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Abstract This paper presents a new method for modeling magnitudes of9

dual tree complex wavelet coefficients, in the context of color texture clas-10

sification. Based on the characterization of dependency between RGB color11

components, Gaussian copula associated with Generalized Gamma marginal12

function is proposed to design the multivariate generalized Gamma density13

(MGΓD) modeling. MGΓD has the advantages of genericity in terms of fit-14

ting over a variety of existing joint models. On the one hand, the generalized15

Gamma density function offers free-shape parameters to characterize a wide16

range of heavy-tailed densities, i.e. the genericity. On the other hand, the inter-17

component,inter-band dependency is captured by the Gaussian Copula which18

offers adapted flexibility. Moreover, this model leads to a closed-form for the19

probabilistic similarity measure in terms of parameters, i.e. Kullback Leibler20

divergence. By exploiting the separability between the copula and the marginal21

spaces, the closed-form enables us to minimize the computational time needed22

to measure the discrepancy between two Multivariate Generalized Gamma23

densities in comparison to other models which imply of using a Monte-Carlo24

method characterized by an expensive time-computing. For evaluating the per-25

formance of our proposal, a K-Nearest Neighbor (KNN) classifier is then used26
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to test the classification accuracy. Experiments on different benchmarks us-27

ing color texture databases are conducted to highlight the effectiveness of the28

proposed model associated to the Kullback-Leibler divergence.29

Keywords Classification · Texture · Copula · Kullback-Leibler divergence30

1 Introduction31

For various practical applications in computer vision, texture analysis is a32

useful and key component for solving problems such as pattern recognition,33

classification or segmentation. Thus, in practical applications, an efficient mod-34

eling of the variation of intensity that characterizes the texture in the image35

is central. The relevance of the model determines to a large extent the ef-36

fectiveness of the feature extraction and then the performance of the image37

processing method. However, as relevant as the model is, it is also important38

to propose an appropriate similarity measure and easy to use.39

Many recent works devoted to texture stressed that accurate feature extrac-40

tion can be achieved by statistical modeling of subband coefficients in the41

transformed domain of wavelets. A variety of wavelet decompositions can be42

applied, ranging from Discret Wavelet Transform (DWT), Steerable Pyramids,43

to the recent complex wavelet transforms [6]. Each of these transformations44

has some particularities, but all share the property sparsity of their subband45

distributions. Histograms are heavy tailed and pickily pronounced, and then46

need to a sub-Gaussian modeling. To fulfill this need, a pioneering work where47

Do and Vetterli proposed the Generalized Gaussian Density (GGD)[1] as an48

alternative to the Gaussian model. Recently, the magnitudes of complex sub-49

bands coefficients have been modeled by Weibull and Gamma distributions50

[2] [3], leading to a considerable enhancement of the retrieval performances.51

In the same way, we have proposed the Generalized Gamma distribution as52

a model for the coefficient magnitudes issued from the Dual Tree Complex53

Wavelet Transform (DTCWT), for grey level texture classification issue [9]. A54

more general work was done inspired by the Generalized Gamma density, but55

in the context of texture retrieval [10].56

In these previous works, only marginal distributions of subband histograms are57

taken into account. This is suitable for grey level images when independence58

between subbands of the same scale is supposed. However in the case of color59

textures, the dependence between color components is undeniable and must60

be taken into account by conceiving multivariate models, otherwise the sys-61

tem will suffer from the lack of this crucial information. The joint statistical62

modeling is then a welcome advantage for color texture retrieval or classi-63

fication. Such framework has been considered previously by many authors.64

Verdoolaege et al. [5], proposed a multivariate Generalized Gaussian distribu-65

tion (MGGD) for multiscale color texture retrieval. The model was devoted66

to describe dependence across color components while assuming independence67

among subbands of a single color component. In [7][31], Kwitt et al. treated68
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the problem of joint modeling of complex coefficient magnitudes across sub-69

bands of different color components. Based on Gaussian copula and student70

t copula for modeling the dependence structure, in conjunction with Weibull71

and Gamma densities as parametric margin models, they achieved significant72

enhancements in the context of texture retrieval. Another Copula based mul-73

tivariate modeling was proposed by Sakji-Nsibi et al. [8], for multicomponent74

image indexing using Gaussian Copula in conjunction with the GGD and75

Gamma densities. Again substantial improvement of classification results was76

obtained in comparison with the marginal modeling approach. However, tex-77

ture databases are extremely increasing in term of diversity and heterogeneity78

of textures, which limits the use of one model over others. Moreover, the lack of79

analytical expression for the KL divergence in the case of multivariate models80

based on copulas presents a shortcoming, since the alternative Monte-Carlo81

based approach [7][8] is computationally expensive.82

Based on these observations and to remedy the problem of complex nature83

and huge variety of textures in the databases, we propose a generic multivari-84

ate model that takes into account the strong dependency between RGB color85

components. In order to manage the diversity, the Generalized Gamma density86

is proposed associated to the Gaussian copula for capturing the dependence87

accross color component subbands of a fixed and/or different pair of orienta-88

tion at a fixed scale of decomposition, i.e the MGΓD model. The choice of the89

Multivariate Generalized Gamma based on the Gaussian copula is justified by90

the existence of KL divergence for Gaussian copula and Generalized Gamma91

margin model, since we present a closed form of the KL divergence based sim-92

ilarity measure.93

Then, contribution in this work is threefold:94

– First, concerning the dataset we consider an inter-band inter-component95

dependency which seems to provide a rich information for the characteri-96

zation process.97

– Second, concerning the model we present MGΓD as a generic multivariate98

model in order to capture the rich information of dependency between R,99

G and B components subbands.100

– Three, concerning the similarity measurement which is a bit hard to calcu-101

late in case of copulas based models. We present a closed form expression102

of the KL divergence between two MGΓD densities which gives a big ad-103

vantage over the Monte-carlo based approach.104

Experiments using the K-nearest neighbor classifier show the superiority of the105

