x) is a disc of radius R and ρv±n = ρ0v
±
b on σ. Therefore

F±(x) =
1

A

∫2π
0

(ρv±n )(x,R sin θ,R cos θ)Rdθ,

=
1

A
(2πR) ρ0v

±
b ,

where θ is measured with respect to the z axis (as α in Fig. 6(a)).
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• For x∈]− r, r[: on Fig. 6(a) is represented a cross section of the tube for x∈]− r, r[. The

(a) (b)

y

z

l(x)

R
(x)α

y

x

r
l(x)

0 x

Figure 6. (a) σ(x) for x∈]− r, r[; (b) view from above of the resonators in x∈]− r, r[.

integration path σ(x) is made of two parts: (i) a line of length 2ℓ(x) on which ρv±n =−Q;

(ii) a portion of a circle of radius R, between the angles θ= α and θ= 2π − α, on which

ρv±n = ρ0v
±
b . Using Fig. 6(b) representing ΣB seen from above, it is straightforward to

find that:

ℓ(x) =







0 for x∈]r,D − r[,

√
r2 − x2 for x∈]− r, r[.

(2.9)

Using Fig. 6(a), one finds also that α(x) = arcsin (ℓ(x)/R).

Then Eq. (2.3) becomes:

F±(x) =
1

A

[∫2π−α(x)

α(x)
(ρ0v

±
b )(x,R sin θ,R cos θ)Rdθ +

∫ ℓ(x)
−ℓ(x)

(−Q)ds

]

,

=
2

A

{

[π − α(x)]Rρ0v
±
b −Qℓ(x)

}

.

To sum up, using the values of Q and v±b from Eq. (2.6), one deduces that for all x∈]− r,D − r[:

a0
2ρ0

F± = c(x)
∂−1/2

∂t−1/2

∂u

∂x

±

− e(x)(1− 2mp)
∂p

∂t
, (2.10)

where we have introduced the functions







c(x) = c0

[

1− 1

π
arcsin

(

ℓ(x)

R

)]

,

e(x) = e0ℓ(x),
(2.11)

with the coefficients

c0 =
C a0

√
ν

R
, e0 =

V

ρ0 a0 AB
, (2.12)

ans V is the volume of the resonator at x= 0. This result has been obtained for a unit part of

the tube located in x∈]− r,D − r[. Now we consider the entire tube, in which the resonators are

centered at x= iD, i= 1, 2, · · · (see Fig. 7). We note Vi the volume (and Hi the height) of the i-th

resonator, located at xi = iD. In the i-th cell x∈ [xi −D/2, xi +D/2], represented in grey on Fig.



8

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

x x x

D

r

nn−1 n+1

H
H

n−1
n Hn+1

Figure 7. Side view of the guide connected to Helmholtz resonators. The i-th cell is highlighted in grey.

7, Eq. (2.2) takes the form

∂u

∂t

±

+
∂

∂x

(

±au± + b
(u±)2

2

)

∓ c(x)
∂−1/2

∂t−1/2

∂u

∂x

±

− d
∂2u

∂x2

±

=∓e(x)(1− 2mp)
∂p

∂t
, (2.13)

with c(x) and e(x) defined by







c(x) = c0

[

1− 1

π
arcsin

(

ℓi(x)

R

)]

,

e(x) = eiℓi(x),
(2.14)

where

ℓi(x) =







0 for r < |x− xi| ≤
D

2
,

√

r2 − (x− xi)2 for |x− xi| ≤ r,
(2.15)

with c0 defined in (2.12) and

ei =
Vi

ρ0 a0 AB
. (2.16)

(b) Equation in the resonators

To model the air oscillation in the neck of identical resonators, Sugimoto established the following

equation for the excess pressure p in a resonator of volume V [48,49]:

∂2p

∂t2
+ f

∂3/2p

∂t3/2
+ gp−m

∂2p2

∂t2
+ n

∣

∣

∣

∣

∂p

∂t

∣

∣

∣

∣

∂p

∂t
= gp′, (2.17)

with

f =
2
√
ν

r

L
′

Le
, g= ω2

e =
a20B

Le V
, n=

V

B Le ρ0 a
2
0

. (2.18)

The coefficients m (2.7) and n describe nonlinear processes in the resonators. The semi-empirical

coefficient n accounts for the jet loss resulting from the difference in inflow and outflow patterns

[38,40]. As it has been illustrated [43], these nonlinear processes have to be included to get a good

agreement with the experimental measurements. The Caputo fractional derivative of order 3/2

is obtained by applying (2.8) to ∂2p/∂t2. Corrected lengths have been introduced: L
′

