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Abstract8

In this letter, we propose a novel color texture classification method based on

statistical characterization. The approach consists in modeling complex wavelet

coefficients of both luminance and chrominance components separately leading

to a multi-modeling approach. The copula theory allows to take into account

the spatial dependencies which exist within the intra-luminance sub-bands via

the luminance model ML, and also between the inter-chrominance subband

coefficients via the chrominance model MCr . The multi-model, i.e ML and

MCr , is used to develop a Bayesian classifier based on the softmax principal. To

derive the classifier, we propose a closed-form expression for the Rao geodesic

distance between two copulas. Experiments on two sub-families of luminance-

chrominance color spaces namely Lab and HSV have been carried out for a

wide range of color texture databases. The combination of different statistical

sub-models show that the multi-modeling performs better than some existing

methods in term of classification rates.

Keywords: Color texture, wavelet representation, Rao geodesic distance,9

Bayesian classification10

1. Introduction11

For color texture analysis, the question of the color space selection to char-12

acterize the visual content may be raised. RGB space is the most natural since13
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it represents the acquisition-reference space. However, R, G and B channels are14

known to exhibit simultaneously high statistical dependencies relatively to: 1)15

the intra-channel or spatial one, 2) the inter-band for scale-space representation16

one and 3) the inter-channel or multicomponent one. In recent works, some au-17

thors have proposed various stochastic models to characterize the inter-channel18

dependencies alone. From scale-space representation such as 2-D wavelet or19

others, previous approaches consist in fitting the histograms of the wavelet sub-20

bands with a given parametric probability density function (pdf) of the trivariate21

color vector samples for each level of the decomposition. Recent works are based22

on multivariate generalized Gaussian distribution in [Verdoolaege et al. 2012]23

or copulas based multivariate Weibull distribution in [Kwitt et al. 2011]. The24

parameters of the pdf are the covariance matrix and different auxiliary param-25

eters such as the shape parameter characterizing the non-Gaussiannity. Ex-26

tending these models to take into account jointly intra-band, inter-band and27

inter-channel dependencies, leads to a high-dimensional model in terms of num-28

ber of parameters. This is a main drawback of these proposals since, in practice,29

for a fixed data size, dealing with high-dimensional model may be a critical issue30

in terms of parameter estimation performance. Considering color space, another31

alternative to the RGB space is to consider the family of luminance-chrominance32

(LC) color spaces [DeYoe et al. 1996, Mojsilovic et al. 2000]. This family in-33

cludes perceptual (HSV, HSI and HSB) and perceptually uniform (Lab, Yuv,34

YCbCr) color spaces [Sarifuddin et al. 2005]. An extended comparison of those35

spaces is given by [Qazi et al. 2011]. These authors note that the luminance36

channel is uncorrelated with the chrominance channels. From this indepen-37

dence in LC spaces, they proposed a model taking into account separately intra38

and inter dependencies, i.e. multi-model, with few parameters compared to the39

required number by using the RGB space. Qazi et al. proposed to consider a40

multi-model based on a 2-D complex quarter plan autoregressive (2-D QP AR)41

model for luminance as well as for chrominance information. This may lead to a42

lack of flexibility because the luminance and chrominance are decorrelated and43

thus, have distributions of different natures.44
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In this letter, considering the LC color spaces, we propose a multi-modeling ap-45

proach based on multivariate stochastic modeling. The contribution is twofold:46

• First, we propose a multi-model based on two non-Gaussian sub-models,47

i.e. ML and MCr , devoted to describe respectively 1) the intra-channel48

dependency by considering the spatial structure and inter-band depen-49

dence of the luminance channel, and 2) the inter-channel dependency by50

considering a bivariate pdf for the two chrominance channels. Both ML51

and MCr are based on copula as a powerful tool to construct non-Gaussian52

joint models that fit data with even different natures of margins. Linear53

and/or circular models are derived depending on the component natures54

(ex: the Hue in HSV color space is a circular channel).55

• Second, for the similarity measurement used to compare two texture sam-56

ples, we derive a closed form expression for the Rao geodesic distance for57

copula based multivariate models. Contrary to the conventional Kullback-58

leibler (KL) divergence, the Rao geodesic metric has the advantage to59

satisfy distance properties such as symmetry and triangular inequality60

[Atkinson et al. 1981].61

The use of different models for characterizing the wavelet coefficients has been62

recently investigated by [Rakvongthai et al. 2013], for texture retrieval in a63

noisy environment. Authors proposed different univariate statistical models for64

the real/imaginary, magnitude and phase parts of complex subband coefficients.65

The parameter vector of the studied texture is then formed by the concatena-66

tion of parameters estimated from each of these models. Also, the similarity67

measure has been expressed by a formula combining both magnitude and phase68

KL divergences using a mixing parameter. While the cited work did not con-69

sider the color information at all, it should be emphasized that the present work70

considers the color and texture information jointly for image characterization.71

Concerning the similarity measure, the originality of our method is the use of72

Rao geodesic distance which represents a good alternative to the KL divergence73

since it satisfies the distance properties. For this, a closed-form expression of74
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Rao geodesic distance between copula based distributions is developed.75

Note also that this work stands out from our previous work [Maliani et al. 2012]76

which presents a preliminary study of the multi-modeling concept that consid-77

ered only the special case of color representation, the HSV color space. More-78

over, the paper did not discuss the dimensionality reduction issue when consider-79

ing the three dependencies (intra-band, inter-band and inter-channel). Also, in80

the classification step, we proposed the K-Nearest Neighborhood classifier tak-81

ing the weighted sum of the two similarity measures between the luminance and82

chrominance sub-models. The weights have been tuned experimentally which is83

the same as for [Rakvongthai et al. 2013], which led us to test exhaustively on84

several scales of weights to get the best classification rate. The multi-modeling85

proposed in this letter, helps in dimensionality reduction of the extracted fea-86

tures to characterize the textural content. According to several dependence87

experiments presented in section 2, the spatial structure of the texture and the88

inter-band dependence is only considered for the luminance component and the89

inter color-channel dependency consists of a bivariate model. The performance90

of the multi-model is tested using a Bayesian classifier based on the softmax91

principal [Bishop 2006] thanks to its suitability to combine several similarity92