Multivariate Generalized Gamma model over the existing joint models, and106

highlight also the effectiveness of the proposed metric when compared with107

the Monte-Carlo based approach.108

This paper is organized as follows. In the next section, we give an overview of109

the multivariate statistical modeling in the RGB color space, we present the110

multivariate proposed model and we derive the Kullback-Leibler divergence.111

In section 3, we provide texture classification results. Finally, we conclude in112

the section 4.113
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2 Multivariate Statistical Modeling in the RGB color space114

2.1 Wavelet Domain115

For texture analysis, wavelet transform presents advantages in terms of local-116

ity, sparsity and spatial-frequency characterization. Thus, this analysis tool117

received a lot of attention and achieved notoriety in the last decades. In this118

context, the classical Discret Wavelet Transform (DWT), provides an intuitive119

description and a non-redundant representation of images. However, the de-120

composition of an image with a DWT leads to only four directional frequency121

subbands at each decomposition scale, one is an approximation subband and122

three are detail subbands corresponding to the vertical, horizontal and diag-123

onal orientations. In addition to this lack of directionality, DWT is not shift124

invariant, thus each small shifting of the image leads to a significant differ-125

ence of the wavelet coefficient magnitude for the same subband. The main126

reason of this problem is the real valued nature of the coefficients of DWT,127

since that the Fourier transform does not suffer from this one. As an alter-128

native, N. Kingsbury [6] proposed the Dual-Tree Complex Wavelet Transform129

(DTCWT). The basic idea of this approach consists in using two real wavelets130

to obtain complex wavelet coefficients, which are shift-invariant. DTCWT pro-131

vides six detail subbands per scale instead of three subbands in the case of132

DWT, which presents a rich directional selectivity.133

Since we are dealing with color textures in the RGB color space, from each134

image from the database, color components R, G and B are decomposed via135

the DTCWT. Let ros = |Rs,o|, gos = |Gs,o|, bos = |Bs,o|, be the subbands rep-136

resenting magnitudes of the coefficients at a fixed scale s and an orientation137

o. In the next subsection, we investigate the existence of dependencies among138

coefficients of these subbands.139

2.2 Dependency observations140

As already mentioned, many works are based on marginal modeling of tex-141

tures, without accounting for the information that resides across the color142

components. This approach has the advantage to be simple and tractable,143

but leads to a considerable loss of the dependence information. Let us scroll144

some proofs of the nonzero dependence between components, when color tex-145

tures are represented in the RGB color space. In the following paragraph,146

some experiments are conducted for some samples of textures from the Vistex147

database to exhibit the effective dependency between color components in the148

RGB color space.149

2.2.1 Perceptual report150

Before providing objective proofs of dependence such as mutual information151

and scatter plots, one can make a perceptual report even being a subjective152
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Fig. 1 Color texture Fabric.0015.

(a)

(b)

Fig. 2 Spatial structure of color components for texture Fabric.0015 on RGB and Yuv color
spaces. (a) R, G and B spatial structures. (b) Y, u and v spatial structures.

one.153

The dependence across RGB color components can be observed perceptually,154

from the texture presented in Fig.1. Clearly observed from Fig.2, the spatial155

structures of color components of the Fabric.0015 color texture are extremely156

close in case of RGB representation (Fig.2(a)), while we observe that in the157

case of Yuv representation (Fig.2(b)), the spatial structure of the Y component158

is different compared to spatial structures of u and v components.159

2.2.2 Mutual information160

Mutual information is a measure of the statistical dependence between two161

variables. Let X and Y be two random variables, f(x) and f(y) the marginal162

probability distribution functions of X and Y respectively, and f(x, y) the163
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joint probability distribution function of X and Y . The mutual information164

between X and Y is then:165

I(X,Y ) =
∑
x,y

f(x, y)log
f(x, y)

f(x)f(y)

X and Y are independent if I(X,Y ) = 0. Table 1 shows the mutual information

{R} vs {G} {R} vs {B} {G} vs {B}
Bark.0000 7.72 7.57 7.59
Brick.0000 6.13 5.88 5.82
Fabric.0000 6.19 5.72 5.85
Clouds.0000 6.14 5.62 5.46

Table 1 Mutual information between R, G and B color components.

