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Abstract

Propagation of high amplitude acoustic pulses is studied in a 1D waveg-
uide connected to a lattice of Helmholtz resonators. An homogenized model
has been proposed by Sugimoto (J. Fluid. Mech., 244 (1992)), taking into
account both the nonlinear wave propagation and various mechanisms of dis-
sipation. This model is extended here to take into account two important
features: resonators of different strengths and back-scattering effects. An
energy balance is obtained, and a numerical method is developed. A closer
agreement is reached between numerical and experimental results. Numer-
ical experiments are also proposed to highlight the effect of defects and of
disorder.

Keywords: nonlinear acoustics, solitary waves, Burgers equation, fractional
derivatives, diffusive representation, time splitting, shock-capturing schemes

1. Introduction

We are concerned here with the dynamics of nonlinear waves in lattices.
This subject has stimulated researches in a wide range of areas, including
the theory of solitons and the dynamics of discrete networks. Numerous
studies have been led in electromagnetism and optics [20], and many physical
phenomena have been highlighted, such as discrete breathers [24, 3, 13],
chaotic phenomena [15, 50], dynamical multistability [49, 27] and solitons or
solitary waves [26, 19]. We focus more specifically on solitary waves, which
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have been first observed and studied for surface waves in shallow water [41].
The main feature of these waves is that they can propagate without change
of shape and with a velocity depending of their amplitude [39]. They have
been studied in many physical systems, as in fluid dynamics, optics or plasma
physics.

For elastic waves, numerous works have highlighted the existence of soli-
tary waves in microstructured solids [12], periodic structures such as lattices
or crystals [6, 17, 18], elastic layers [23, 31, 33], layered structures coated
by film of soft material [22], periodic chains of elastics beads [1, 8, 35] and
uniform or inhomogeneous rods [7, 21, 2].

On the contrary, only a few works have dealt with acoustic solitary waves.
Such a lack is mainly explained by the fact that the intrinsic dispersion of
acoustic equations is too low to compete with the nonlinear effects, preventing
from the occurrence of solitons. To observe these waves, geometrical disper-
sion must be introduced. It has been the object of the works of Sugimoto
and his co-authors [45, 43, 44, 46], where the propagation of nonlinear waves
was considered in a tube connected to an array of Helmholtz resonators. A
model incorporating both the nonlinear wave propagation in the tube and
the nonlinear oscillations in the resonators has been proposed. Theoretical
and experimental investigations have shown the existence of acoustic solitary
waves [45]. We have developed a numerical modeling, and we have success-
fully compared simulations with experimental data [40, 28].

One fundamental assumption underlying Sugimoto’s model is that all the
resonators are the same, which allows to use a homogenization process. The
drawback of this approach is that the reflection of an incident wave by a defect
(for instance, a resonator different from the others) cannot be considered.
Similarly, wave propagation across resonators with variable features cannot
be investigated. However, the case of variable resonators is important when
studying the influence of manufacturing defects or the influence of aging of
the guiding device on the wave propagation.

The aim of this paper is to remedy these limitations, by building a model
predicting two-way propagation across variable resonators. For this purpose,
we introduce a discrete description of the resonators. A consequence is that
the requirement of a long wavelength is no longer necessary. Second, we allow
the reflection of waves. Finally, we reformulate the viscothermal losses, which
leads to a formulation suitable for an energy balance. The new model writes
as a single system coupling three unknowns, the velocity of the right-going
wave u+, the velocity of the left-going wave u− and the total excess pressure
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in the resonators p, induced by both waves:
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∣∣∣∣∂p∂t
∣∣∣∣ ∂p∂t = h(u+ − u−).

(1)
The precise meaning of u±, p and the coefficients in (1) will be detailed along
section 2. Some of the coefficients incorporate the individual features of the
resonators and vary with x.

The paper is organized as follows. In section 2, the general equations in
the tube and in the resonators are given, and the new model (1) is derived.
In section 3, a first-order formulation is followed: it allows to determine an
energy balance and also to build a numerical scheme. In section 4, compar-
isons with experimental data show that a closer agreement is obtained than
with the original Sugimoto’s model. Numerical simulations are performed
to investigate the properties of the acoustic solitary waves, in particular the
robustness to defects and to random disorder. Conclusions and prospects are
drawn in section 5. Technical results are given in the appendices.

2. The new model

In this part, we derive Eq. (1). The configuration under study is made up
of an air-filled tube connected to uniformly distributed cylindrical Helmholtz
resonators (see Fig. 1). The geometrical parameters are the radius of the
guide R, the axial spacing between successive resonators D, the radius of the
neck r, the length of the neck L, the radius of the cavity rh and the height
of the cavity H, which can vary from one resonator to the other. The cross-
sectional area of the guide is A = π R2 and that of the neck is B = π r2, the
volume of each resonator is V = π r2hH.

2.1. Equations in the tube

2.1.1. General equations

Here we recall briefly the general equations governing the nonlinear acous-
tic waves in a tube [43]. The physical parameters are the ratio of specific
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Figure 1: sketch of the guide connected with Helmholtz resonators.

heats at constant pressure and volume γ; the pressure at equilibrium p0; the
density at equilibrium ρ0; the Prandtl number Pr; the kinematic viscosity
ν; and the ratio of shear and bulk viscosities µv/µ. One defines the linear
sound speed a0, the coefficient of nonlinearity b, the sound diffusivity νd and
the coefficient of attenuation d by

a0 =

√
γ p0
ρ0

, b =
γ + 1

2
, νd = ν

(
4

3
+
µv
µ

+
γ − 1

Pr

)
, d =

νd
2
.