measures through a posteriori probability fusion. The experimental protocol93

adopted here, aims to find the optimal configuration of our multi-model. This94

starts with the choice of statistical distribution related to color components in95

the field of dual-tree complex wavelet CT-DWT [Kingsbury 1998]. We proposed96

to build joint models by testing different combinations of Gamma , Weibull and97

VonMises distributions for both luminance and chrominance components. First98

comparisons were considered to show the relevance of each model for the color99

spaces. Then, we compared our best selected models with the state of the art100

methods in terms of classification rate, the dimensionality reduction and the101

computation time.102

This paper is organized as follows. Section 2 deals with the proposed multi-103

modeling approach for textures in LC color spaces. In Section 3, we present the104

classification framework, and the proposed similarity measurement. Then, we105
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show experimental results in Section 4. Finally, we give concluding remarks in106

Section 5.107

2. Color texture modeling in LC color spaces108

2.1. Dependence characterization109

Let us consider a stationary color texture xT represented in a given LC color110

space, and let l be the luminance component, cr1/cr2 respectively the first and111

the second chrominance component of xT . Each color component is first de-112

composed into a set of wavelet subbands. In wavelet domain texture character-113

ization, it is common to model the statistical distribution of wavelet coefficients114

in different subbands, which corresponds to the detail subbands. The low-115

pass wavelet coefficients are excluded ([Mallat 1999], [Boubchir et al. 2010]).116

For 2-D wavelet transforms, each scale usually has several subbands corre-117

sponding to the different orientations. Let us consider K subbands, where118

K = S × O with S the number of scales and O the number of orientations.119

The subbands are respectively l(k), cr
(k)
1 , cr

(k)
2 , k = 1, · · · ,K. The statistical120

distribution of wavelet detail coefficients of natural textures has been exten-121

sively studied ([Simoncelli 1997], [Boubchir et al. 2010], [Lasmar et al. 2010],122

[Verdoolaege et al. 2012], [Kwitt et al. 2011]). It has been shown that the em-123

pirical distribution is generally heavy-tailed with a sharp peak at zero. This124

leptokurtic behavior leads to consider non-Gaussian marginal or joint density.125

Contrary to the marginal approach, the joint modeling needs to define the de-126

pendence which exists between subbands coefficients. Intra-band, inter-band127

and inter-channel dependencies have to be considered. Let us detail each of128

these dependencies for the three color components.129

2.1.1. Intra-band dependency130

Intra-band dependence refers to the spatial neighborhood dependence be-131

tween coefficients of the same wavelet subband. It corresponds to the spatial132

structure of the studied subband. Let s be the location of a reference coefficient133
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from the kth subband of a given color channel. If we consider the luminance134

channel for example, let m be the size of the chosen neighborhood. The collec-135

tion of the reference coefficient neighbors is specified by l
(k)
s =

(
l
(k)
1,s , · · · , l

(k)
m,s

)
.136

Then, considering all the subbands coefficient neighbors, the dataset to be ob-137

served is:138

lintra =
[
l
(k)
1 , · · · , l(k)

s , · · · , l(k)
P

]T
(1)

lintra is a P by m matrix, where P is the size of the wavelet subband. If we139

consider, the first chrominance channels, intra-band dependency for a given140

subband k is studied by observing the following dataset:141

cr1intra
=
[
cr1

(k)
1 , · · · , cr1

(k)
s , · · · , cr1

(k)
P

]T
(2)

For the second chrominance channel, we have:142

cr2intra =
[
cr2

(k)
1 , · · · , cr2

(k)
s , · · · , cr2

(k)
P

]T
(3)

2.1.2. Inter-band dependency143

To model the inter-band dependence, we consider subbands in different ori-144

entations for the same color channel. Thus for luminance inter-band we observe145

a dataset represented by a P by K matrix, where K is the total number of146

subbands:147

linterbd =
[
l(1) · · · l(K)

]
(4)

for chrominance inter-band:148

cr1interbd
=
[
cr

(1)
1 · · · cr

(K)
1

]
(5)

cr2interbd
=
[
cr

(1)
2 · · · cr

(K)
2

]
(6)

we note that l(k), cr
(k)
1 and cr

(k)
2 are respectively the column vectors containing149

all coefficients of the kth subband of luminance, first and second chrominance150

channels.151
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2.1.3. Inter-channel dependency152

It refers to the dependence between coefficients of subbands from different153

color channel, considering a fixed orientation k. The observation matrix is as154

follows:155

Dinterch =
[
l(k) cr

(k)
1 cr

(k)
2

]
(7)

2.1.4. Full dependence156

Considering all the aforementioned dependencies leads to a full dataset that157

considers intra-band, inter-band and inter-channel dependencies jointly. It is158

represented by the following matrix of size P by (3×K ×m):159

D =
[
l
(1)
1 , · · · , l(1)

P , · · · , l(K)
1 , · · · , l(K)

P , cr1
(1)
1 , · · · , cr1

(1)
P ,

· · · , cr1
(K)
1 , · · · , cr1

(K)
P , cr2

(1)
1 , · · · , cr2

(1)
P , · · · , cr2

(K)
1 , (8)

· · · , cr2
(K)
P

]T
Consideration of this matrix means, first, that all the three components carry160

the spatial structure information (intra-band). Second, that dependence exists161

between subbands of all orientations for each channel (inter-band), and third,162

that the representation exhibits dependence among the three color channels163

(inter-channel).164

2.2. Multi-model approach165

2.2.1. Experimental analysis of dependence166

Contrary to the RGB representation, LC color spaces offer separability be-167

tween luminance and chrominance. At first glance, this indicates that the inter-168

channel dependence have not to be considered between luminance and chromi-169

nance. A more precise study of dependence is done according to the correlation170

coefficients. Table 1 shows degrees of dependence when textures are represented171

in Lab color space. This is obtained by averaging the Pearson, Kendall, Spear-172

man and the mutual information coefficients on all subbands of 40 color textures173

from the Vistex database [Vistex]. We recall that mutual information is a mea-174

sure of the statistical dependence between two variables. If we suppose that175
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X and Y are two random variables, f(x) and f(y) the marginal probability176

distribution functions of X and Y respectively, and f(x, y) the joint probability177

distribution function of X and Y . The mutual information between X and Y178

is then:179

I(X,Y ) =
∑
x,y

f(x, y)log
f(x, y)

f(x)f(y)
(9)

We deduce from these results that intra-band dependence have to be consid-

Table 1: Averaging measure of dependence on the Vistex database, using Pearson, Kendall,

Spearman and mutual information for 40 color textures from the Vistex database in the Lab

color space.