166

between R, G and B color components for different color textures from Vistex167

database [22]. It can be seen that a considerable dependence exists between168

those components.169

2.2.3 Scatter plot test170

Scatter plot is a graphical test for assessing dependence between variables.171

More the points cluster in a band from lower left to upper right, higher the172

degree of dependence between these variables is.173

Fig. 3 shows the scatter plots between color component detail subbands for174

second scale decomposition. The coefficients presented on Fig. 3 are the Pear-175

son (r), Kendall (ρ) and Spearman (τ) correlation coefficients.176

Three kinds of dependence between R, G and B component subbands are177

presented, namely the inter-component only dependence ((a) and (b)), the178

{inter-component, inter-band} dependence ((c)), and the inter-band only de-179

pendence ((d)). In (a) and (b), we observe a huge dependence between Ro, Go180

and bBo subbands as illustrated by the Pearson coefficient (r = 0.98 for {R6181

vs G6} and r = 0.95 for {R1 vs B1}).182

In (c) and (d), we measure the degree of dependence, when considering also183

the inter-band dependence, i.e the dependence between component subbands184

in different orientations ({Ro vs Go′}). Here, the scatter plots show that the185

degree of dependence is considerable (r = 0.82 for {R3 vs G4}) even it is less186

than the inter-component one.187

2.3 The dataset188

In order to improve the characterization, we wish to exploit both inter-component189

and inter-band dependencies. Thus, the dataset considered for our model is190

represented by the vector xs = [ros gos bos], where o = {1, ..., N}, and N191
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represents the number of orientations.192

Since we use the DTCWT as a wavelet decomposition (with 6 orientations per193

scale), we may have a dataset with 3× 6 columns such as194

195

xs = [r1s ... r6s g1s ... g6s b1s ... b6s] .196

197

Then, in our case, the dependence structure is represented by one 18-by-18198

correlation matrix.

0 50 100 150 200
0

50

100

150

200

r=0.50483,ρ=0.31858,τ=0.4611

0 50 100 150
0

50

100

150
r=0.82672,ρ=0.62674,τ=0.81544

0 50 100 150
0

50

100

150

r=0.96706,ρ=0.82082,τ=0.95359

0 50 100 150
0

50

100

150

r=0.94895,ρ=0.76169,τ=0.92188

|R| vs |G|, o=o’=6
|R| vs |B|, o=o’=1

|R| vs |G|, o=3, o’=4 |B| vs |B|, o=1,o’=6

(a) (b)

(c) (d)

Fig. 3 Scatter plots for different combinations of subbands. (a) and (b) show scatter plots
of different color component subbands in a same orientation o (inter-component only depen-
dence). (c) shows scatter plot of different color component subbands in different orientations
(inter-component,inter-band dependence). (d) shows scatter plot of different subbands of the
same color component (inter-band only dependence).

199

3 Multivariate Generalized Gamma distribution (MGΓD)200

As said in the introduction, our aim is to propose a generic and flexible joint201

model allowing us to characterize respectively the heavy-tailed behavior and202
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the information of dependence between color components. We propose the203

Multivariate Generalized Gamma distribution (MGΓD), drawing on the cop-204

ula theory. Let us first give a brief review of what are copulas.205

3.1 Review of the copula theory206

Copulas are a mathematical tool for merging a set of marginal probability207

density functions (pdfs) into a multivariate pdf with a particular dependence208

structure. A copula is a multivariate cumulative distribution function defined209

on the d-dimensional unite cube [0, 1]d [15], with uniform one dimensional210

marginals. Given a d-dimensional vector x = (x1, ..., xd) on the unit cube211

[0, 1], with a joint cumulative distribution function F and marginal cumulative212

distribution functions (cdf) F1, ..., Fd. The joint cdf is:213

F (x1, ..., xd) = P (X1 ≤ x1, ..., Xd ≤ xd)) (1)

Sklar’s theorem [16] shows that there exist a d-dimensional copula C such that:214

215

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)) (2)

Further, if C is continuous and differentiable, the copula density is given by:216

217

c(u1, ..., ud) =
∂dC(u1, ..., ud)

∂u1...∂ud
(3)

The joint pdf is then deduced uniquely from the margins and the copula den-218

sity as follows:219

220

f(x1, ..., xd) = c(F1(x1), ..., Fd(xd))

d∏
i=1

fi(xi) (4)

where fi, i = 1, ..., d, represent the marginal densities.221

In order to represent structure of dependence, one has in hand different families222

of copulas such as Archimedian (Fig.4), Gaussian (Fig.5) and t-Student (Fig.6)223

copulas.224

It appears that the Gaussian copula is suitable to model linear depen-225

dence which is the most popular in texture modeling and which is the case226

of the inter-band inter-component we study in this paper. Fig.7 shows that227

dependence structure for subband coefficients from different components has228

an elliptical behavior that is well fitted by the Gaussian copula (Fig.5).229

The Gaussian copula density is given by:230

c(u,Σ) =
1

|Σ|1/2
exp[−1

2
ϑT (Σ−1 − I)ϑ] (5)

231

with ϑi = φ−1(Fi(xi)) , and φ represents the standard normal cumulative232

distribution function. Σ denotes the correlation matrix, and I denotes the233

d-dimensional identity matrix.234
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Fig. 4 Left: the Archimedian copula pdf. Right: the structure of dependence generated
from an Archimedian copula (with correlation parameter ρ = 0.1).

Fig. 5 Left: the Gaussian copula pdf. Right: the structure of dependence generated from a
Gaussian copula (with correlation parameter ρ = 0.1).
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Fig. 6 Left: the t-Student copula pdf. Right: the structure of dependence generated from
a t-Student copula (with correlation parameter ρ = 0.1).

