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Miguel Pérez-Enciso’**", Juan C Rincén'” and Andrés Legarra®

Abstract

Background: The development of next-generation sequencing technologies (NGS) has made the use of whole-
genome sequence data for routine genetic evaluations possible, which has triggered a considerable interest in
animal and plant breeding fields. Here, we investigated whether complete or partial sequence data can improve
upon existing SNP (single nucleotide polymorphism) array-based selection strategies by simulation using a mixed
coalescence - gene-dropping approach.

Results: We simulated 20 or 100 causal mutations (quantitative trait nucleotides, QTN) within 65 predefined ‘gene’
regions, each 10 kb long, within a genome composed of ten 3-Mb chromosomes. We compared prediction accuracy

by cross-validation using a medium-density chip (7.5 k SNPs), a high-density (HD, 17 k) and sequence data (335 k).
Genetic evaluation was based on a GBLUP method. The simulations showed: (1) a law of diminishing returns with
increasing number of SNPs; (2) a modest effect of SNP ascertainment bias in arrays; (3) a small advantage of using
whole-genome sequence data vs. HD arrays i.e. ~4%; (4) a minor effect of NGS errors except when imputation error
rates are high (>20%); and (5) if QTN were known, prediction accuracy approached 1. Since this is obviously unrealistic,
we explored milder assumptions. We showed that, if all SNPs within causal genes were included in the prediction
model, accuracy could also dramatically increase by ~40%. However, this criterion was highly sensitive to either
misspecification (including wrong genes) or to the use of an incomplete gene list; in these cases, accuracy fell rapidly
towards that reached when all SNPs from sequence data were blindly included in the model.

Conclusions: Our study shows that, unless an accurate prior estimate on the functionality of SNPs can be included in
the predictor, there is a law of diminishing returns with increasing SNP density. As a result, use of whole-genome
sequence data may not result in a highly increased selection response over high-density genotyping.

Background

The prediction of genetic merit, that is, the average
phenotypic value of an infinite number of descendants
from a given individual, has been the subject of active
investigations in quantitative genetics for decades. Due
to the rapid decrease in genotyping prices and to the de-
velopment of new statistical methodologies, genomic se-
lection is becoming the standard procedure for genetic
evaluations in most relevant animal and plant species.
Currently, there is ample consensus that genomic selec-
tion can be more efficient than traditional methods
based only on pedigree information and phenotypes
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(best linear unbiased prediction, BLUP) and that this im-
provement more than offsets genotyping costs in many
commercial breeding schemes, primarily for dairy cattle
[1]. It is estimated that genetic progress in milk yield in-
creased by roughly 50% in US Holsteins from 2006 to
2012 compared to the period from 2000 to 2006, coincid-
ing with the implementation of genomic selection in the
industry [2]. Initially, genomic selection was intended to
use genotypes obtained from commercial single nucleo-
tide polymorphism (SNP) arrays. However, more recently,
the development of next-generation sequencing technolo-
gies (NGS) has made it feasible, or at least conceivable,
that whole-genome sequence data could be obtained and
used for routine genetic evaluations.

As a result, there is currently considerable interest in
the animal and plant breeding fields on the use of high-
throughput sequencing technologies for genomic selection
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[3/4]. Compared to SNP arrays, two main advantages of
having whole-genome sequence data have been advocated:
(1) the possibility of identifying causal mutations and (2)
an increase in prediction stability that relaxes the need of
updating the predictor every (few) generations [3]. This
advantage is greater when rare variants explain a substan-
tial part of the genetic variance [5]. Nevertheless, increas-
ing the marker density of commercial chips has not
increased accuracy of genomic predictions [6], and one
explanation is that these chips do not capture rare allele
variants. In addition, SNPs in arrays are a biased sample of
all the SNPs that segregate in the population of interest
(an ascertainment bias exists), whereas direct sequencing
does not suffer, in principle, from this drawback.