Intra-band Inter-band Inter-channel

l cr1 cr2 l cr1 cr2 {l, cr1} {l, cr2} {cr1, cr2}

Pearson 0.47 0.041 0.0372 0.33 0.037 0.041 0.003 0.003 1

Kendall 0.45 0.038 0.037 0.28 0.037 0.038 0.002 0.002 1

Spearman 0.32 0.026 0.025 0.25 0.025 0.026 0.001 0.001 1

MI 4.46 1.56 1.56 4.20 1.03 1.04 0.74 0.75 5.88

180

ered only for luminance, and that inter-channel dependence exists only between181

chrominance components. They also show that we can restrict the study of182

inter-band dependence to the luminance component.183

2.2.2. Multi-model formulation184

Our contribution here is to exploit the independence between luminance and185

chrominance. So we propose a multi-model based characterization that consid-186

ers the different natures of these information ([Qazi et al. 2011]). Two joint187

and independent models ML and MCr are used to respectively characterize188

the luminance information with spatial and inter-band dependence considering189

observations of a vector ls (see subsection 2.4.1) and the chrominance one de-190

voted to inter-channel dependence by observing realizations of a vector crs (see191
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subsection 2.4.2):192

p(xT , θ) = p(xT |{ML,MCr}) ∝ p(ls, θL)

K∏
k=1

p(cr(k)
s |θcr ) (10)

where θL and θcr are the vectors of parameters of luminance and chrominance193

models, respectively. The multi-modeling permits to reduce the dimension of194

the observed dependence dataset D (subsection 2.1).195

2.3. Copula based multivariate models196

Different multivariate models can be used for defining ML and MCr , such197

as the multivariate generalized Gaussian (MGGD) [Verdoolaege et al. 2012], the198

multivariate Bessel K forms [Boubchir et al. 2010], the spherically invariant ran-199

dom vector (SIRV) [Lasmar et al. 2010]. Those models have been proposed to200

characterize different kinds of dependencies such as the intra-band in the case201

of SIRV and the inter-channel in the case of MGGD. Each of them is dedicated202

to a specific dependency rule, either for intra-band or inter-channel but never203

taking account of both together. Obviously, extending each model simultane-204

ously to the both dependencies is possible but the equivalent model exhibits205

the main drawback the common definition of the leptokurtic and platykurtic for206

the whole set components of the multivariate model. If we suppose to have a207

set of dependent variables T = [t1, · · · , tn], with the MGGD or SIRV multivari-208

ate modeling, each marginal ti has finally a similar shape value. This behavior209

is confirmed in the study of [Rangaswamy et al. 2002], the characterization of210

one marginal is sufficient to determine the shape of the whole distribution of211

a SIRV. Table 2 show averages of scale and shape parameters supposing that212

subbands of the three components are described by the same marginal, Weibull213

or Gamma for example. It is clear from the table that the marginal modeling of214

luminance and chrominance exhibits different shape and scale parameters in the215

case of Lab color space, contrary to RGB. In the HSV color space, we observe216

that parameters are different even between the chrominance components H and217

S.218
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Table 2: Average of parameters (considering wavelet subbands for 40 color textures from

Vistex database), supposing that subbands of the three color components are described by

the same marginale (Weibull or Gamma) in the case of Lab, HSv and RGB color spaces

Weibull Gamma

scale shape scale shape

L 11.47 1.54 4.97 2.18

a 3.21 1.63 1.26 2.41

b 2.20 1.62 0.92 2.39

H 26.83 1.08 27.15 1.29

S 0.12 1.53 0.05 2.16

V 0.0081 1.52 0.03 2.21

R 31.51 1.53 13.83 2.16

G 29.91 1.52 13.33 2.13

B 31.25 1.52 13.85 2.14

The copula theory allows the joint modeling by separating the dependence219

structure from the marginal modeling. It is thus easy to merge different marginal220

laws into the same multivariate pdf. [Nelsen 2006] defined the copula as a221

multivariate uniform distribution used to construct multivariate models. Given222

that F is a d-dimensional cumulative distribution function (cdf) with continuous223

marginals F1, ..., Fd, the Sklar’s theorem [Sklar et al. 1959] shows that there224

exist a unique copula C such that:225

F (x1, · · · , xd) = C (F1(x1), · · · , Fd(xd)) (11)

Further, if C is continuous and differentiable, the copula density (c) is given by:226

c(u1, ..., ud) =
∂dC(u1, ..., ud)

∂u1...∂ud
(12)

The joint pdf is uniquely deduced from the marginals and the copula density as227

follows:228
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f(x1, ..., xd) = c (F1(x1), ..., Fd(xd))

d∏
i=1

fi(xi) (13)

where fi, i = 1, · · · , d, represent the marginal pdfs that can follow different229

laws.230

Estimation of the copula parameters is done using the canonical maximum like-231

lihood (CML) [Durrleman et al. 1959] method. This is a pseudo parametric es-232

timation method contrary to the fully parametric method, termed the inference233

from marginals (IFM) [Joe. 1997]. The CML method consists in transforming234

the data (x1, ..., xd) into uniform data (û1, ..., ûd) using the empirical distribu-235

tions (empirical cdfs) and then estimates the copula parameters considering all236

the observations as:237

Σ̂ = argmax
Σ

n∑
i=1

log c (ûi1, ..., ûid; Σ) (14)

where n denotes the number of observations, and Σ represents the correlation238

matrix.239

For marginal parameters, the estimation is done using the conventional max-240

imum likelihood method. Experiments reveal that the CML estimator is the241

best since the method does not rely on parametric assumption about marginals.242

This means that less pertinent choice of marginals do not affect estimation of243

the copula parameters.244

For texture modeling, we repose on copulas to construct the models ML and245

MCr . We select the Gaussian copula for which the density is defined by:246

cφ(u1, · · · , ud) =
1

|Σ|1/2
exp

[
−1

2
ϑT (Σ−1 − I)ϑ

]
(15)

with ϑT =
(
φ−1(u1), · · · , φ−1(ud)