(2)
The characteristic angular frequency ω and the parameter of nonlinearity ε
are

ω =
2 π a0
λ

, ε =
γ + 1

2

u

a0
, (3)

where λ is the typical wavelength imposed by the source, and u is the am-
plitude of the gas velocity. The following assumptions are made:

• low-frequency regime (ω < ω∗ = 1.84 a0
R

), so that only the plane mode
propagates [4];

• weak acoustic nonlinearity: ε� 1 [16].

Thanks to the first assumption, we can restrict to unidirectional propaga-
tion. Under the second assumption of weak nonlinearities, we are allowed to
use Riemann invariants along the characteristics, noted with the ± subscript
according to the way of propagation. Then, starting from the compress-
ible Navier-Stokes equations, the flow in the tube can be described by the
following nonlinear equation for the horizontal velocities u± [43]:

∂u

∂t

±
+
(
±a0 + bu±

) ∂u
∂x

±
= ± a0

2ρ0
F± + d

∂2u

∂x2

±

, (4)
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with

F±(x) =
1

A

∫
σ(x)

(ρv±n )(x, y(s), z(s))ds. (5)

The diffusivity of sound in the tube is introduced by the coefficient d.
F± is the mean mass flux at position x, with v±n the small deviation of

the component of the velocity normal inward to the inner surface of the tube
(v±n lies in the y − z plane). The integral is taken along the periphery σ(x)
of the cross-section at x (see Fig. 2) with s the curvilinear abscissa. F± is
due to the coupling between the main flow u± and two areas, represented
in beige on Fig. 3. It takes into account the connections of the main tube
with the resonators, and the wall friction due to the presence of a viscous
boundary layer on the boundary of the tube.

�(x)

⌃B

⌃xy

z D

Figure 2: perspective view of the tube. The unit portion Σ of the tube is connected to
one resonator through the surface ΣB . σ is a path along the boundary of a cross section
of the tube.

We note Σ a part of length D (thus connected to only one resonator) of
the tube, represented in Fig. 2. We note ΣB the part of Σ connected to
the cylindrical resonator, of area B. For simplicity, the junction between a
resonator and the main tube is approximated by as a disc. The real shape
is more complicated: it is the intersection of two perpendicular tubes of
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different diameters. It follows [43]:

ρv±n = −Q on ΣB,

= ρ0v
±
b on Σ\ΣB,

(6)

with

Q =
V

a20B
(1− 2mp)

∂p

∂t
,

v±b = C
√
ν
∂−1/2

∂t−1/2
∂u

∂x

±
,

(7)

where

m =
γ − 1

2 γ p0
. (8)

Q is the mass flux density over B into the resonator cavity (see Fig. 2). The
reader is referred to the sections 2-1 and 2-2 of [43] for a detailed derivation
of (7). The expression of Q follows from the conservation laws in the throat
and from the adiabatic relation in the cavity, up to the second order.

x

z

u(x, t)

Q

vn

vn

Figure 3: definition of v±n . In beige is represented the viscous boundary layer and the
inside of the resonators. v±n is defined on the boundary of this beige area.

In (7), v±b is the velocity at the edge of the viscothermal boundary layer.
It involves a fractional operator of order -1/2, thus proportional to 1/(i ω)1/2

in the frequency domain [5]. C is the dissipation in the boundary layer:

C = 1 +
γ − 1√

Pr
. (9)
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These expressions are obtained by solving matching conditions between the
boundary layer and the main flow in the guide (section 2-1 of [42]).

The Riemann-Liouville fractional integral of order 1/2 of a causal function
w(t) (thus w(0) = 0) is defined by

∂−1/2

∂t−1/2
w(t) =

H(t)√
π t
∗ w =

1√
π

∫ t

0

(t− τ)−1/2w(τ) dτ, (10)

where * is the convolution product in time, and H(t) is the Heaviside step
function [38].

2.1.2. Determination of the flux F±

(a) (b)

0 D

2r

z

x

D

y

x

0

Figure 4: portion of length D of the tube. View from the side (a). View from above (b).

For convenience, Σ is taken as the part x ∈]−r,D−r[, the part ΣB being
then centered at x = 0, located in x ∈]− r, r[ (see Fig. 4). Then the flux F±

can be determined at each position x, depending on two cases.
Case 1: x ∈]r,D− r[. Then σ(x) is a disc of radius R and ρv±n = ρ0v

±
b on σ.

Therefore

F±(x) =
1

A

∫ 2π

0

(ρv±n )(x,R sin θ, R cos θ)Rdθ,

=
1

A
(2πR) ρ0v

±
b (x),

where θ is measured with respect to the z axis (as α in Fig. 5(a)).
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Case 2: x ∈] − r, r[. A cross section of the tube at x ∈] − r, r[ is sketched
in Fig. 5(a). The integration path σ(x) is made of two parts: (i) a line
of length 2`(x) on which ρv±n = −Q; (ii) a portion of a circle of radius R,
between the angles θ = α and θ = 2π − α, on which ρv±n = ρ0v

±
b . Using Fig.