=L+ 2 r

accounts for the viscous end corrections, and the corrected length Le =L+ η accounts for the

end corrections at both ends of the neck, where η≈ 0.82 r is determined experimentally [38].

p′ is the excess pressure at the mouth of the tube, exciting the excess pressure p in the

resonators (see Fig. 8). To link p′ to the main unknowns of the problem, Sugimoto used a linear

approximation: to the right-going wave u+, he associated the pressure p′+ = (γp0/a0)u
+. In a

symmetric way, p′− =−(γp0/a0)u
− is associated to the left-going waves. In our configuration, p′

is induced by both the right-going waves and the left-going waves and we suppose that we have
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u (x,t)
u (x,t)

+

−

p (x,t)

p’ (x,t)

Figure 8. Excess pressure p in a resonator and excess pressure p′ in the main tube, associated to the superposition of

the right-going wave u+ and the left-going wave u−.

linearity: p′ = p′+ + p′−. Therefore, it yields to

p′ = (γp0/a0)(u
+ − u−). (2.19)

Injecting (2.19) in (2.17) leads to

∂2p

∂t2
+ f

∂3/2p

∂t3/2
+ gp−m

∂2p2

∂t2
+ n

∣

∣

∣

∣

∂p

∂t

∣

∣

∣

∣

∂p

∂t
= h(u+ − u−), (2.20)

with h= ω2
e(γ p0/a0).

The extension of (2.17) to resonators of variable volume is easy since the coefficients g, h and

n are constant in each resonator. It becomes for |x− xi| ≤ r, i= 1, 2, · · ·

∂2p

∂t2
+ f

∂3/2p

∂t3/2
+ g(x)p−m

∂2p2

∂t2
+ n(x)

∣

∣

∣

∣

∂p

∂t

∣

∣

∣

∣

∂p

∂t
= h(x)(u+ − u−), (2.21)

with

g(x) =
a20B

Le Vi
, n(x) =

Vi

B Le ρ0 a
2
0

, h(x) =
γ p0
a0

g(x). (2.22)

The functions g(x), h(x) and n(x) depend on x because the resonators have different heights,

but they are constant on each resonator. More precisely, they just depend on n, the index of

the resonator. Note that (2.21) is not solved outside the resonators (that is on r < |x− xi| ≤
D

2
)

contrary to (1.1b). Note also that the model (2.13)-(2.21) could be easily extended to the case of

resonators not periodically placed (only the values of xi would have to be changed).

(c) Comparison with Sugimoto’s model

To sum up the two previous paragraphs, we are led to solve the three coupled equations:















































∂u

∂t

±

+
∂

∂x

(

±au± + b
(u±)2

2

)

(2.23a)

∓c(x)
∂−1/2

∂t−1/2

∂u

∂x

±

− d
∂2u

∂x2

±

=∓e(x)(1− 2mp)
∂p

∂t
, (2.23b)

∂2p

∂t2
+ f

∂3/2p

∂t3/2
+ g(x)p−m

∂2p2

∂t2
+ n(x)

∣

∣

∣

∣

∂p

∂t

∣

∣

∣

∣

∂p

∂t
= h(x)(u+ − u−). (2.23c)

In this paragraph, we show that the original model (1.1) of Sugimoto can be recovered from the

new model (2.23). In this aim, we have to introduce two ingredients:

• a restriction to only one-way propagations: for right-going waves (u− = 0), we note p+

the associated pressure p and for left-going waves (u+ = 0), we note p− the pressure p,
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• an averaged description of the geometry: to derive a model with constant coefficients,

Sugimoto used identical resonators of volume V and he introduced a continuous

approximation of the tube geometry and he used a mean value of the flux,

F̄± =
1

D

∫D
x=0

F±(x)dx. (2.24)

This corresponds to taking in (2.23a)-(2.23b) the mean values of c(x) and e(x). Using (2.11) and

(2.12) is deduced

ē=
1

D

∫D
x=0

e(x)dx= e0
B

2D
=

V

2 ρ0 a0 AD
. (2.25)

Also, thanks to the approximation for R≫ r:

arcsin

(√
r2 − x2

R

)

≃
√
r2 − x2

R
, (2.26)

and using (2.11) and (2.12), we get:

c̄=
1

D

∫D
x=0

c(x)dx= c0

(

1− r2

2RD

)

=C a0
√
ν

(

1

R
− B

2AD

)

=C a0
√
ν

1

R∗ , (2.27)

with
1

R∗ =
1

R
− B

2AD
, (2.28)

where R∗ is already used in [38]. Using these two ingredients, (2.23) degenerates in two families

of two coupled equations:



