)
, φ denotes the cdf of the normalized Gaus-247

sian density, Σ the correlation matrix, and I the d-dimensional identity matrix.248

The choice of the Gaussian copula is justified by:249

• the dependence representation, which is based on the well known correla-250

tion coefficient.251
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• the existence of closed form of Rao distance for the Gaussian copula which252

allow us to derive a closed form of Rao distance for the joint model as a253

similarity measure (subsection 3.1).254

2.4. ML and MCr models255

Considering the full dependence dataset D (see sub-section 2.1.4) leads to256

high parametrization and thus to very cumbersome estimation of parameters.257

To alleviate this complexity, we use the proposition made by [Qazi et al. 2011]258

about dependencies between coefficient subbands when color textures are rep-259

resented in LC color spaces. The proposition consists in a multi-modeling ap-260

proach to reduce the dimensionality of the observed dataset.261

2.4.1. Multivariate spatial model for luminance (ML)262

As a first step for reducing dimension of the full dataset D, the spatial263

structure along intra- and inter-band dependence are studied only for luminance264

via the model ML. For a subband coefficient at the position s, intra inter-265

band dependence is represented by the vector ls = (l1,s, · · · , lm,s, · · · , ld,s), where266

d = m×K, m is the neighborhood size andK is the number of wavelet subbands.267

Considering all positions at the luminance subbands, the dataset to be modeled268

is a P by d matrix of realizations of the vector l:269

L =



l1

l2
...

ls
...

lP


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where P is the size of a wavelet subband. The observation matrix is:270

L =



l1,1 · · · lm,1 · · · ld,1
...

...
...

l1,s · · · lm,s · · · ld,s
...

...
...

l1,P · · · lm,P · · · ld,P


Based on the Gaussian copula, the pdf of the model ML is defined by:271

fML
(ls; θ) =

1

|ΣL|1/2
exp

[
−1

2
ϑTs (Σ−1

L − I)ϑs

] d∏
i=1

fs(li,s) (16)

where θ = (w1, w2, ..., wd; ΣL) is the vector of hyperparameters, ws = {wsj}j∈ℵ,272

s = 1, · · · , d is the vector of parameters for the marginal fs and ΣL is the273

covariance matrix of the Gaussian copula.274

In the case of Gaussian copula, the CML estimator of covariance matrix is the275

sample correlation matrix of Gaussian observations ϑ1, · · · , ϑP :276

Σ̂L =
1

P

P∑
s=1

ϑsϑ
T
s (17)

with ϑs = (ϑ1,s, · · · , ϑd,s) is obtained by transforming the observation ls =277

(l1,s, · · · , ld,s) from the observation matrix L by ϑi,s = φ−1 (Fi(li,s)), i = 1, · · · , d278

and Fs is the empirical marginal cdf.279

2.4.2. Circular/Linear bivariate model for chrominance (MCr)280

We consider the inter-channel dependence only between chrominance com-281

ponent subband represented by the vector cr =
(
cr

(k)
1 , cr

(k)
2

)
. Thus, considering282

all coefficients of the chrominance subbands, the dataset to be modeled by MCr283

is a P by 2 matrix:284

cr =


cr1,1 cr2,1

...
...

...
...

cr1,P cr1,P


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MCr is a bivariate model defined reposing on the Gaussian copula:285

fMCr
(cr(k)

s ; θ) =
1

|ΣCr |1/2
exp

[
−1

2
ϑTs (Σ−1

Cr
− I)ϑs

] 2∏
i=1

fi(cri) (18)

where θ = (w1, w2; ΣCr ), wi = {wij}j∈ℵ. The index i ∈ {1, 2} is the vector286

of parameters for the marginal fi, and ΣCr the covariance matrix. The CML287

estimator of the covariance matrix is as follows:288

Σ̂Cr =
1

P

P∑
s=1

ϑsϑ
T
s (19)

with ϑs = (ϑ1,s, ϑ2,s) is obtained by transforming the observation crs = (cr1,s, cr2,s)289

from the observation matrix cr by ϑi,s = φ−1(Fi(cri,s)), i = 1, 2 and Fs is the290

empirical marginal cdf.291

The model is called circular/linear because it offers the possibility of using dif-292

ferent marginals fi to come up with a bivariate circular/linear, circular/circular293

or linear/linear model for chrominance channels depending on the nature of the294

used color space.295

2.4.3. Texture joint modeling296

Taking into account the previous sub-models, respectively ML and MCr297

termed probabilistic because they describe probability distributions over sub-298

band coefficients of the texture, let us consider a stationary observed texture,299

we have:300

p(xT |{ML,MCr}) ∝ p(ls|ws,ΣL)

K∏
k=1

p(cr(k)
s |w(k)

cr1 , w
(k)
cr2 ,Σ

(k)
cr ) (20)

which can be written in a more compact parametric form as:301

p (xT |{ML,MCr}) ∝ p(xT |θs) (21)

with θs =
(
ws,ΣL, {w(k)

cr1 , w
(k)
cr2Σ

(k)
cr }k=1,···,K

)
302
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3. Classification303

In the framework of stochastic parametric classifier, we consider supervised304

Bayes classifier to assign the most probable class to a textured image. If we305

consider the equiprobability of each class, the Bayes classifier consists in finding306

the maximum of the likelihood such as:307

b̂ = argmax
b∈{1,2,...,B}

[p(xT , θb)] (22)

where θb is the vector of parameters associated to the class b. The vector θb is308

estimated during the learning step from the set of texture samples representing309

the class b. Considering equation 22, the decision of the classifier is provided310

by the numerical evaluation of the likelihood which is time consuming because311

of evaluating equation 21 from the three color channel data. In order to avoid312

this expensive step, a direct comparison between parametric vectors, i.e. one313

representing the class and the other the texture query xT , is expected. Thus,314

the class assignment is obtained from a similarity measure. To do this, the315

Softmax approach or normalized exponential function [Bishop 2006] is selected.316

argmax
b∈{1,2,...,B}

exp(ab)
B∑
j=1

exp(aj)