5(b) representing ΣB seen from above, it follows that:

`(x) =

{
0 for x ∈]r,D − r[,

√
r2 − x2 for x ∈]− r, r[.

(11)

Using Fig. 5(a), one finds also that α(x) = arcsin (`(x)/R). Then (5) be-
comes:

F±(x) =
1

A

[∫ 2π−α(x)

α(x)

(ρ0v
±
b )(x,R sin θ, R cos θ)Rdθ −

∫ `(x)

−`(x)
Q(x)ds

]
,

=
2

A

{
[π − α(x)]Rρ0v

±
b (x)−Q(x)`(x)

}
.

(a) (b)

z

y

↵(x)

R

`(x)

x

z

r
`(x)

Figure 5: (a) σ(x) for x ∈]− r, r[; (b) view from above of the resonators in x ∈]− r, r[.

To sum up, using the values of Q and v±b from (7), one deduces that for
all x ∈]− r,D − r[:

a0
2ρ0

F± = c(x)
∂−1/2

∂t−1/2
∂u

∂x

±
e(x)(1− 2mp)

∂p

∂t
, (12)
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where we have introduced the functions c(x) = c0

[
1− 1

π
arcsin

(
`(x)

R

)]
,

e(x) = e0`(x),
(13)

with the coefficients

c0 =
C a0
√
ν

R
, e0 =

V

ρ0 a0AB
, (14)

and V the volume of the resonator at x = 0.
This result has been obtained for a unit part of the tube located in x ∈

] − r,D − r[. Now, we consider the entire tube, in which the resonators are

D

Hn�1 Hn
Hn+1

xn+1xn�1 xn

2r

Figure 6: side view of the guide connected to Helmholtz resonators. The i-th cell is
highlighted in grey.

centered at xi = iD, i = 1, 2, · · · (see Fig. 6). We note Vi the volume (and Hi

the height) of the i-th resonator at xi. In the i-th cell x ∈ [xi−D/2, xi+D/2]
(represented in grey on Fig. 6) and based on (12), Eq. (4) takes the form

∂u

∂t

±
+
∂

∂x

(
±a0u± + b

(u±)2

2

)
∓c(x)

∂−1/2

∂t−1/2
∂u

∂x

±
−d∂

2u

∂x2

±

= ∓e(x)(1−2mp)
∂p

∂t
.

(15)
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The coefficients c(x) and e(x) are defined by c(x) = c0

[
1− 1

π
arcsin

(
`i(x)

R

)]
,

e(x) = ei`i(x),
(16)

where

`i(x) =

 0 for r < |x− xi| ≤
D

2
,√

r2 − (x− xi)2 for |x− xi| ≤ r,
(17)

c0 is defined in (14), and

ei =
Vi

ρ0 a0AB
. (18)

2.1.3. Reformulation of the viscothermal losses

The fractional integrals in (15) have two drawbacks: they prevent from
obtaining an energy balance, and the dispersion relation is singular at zero
frequency [30]. It is therefore preferable to replace them by fractional deriva-
tives. Based on the linear approximation (∂u±/∂t) ± a0(∂u±/∂x) ≈ 0, one
has

∂−1/2

∂t−1/2
∂u±

∂x
≈ ∓ 1

a0

∂1/2

∂t1/2
u±. (19)

The rigorous derivation of this step is detailed in Appendix A. Injecting (19)
in (15) yields finally the first two equations of (1).

2.2. Equation in the resonators

The excess pressure p in a resonator of volume V satisfies the equation
[36, 37]:

∂2p

∂t2
+ f

∂3/2p

∂t3/2
+ gp−m∂2p2

∂t2
+ n

∣∣∣∣∂p∂t
∣∣∣∣ ∂p∂t = gp′, (20)

where

f =
2
√
ν

r

L
′

Le
, g =

a20B

Le V
, n =

V

B Le ρ0 a
2
0

, (21)

and where p′ is the excess pressure at the mouth of the tube. The coefficients
m in (8) and n in (21) describe nonlinear processes in the resonators. The
semi-empirical coefficient n accounts for the jet loss resulting from the differ-
ence in inflow and outflow patterns [43, 46]. These nonlinear processes have
to be included to get a good agreement with the experimental measurements
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[40]. The Caputo fractional derivative of order 3/2 is obtained by applying
(10) to ∂2p/∂t2. Corrected lengths have been introduced: L

′
= L + 2 r ac-

counts for the viscous end corrections, and the corrected length Le = L + η
accounts for the end corrections at both ends of the neck, where η ≈ 0.82 r
is determined experimentally [43].

In the one-way model [43], a linear approximation is used to link the
right-going fields in the tube: p′+ = (γp0/a0)u

+. In a symmetric way, p′− =
−(γp0/a0)u

−. Here p′ is induced by both the right-going waves and the
left-going waves; assuming linearity gives

p′ = p′+ + p′− =
γp0
a0

(u+ − u−). (22)

Injecting (22) in (20) leads to

∂2p

∂t2
+ f

∂3/2p

∂t3/2
+ gp−m∂2p2

∂t2
+ n

∣∣∣∣∂p∂t
∣∣∣∣ ∂p∂t = h(u+ − u−), (23)

with h = g(γ p0/a0).
For resonators of variable volume, Eq. (23) becomes, for |x − xi| ≤ r

(i = 1, 2, · · ·)

∂2p

∂t2
+ f

∂3/2p

∂t3/2
+ g(x)p−m∂2p2

∂t2
+ n(x)

∣∣∣∣∂p∂t
∣∣∣∣ ∂p∂t = h(x)(u+ − u−), (24)

with

g(x) =
a20B

Le Vi
, n(x) =

Vi
B Le ρ0 a20

, h(x) =
γ p0
a0

g(x). (25)

One recognizes the third equation in (1). The functions g(x), h(x) and
n(x) depend on x because the resonators have different heights, but they
are constant on each resonator. They just depend on i, the index of the
resonators. The equation (24) is not solved outside the resonators (that is
on r < |x− xi| ≤ D/2) contrary to Sugimoto’s model recalled in (B.6b).