Fig. 7 Structure of inter-component,inter-band dependence between different subbands

3.2 Generalized Gamma distribution235

In [9] we used the univariate Generalized Gamma density (GΓ ) in order to fit236

marginal distributions of the dual tree complex wavelet coefficient magnitudes.237
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Generalized Gamma was first introduced by Stacy [18] as a generic distribu-238

tion for modeling duration. In contrast to the Generalized Gaussian Density239

(GGD), Generalized Gamma has an additional shape parameter, which allows240

more flexibility in fitting larger classes of subbands histograms. Moreover, the241

Generalized Gamma provides more genericity since it covers GGD, Weibull,242

Gamma and a variety of well-known models as special cases. The probability243

density function of GΓ is defined as:244

f(y;w) =
τ

λατΓ (α)
yατ−1 exp−( yλ )

τ

, y ≥ 0, α, τ, λ > 0 (6)

where w = (α, τ, λ) denotes the GΓ parameters, α and τ are shape parameters,245

λ is the scale parameter, and Γ (.) is the Gamma function.246

From Fig. 8, we can visually conclude that Generalized Gamma model gives247

a better marginal fitting in comparison with its special cases, i.e Gamma and248

Weibull densities, considering one subband from a given texture. This behavior249

remains the same for the whole set of textures within the Vistex database as250

it is shown in Table 2, where we compute the KL divergence between marginal251

distributions of textures from the Vistex database and the parametric marginal252

fitting of our model and its special cases, such as:253

KL(fm||f) =
∑
i

fm(i)log
fm(i)

f(i)
(7)

where fm represents the empirical marginal probability density function, and f254

denotes the parametric marginal probability density function (Weibull, Gamma255

or GΓ ). Results show that GΓ model offers the best marginal fitting since it256

minimizes the KL divergence.

Bark Brick Buildings Flowers
Weibull 0.23 0.22 0.85 0.33
Gamma 0.12 0.08 0.43 0.19
GΓ 0.08 0.06 0.35 0.16

Table 2 KLD between the empirical marginal pdf and the parametric ones for several
textures.

257

3.3 The proposed multivariate pdf258

Subsections 3.1 and 3.2 showed, respectively, that Gaussian copula is well259

suited to represent the inter-band inter-component dependency, and that the260

Generalized Gamma density fits well the marginal behavior of subband coef-261

ficients. Based on these conclusions, we repose on a multivariate model which262

we call Multivariate Generalized Gamma distribution (MGΓD) in order to263

characterize the joint distribution of color texture subbands (Fig. 9). MGΓD264
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Fig. 8 Marginal fitting for texture ’Fabric.0015’ from Vistex database, using different uni-
variate models.

is based on a Gaussian copula in conjunction with the GΓ density. Thus, from265

equations (4) and (6), we derive the (MGΓD) density as:266

f(x, θ) =
1

|Σ|1/2
exp[−1

2
ϑT (Σ−1 − I)ϑ]×

267

(
τ

λατΓ (α)
)d exp[−

d∑
i=1

(
xi
λ

)τ ]

d∏
i=1

xατ−1
i (8)

where θ = (α, τ, λ,Σ) denotes the hyperparameters of the joint model.268

It is worth recalling here that the joint modeling presents big advantages over269

the marginal modeling in terms of consideration of the dependence informa-270

tion that exists between subband coefficients. Thus, it is natural that MGΓD271

model is gainful compared to univariate GGD or GΓ models for example.272

Fig. 10 shows scatter plots of original color subband coefficient magnitudes273

against samples from a MGΓD modeling after estimating subbands combi-274

nation between color channels (column 1), along with the joint fitting of the275

MGΓD model on the empirical joint distributions of subband coefficients (col-276

umn 2). We observe that the model fits very well the combination of subbands,277

either when these latter are extremely correlated (first line with correlation278

coefficient rho = 0.94) or when they exhibit a small correlation (second line279

with correlation coefficient rho = 0.44).280
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Fig. 9 Empirical joint distributions considering combinations of subbands of different color
components.

3.4 Parameter estimation281

For estimating parameters of MGΓD, we use the IFM (Inference From Mar-282

gins) method [17]. Firstly, this consists in estimating the parameters of the283

marginals using the Maximum Likelihood procedure. Let wi = (αi, τi, λi) be284

the parameters of the marginal fi. ML estimators ŵi are deduced as shown in285

Appendix A.286

Secondly, the log-likelihood function for the joint distribution is minimized287
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Fig. 10 Column of the left: fitting of samples generated from MGΓD model (red points)
on original subband coefficients (blue points). Column of the right: fitting of the MGΓD
density (red line) on coefficients joint empirical density (blue line)

using the estimated margins ŵ=(ŵ1, ..., ŵd):288

Σ̂ = argmaxΣ

n∑
i=1

log c(F1(x1i; ŵ1), ..., Fd(xdi; ŵd);Σ) (9)