∂u

∂t

±

+
∂

∂x

(

±au± + b
(u±)2

2

)

∓ c̄
∂−1/2

∂t−1/2

∂u

∂x

±

− d
∂2u

∂x2

±

=∓ē(1− 2mp±)
∂p

∂t

±

(2.29a)

∂2p

∂t2

±

+ f
∂3/2p

∂t3/2

±

+ gp± −m
∂2(p±)2

∂t2
+ n

∣

∣

∣

∣

∂p

∂t

±
∣

∣

∣

∣

∂p

∂t

±

=±hu±. (2.29b)

(2.29) is not exactly (1.1): in the original model, Sugimoto neglected the term 2mp± in the right-

hand-side of (1.1a). As we will see later, this term prevents from establishing an energy balance

and this may explain why Sugimoto didn’t consider this term.

(d) Elimination of the fractional integral

The final step in this section is to modify slightly the model (2.23) to get what we will call the new

model (2.30). This one satisfies an energy balance, which is a key ingredient for proving its well-

posedness. On the contrary, starting from (2.23a)-(2.23b) (or even from (1.1a)), an energy balance

can be obtained only if c= 0, as done in [45]. To derive an energy balance in the case c 6= 0, we will

determine (2.30), an alternate form of (2.23a)-(2.23b) with no fractional integral. This derivation is

based on the first order approximation

∂u

∂t

±

≃±a
∂u±

∂x
.

Injecting this in (2.23a)-(2.23b) leads to the new model we will consider in the rest of the paper:


























∂u

∂t

±

+
∂

∂x

(

±au± + b
(u±)2

2

)

+
c(x)

a

∂1/2u±

∂t1/2
− d

∂2u

∂x2

±

=∓e(x)(1− 2mp)
∂p

∂t
, (2.30a)

∂2p

∂t2
+ f

∂3/2p

∂t3/2
+ g(x)p−m

∂2(p2)

∂t2
+ n(x)

∣

∣

∣

∣

∂p

∂t

∣

∣

∣

∣

∂p

∂t
= h(x)(u+ − u−). (2.30b)

The rigorous derivation is detailed in Appendix B.
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Before considering the numerical discretization of (2.30), let us emphasize that, compared to

Sugimoto’s model, the new model (2.30) incorporates three improvements: first it considers a two-

way propagation; second it takes into account the precise geometry of the tube and the possibility

of resonators with different heights, through the varying coefficients c(x), e(x), g(x), h(x) and

n(x); third and last it replaces
∂−1/2

∂t−1/2

∂

∂x
by

∂1/2

∂t1/2
, leading to a system suitable to establish an

energy balance.

3. First-order system
In this section and in the rest of the paper, we focus on the new model (2.30) derived in the

previous section and we exploit it, analytically and numerically. We write it in the form (3.6),

suitable for a numerical discretization and to establish an energy balance. First we give explicit

expressions of the fractional derivatives by approximating them by diffusive representations.

Then we will define an energy associated to (2.30) and show that it decreases. Last we will also

derive a particular first-order form of (2.30), suitable for a numerical treatment and we will present

the numerical scheme to solve this system.

(a) Diffusive approximation

The fractional integral (2.8) is nonlocal in time and relies on the full history of w(t), which is

numerically memory-consuming. An alternative approach is based on a diffusive representation

of fractional derivatives, and then on its approximation. This method has already been presented

in [43,44] and we just recall it briefly:

∂−1/2

∂t−1/2
w(t)≃

N
∑

ℓ=1

µℓ ϕℓ(t), (3.1)

where the diffusive variables ϕℓ(t) =ϕ(t, θℓ) satisfy the ODE







∂ϕℓ

∂t
=−θ2ℓ ϕℓ +

2

π
w,

ϕℓ(0) = 0.

(3.2)

(3.1) follows from a quadrature formula on N points, with weights µℓ and nodes θℓ, which are

determined by an optimization process.

To get fractional derivatives, we derivate (3.1). Then we deduce:

∂1/2w

∂t1/2
=

∂

∂t

∂−1/2w

∂t−1/2
≃

N
∑

ℓ=1

µℓ
∂ϕℓ

∂t
(t) = µℓ

(

−θ2ℓ ϕℓ +
2

π
w

)

. (3.3)

Similarly, the derivative of order 3/2 is written

∂3/2w

∂t3/2
=

∂

∂t

∂1/2w

∂t1/2
≃

N
∑

ℓ=1

µℓ
∂ξℓ
∂t

(t), (3.4)

where we have introduced ξℓ = dϕℓ/dt. If w(0) = 0, as it will be the case in the following, the

diffusive variable ξℓ(t) satisfies the following ODE (derivative of (3.2))







∂ξℓ
∂t

=−θ2ℓ ξℓ +
2

π

∂w

∂t
,

ξℓ(0) = 0.