In Appendix B, we show that the original model of Sugimoto [43] can be
recovered from the new model (1). Note also that (1) can be easily extended
to the case of resonators not periodically placed; only the values of xi need
to be changed.

3. First-order system

In this part, Eq. (1) is formulated as a first-order system, which enables
us to determine an energy balance and to build a numerical scheme.
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3.1. Diffusive approximation

The fractional derivatives in (1) are nonlocal in time and they rely on
the full history of the solution, which is numerically memory-consuming.
An alternative approach is based on a diffusive representation of fractional
derivatives, and then on its approximation. This method has already been
presented in [40, 28] and we just recall it briefly. The half-order integral (10)
of w(t) is written

∂−1/2

∂t−1/2
w(t) '

N∑
`=1

µ` ϕ`(t), (26)

where the diffusive variables ϕ`(t) = ϕ(t, θ`) satisfy the ODE
∂ϕ`
∂t

= −θ2` ϕ` +
2

π
w,

ϕ`(0) = 0.
(27)

The approximation (26) follows from the approximation of an integral thanks
to a quadrature formula on N points, with weights µ` and nodes θ`, which
are issued from an optimization process.

To get fractional derivatives of orders 1/2 and 3/2, we differentiate (26)
in terms of t. Then we deduce:

∂1/2w

∂t1/2
=

∂

∂t

∂−1/2w

∂t−1/2
'

N∑
`=1

µ`
∂ϕ`
∂t

(t) = µ`

(
−θ2` ϕ` +

2

π
w

)
. (28)

Similarly, the derivative of order 3/2 is written

∂3/2w

∂t3/2
=

∂

∂t

∂1/2w

∂t1/2
'

N∑
`=1

µ`
∂ξ`
∂t

(t), (29)

where we have introduced ξ` = ∂ϕ`/∂t. The diffusive variable ξ`(t) satisfies
the following ODE (derivative of (27)):

∂ξ`
∂t

= −θ2` ξ` +
2

π

∂w

∂t
,

ξ`(0) = 0.
(30)

The initial condition is obtained using w(0) = 0, since we consider causal
data. Thanks to these diffusive approximations, Eq. (1) can be written as
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the following system

∂u

∂t

±
+

∂

∂x

(
±a0u± + b

(u±)2

2

)
= − c

a0

N∑
`=1

µ`

(
−θ2`ϕ±` +

2

π
u±
)

+ d
∂2u

∂x2

±

∓ e(1− 2mp)q, (31a)

∂p

∂t
= q, (31b)

∂q

∂t
= h(u+ − u−)− gp− f

N∑
`=1

µ`

(
−θ2` ξ` +

2

π
q

)
+m

∂2p2

∂t2
− n |q| q,(31c)

∂ϕ±`
∂t

= −θ2`ϕ±` +
2

π
u±, ` = 1 · · ·N, (31d)

∂ξ`
∂t

= −θ2` ξ` +
2

π
q, ` = 1 · · ·N. (31e)

Contrary to [28], all the initial conditions are null: u± = 0, p = 0, ∂p
∂t

= 0. If
this were not the case, then the diffusive representation of the 3/2 derivative
would imply non-null initial conditions on ξ` in (30). The interested reader
is referred to [30] for additional details on this topic.

3.2. Energy balance

The system (31) is suitable to define an energy and to prove the energy
decreasing, in an infinite medium and for smooth solutions:

Result 1. Let

E = E+1 + E−1 + E2 and K = K+
1 +K−1 +K2, (32)
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with 

E±1 =
1

2

∫
R

(
(u±)2 +

π

2

c

a0

N∑
`=1

µ` θ
2
` (ϕ±` )2

)
dx, (33a)

E2 =
1

2

∫
R

(
eg

h
p2 +

e

h
(1− 2mp) q2 +

π

2

ef

h

N∑
`=1

µ` θ
2
` ξ

2
`

)
dx, (33b)

K±1 =
π

2

∫
R

c

a0

N∑
`=1

µ`

(
∂ϕ±`
∂t

)2

dx+

∫
R
d

(
∂u±

∂x

)2

dx, (33c)

K2 =

∫
R

(
e n

h
q2
(
|q| − m

n
q
)

+
π

2

e f

h

N∑
`=1

µ`

(
∂ξ`
∂t

)2

dx

)
. (33d)

We neglect the 2mp terms in the tube, ie in the evolution equations of u± in
(1). Then the following energy balance holds:

dE
dt

= −K. (34)

The proof is reported in Appendix C. Four remarks are raised by (34).

• E±1 and K±1 involve quantities in the tube, notably the kinetic energy
(u±)2; E2 and K2 involve quantities in the resonators, notably the po-
tential energy with terms proportional to p2 and q2.