In the case of Gaussian Copula, Σ can be estimated by the following matrix:289

Σ̂ =
1

M

M∑
i=1

ϑiϑi
T (10)

with ϑi = (φ−1(F1(x1)...φ−1(Fd(xd))
T . M represents the number of observa-290

tions associated to multivariate vectors xd.291

3.5 Similarity measurement292

As in the context of texture retrieval, texture classification reposes on a perti-293

nent similarity measurement step, especially when opting for an instance-based294

type of classifiers.295

Do and Vetterli [1] proposed the KL divergence as a similarity measure between296

parametric representations, when independence is supposed among transform297

coefficients. However, deriving the KL divergence in the case of copula based298

multivariate models is a challenging task. In [7] and [8], authors proposed a299
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Monte-carlo approximation of the KL divergence. But, this approach is compu-300

tationally expensive and is not deterministic, since the KL divergence differs301

depending on the random number generation. An alternative approach was302

proposed in [31], by employing the bayesian CBIR maximum likelihood selec-303

tion rule as a similarity measure. This significantly reduced the execution time304

in comparison with the Monte-carlo based similarity measurement. However,305

authors stressed that, even if the joint copula based approach leads to better306

retrieval rates using the ML selection rule, the marginal approach excels in307

terms of the computational time due to the simple closed form expressions308

of the KL divergence when the marginal-only approach is considered. Hence,309

merging the joint approach with a closed form expression of the KL divergence310

as a similarity measure will be a major advantage.311

In this work, we aim to exploit the copulas properties to come up with a closed312

form of the KL divergence between two MGΓD models.313

As it is known, the most attractive feature of the Copula approach is the314

separability between the marginal space and the dependence structure. From315

Sklar’s theorem (subsection 3.1), we see that for continuous multivariate distri-316

bution functions, the margins and the dependence structure can be separated317

[21]. That is, we can analyze the dependence structure of multivariate distri-318

butions without studying the marginal distribution. Moreover, it was proved319

in [27], that given a Copula C and under increasing and continuous functions320

of the marginals, C remains invariant (see Appendix A). So, the indepen-321

dency between the marginals space and the Copula space allows us to use the322

Kullback Leibler divergence for measuring similarity between two Gaussian323

copula based models. If we consider f(x; θ1) and g(x; θ2) two joint pdfs that324

respectively model two datasets T1 and T2:325

f(x; θ1) = c(F1(x1), ..., Fd(xd))

d∏
i=1

fi(xi) (11)

and326

g(x; θ2) = c(F1(x1), ..., Fd(xd))

d∏
i=1

gi(xi) (12)

as the sum of the KL divergences between the marginals and the Gaussian327

dependence structure.328

Where θ1 = {(w(1)
1 , ..., w

(1)
d ), Σ1} and θ2 = {(w(2)

1 , ..., w
(2)
d ), Σ2} are the hyper-329

parameters of f and g respectively.330

KL(f(x; θ1), g(x; θ2)) =
331

KLmargins(f(x; (w
(1)
1 , ..., w

(1)
d )), g(x; (w

(2)
1 , ..., w

(2)
d ))+

332

KLGaussian(f(x;Σ1), g(x;Σ2)) (13)
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This can also be proved mathematically, as shown in the recent work of Lasmar333

& al. [20]. That is,334

KL(f(x; θ1), g(x; θ2)) =

d∑
i=1

KL(fi(xi;w
(1)
i ), gi(xi;w

(2)
i ))

335

+0.5(tr(Σ−1
2 Σ1)) + log

|Σ2|
|Σ1|

− d) (14)

So, using the KL between two univariate GΓ pdfs [9][10] we deduce a closed336

form of KL divergence between two MGΓD models as:337

KL(f(x; θ1), g(x; θ2)) = d(log(
τ1λ

α2τ2
2 Γ (α2)

τ2λ
α2τ2
1 Γ (α1)

)+

338

+(
λ1
λ2

)τ1
Γ (α1 + τ2

τ1
)

Γ (α1)
+
ψ(α1)

τ1
(α1τ1 − α2τ2)− α1)

339

+0.5(tr(Σ−1
2 Σ1)) + log

|Σ2|
|Σ1|

− d) (15)

This presents a huge advantage in terms of lower computational complexity340

when compared with the Monte-Carlo based approach proposed in [20].341

4 Experimental Results342

To evaluate the effectiveness of the proposed model we adopt color texture343

classification as an application. Note that the proposed model can be used344

for segmentation issue also. Our purpose is not to evaluate the performance of345

classifiers, we aim at quantifying the performance of the pair model/similarity,346

i.e. MGΓD/KLD. Thus, we consider only one classifier. The K-nearest neigh-347

bor (KNN) was chosen among a variety of classifiers, since it is straightfor-348

ward, widely used and well referenced in the literature [28]. KNN is a kind of349

instance-based classifier, where the main idea is that decision is achieved from350

K-nearest neighbors and letting to the majority vote decide the outcome of the351

class labeling. The decision is defined from a given similarity measure. For all352

of our experiments, we consider the DTCWT [6] which is an oriented complex353

decomposition. In addition to its directional analysis, shift invariance and low354

redundancy properties, the DTCWT was chosen for its reduced computational355

time. The two-scale DTCWT with a Q-shift (14,14)-tap filter which is used.356

For all color texture samples, every color band of each subimage was normal-357

ized by subtracting its mean and dividing by its standard deviation. We recall358

that the similarity measure is given by:359

D(T1, T2) =

Ns∑
s=1

KL(f(xT1
s , θ

s
1), f(xT2

s , θ
s
2)) (16)
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4.1 Experiments versus data diversity360