(3.5)
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Thanks to these diffusive approximations, (2.30) can be written as the following system














































































































∂u

∂t

±

+
∂

∂x

(

±a u± + b
(u±)2

2

)

(3.6a)

=− c

a

N
∑

ℓ=1

µℓ

(

−θ2ℓ ϕ
±
ℓ +

2

π
u±
)

+ d
∂2u

∂x2

±

∓ e(1− 2mp) q, (3.6b)

∂p

∂t
= q, (3.6c)

∂q

∂t
= h(u+ − u−)− g p− f

N
∑

ℓ=1

µℓ

(

−θ2ℓ ξℓ +
2

π
q

)

+m
∂2p2

∂t2
− n |q| q, (3.6d)

∂ϕ±
ℓ

∂t
=−θ2ℓ ϕ

±
ℓ +

2

π
u±, ℓ= 1 · · ·N, (3.6e)

∂ξℓ
∂t

=−θ2ℓ ξℓ +
2

π
q, ℓ= 1 · · ·N. (3.6f )

(b) Energy balance

As already announced, the system (3.6)) is suitable to define an energy and to prove the energy

decreasing, in an infinite medium and for smooth solutions:

Result 1. We note

E = E+
1 + E−

1 + E2 and K=K+
1 +K−

1 +K2, (3.7)

with






























































































E±
1 =

1

2

∫
R

(

(u±)2 +
π

2

c

a

N
∑

ℓ=1

µℓ θ
2
ℓ (ϕ

±
ℓ )2

)

dx, (3.8a)

E2 =
1

2

∫
R

(

eg

h
p2 +

e

h
(1− 2mp) q2 +

π

2

ef

h

N
∑

ℓ=1

µℓ θ
2
ℓ ξ

2
ℓ

)

dx, (3.8b)

K±
1 =

π

2

∫
R

c

a

N
∑

ℓ=1

µℓ

(

∂ϕ±
ℓ

∂t

)2

dx+

∫
R

d

(

∂u±

∂x

)2

dx, (3.8c)

K2 =

∫
R

(

e n

h
q2
(

|q| − m

n
q
)

+
π

2

e f

h

N
∑

ℓ=1

µℓ

(

∂ξℓ
∂t

)2

dx

)

. (3.8d)

Neglecting the 2mp term in (2.30a), then we have the energy balance

dE
dt

=−K. (3.9)

The proof is reported in Appendix A. Let us mention three remarks on (3.9), justifying that E
is a decreasing energy:

• The hypothesis 2mp≃ 0 in (2.30a) is consistent with Sugomoto’s work, where only the

influence of m in the resonators equation (1.1b) has been considered. It is also consistent

with the hypothesis of a weak nonlinear regime. Indeed, we have justified that ( [43,44]):

2mp± ≈ (γ − 1)
u±

a0
, (3.10)

which is lower than 1 under the hypothesis of weak nonlinearity (|u±| ≪ a0). We have

not succeeded in obtaining a proof by taking the term 2mp into account in (2.30a).
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• The term E in (3.7) is positive if µℓ > 0 and 1− 2mp> 0. The first condition is

imposed when the coefficients of the diffusive representation are determined during the

optimisation process [43]. The second condition is satisfied in the weak nonlinear regime.

• The term K in (3.7) is positive if µℓ > 0 and m<n. The first condition has been already

discussed. The second condition reads m/n= γ−1
2

BLe

V < 1, where BLe is the resonator

neck volume, and V is the volume of the resonators. For the experimental configuration

under study, this ratio is lower than 1 and thus the condition is satisfied.

(c) Numerical scheme

In this part, we present the numerical resolution of (3.6) with null initial conditions. A source

term s(t) at x= 0 models the acoustic source of a right-going wave: u+(0, t) = s(t), u−(0, t) = 0.

For numerical purpose, it is necessary to write the evolution equations as a first-order system in

time. To do so, the term ∂2p2/∂t2 in Eq. (3.6d) is expanded and leads to

(1− 2mp)
∂q

∂t
= h(u+ − u−)− g p− f

N
∑

ℓ=1

µℓ

(

−θ2ℓ ξℓ +
2

π
q

)

+ 2mq2 − n |q| q.