(23)

with ab = ln
[

1
1+Li(xT ,xb)

]
.317

The advantage of using the softmax principal is the smoothed version of the318

maximum, since if ab � aj for all j 6= b, then p(Cb|xT ) ' 1 and p(Cj |xT ) ' 0.319

The proposed approach is thus based on the selection of a similarity measure,320

i.e Li(xT , xb) exhibiting a closed form in terms of model parameters. Various321

probabilistic measures of similarity propose this kind of properties such as the322

Kullback-Leibler or Hellinger measures. All these possibilities have been unified323

in the seminal theory of the information geometry. This consists in considering324

that the parametric model of finite dimension forms a sub-manifold character-325

ized by a smooth Riemannian space. Some of these measures are divergences326

such as Kullback-Leibler. A divergence is a non-symmetric measure and can327
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be not respecting the triangle inequality. Some others such as Bhattacharya,328

Hellinger or others are really some distances. Considering the properties of the329

Riemmanian manifold, the well-founded distance associated to this type of man-330

ifold is the geodesic or Rao distance [Atkinson et al. 1981]. The main drawback331

of the geodesic distance is that a closed form for probabilistic model is rarely332

available. This is the reason for which the Kullback-Leibler divergence is usualy333

used in place to the geodesic distance. However, the true distance according to334

the Riemannian space is the geodesic distance.335

In the next subsection, we derive for our context a closed form for the geodesic336

distance for the Copula modeling.337

3.1. Proposed Rao distance as similarity measure338

For a probability density f(x; θ) with θ = (θ1, · · · , θN ) a vector of parame-339

ters, the Rao distance is a Riemannian metric defined by the fisher information340

matrix as:341

ds2 =

N∑
p,q=1

gpq(θ)dθ
idθj (24)

where gpq represent the Fisher matrix elements:342

gpq(θ) = −E
[ ∂2

∂θpθq
log f(x; θ)

]
(25)

Let f be a Gaussian copula based joint pdf (ML or MCr ), θ = {wi,Σ} is the343

vector of hyper-parameters of f , wi = {wij}j∈ℵ is the vector of parameters344

for the marginal fi, i = 1, · · · , d (for example if the marginal is a Weibull we345

have wi = {αi, βi} representing shape and scale parameters), d is the length346

of the vector of one observation and Σ represents the covariance matrix of the347

Gaussian copula. By applying equations 13 and 15 in equation 25 we have:348

gpq(θ) = −E

[
∂2

∂θpθq

(
log cΦ(u; Σ) + log

d∏
i=1

fi(xi;wi)

)]
(26)

where u = (u1, ..., ud) represents the vector of uniform coefficients that are349

obtained by transforming the wavelet coefficients (x1, ..., xd) using their cdfs350
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(ui = F−1(xi, wi)) or using their empirical cdfs (see MATLAB’s routine ”ecdf”351

) (ui = eF−1(xi)). In this latter case, no assumptions are made on the para-352

metric form of the marginal distributions. The copula parameters are then353

independent from any marginal parameter wij :354

∂

∂wij
cΦ(u; Σ) = 0 (27)

so then, gwijΣ(θ) = gΣwij (θ) = 0, i = 1 · · · d, j ∈ ℵ355

Thus,356

gΣΣ(θ) = −E
[ ∂2

∂Σ∂Σ
log cΦ(u; Σ)

]
(28)

and357

gµν(θ) = −E
[ ∂2

∂µ∂ν
log

d∏
i=1

fi(xi;wi)
]

(29)

with µ, ν ∈ {wij}, i = 1 · · · d, j ∈ ℵ358

gµν(θ) = −E
[ ∂2

∂µ∂ν

d∑
i=1

log fi(xi;wi)
]

(30)

359

= −E
[ d∑
i=1

∂2

∂µ∂ν
log fi(xi;wi)

]
(31)

360

=

d∑
i=1

−E
[ ∂2

∂µ∂ν
log fi(xi;wi)

]
(32)

Thus, from (12):361

ds2 = gΣΣdΣdΣ +

d∑
i=1

∑
µ,ν

gµν µ̇ν̇dt (33)

= ds2
Gauss +

d∑
i=1

ds2
Margins (34)

Hence, given two copula based probability distributions f (1)(x; θ1) and f (2)(x; θ2)362

with θ1 = (w
(1)
1 , · · · , w(1)

d ,Σ1) and θ2 = (w
(2)
1 , · · · , w(2)

d ,Σ2), we can compute the363
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Rao geodesic distance as the sum of the Rao distances of the Gaussian distri-364

bution and the Rao distances between marginals [El Maliani et al. 2011]:365

L2 =

∫ θ2

θ1

ds2 =

∫ θ2

θ1

ds2
Gauss +

d∑
i=1

∫ θ2

θ1

ds2
Margins (35)