• We have not succeeded in obtaining a proof by accounting for the 2mp
term in the advection equations. Nevertheless, the hypothesis 2mp ' 0
is consistent with Sugimoto’s work, where only the influence of m in
the resonators equation has been considered: see (B.6a). It is also
consistent with the hypothesis of a weak nonlinear regime. Indeed, as
shown in [40, 28]:

2mp ≈ (γ − 1)
u+ − u−

a0
, (35)

which is lower than 1 under the hypothesis of weak nonlinearity |u±| �
a0.

• The term E in (32) is positive if µ` > 0 and 1 − 2mp > 0. The first
condition is imposed when the coefficients of the diffusive representa-
tion are determined during the optimisation process [40]. The second
condition is satisfied in the weak nonlinear regime.
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• The term K in (32) is positive if µ` > 0 and m < n. The first
condition has been already discussed. The second condition reads
m/n = γ−1

2
BLe

V
< 1, where BLe is the resonator neck volume, and

V is the volume of the resonators. For the experimental configura-
tion under study, this ratio is lower than 1 and thus the condition is
satisfied.

3.3. Numerical scheme

In this part, we present the numerical resolution of (31) with null initial
conditions. Source terms s±(t) at xs± model the acoustic sources of right-
going waves and left-going waves: u+(xs+ , t) = s+(t), u−(xs− , t) = s−(t). For
numerical purpose, it is necessary to write the evolution equations as a first-
order system in time. To do so, the term ∂2p2/∂t2 in Eq. (31c) is expanded
and leads to

(1− 2mp)
∂q

∂t
= h(u+− u−)− g p− f

N∑
`=1

µ`

(
−θ2` ξ` +

2

π
q

)
+ 2mq2− n |q| q.

The (4 + 3N) unknowns for the counter-propagating waves are gathered in
the vector

U =
(
u+, u−, p, q, ϕ+

1 , · · · , ϕ+
N , ϕ

−
1 , · · · , ϕ−N , ξ1, · · · , ξN

)T
. (36)

Then the nonlinear systems (31) is written in the form

∂

∂t
U +

∂

∂x
F(U) = G

∂2

∂x2
U + S(U), (37)

where F is the flux function

F =

(
a0u

+ + b
(u+)2

2
,−a0u− + b

(u−)2

2
, 0, 0, · · · , 0

)T
, (38)
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and where the source term S is

S =



− c

a0

N∑
`=1

µ`

(
−θ2` ϕ+

` +
2

π
u+
)
− e(1− 2mp) q

− c

a0

N∑
`=1

µ`

(
−θ2` ϕ−` +

2

π
u−
)

+ e(1− 2mp) q

q

1

1− 2mp

(
h(u+ − u−)− g p− f

N∑
`=1

µ`

(
−θ2` ξ` +

2

π
q

)
+ 2mq2 − n |q| q

)

−θ2` ϕ+
` +

2

π
u+, ` = 1 · · ·N

−θ2` ϕ−` +
2

π
u−, ` = 1 · · ·N

−θ2` ξ` +
2

π
q, ` = 1 · · ·N



.

(39)
As soon as m 6= 0 and n 6= 0, S(U) is no longer a linear operator (m = 0 = n
has been considered in [28]). The Jacobian matrix ∂F

∂U
in (38) is diagonalizable

with real eigenvalues: a0 + b u+, −a0 + b u− and 0 with multiplicity 3N + 2,
which ensures propagation with finite velocity. These eigenvalues do not
depend on the quadrature coefficients µ` and θ`. The diagonal matrix G =
diag(d, d, 0, · · · , 0) incorporates the volume attenuation.

Let us describe briefly the numerical procedure; additional details can be
found in [40, 28]. To compute the N quadrature coefficients µ` and θ` in
(39), we use a nonlinear optimization with the positivity constraints µ` ≥ 0
and θ` ≥ 0 [40]. In order to integrate the system (37), a grid is introduced,
with a uniform spatial mesh size ∆x and a variable time step ∆tn. The
computations are done with Nx = 1000 grid nodes. The approximation of
the exact solution U(xj = j∆x, tn = tn−1 + ∆tn) is denoted by Un

j . A
stability analysis [28] leads to the restriction on the time step

β =
a
(n)
max∆tn

∆x

(
1 +

1

Pe

)
≤ 1. (40)

In the CFL condition (40), Pe = a
(n)
max ∆x/2 d ≈ 105 is the discrete Péclet
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number, with the maximal velocity

a(n)max = a0 + b max
j

[max(|un+j |, |un−j |)]. (41)

In practice, we choose β = 0.95. To treat the system (37), a Strang splitting
is used [48], ensuring both simplicity and efficiency: the original equation (31)
is split in a propagative equation and a forcing equation, which are solved
successively with adequate time increments. The propagative part is solved
by a standard second-order TVD scheme (a finite-volume scheme with flux
limiters) for nonlinear hyperbolic PDE [25] combined with a centered finite-
difference approximation [28].

4. Results

γ p0 (Pa) ρ0 (kg/m3) Pr ν (m2/s) µv/µ

1.403 105 1.177 0.708 1.57 10−5 0.60

R (m) D (m) r (m) L (m) rh (m) H (m)

0.025 0.1 0.01 0.02 0.0215 0.02, 0.07 or 0.13

Table 1: Physical parameters of the air at 15 ◦C, and geometrical parameters of the tube
with resonators.