The (4 + 3N) unknowns for the counter-propagating waves are gathered in the vector

U=
(

u+, u−, p, q, ϕ+
1 , · · · , ϕ+

N , ϕ−
1 , · · · , ϕ−

N , ξ1, · · · , ξN
)T

. (3.11)

Then the nonlinear systems (3.6) is written in the form

∂

∂t
U+

∂

∂x
F(U) =G

∂2

∂x2
U+ S(U), (3.12)

where F is the flux function

F=

(

au+ + b
(u+)2

2
,−au− + b

(u−)2

2
, 0, 0, · · · , 0

)T

, (3.13)

and where the source term S is

S=

































































− c

a

N
∑

ℓ=1

µℓ

(

−θ2ℓ ϕ
+
ℓ +

2

π
u+
)

− e(1− 2mp) q

− c

a

N
∑

ℓ=1

µℓ

(

−θ2ℓ ϕ
−
ℓ +

2

π
u−
)

+ e(1− 2mp) q

q

1

1− 2mp

(

h(u+ − u−)− g p− f

N
∑

ℓ=1

µℓ

(

−θ2ℓ ξℓ +
2

π
q

)

+ 2mq2 − n |q| q
)

−θ2ℓ ϕ
+
ℓ +

2

π
u+, ℓ= 1 · · ·N

−θ2ℓ ϕ
−
ℓ +

2

π
u−, ℓ= 1 · · ·N

−θ2ℓ ξℓ +
2

π
q, ℓ= 1 · · ·N

































































. (3.14)

As soon as m 6= 0 and n 6= 0, S(U) is no longer a linear operator (m= 0= n has been considered

in [44]). The Jacobian matrix ∂F
∂U in (3.13) is diagonalizable with real eigenvalues: a+ b u+,

−a+ b u− and 0 with multiplicity 3N + 2, which ensures propagation with finite velocity. These

eigenvalues do not depend on the quadrature coefficients µℓ and θℓ. The diagonal matrix G=

diag(d, d, 0, · · · , 0) incorporates the volume attenuation.
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Let us describe briefly the numerical procedure, details can be found in [43,44]. To compute the

N quadrature coefficients µℓ and θℓ in (3.14), we use a nonlinear optimization with the positivity

constraints µℓ ≥ 0 and θℓ ≥ 0 [43]. In order to integrate the system (3.12), a grid is introduced, with

a uniform spatial mesh size ∆x and a variable time step ∆tn. The computations are done with

Nx = 1000 grid nodes. The approximation of the exact solution U(xj = j ∆x, tn = tn−1 + ∆tn)

is denoted by U
n
j . A stability analysis [44] leads to the restriction on the time step

β =
a
(n)
max∆tn
∆x

(

1 +
1

Pe

)

≤ 1. (3.15)

Pe = a
(n)
max ∆x/2 d is the discrete Péclet number, with a

(n)
max = a+ b maxj [max(|un+j |, |un−j |)] the

discrete velocity. Pe ≈ 105 in our configuration and in practice the generalized CFL number β

is taken equal to 0.95. To treat the systems (3.12), a Strang splitting [51] is used, ensuring both

simplicity and efficiency: the original equation (3.6) is split in a propagative equation and a forcing

equation, which are solved successively with adequate time increments. The propagative part is

solved by a standard second-order TVD scheme (a finite-volume scheme with flux limiters) for

nonlinear hyperbolic PDE [52] combined with a centered finite-difference approximation [44].

4. Numerical experiments
In this section we illustrate numerically the improvements brought by the new model (2.30).

(a) Configuration

γ p0 (Pa) ρ0 (kg/m3) Pr ν (m2/s) µv/µ

1.403 105 1.177 0.708 1.57 10−5 0.60

R (m) D (m) r (m) L (m) rh (m) H (m)

0.025 0.1 0.01 0.02 0.0215 0.07

Table 1. Physical parameters of the air at 15 ◦C, and geometrical parameters of the tube with resonators.

The numerical experiments proposed along this section are based on the data of [43]. The

reader is referred to this article for a complete description of the experimental setup. In summary,

the explosion of a balloon at x= 0 (Fig. 9(a)) generates a shock wave, which propagates along a

tube of length 6.15 m. This wave interacts with resonators regularly spaced from x= 0.2 m up to

the end of the tube. A receiver is put at xr = 2.8 m. The physical and geometrical parameters are

given in table 1.

(b) Test 1: comparison with experiments

Fig. 9 (b-c) show comparisons between the models and the experiments [43]. Two heights are

considered: H = 7 cm (b) and H = 13 cm (c). The signal is measured at xr = 2.8 m for the source

of Fig. 9 (a). For both models, a good agreement is observed between the simulated data and the

experimental results. It is observed that higher resonators yield slower and larger solitary waves,

as predicted by the theory [38].

The best agreement is obtained with the new model, especially for larger resonators heights.