366

L2 = L2
Gauss(f

(1)(x; Σ1)||f (2)(x; Σ2))+
367

d∑
i=1

L2
Margins(f

(1)
i (x;w

(1)
i )||f (2)

i (x;w
(2)
i )) (36)

that is:368

L2 =
1

2

d∑
i=1

(lnλi)2+

369

d∑
i=1

L2
Margins(f

(1)
i (x;w

(1)
i )||f (2)

i (x;w
(2)
i )) (37)

where λi, i = 1, ..., d represents the eigenvalues of Σ−1
1 Σ2.370

4. EXPERIMENTAL RESULTS371

The experimental section is concerned with five major issues:372

1. Choice of the multi-model for color texture: for this, we investigate a373

variety of models for different color spaces.374

2. Choice of the LC color space: we compare performances between two sub-375

families of LC color spaces, namely the perceptually uniform color spaces376

(represented by Lab), and the perceptual color spaces (represented by377

HSV).378

3. Comparison with existing approaches: we evaluate performances of our379

approach in comparison with existing uni-modeling approaches in LC380

color spaces [Qazi et al. 2010, Qazi et al. 2011] and in RGB color space381

[Verdoolaege et al. 2012, Kwitt et al. 2011].382
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4. Runtime: we address the runtime issue by comparing the proposed Rao383

distance based similarity measure with the Monte-carlo based Kullback-384

leibler divergence between copula based pdfs.385

5. Curse of dimensionality: we compare our approach with the full feature386

vector based approach (subsection 2.1).387

4.1. Experiments versus data diversity388

In order to conduct representative experiments, we use different databases389

and various configurations of the experimental protocol leading to a large view390

of the proposed multi-model performance. The conventional Vistex database391

[Verdoolaege et al. 2012, Kwitt et al. 2011, Do et al. 2002] is used considering392

two sizes of samples respectively 32 × 32 and 128 × 128. Experiments are also393

conducted on the Outex, ALOT and Stex databases which are more challenging394

color texture database, since the color and texture information are not easily395

distinguishable. We consider the following scenarios:396

• First scenario, i.e. DB1, addressing a set of 24 textured images of size397

512×512 from the Vistex database [Vistex]. The protocol follows the work398

of [Permuter et al. 2006] and [Qazi et al. 2010]. Each image was divided399

into subimages of size 32× 32 pixels resulting of a large database of 6144400

small textures. We consider 96 image from the resulting 256 subimages as401

the training set, while the remaining 160 subimages are considered as the402

test set. This dataset is used in order to evaluate robustness of our model403

even if very local spatial structures are considered.404

• Second scenario, i.e. DB2, addressing a set of 54 textured images of size405

512 × 512 from the Vistex database. The protocol follows the work of406

[Do et al. 2002]. Each image was divided into subimages of size 128× 128407

pixels. This dataset is available on the Outex web site [Ojala et al., Outex]408

as test suit Contrib TC 00006. For each texture, subimages are considered409

to form a checkerboard. The white half of subimages is then considered410
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as the training set and the black half is used as the testing set. Hence, the411

training procedure will account for non uniformity of the original images.412

• Third scenario, i.e. DB3, addressing a set of 68 textured images of size413

746 × 538 from the Outex database. This dataset is also available on414

the Outex web site as Outex TC 00013. Each image was divided into 20415

subimages of size 128× 128 pixels. Training and test sets are obtained as416

in DB2.417

• Fourth scenario, i.e. DB4, addressing large set of classes from ALOT418

[ALOT] database. 250 images of size 384 × 256 from ALOT databse are419

considered, then each image is split into 16 non-overlapping subimages420

resulting on two large databases of 4000 images of size 96 × 64. These421

images have been captured uder different viewing angles and illumination.422

Here again training and test sets are obtained as in DB2.423

• Fifth scenario, i.e. DB5, addressing large set of classes from Stex [STex]424

database. 476 textures from STex of size 512× 512 are considered. Then,425

each image is split into 16 non-overlapping subimages resulting on two426

large databases of 7616 images of size 128× 128. Here again training and427

test sets are obtained as in DB2.428

Every color component of each subimage was normalized by subtracting its429

mean and dividing by its standard deviation, and then decomposed using a 2-430

scale dual-tree complex wavelet transform (DTCWT) [Kingsbury 1998] with a431

Q-shift(14,14) tap filter. In addition to its rich directional analysis, shift invari-432

ance and low redundancy properties, the DTCWT was chosen for its reduced433

computational time.434

4.2. Quantitative evaluation of performance435

Evaluation of the classification performance of each approach consists on two436

criteria, namely the percentage of classification and the precision. We recall that437

for each class of textures:438
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• True positives (TP): refers to the number of subimages that have been439

successfully returned by the classifier as belonging to a given class.440

• False positives (FP): is the number of subimages that have been wrongly441

classified as belonging to a given class.442

• False negatives (FN): is the number of subimages that are classified as443

not belonging to a given class while, in fact, they belong to this class of444

textures.445

• True negatives (TN): is the number of subimages that are correctly clas-446

sified as not belonging to a given class.447

The percentage of classification (or Sensitivity) is the proportion of textures448

which were well labeled by the classifier. It represents the ability of the classifier449

in correct positive assignment of a texture to its real class. A 100% percent-450

age means that the classifier makes no false negative labeling (FN = 0). The451

Percentage classification is given as follows:452

Sn =
TP

TP + FN
× 100% (38)

However, theoretically, a system that always returns positive assignment (even453

wrongly) will achieve 100% percentage classification. The problem with per-454

centage classification is that it tells nothing about textures that were wrongly455

labeled as belonging to a given class (FP assignments). For this, we take into456

account also the precision to evaluate the classifier performance.457

The precision criterion indicates the ability of the classifier to detect true class458

membership. The precision is given by:459

Sp =
TP

TP + FP
(39)

A classifier with very high precision makes no mistakes in assigning a texture460

to its class (FP = 0).461

4.3. Results and discussions462

One of the advantages of the proposed multi-modeling approach is the flex-463

ibility in term of modeling textures from different LC color spaces. The joint464
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Table 3: Notations, descriptions and pdf expressions for the used models

Model Description pdf

CopMGam Gaussian copula based multi-

variate Gamma (all marginals

are Gamma)

f(x, θ) =

1

|Σ|1/2 exp[− 1
2
ϑT (Σ−1− I)ϑ]×

( β
−α

Γ(α)
)d

∏d
i=1 x

α−1
i exp−

∑d
i=1(xi

β
), θ =

(α, β,Σ)

CopMWbl Gaussian copula based multi-

variate Weibull (all marginals

are Weibull)

f(x, θ) =

1

|Σ|1/2 exp[− 1
2
ϑT (Σ−1− I)ϑ]×

( τ
λ

)d
∏d
i=1 x

τ−1
i exp−

∑d
i=1(xi

λ
)τ , θ =

(τ, λ,Σ)