Although sequencing prices are rapidly decreasing,
routine analyses of NGS data from a massive number of
individuals for genomic evaluation still face serious chal-
lenges. To begin with, raw NGS data are difficult to
transfer even with high speed internet connection, and
their bioinformatics’ analyses are expensive and require
costly hardware equipment for the scale needed in ani-
mal or plant breeding. Often, wrong or incomplete refer-
ence genomes complicate the analyses; furthermore, a
frequently overlooked issue of population studies using
whole-genome sequence data is the high rate of missing
SNP calls. This problem dramatically increases at low-
depth sequencing. In addition, it should be noted that
complete genome sequencing of whole breeding popula-
tions is unlikely in the near future, and thus, sequencing
will be combined with other approaches such as array
genotyping and/or genotype by sequencing. Currently,
imputation is one of the most popular proposed solu-
tions but, although accurate, imputation is not error-free
either [4,7].

Unsurprisingly, assessing the advantages of NGS over
array SNP genotypes for genomic selection is a debate.
A fundamental issue is to predict whether complete or
partial sequence data can improve upon existing SNP
array-based selection strategies and, if so, in which cases.
Here, to study the potential advantage of sequence- vs.
array-based genomic selection, we adopted an optimistic
view: we assumed that SNP genotypes obtained from
NGS data were error-free, without missing data, and that
as many individuals can be sequenced as genotyped and
phenotyped. Of course these assumptions are quite un-
realistic, and we attempted to model errors for some
cases, even if imperfectly. Nevertheless, this initial error-
free setting allowed us to study two important issues: to
set up an upper bound on the limits of genomic selec-
tion and to fine-tune existing methods to improve their
performance. Furthermore, given the increasing SNP
density of current genotyping technologies and their al-
legedly low calling rates, the potential advantages of very
high-density genotyping over NGS data or of genotyping
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by sequencing were explored. We also considered the ef-
fect of SNP ascertainment in the design of genotyping
arrays.

Methods

General setting

We simulated SNP patterns via a mixed coalescence and
gene-dropping approach, modeling a bottleneck that re-
flects domestication and modern breeding, while simul-
taneously conditioning on observed nucleotide diversity
for cattle (nucleotide diversity i~ 1.2 x 10 per nucleo-
tide) [8]. First, we simulated 2N sequences, correspond-
ing to N diploid individuals, using the coalescence
method. A subset of those individuals was used to ascer-
tain the SNPs on the array. Another, separate subset of
individuals made up the founders in a complex pedigree,
that is, individuals used to discover the array-SNPs were
not in the pedigree. Genomes in the successive genera-
tions were obtained by gene-dropping. Molecular and
phenotypic data were available for all individuals in the
pedigree. Validation of the prediction was performed by
removing the phenotypes of the individuals of the last
generation; the correlation between true and estimated
genetic merit was used as a measure of performance for
each method (pedigree BLUP, low- and high-density ar-
rays or sequence data), in the animal breeding literature,
this correlation is commonly referred to as ‘accuracy’.
Details of each step are in the following sections.

Genome structure, genetic architecture and population
history

We simulated a genome consisting of ten chromosomes,
each 3 Mb long. This length corresponds to ~1% of a
complete mammalian genome, which has a typical
length of around 3 Gb. We assumed that causal muta-
tions (quantitative trait nucleotides or QTN) could
occur only within 65 ‘genes’, each 10 kb long, which cor-
responds to the average gene length in the human gen-
ome. The 65 genes were clustered on seven
chromosomes, each chromosome harboring 20, 10, 10,
10, 5, 5 and 5 ‘genes’, respectively.