This is due to the fact that this new model takes into account a two-way propagation and

variable coefficients. To illustrate this, we compare the velocity fields at t= 0.012 s on the spatial

subdomain [2, 4.5] m. Fig. 10 corresponds to the height of the resonators H = 7 cm whereas

Fig. 11 corresponds to H = 13 cm. For the Sugimoto model (Fig. 10(a) and Fig. 11(a)), one-

way propagation is assumed with constant coefficients so that only u+ is determined. On the

contrary, the new model (Fig. 10(b-c) and Fig. 11(b-c)) assume two-way propagations with
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Figure 9. Time history of the excess pressure p
′

at x= 0 (a) and at the receiver at xr = 2.8 m (b and c). Comparison

between the models and the experiments. (b): H = 7 cm, (c): H = 13 cm.
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Figure 10. Snapshots of the fields for H = 7 cm at t= 0.012 s. (a) velocity u= u+ from the Sugimoto model (one-way

propagation with constant coefficients). For the new model (two-way propagation and variable coefficients), (b) u+ and

(c) u−. The pairs of vertical dotted lines denote the resonators.
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Figure 11. Snapshots of the fields for H = 13 cm at t= 0.012 s. (a) velocity u= u+ from the Sugimoto model (one-way

propagation with constant coefficients). For the new model (two-way propagation and variable coefficients), (b) u+ and

(c) u−. The pairs of vertical dotted lines denote the resonators.

variable coefficients (3.6). The position of the resonators is denoted by a pair of vertical dotted

lines, each one corresponding to the left and right extremities of the concerned resonator. For

H = 7 cm, we obtain |u−| ≪ |u+| with |u+|/|u−| ≃ 8 and thus we are in a weak scattering regime.
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This is why both models give similar results on Fig. 9(b). For H = 13 cm, the amplitude of |u−| is

larger with |u+|/|u−| ≃ 4 which explains why Sugimoto’s model is less accurate (Fig. 9(c)).

(c) Test 2: diffraction by a non-periodic configuration

To highlight the interest of the new model, we consider the case of a non-uniform distribution

of Helmholtz resonators, which can be considered only thanks to the new model with variable

coefficients.

(i) Diffraction by 3 defects

We consider the following configuration: the height of all the resonators is H = 7 cm, except

around x= 3 m, where three resonators are 40 cm high. The variable coefficients c(x) and e(x)

of (3.6), defined by (2.14), are sketched in Fig. 12. The coefficient c is independent of the height

(a) (b)

2.8 2.9 3 3.1 3.2 3.3 3.4

70 

72 

74 

76 

78 

80 

x (m)

C

2.8 2.9 3 3.1 3.2 3.3 3.4

0 

0.005 

0.01 

0.015 

0.02 

x (m)

E

Figure 12. Spatial evolution of the coefficients around the defects at x= 3 m. The pairs of vertical dotted lines denote

the extremities of the Helmholtz resonators. The horizontal dotted lines denote the mean value c and e of the coefficients.

The solid blue lines represent the theoretical expressions, whereas the blue disks denote the discrete values used in the

numerical code.

H , and has the non-null constant value c0, defined in (2.12), outside the resonators (a). On the

contrary, the coefficient e depends on H (see (2.12)), and is null outside the resonators (b). The

horizontal dotted lines denote the mean value c and e of the coefficients, used in the model with

constant coefficients and defined in (2.27) and in (2.25). The horizontal dotted lines denote the

mean value c and e of the coefficients, used in the model with constant coefficients and defined in

(2.27) and in (2.25). Due to the discretization, only 3 or 4 grid nodes lie inside each resonator. The

effect of increasing the discretization will be studied in the next paragraph.

Fig. 13 presents snapshots of the excess pressure p′ simulated by the new model. The positions

of the modified resonators are sketched by vertical interfaces. At t= 8.74 ms, the solitary wave

impacts the interface (a). At t= 17.9 ms, the simulations with and without the defects are

compared. A reflected wave is clearly seen at the left of the interface when the defects are taken

into account (b). It is seen that the transmitted solitary wave in presence of defects is deeply

modified compared to the uniform case. Let us recall that the two ingredients of the new model

are required to yield this reflection:

• variable coefficients to account for the difference of height H ,

• 2-way propagation to account for the left-going wave.
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Figure 13. Snapshot of the simulated excess pressure p
′

at t= 8.74 ms (a) and t= 17.9 ms (b) with 3 defects. The

vertical dotted line denotes the location of the source. The vertical solid lines denote the location of the defects. (a) at

t= 8.74 ms, the solitary wave impacts the interface. (b) at t= 17.9 ms.