{Gamma,Weibull} Gaussian copula based bivariate

model with Gamma as the fisrt

marginal and Weibull as the sec-

ond marginal

f(x, θ) =

1

|Σ|1/2 exp[− 1
2
ϑT (Σ−1 −

I)ϑ] × τβ−αxα−1
2

λΓ(α)
(x1
λ

)τ−1 ×

exp
[
−(x1

λ
)τ − x2

β

]
, θ =

(α, β, τ, λ,Σ)

{vonMises,Weibull}Gaussian copula based circu-

lar/linear bivariate model with

vonMises as the fisrt marginal

and Weibull as the second

marginal

f(x, θ) =

1

|Σ|1/2 exp[− 1
2
ϑT (Σ−1− I)ϑ]×

τ
2πλI0(ν)

(x2
λ

)τ−1 exp[νcos(x1−

µ)− (x2
λ

)τ ], θ = (µ, ν, τ, λ,Σ)

{vonMises,Gamma}Gaussian copula based circu-

lar/linear bivariate model with

vonMises as the fisrt marginal

and Gamma as the second

marginal

f(x, θ) =

1

|Σ|1/2 exp[− 1
2
ϑT (Σ−1− I)ϑ]×

β−α

2πΓ(α)I0(ν)
(x2
β

)α−1 exp[νcos(x1−

µ)− (x2
β

)α], θ = (µ, ν, α, β,Σ)
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Table 4: Performances of different versions of the multi-model in Lab and HSV color spaces.

DB1 DB2 DB3 DB4 DB5

Sn Sp Sn Sp Sn Sp Sn Sp Sn Sn

Lab1 97.5 0.96 98.3 0.98 89.7 0.88 58.2 0.55 77.6 0.75

Lab2 94.5 0.92 95 0.93 84.6 0.84 54.3 0.52 74.7 0.73

Lab3 93.3 0.92 93.8 0.90 82 0.82 53.6 0.52 73.4 0.71

HSV1 95.6 0.94 96.7 0.94 86 0.86 55.5 0.54 76.9 0.75

HSV2 93.1 0.93 93.4 0.93 83.1 0.83 53.6 0.53 73.9 0.73

HSV3 90.4 0.88 90.8 0.88 80.5 0.82 51.3 0.49 70.4 0.68

models ML and MCr enable us to consider different parametric modeling for465

marginals between luminance and chrominance channels. As already mentioned,466

when chrominance components are defined in a cylindrical space, the hue repre-467

sents a circular component and the saturation is the axe of the cylinder. We can468

then benefit from the advantage of copulas in merging different marginals in the469

same joint model to construct a circular/linear bivariate model for chrominance470

such as {vonMises,Weibull} or {vonMises,Gamma} (see Table 3).471

Regarding the first part of our experiments, Table 4 presents color texture clas-472

sification performance in Lab and HSV color spaces respectively, using different473

multi-models on DB1, DB2, DB3, DB4 and DB5. We note that:474

• Lab1: refers to a multi-model that considers CopMGam (Table 3) for the475

luminance model ML and CopMWbl for the chrominance model MCr in476

Lab color space.477

• Lab2: refers to CopMWbl for ML and CopMGam for MCr in Lab color478

space.479

• Lab3: refers to CopMGam model forML and the bivariate model {Gamma,Weibull}480

for MCr in Lab color space.481

• HSV1: refers to CopMGam forML and the bivariate model {vonMises,Weibull}482
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for MCr in HSV color space. (vonMises for the Hue marginal, and Weibull483

for the Saturation marginal)484

• HSV2: refers to CopMWbl forML and the bivariate model {vonMises,Gamma}485

for MCr in HSV color space.486

• HSV3: refers to CopMGam forML and and the bivariate model {Weibull,Gamma}487

for MCr in HSV color space.488

We remark that in Lab, and for all the five databases, best performance is489

achieved using the multi-model Lab1. This indicates that the spatial struc-490

ture along with the inter-band dependency are better characterized using the491

Gaussian copula in conjunction with Gamma marginals (CopMGam). This also492

indicates that the dependency between ”a” and ”b” chrominance components493

is better characterized using the Gaussian copula in conjunction with Weibull494

marginals (bivariate CopMWbl). For HSV, the multi-model HSV1 leads to the495

best performance in all databases. This is due to the ability of CopMGam496

to model spatial structure and inter-band dependence for luminance, and the497

circular/linear bivariate {vonMises,Weibull} to characterize the chrominance498

dependency.499

We next would like to compare between the perceptually uniform and percep-500

tual subfamilies of LC color spaces, via their respective representatives Lab and501

HSV spaces. Considering the best multi-models in each case (Lab1 for Lab502

and HSV1 for HSV), we clearly observe from Table 4 that Lab representation503

outperforms the HSV one. This is a fair comparison even the models ML and504

MCr are not the same in multi-models Lab1 and HSV1, since these latters are505

the best relatively the nature of the color space. Then, if Lab1 outperforms506

HSV1, we can conclude that in best modeling case the Lab representation is507

better than the HSV one. These results are explained by the better luminance-508

chrominance representation of Lab. In other words, we can say that Lab offers509

more decorrelation property between luminance and chrominance, which is the510

central interest of our approach. We do not ignore that percentage classification511

and precision rates are lower for large databases DB3, DB4 and DB5.512
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Table 5: Average percentage classification (Sn) using the best multi-models in Lab and HSV

in comparison with existing approaches.