In order to conduct representative experiments, we use different databases and361

various configurations of the experimental protocol leading to a large view362

of the proposed model performance in comparison with other ones from the363

state of the art. Firstly, the conventional Vistex databases [1,3,5,7,20,25] are364

used and also the Outex database which is a more challenging color texture365

database, since the color and texture information are not easily distinguishable.366

Secondly, the experiments were conducted on two sizes of sample respectively367

32× 32 and 128× 128. We consider the following scenarios:368

– First scenario, i.e. DB1: 32 × 32 Vistex, addressing a set of 24 textured369

images of size 512 × 512 from the Vistex database [22], shown in Fig. 11.370

The protocol follows the work of [30] and [11]. Each image was divided371

into subimages of size 32× 32 pixels.We consider 96 from the resulting 256372

subimages as the training set, while the remaining 160 subimages are con-373

sidered as the test set. This dataset is used in order to evaluate robustness374

of our model even if very local spatial structures are considered.375

– Second scenario, i.e. DB2: 128×128 Vistex, addressing a set of 54 textured376

images of size 512× 512 from the Vistex database, shown in Fig. 12. The377

protocol follows the work of [1]. Each image was divided into subimages of378

size 128 × 128 pixels. This dataset is available on the Outex web site [23]379

as test suit Contrib TC 00006. For each texture, subimages are considered380

to form a checkerboard. The white half of subimages is then considered as381

the training set and the black half is used as the testing set. Hence, the382

training procedure will account for non uniformity of the original images.383

– Third scenario, i.e. DB3: 128× 128 Outex, addressing a set of 68 textured384

images of size 746× 538 from the Outex database, shown in Fig. 13. Each385

image was divided into 20 subimages of size 128× 128 pixels. Training and386

testing sets are obtained as with DB2.387

4.2 Quantitative evaluation of performance388

For evaluating performance, we repose on two criteria namely the percentage389

of classification and the precision (or predictive positivity) [29] to quantify390

informative measures respectively the true positive rate and false positive rate.391

For each class of color textures, let TP be the number of true positives, i.e.392

subimages correctly classified. We consider the two measures:393

– The percentage of classification is the proportion of textures which were394

well labeled by the classifier over the number of false negatives, noted FN.395

The false negative is the number of subimages being wrongly considered396

as not class members given a specific class of textures. The Percentage397

classification is given as follows:398

Percentage =
TP

TP + FN
× 100%. (17)



18 Ahmed Drissi El Maliani et al.

Fig. 11 24 texture classes from Vistex database

– The precision of a classifier is the proportion of textures which were well399

labeled by the classifier over the number of false positive, noted FP. The400

false positives is the number of subimages being wrongly classified as class401

members given a specific class of textures. The precision is given as follows:402

Precision =
TP

TP + FP
. (18)

For a given class, the system can achieve a percentage classification with a403

score of 100%, and a lower precision. This means that the classifier is good404

at labeling subimages of this class, but attributes other elements to this class405

while, in fact, they are not members of this latter.406

k=1 k=2 k=3 k=4 k=5 k=6
DB1 90.76 91.37 92.45 93.64 91.24 90.37
DB2 94.94 95.47 96.72 97.22 96.59 95.36
DB3 75.25 75.50 77.85 82.64 77.05 76.50

Table 3 Average percentage classification of the KNN classifier for different values of k on
DB1, BD2 and DB3 using MGΓD.

Results in Table 3 indicate that better average percentage classification407

rates are achieved for k=4. Hence, for all the next results we fixe the value of408

k at 4 neighbors.409
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MGΓD MWbl MGam MGGD GGD
Tex1 56.25 61.25 55.75 53.75 51.25
Tex2 84.37 85.50 86.12 83.12 48.75
Tex3 96.87 87.34 77.34 85.62 76.87
Tex4 91.25 84.37 88.42 86.25 91.25
Tex5 88.75 88.25 87.37 74.37 78.12
Tex6 85.00 85.37 89.50 83.12 71.87
Tex7 93.75 89.37 89.62 81.87 54.37
Tex8 91.87 94.62 89.12 70.00 90.62
Tex9 100.00 87.12 97.34 70.00 58.75
Tex10 100.00 83.00 89.75 83.75 92.50
Tex11 95.62 89.12 97.50 66.25 89.37
Tex12 99.37 90.75 93.20 67.50 98.12
Tex13 95.62 94 96.26 93.75 76.25
Tex14 99.37 97.37 97.75 88.75 62.50
Tex15 77.50 87.50 88.12 61.25 70.00
Tex16 100.00 95.37 87.24 73.12 100.00
Tex17 99.37 89.75 96.28 88.12 97.50
Tex18 99.37 87.75 89.75 85.00 93.12
Tex19 99.37 94.00 95.85 95.00 93.75
Tex20 98.75 100.00 100.00 100.00 98.12
Tex21 100.00 96.87 90.87 86.87 69.37
Tex22 100.00 98.24 99.56 98.12 89.37
Tex23 100.00 98.37 99.37 99.37 91.25
Tex24 95 95.86 95.85 95.00 61.25

Average 93.64 90.04 90.73 82.08 79.34

Table 4 Percentage classification of the KNN classifier for the MGΓD, MWbl, MGam and
MGGD models for 24 color textures (DB1).