(ii) Influence of Nx

In the previous numerical experiments, the number of discretization points along the x-axis was

Nx = 1000 which led to only 3 points in each resonator. We have checked that such discretization

is enough to get a good solution, by comparing to the case Nx = 2000. This is shown on Fig. 14.
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Figure 14. Snapshot of the simulated excess pressure p
′

at t= 8.74 ms (a) and t= 17.9 ms (b) with 3 defects and for

Nx = 1000 and Nx = 2000.

5. Conclusion
The goal of this paper was to extend the results of the previous paper [43]. In [43], we have

developed a numerical scheme to solve the equations governing the propagation of nonlinear

waves in a tube connected to Helmholtz resonators. The model was restricted to identical

resonators and to a one-way propagation. In this paper, we have extended the previous study

to the case of variable resonators and to the presence of possible back-scattering of waves. The

new model has been derived, starting from some local balance equations. It has been numerically

validated by comparison with the previous model and with experiments. Better agreement with
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experimental results has been obtained. Is has been also implemented in the case of the scattering

by a defect, chosen as resonators with a locally different strength, such configuration creating a

strong back-scattering. Propagation of nonlinear waves in random media [53] and comparisons

with experimental data will be done in a near future.
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A. Energy decreasing
In this appendix is derived the following result for the energy decreasing.

Result 1: the energy E = E+
1 + E−

1 + E2 satisfies the energy balance dE/dt=−K where K=

K+
1 +K−

1 +K2 with E and K defined in (3.8).

Proof. The first step in to rewrite the system (3.6), eliminating the term 2m|p| ≪ 1 in (3.6b) and

using (3.5), to get the the following system:



























































































∂u±

∂t
+

∂

∂x

(

±a u± + b
(u±)2

2

)

=− c

a

N
∑

ℓ=1

µℓ
∂ϕ±

ℓ

∂t
+ d

∂2u±

∂x2
∓ e q, (A 1a)

∂p

∂t
= q, (A 1b)

∂q

∂t
= h(u+ − u−)− g p− f

N
∑

ℓ=1

µℓ
∂ξℓ
∂t

+m
∂2p2

∂t2
− n |q| q, (A 1c)

∂ϕ±
ℓ

∂t
=−θ2ℓ ϕ

±
ℓ +

2

π
u±, ℓ= 1 · · ·N, (A 1d)

∂ξℓ
∂t

=−θ2ℓ ξℓ +
2

π
q, ℓ= 1 · · ·N. (A 1e)

From (A 1d) is deduced

u± =
π

2

(

∂ϕ±
ℓ

∂t
+ θ2ℓ ϕ

±
ℓ

)

, (A 2)

and from (A 1e) is deduced

q=
π

2

(

∂ξℓ
∂t

+ θ2ℓ ξℓ

)

. (A 3)

In (A 1c), the derivative of p2 is modified, using

∂2

∂t2
(p2) q=

∂

∂t
(p q2) + q3. (A 4)

Such relation is easy to check by expanding both sides of the equality. Next we multiply (A 1c) by

q, and using (A 1b), (A 3) and (A 4) leads to

q
∂q

∂t
= h(u+ − u−) q − g p q − f

N
∑

ℓ=1

µℓ
∂ξℓ
∂t

q +m
∂2p2

∂t2
q − n |q| q2,

= h(u+ − u−) q − g p
∂p

∂t
− π

2
f

N
∑

ℓ=1

µℓ

(

∂ξℓ
∂t

+ θ2ℓ ξℓ

)

∂ξℓ
∂t

+m
∂

∂t
(p q2)− nq2

(

|q| − m

n
q
)

.

(A 5)
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Therefore we get

(u+ − u−)q =
1

2

∂

∂t

(

g

h
p2 +

1

h
(1− 2mp) q2 +

π

2

f

h

N
∑

ℓ=1

µℓ θ
2
ℓ ξ

2
ℓ

)

+
π

2

f

h

N
∑

ℓ=1

µℓ

(

∂ξℓ
∂t

)2

+
n

h
q2
(

|q| − m

n
q
)

.

(A 6)

Besides, (A 1a) is multiplied by u± and integrated in space. After summation and integration by

parts (the data are compactly supported), we get

∫
R

(

u+
∂u+

∂t
+ u−

∂u−

∂t

)

dx = −
∫
R

c

a

N
∑

ℓ=1

µℓ

(

u+
∂ϕ+

ℓ

∂t
+ u−

∂ϕ−
ℓ

∂t

)

dx

−
∫
R

d

(

(

∂u+

∂x

)2

+

(

∂u−

∂x

)2
)

dx−
∫
R

e (u+ − u−) q dx.