4.1. Test 1: comparison with experiments

The first result is based on the experimental measurements detailed in
[40]. The reader is referred to this paper for a complete description of the
experimental and numerical setups. The physical and geometrical parameters
are given in table 1. The explosion of a balloon at x = 0 generates a shock
wave, which propagates along a tube of length 6.15 m. This wave interacts
with resonators regularly spaced from x = 0.2 m up to the end of the tube.
Two models are compared: the one-way model with constant coefficients
(ie the original Sugimoto’s model used in [40]) and the two-way model with
variable coefficients developed here. The computations are done on 5000 grid
nodes. A preliminary numerical study has been performed to verify that this
discretization is sufficiently fine to capture the converged solution, at the
scale of the figures. The same remark holds for all the forthcoming tests.

Fig. 7 (a-b) compares the excess pressure p
′
, defined in Eq. (22), simu-

lated by the models or measured experimentally. Two heights are considered:
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Figure 7: Test1. Time history of the excess pressure p
′

at xr = 2.8 m. Comparison
between the models and the experiments. (a): H = 7 cm; (b): H = 13 cm.

H = 7 cm (a) and H = 13 cm (b). The signal is measured at xr = 2.8 m.
For both models, a good agreement is observed between the simulated data
and the experimental results. The best agreement is obtained with the new
model, especially for larger resonators heights. It is observed that higher
resonators yield smaller waves with a larger support. Moreover, the arrival
time of the central peak is around 10 ms in (a) and 14 ms in (b), which
indicates that higher resonators generate slower waves, as predicted by the
theory [43].

4.2. Test 2: amplitude dependence of the velocity

From now on, we investigate the properties of the two-way model thanks
to numerical experiments. As a second test, we consider the spatial domain
[0, 10] m, discretized on 5000 grid nodes with N = 4 memory variables. A
time-variable punctual source at xs = 5 m is used to generate right-going
and left-going waves:

u±(xs, t) = A±G(t), (42)

where G is a causal Gaussian pulse with G(0) = 0 and with a central fre-
quency fc = 650 Hz. The amplitudes are A+ = 20 m/s and A− = A+/2 = 10
m/s.

Figure 8(a,b) display snapshots of p
′
, defined in Eq. (22), at different

times, for two resonators heights: H = 0 cm (a), and H = 2 cm (b). In
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(a) H = 0 cm (b) H = 2 cm
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Figure 8: Test 2. Snapshots of the excess pressure p
′

generated by a source point at x = 5
m, at various instants. (a): H = 0 cm (no resonators); (b): H = 2 cm.

the first case without resonators, the viscothermal losses are insufficient to
prevent the occurence of shocks in finite time, as analysed theoretically in
[42]. On the contrary, resonators create smooth waves (b).
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Figure 9: Test 2. Velocity of the nonlinear waves versus the forcing amplitude A+ for
different heights of the resonators.

19



From Figure 8, one estimates the velocity V of the nonlinear waves. Figure
9 shows the results obtained by varying the amplitude A+ of the forcing, from
10 m/s to 100 m/s, and for two heights H of the resonators. It is observed
that V increases linearly with A+, which is a typical signature of solitary
waves. At a given forcing, V is also greater for smaller height H, as in the
first test of section 4.1.

4.3. Test 3: interaction with defects

In this test, the source of right-going waves is localized at the left edge
of the computational domain (x = −5 m). The amplitude of the forcing is
A+ = 20 m/s; from now on, A− = 0 m/s. The height of the resonators is
H = 2 cm, except for the resonator at x = 0 m, where H = 0.1 cm. Figure
10 displays snapshot of p

′
at different times. The position of the defect is

denoted by a vertical dotted line. At t = 10 ms, the incident wave has not
yet crossed the defect (figure 10(a)) and exhibits a smooth shape already
seen in the second test.
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Figure 10: Test 3. Snaphsots of p
′

at t = 10 ms (a) and t = 25 ms (b). All the resonators
have the height H = 2 cm, except at x = 0 (vertical dotted line), where H = 0.1 cm.

Figure 10(b) shows p
′

at t = 25 ms, after the interaction with the defect.
The amplitude of the transmitted wave (in red) has been slightly modified,
compared to the perfect case without defect (in blue). More important, a
left-going wave has been generated by the defect. This effect cannot be

20



predicted by the one-way model with constant coefficients, and it constitutes
an original feature of the new model.

4.4. Test 4: propagation in a random medium
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Figure 11: Test 4. Left: H = 2 cm (a-c); right: H = 7 cm (b-d). Top: discretizations
of the random heights. The grid nodes are denoted by blue points; the vertical dotted
lines denote the positions of the resonators. Bottom: snapshots of p

′
at t = 80 ms in the

unperturbed medium (red) and in the random medium (blue).