4.3 Average classification rates for the MGΓD model over other existing410

models411

The first issue discussed in this experiment is to provide an experimental evi-412

dence of the flexibility and genericity of the proposed model over existing joint413

parametric models including the copula based Multivariate Gamma density414

proposed by Stitou et al. [25], the copula based Multivariate Weibull pro-415

posed by Kwitt et al. [7], and the Multivariate Generalized Gaussian density416

proposed by Verdoolaege et al. [5]. We also compare the proposed approach417

with the marginal modeling approach proposed by Do et al. [1] which assume418

independence between the color components. Let us give descriptions of these419

approaches:420

– Stitou et al. : In this approach [25], authors proposed a Gamma based421

marginal modeling in conjunction with a Gaussian copula in order to char-422

acterize the local structure of wavelet subbands. We call this model, the423

Multivariate Gamma density (MGam). L1 distance was used as similarity424

measure for this model, however, we will use the KL divergence as a sim-425

ilarity measure between MGam features in order to have a comparative426

look of the models (MGΓD vs MGam). For this, we use the expression of427
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KL divergence between Gamma densities [3] and the KL divergence of the428

Gaussian copula (Equation (13)).429

– Kwitt et al.: In [7], Kwitt et al. proposed a student t copula based mul-430

tivariate Weibull (MWbl) model for characterizing magnitudes of complex431

subbands coefficients, besides cross color components dependency. As we432

already mentioned (subsection 3.5), a computationally expensive Monte-433

Carlo based approach was adopted to overcome the lack of closed-form of434

the KL divergence. In [31], authors employed the ML selection rule of the435

Content Based Image Retrieval (CBIR) framework as an alternative of the436

Monte-carlo based approach, but without providing a closed-form expres-437

sion of the KL divergence. Here we use our approach for measuring KL438

divergence between MWbl models (Equation (13)), in order to compare439

performances of the MGΓD and MWbl models.440

– Verdoolaege et al.: In [5], Verdoolaege et al. proposed the Multivari-441

ate Generalized Gaussian (MGGD) model for color texture retrieval. Au-442

thors overcome the lack of closed-form expression of the KL divergence by443

proposing a closed-form expression of the geodesic distance. Verdoolaege444

et al. modeled dependency across subbands of the R,G and B color com-445

ponents while assuming independence between subbands of the same color446

component. We use the same parametrization in our experiment, in or-447

der to compare our approach to Verdoolaege et al. approach, in terms of448

the model (MGΓD vs MGGD), the similarity measure (KL divergence vs449

Geodesic distance) and in term of the modeled dataset since we consider450

non-Zero dependence across subbands of a given color component.451

– Do et al.: The marginal modeling approach proposed by Do & Vetterli452

[1], has shown efficiency of the Generalized Gaussian density (GGD) in453

the case of grey level texture retrieval. For color textures characterization,454

the marginal approach consists in modeling each of the color components455

independently using GGD model and then concatenate the features in one456

global vector.457

Table 4 and Table 5 show respectively the percentage classification and the458

precision of the KNN classifier for all 24 textures of DB1. We firstly remark459

the large gain of performances of the multivariate approach over the marginal460

GGD based approach. This approves our dependence observations in the RGB461

color space, and shows the huge loss of information when the correlation be-462

tween color components is omitted.463

The second main observation that can be deduced from Table 4 and Table 5,464

is the flexibility of the MGΓD over the MWbl and MGam models which can465

be considered as special cases of MGΓD. Our model gives better performances466

in term percentage and precision of the classification. This behavior remains467

the same for most of the 24 color textures of DB1, and is due to the generic-468

ity of the characterization that offers MGΓD reposing on its additional shape469

parameter.470

In Table 6 and Table 7, we show the average percentage classification and471

the average precision for DB1, DB2 and DB3. For all these databases, our472
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Fig. 12 54 texture classes from Vistex database.

Fig. 13 68 texture classes from Outex database.

model achieves the best results, even we remark the hardiness of classifying473

in the Outex Database (DB2), which is due, as we said above, to the diffi-474
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MGΓD MWbl MGam MGGD GGD
Tex1 1.00 0.97 0.95 0.94 0.98
Tex2 0.83 0.73 0.81 0.80 0.39
Tex3 1.00 1.00 1.00 0.89 1.00
Tex4 0.99 0.95 0.80 0.97 0.95
Tex5 1.00 0.98 0.83 0.82 0.87
Tex6 0.94 0.83 0.93 0.90 0.76
Tex7 0.81 0.78 0.82 0.90 0.54
Tex8 0.98 0.99 0.98 0.67 0.93
Tex9 0.96 0.98 0.96 0.81 0.68
Tex10 0.98 1.00 0.98 0.89 0.81
Tex11 0.88 0.83 0.86 0.81 0.61
Tex12 1.00 0.98 0.94 0.83 0.98
Tex13 0.95 0.88 0.90 0.64 0.80
Tex14 0.85 0.84 0.81 0.89 0.71
Tex15 0.97 0.73 0.95 0.58 0.78
Tex16 1.00 1.00 1.00 0.45 0.93
Tex17 0.75 0.80 0.76 0.62 0.70
Tex18 0.89 0.95 0.90 0.74 0.90
Tex19 0.92 0.98 0.91 0.97 0.89
Tex20 0.90 0.92 0.90 0.95 0.76
Tex21 0.88 0.86 0.87 0.90 0.72
Tex22 1.00 1.00 1.00 0.86 0.71
Tex23 0.97 0.93 0.98 0.93 0.84
Tex24 0.91 0.75 0.88 0.99 0.79

Average 0.93 0.90 0.90 0.82 0.79

Table 5 Precision of the KNN classifier for the MGΓD, Mwbl, Mgam and MGGD models
for 24 color textures (DB1).