(A 7)

Thanks to the relations (A 2) and (A 6), the previous equation is simplified and the conclusion

follows.

B. Elimination of fractional derivatives
Here we prove that (2.23) can be approximated by (2.30). To simplify the proof, we consider the

homogenized version (2.29a) of (2.23a)-(2.23b), we also restrict to a right-way propagation and

lastly we note u= u+ and p= p+:

∂u

∂t
+

∂

∂x

(

au+ b
u2

2

)

− c̄
∂−1/2

∂t−1/2

∂u

∂x
− d

∂2u

∂x2
=−ē(1− 2mp)

∂p

∂t
. (A 1)

All the coefficients are defined in (2.4), (2.18), (2.25) and (2.27).

The first step is to write (A 1) in a dimensionless form. For a source signal of central frequency

f0, we define the characteristic wavelength λ= a0/f0. Then we introduce the non-dimensional

quantities, indexed by a tilde: x= λx̃, t= t̃/f0, u= u0ũ and p= p0p̃ where u0 is the characteristic

velocity, that will be determined later. We get:

∂ũ

∂t̃
+

∂

∂x̃

(

ũ+ b̃
ũ2

2

)

− c̃
∂−1/2

∂t̃−1/2

∂ũ

∂x̃
− d̃

∂2ũ

∂x̃2
=−ẽ(1− 2m̃p̃)

∂p̃

∂t̃
, (A 2)

with

b̃=Mb=M
γ + 1

2
, c̃=

c̄

a0

√

λ

a0
, d̃=

d

a0λ
, ẽ=

ēp0
u0

=
V

2ADγM
, m̃=mp0 =

γ − 1

2γ
.

(A 3)

M = u0/c0 is the characteristic Mach number. The typical value of M is obtained by equalizing b̃

and ẽ:

b̃= ẽ⇔M =

√

V

ADγ(γ + 1)
. (A 4)

To find an approximation of (A 2), we introduce ε=max(b̃, c̃, d̃, ẽ) and we suppose that it is a

small parameter. Then we define new quantities, defined with hats, by the relation v= εv̂, with

v= b, c, d or e, such that all the quantities with a hat are at most equal to one. Then, starting from
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(A 2), we get:

∂ũ

∂x̃
= −∂ũ

∂t̃
− εb̂ũ

∂ũ

∂x̃
+ εd̂

∂2ũ

∂x̃2
− εê(1− 2m̃p̃)

∂p̃

∂t̃
+ εĉ

∂−1/2

∂t̃−1/2

∂ũ

∂x̃
,

= −∂ũ

∂t̃
− εb̂ũ

∂ũ

∂x̃
+ εd̂

∂2ũ

∂x̃2
− εê(1− 2m̃p̃)

∂p̃

∂t̃

+ εĉ
∂−1/2

∂t̃−1/2

(

−∂ũ

∂t̃
− εb̂ũ

∂ũ

∂x̃
+ εd̂

∂2ũ

∂x̃2
− εê(1− 2m̃p̃)

∂p̃

∂t̃
+ εĉ

∂−1/2

∂t̃−1/2

∂ũ

∂x̃

)

,

= −∂ũ

∂t̃
− εb̂ũ

∂ũ

∂x̃
+ εd̂

∂2ũ

∂x̃2
− εê(1− 2m̃p̃)

∂p̃

∂t̃
− εĉ

∂1/2ũ

∂t̃1/2
+O(ε2),

where we have used
∂1/2ũ

∂t̃1/2
=

∂−1/2

∂t̃−1/2

∂ũ

∂t̃
.

Therefore (A 2) can be approximated by:

∂ũ

∂t̃
+

∂

∂x̃

(

ũ+ b̃
ũ2

2

)

− c̃
∂1/2ũ

∂t̃1/2
− d̃

∂2ũ

∂x̃2
=−ẽ(1− 2m̃p̃)

∂p̃

∂t̃
, (A 5)

where neglected terms are small, of order ε2. Using the values of Table (1), M = 0.21 is obtained

from (A 4), in agreement with the experiments made in [43], for f0 = 500 Hz. From this Mach

value, we deduce finally

b̃= 0.22 = ẽ, c̃= 0.010, d̃= 8.2410−8, m̃= 0.14. (A 6)

Coming back to quantities with dimensions, the new model (2.30) is found. Note that in a

dimensional form, (2.30a) and (2.23a)-(2.23b) are linked by the approximation

∂u

∂t

±

≃±a
∂u±

∂x
.

This is why c(x) in (2.23a)-(2.23b) becomes c(x)/a in (2.30a).
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