DB1 DB2 DB3 DB4 DB5

Lab1 (proposed method) 97.5 98.3 89.7 58.2 77.6

[Qazi et al. 2011], in Lab 97.2 96.5 88 52.1 78.5

HSV1 (proposed method) 95.6 97.8 86 55.5 76.9

[Qazi et al. 2010], in IHLS 95.4 97.4 84.1 49.3 77.1

[Verdoolaege et al. 2012], in RGB 92.2 94.7 78.5 59.6 75.1

[Kwitt et al. 2011], in RGB 91.5 94.1 79.8 55.4 74.9

Regarding the effectiveness of our approach in comparison with existing ones,513

i.e uni-modeling in LC and RGB color spaces, Table 5 shows average percentage514

classification Sn of textures of DB1, DB2, DB3, DB4 and DB5 using our best515

multi-models (Lab1 and HSV1) against the four following approaches:516

• [Qazi et al. 2010], in Lab: Linear prediction models based characteriza-517

tion in the Lab color space,518

• [Qazi et al. 2011], in IHLS: Linear prediction models based characteriza-519

tion in the improved hue luminance saturation (IHLS ) color space,520

• [Verdoolaege et al. 2012], in RGB: Dependence between R, G and B color521

components using the MGGD model,522

• [Kwitt et al. 2011], in RGB: Dependence between R, G and B using the523

t-copula based multivariate Weibull model,524

We observe from Table 5 that our Lab1 proposed model leads to better per-525

formance when compared with the linear prediction modeling [Qazi et al. 2010]526

and [Qazi et al. 2011]. Results presented in the latter studies are the best of our527

knowledge, but it should be highlighted that the characterization of both lumi-528

nance and chrominance channels by using the 2-D auto regressive (AR) models529
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Table 6: Average percentage classification Sn and runtime (in minutes) on DB2, using Rao

distance, ML based divergence and Monte-carlo based KL divergence as similarity measure

for Lab1 and HSV1 multi-models.

Rao KLML KLMC

Sn Runtime Sn Runtime Sn Runtime

Lab1 98.3 4.9 min 98 40.5 min 97.2 60 min

HSV1 96.7 6.5 min 95.9 44.3 min 96.2 63 min

Table 7: Classifier performances for full feature vector (spatial structure for luminance and

chrominance)

DB1 DB2 DB3

Sn Sp Sn Sp Sn Sp

Lab1 86.9 0.83 90 0.88 75.8 0.78

HSV1 84.5 0.82 89.6 0.88 72.2 0.70

with the same order, seems a limitation because the two channels are indepen-530

dent. However, it is noteworthy to precise that the results shown in Table 5 for531

the two studies consider only the case when authors use the spatial structure and532

chrominance information without adding the color information (3-D color his-533

tograms) in the characterization. We note that there is a slight performance for534

this later for DB5 database and for [Verdoolaege et al. 2012] for DB4 database.535

We also remark from the same table the superiority of the characterization in LC536

color spaces compared to the RGB one except for DB4. This is theoretically con-537

firmed since considering the image as two separable luminance and chrominance538

information is more intuitive and correlated with the human perception than the539

RGB space which considers the color as an addition of the primary colors red,540

green and blue. Here, we also note that [Verdoolaege et al. 2012] considered541

uniquely the dependency between R, G and B components (inter-channel only),542

and that [Kwitt et al. 2011] considered the R, G and B dependency besides the543

inter-band one (for the three components). As we stressed in the introduction,544
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extending these models to take into account jointly intra-band, inter-band and545

inter-channel dependencies leads to high-dimensionality, due to the huge depen-546

dence between R, G and B components, and to the fact that RGB representation547

offers no separation between spatial structure and chrominance.548

Another contribution of our approach is the definition of a closed form ex-549

pression for the Rao distance in the variety of copula based probability densi-550

ties [El Maliani et al. 2011]. As it is known, deriving a similarity measure in551

the case of copula based multivariate models is a challenging task. For this,552

in [Kwitt et al. 2009] and [Sakji-Nsibi et al. 2010], authors proposed a Monte-553

carlo approximation of the KL divergence. But, this approach is computation-554

ally expensive and is not deterministic, since the KL divergence differs depending555

on the random number generation. An alternative approach was proposed in556

[Kwitt et al. 2011], using the maximum likelihood (ML) selection rule as a simi-557

larity measure. This significantly reduces the execution time in comparison with558

the Monte-carlo based similarity measurement. A more attractive expression of559

the KL divergence is provided in [Lasmar et al. 2012], where the separability560

between the copula space and the marginal space is used to derive a closed-561

form and fast KL based similarity measurement. However, KL divergence does562

not satisfy properties of symmetry and triangular inequality, and thus is not a563

distance in the right sense of the parametric manifold. Table 6 shows average564

percentage classification along with the execution time using both similarity565

measures (Rao and KL) for the textures of DB2. We recall that according to566

equation 37, we need expression of the Rao distance for marginals and the used567

copula. Expressions of the Rao distance for Weibull, Gamma and vonMises568

can be found respectively in [El Maliani et al. 2011], [Reverter et al. 2003] and569

[Ceolini et al. 2010]. We can see that the proposed similarity measure slightly570

outperforms the ML based and Monte-Carlo based approach in term of per-571

centage classification. However, the improvement is more significant in term of572

runtime which is 9 times and 12 times less than the ML based and Monte-carlo573

based approaches respectively. We note that the experiments were done using574

Matlab environment on an HP Compaq equipped with an Intel Core 2 Duo575
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CPU at 3GHZ workstation576

Finally, we want to validate experimentally the hypothesis made in introduction577

about dimensionality reduction when we consider multi-modeling in LC color578

spaces. We compare our approach to the full dependence based approach of sub-579

section 2.1. Table 7 shows performance of the classifier for multi-models Lab1580

and HSV1 with full feature vectors length. It can be seen from these results581

that the high parametrisation does not improve performances, but on contrary582

it makes them decrease by about 10%. Separability between luminance and583

chrominance helps then to avoid redundancy in characterization which is the584

case in RGB where spatial structure resides in the three color components.585

5. Conclusion586

We proposed in this letter a multi-model based approach for color textures587

characterization in the LC color spaces. This approach takes into account the588

separability between luminance and chrominance. We especially took care of589

the circular/linear nature of chrominance components. We also addressed the590

dimensionality reduction issue for the study of the full dependence in term of591

intra-band, inter-band and inter-channel relation between coefficients color com-592

ponent subbands. Results on five wide range of databases show the superiority of593

the proposed approach in comparison with the existing unimodeling approaches.594

We know that our method as any compared methods, presents some limitations595

when using large databases and also against rotation and illumination effects.596

Furthermore, considering the runtime issue, results show the effectiveness of the597

Rao geodesic distance in comparison with the Kullback-leibler divergence.598
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