MGΓD MWbl MGam MGGD GGD
DB1 93.64 90.04 90.73 82.08 79.34
DB2 97.22 95.45 95.80 89.75 84.12
DB3 82.64 77.3 78.61 73.64 70.37

Table 6 Average classification rate for three scenarios.

MGΓD MWbl MGam MGGD GGD
DB1 0.93 0.90 0.90 0.82 0.79
DB2 0.98 0.95 0.96 0.90 0.87
DB3 0.85 0.80 0.82 0.80 0.78

Table 7 Average precision for three scenarios.

MGΓD MWbl CopGGD
Proposed KLD 97.22 95.45 94.50

Monte-Carlo KLD 96.45 94.70 94.37

Table 8 Average classification rate for different models using Monte-Carlo based KLD and
the proposed KLD.
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Proposed approach Monte-Carlo
DB1 94.95 1.21×103

DB2 4.9 60
DB3 2.03 25.63

Table 9 Execution time (in minutes) for calculating similarity measure matrix between the
learning and testing set for DB1, DB2 and DB3 using MGΓD model

culty of distinguishing color and texture information in this database. We,475

also, clearly observe that our approach achieves higher rates in comparison476

with the MGGD presented in [5]. This approves our consideration of non-Zero477

dependence across same color component subbands (see Fig. 3) since we con-478

sider inter-component and inter-band dependencies.479

The second issue to be discussed is the similarity measure. We compare the480

proposed KL divergence with the Monte-Carlo based approach [7][8]. In [8],481

Sakji-Nsibi et al. used the Monte-carlo based KL divergence, as a similarity482

measure between generalized Gaussian copula based GGD (CopGGD) feature483

representations. Table 8, presents average percentage classification using both484

similarity measure approaches for the MGΓD, MWbl and CopGGD models,485

i.e. parametric closed form and Monte-Carlo method. The proposed similarity486

measure slightly outperforms the Monte-Carlo based approach in term of per-487

centage classification. However, the improvement is more significative in term488

of execution time as can be clearly seen from Table 9. The computational time489

can be estimated as 12 times less when using our approach for measuring sim-490

ilarity between copula-based joint models. We note that the experiments were491

done using Matlab environment on an HP Compaq dc 5800SFF, equipped with492

an Intel Core 2 Duo CPU at 3GHZ and 1GB of RAM, with a 32-bit Windows493

vista operating system.494

5 Conclusion495

We have proposed a joint generic model for characterizing DTCWT coeffi-496

cient magnitudes of color textures. MGΓD presents a pertinent color texture497

description in comparison with the marginal approach that assumes indepen-498

dence among color component subbands. MGΓD, also presents a flexible mod-499

eling when compared with variety of joint models. We, further, proposed a500

simple, faster and closed form expression similarity measure using the inde-501

pendence between the marginals space and the dependence structure. The502

genericity of the proposed model and the pertinence of the similarity measure503

allowed us to achieve good improvement in terms of classification rate and504

computational time.505

In future works we would like to use copulas for characterizing color textures506

in luminance-chrominance color spaces such as L*a*b* or HSV. In such color507

spaces, the separation between luminance and chrominance information need508

to a multi-model characterization in order to improve classification rates.509
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A510

Supposing y = (y1, y2, ..., yM ), a set of M independent coefficients, The maximum likelihood511

function of the sample is defined as:512

y : L = log

M∏
i=1

f(y;α, τ, λ) (19)

513

∂L

∂α
= −M(τ log λ− ψ(α)) +

M∑
i=1

τ log yi = 0. (20)

∂L

∂τ
= M(

1

τ
− α log λ)+

514

M∑
i=1

α log yi − (
yi

λ
)τ log

yi

λ
= 0. (21)

∂L(y;α, τ, λ)

∂λ
= −

Mατ

λ
+
τλ−τ

λ

M∑
i=1

yi = 0. (22)

Thus, the parameters are deduced by solving a system of three equations:515

λ̂ = [
1

Mα̂

M∑
i=1

yiτ̂ ]
1
τ̂ . (23)

α̂ =
1

τ̂
[

∑M

i=1
yiτ̂ log yi

M∑
i=1

yiτ̂

− log yi]
−1. (24)

log
Mα̂(

∏M

i=1
yi)

τ̂
M

M∑
i=1

yiτ̂

− ψ(α̂) = 0. (25)

516

where ψ denotes the digamma function. In [9], we tackled the high nonlinearity of the517

ML equations by using a numerical approximation based on the algorithm of Cohen et al.518

[13]. However, a faster algorithm was proposed in [10], in which a Scale-Independent Shape519

Estimation (SISE) method is used to find roots of the ML equations.520

B521

The proposition presented in [27], shows one attractive feature of the Copula representation522

of dependence, namely that the dependence structure when modeled by a Copula is invari-523

ant under increasing and continuous transformations of the marginals.524

525

If (x1, ..., xn)t has copula C and T1, ..., Tn are increasing continuous functions, then (T1(x1), ..., Tn(xn))t526

also has copula C.527
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