As a fourth and last test, we examine the effect of a random disorder on
the propagation of nonlinear waves. The domain [−15, 15] m is discretized on
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15000 grid nodes, ensuring 10 grid nodes inside each resonator. The random
height of each resonator is uniformly distributed between Hmin and Hmax,
which gives rise to random values of the coefficients e, g, n and h in (1).
Figure 11 illustrates two configurations. The first configuration has a mean
height H = 2 cm, with Hmin = 0.1 cm and Hmax = 3.9 cm, and a forcing
amplitude of right-going waves A+ = 20 m/s (a,c). The second configuration
has a mean height H = 7 cm, with Hmin = 1 cm and Hmax = 13 cm, and a
forcing amplitude A+ = 100 m/s (b,d). A zoom between 0 and 1 m illustrates
the values of H in 11 resonators (in blue), denoted by vertical solid lines (a,b).

Figure 11(c,d) shows a snapshot of p
′

at t = 80 ms without disorder (blue
line) and with a random selection of H (red line). With randomness, a coda
is observed behind the main wavefront. The amplitude and the location of
the peak are only slightly modified, which indicates the robustness of the
nonlinear wave when perturbed by some noise. It constitutes an additional
signature of solitary waves.

5. Conclusion

The goal of this paper was to build a model describing the propagation
of nonlinear wave across a variable lattice of Helmholtz resonators. Contrary
to previous works [43, 46, 40], the new model takes into account the individ-
ual features of each resonator and the backscattering effects. Doing so has
enabled us to study the effect of disorder or of an individual defect on the
propagation of nonlinear waves.

The numerical experiments have highlighted various properties of the new
model. First, the Helmholtz resonators prevent from the occurence of shocks
and yield large-amplitude smooth structures. Moreover, the velocity of waves
increases linearly with the amplitude, which confirms the terminology of
”acoustic solitary waves”. These properties were already included in the
original Sugimoto’s model [43], but here a better agreement is obtained with
experimental results. Second, diffraction effects have been displayed when a
local variation of the height of the resonator is introduced in the lattice. Third
and last, robustness to disorder has been observed by performing simulations
in random lattices.

This work motivates new experimental investigations. The setup used
in [40] enables to examine whether the effects seen in figures 10-11 are con-
firmed experimentally. New theoretical and numerical [51] developments to
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study the propagation in a stochastic medium are also motivated, for in-
stance concerning the robustness of acoustic solitary waves in random media
[14]. Lastly, adequate choices of defects in the lattice could produce localized
modes, generalizing the results presented in the linear case in [47].
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Appendix A. Transformation of the fractional integral

Here we prove (19). To simplify, we restrict to a right-way propagation
in (15), and we note u = u+ and p = p+:

∂u

∂t
+

∂

∂x

(
a0u+ b

u2

2

)
− c ∂

−1/2

∂t−1/2
∂u

∂x
− d∂

2u

∂x2
= −e(1− 2mp)

∂p

∂t
. (A.1)

with the coefficients defined in (8) and (16). The first step is to write (A.1)
in a dimensionless form. Given a central frequency f0, we define the charac-
teristic wavelength λ = a0/f0. We introduce the non-dimensional quantities,
indexed by a tilde: x = λx̃, t = t̃/f0, u = u0ũ and p = p0p̃, where u0 is the
characteristic velocity, that will be determined later. We get:

∂ũ

∂t̃
+

∂

∂x̃

(
ũ+ b̃

ũ2

2

)
− c̃ ∂

−1/2

∂t̃−1/2
∂ũ

∂x̃
− d̃∂

2ũ

∂x̃2
= −ẽ(1− 2m̃p̃)

∂p̃

∂t̃
, (A.2)

with

b̃ = Mb = M
γ + 1

2
, c̃ =

c

a0

√
λ

a0
, d̃ =

d

a0λ
, ẽ =

ep0
u0

=
V

2ADγM
, m̃ = mp0 =

γ − 1

2γ
.

(A.3)
M = u0/c0 is the characteristic Mach number. The typical value of M is
obtained by equalizing b̃ and ẽ:

b̃ = ẽ⇔M =

√
V

ADγ(γ + 1)
. (A.4)
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To find an approximation of (A.2), we introduce the small parameter ε =
max(b̃, c̃, d̃, ẽ). Then we define new quantities, defined with hats, by the
relation v = εv̂, with v = b, c, d or e, such that all the quantities with a hat
are at most equal to one. Then, starting from (A.2), we get:

∂ũ

∂x̃
= −∂ũ

∂t̃
− εb̂ũ∂ũ

∂x̃
+ εd̂

∂2ũ

∂x̃2
− εê(1− 2m̃p̃)

∂p̃

∂t̃
+ εĉ

∂−1/2

∂t̃−1/2
∂ũ

∂x̃
,

= −∂ũ
∂t̃
− εb̂ũ∂ũ

∂x̃
+ εd̂

∂2ũ

∂x̃2
− εê(1− 2m̃p̃)

∂p̃

∂t̃

+ εĉ
∂−1/2

∂t̃−1/2

(
−∂ũ
∂t̃
− εb̂ũ∂ũ

∂x̃
+ εd̂

∂2ũ

∂x̃2
− εê(1− 2m̃p̃)

∂p̃

∂t̃
+ εĉ

∂−1/2

∂t̃−1/2
∂ũ

∂x̃

)
,

= −∂ũ
∂t̃
− εb̂ũ∂ũ

∂x̃
+ εd̂

∂2ũ

∂x̃2
− εê(1− 2m̃p̃)

∂p̃

∂t̃
− εĉ∂

1/2ũ

∂t̃1/2
+O(ε2),

where we have used
∂1/2ũ

∂t̃1/2
=

∂−1/2

∂t̃−1/2
∂ũ

∂t̃
.

Therefore (A.2) can be approximated by:

∂ũ

∂t̃
+

∂

∂x̃

(
ũ+ b̃

ũ2

2

)
− c̃∂

1/2ũ

∂t̃1/2
− d̃∂

2ũ

∂x̃2
= −ẽ(1− 2m̃p̃)

∂p̃

∂t̃
, (A.5)

where neglected terms are small, of order ε2. Using the values of Table 1,
M = 0.21 is obtained from (A.4), in agreement with the experiments made
in [40], for f0 = 500 Hz. From this Mach value, we deduce finally

b̃ = 0.22 = ẽ, c̃ = 0.010, d̃ = 8.2410−8, m̃ = 0.14. (A.6)

Coming back to real quantities yields the first two equations in (1).

Appendix B. Comparison with Sugimoto’s model

Here we prove that the original model of Sugimoto [43] can be recovered
from the new model (1). In this aim, we introduce three ingredients:

• a restriction to only one-way propagations: for right-going waves (u− =
0), we note p+ the associated pressure p. Similarly, for left-going waves
(u+ = 0), we note p− the pressure p;
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• in the tube, the coefficient of adiabatic nonlinearity 2mp is neglected;

• an averaged description of the geometry is used: for identical resonators
of volume V , a continuous approximation of the tube geometry is in-
troduced and a mean value of the flux is used:

F̄± =
1

D

∫ D

x=0

F±(x)dx. (B.1)

Using (13) and (14), one deduces the mean value

ē =
1

D

∫ D

x=0

e(x)dx = e0
B

2D
=

V

2 ρ0 a0AD
. (B.2)

Also, thanks to the approximation for R� r:

arcsin

(√
r2 − x2
R

)
'
√
r2 − x2
R

. (B.3)

Using (13) and (14), we obtain the mean value

c̄ =
1

D

∫ D

x=0

c(x)dx = c0

(
1− r2

2RD

)
= C a0

√
ν

(
1

R
− B

2AD

)
= C a0

√
ν

1

R∗
,

(B.4)
with

1

R∗
=

1

R
− B

2AD
. (B.5)

Using these two ingredients, the system (1) degenerates in two families of
uncoupled equations:

∂u

∂t

±
+

∂

∂x

(
±a0u± + b

(u±)2

2

)
∓ c̄ ∂

−1/2

∂t−1/2
∂u

∂x

±
− d∂

2u

∂x2

±

= ∓ē∂p
∂t

±
,(B.6a)

∂2p

∂t2

±

+ f
∂3/2p

∂t3/2

±

+ gp± −m∂2(p±)2

∂t2
+ n

∣∣∣∣∂p∂t ±
∣∣∣∣ ∂p∂t ± = ±hu±, (B.6b)

which corresponds to the model proposed in [43, 46] and studied in [40].
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Appendix C. Energy balance

Here we prove the result 1. The first step is to rewrite the system (31),
eliminating the term 2m|p| � 1 in (31a) and using (30), to get the following
system:

∂u±

∂t
+

∂

∂x

(
±au± + b

(u±)2

2

)
= − c

a0

N∑
`=1

µ`
∂ϕ±`
∂t

+ d
∂2u±

∂x2
∓ eq,(C.1a)

∂p

∂t
= q, (C.1b)

∂q

∂t
= h(u+ − u−)− gp− f

N∑
`=1

µ`
∂ξ`
∂t

+m
∂2p2

∂t2
− n |q| q, (C.1c)

∂ϕ±`
∂t

= −θ2`ϕ±` +
2

π
u±, ` = 1, · · · , N, (C.1d)

∂ξ`
∂t

= −θ2` ξ` +
2

π
q, ` = 1, · · · , N. (C.1e)

From (C.1d) and (C.1e), it follows

u± =
π

2

(
∂ϕ±`
∂t

+ θ2` ϕ
±
`

)
, q =

π

2

(
∂ξ`
∂t

+ θ2` ξ`

)
. (C.2)

In (C.1c), the derivative of p2 is modified, using

∂2

∂t2
(p2) q =

∂

∂t
(p q2) + q3. (C.3)

This relation is easy to check by expanding both sides of the equality. Next
we multiply (C.1c) by q, and using (C.1b), (C.2) and (C.3) leads to

q
∂q

∂t
= h(u+ − u−) q − g p q − f

N∑
`=1

µ`
∂ξ`
∂t

q +m
∂2p2

∂t2
q − n |q| q2,

= h(u+ − u−) q − g p∂p
∂t
− π

2
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q
)
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Therefore, we get
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∂
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g
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`=1
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(
∂ξ`
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)2

+
n

h
q2
(
|q| − m

n
q
)
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(C.5)

Besides, (C.1a) is multiplied by u± and integrated in space. After summation
and integration by parts (the data are compactly supported), we get∫

R

(
u+

∂u+

∂t
+ u−

∂u−

∂t

)
dx = −

∫
R

c

a0

N∑
`=1

µ`

(
u+
∂ϕ+

`

∂t
+ u−

∂ϕ−`
∂t

)
dx

−
∫
R
d

((
∂u+

∂x

)2

+

(
∂u−

∂x

)2
)
dx−

∫
R
e (u+ − u−) q dx.

(C.6)
Thanks to the relations (C.2) and (C.5), the previous equation is simplified
and the conclusion follows.
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