To simulate the data in the base population, we used
the coalescence theory. For a general introduction to the
coalescence, see e.g. Rosenberg and Nordborg [9]. In the
coalescence simulations, we employed MaCS [10], run-
ning 10 iterates to mimic the 10 independent chromo-
somes. We used the same demographic model as in
Pérez-Enciso [11], which comprises an ancient bottle-
neck and a current level of heterozygosity of 1.2 x 10
per site, which was the value reported for Holstein cattle
by the bovine sequencing consortium [8], although it is
slightly lower than that recently reported by Daetwyler
et al. [4] (1.44 x 1073). This latter work, nevertheless, re-
fers to several breeds, among which some may present
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larger variability than that used here. Nevertheless, our
results were insensitive to a reasonable range of nucleo-
tide diversities (results not shown). In a limited number
of cases, we also evaluated the effect of SNP ascertain-
ment bias when SNPs were selected in a population dif-
ferent from the target population, as opposed to
ascertaining the SNPs in the same population. To do
this, we simulated data in a structured population to
mimic two breeds, also using the same model as in
Pérez-Enciso [11]. Coalescence commands are detailed
in the Appendix.

Once base population sequences were simulated by
the coalescence method, gene-dropping was performed
without selection in a complex pedigree. The pedigree
consisted of 4520 individuals and seven generations. In
the base population, 20 sires were mated to 50 dams. In
each successive generation, 20 sires were also mated to
50 dams, and each dam had two offspring with two sires,
with a total of 500 individuals per generation. Mating
was not completely hierarchical: as in real dairy cattle
pedigrees, dams were mated to different sires to produce
each offspring. Molecular and phenotypic information
was assumed to be available for all individuals in the
pedigree. Recombination rate was 1 ¢cM/Mb, and no re-
combination interference was simulated, except that the
maximum number of crossovers per chromosome per
meiosis was set to 4.

To generate the phenotype of the i™ individual, a lin-
ear model including additive and dominant effects was
used:

QIN
yi=nt Y (riaq +didg) + e,

where y is the phenotype; p is the general mean; nQTN
is the number of QTN; y is an indicator variable taking
values -1, 0 and 1 for genotypes ‘00, ‘01’, and ‘11, re-
spectively, 0 being the ancestral allele and 1 the derived
allele; a is the additive substitution effect; & is an indica-
tor variable with value 1 for heterozygous genotypes and
0 otherwise; d is the dominant effect; and e is a normal
residual e ~ N(0, Ve). The number of QTN fitted was ei-
ther 20 or 100. QTN were randomly sampled among all
SNPs positioned within the 65 genes, i.e., within 650 kb
out of the 30 Mb simulated in total. Note that in our
model there is no restriction on the number of QTN per
‘gene” some genes may contain several QTN and some
genes may not contain any and this varies from replicate
to replicate. This aims at reflecting genetic heterogen-
eity, whereby different causal mutations in the same
gene can all cause a shift in phenotypic mean.

As for the distribution of gene effects, a and d, most
of the empirical evidence relates to the effects of new
mutations [12,13], which do not necessarily follow the
same distribution as that of the effects of segregating
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genes that underlie the complex traits under selection.
Much less is known in this latter case than for new mu-
tations. A uniform distribution of equal effects across
genes is probably as unrealistic as is the assumption of a
small number of major genes. A plausible scenario
probably lies somewhere in between. An educated guess
can be based on the review by Hayes and Goddard [14],
who fitted a gamma distribution I'(5.4,0.42) to reported
locus substitution effects in dairy cattle. Here, we sam-
pled the QTN additive variances (Va) — rather than the
substitution effects — from a I'(5.4,4.2), and dominance
variances (Vd) from an exponential exp(10). Figure 1
shows these two distributions.

For each QTN, additive (2) and dominance (d) effects
were then obtained from standard formulae [15]: Vd = [2
f (1-f) d]* and Va=2 f (1-f) [a +d (1-2f)]? f being the
frequency of the allele. This implies that low-frequency
alleles explain a priori the same variance as
intermediate-frequency alleles, which in turn implies
that their absolute effects are larger. If this is the case,
whole-genome sequence data will be more accurate than
SNP-array genotypes, because the alleles in commercial
SNP chips do not usually include low-frequency alleles
[5]. Allele frequencies were calculated using the pedigree
base population, that is, the 1020 individuals in the pedi-
gree with unknown parents. Note that the same variance
can be obtained with equal substitution effects of differ-
ent signs, meaning that the same contribution to the
variance can be assigned to a locus, irrespective of
whether the derived allele has either a positive or a nega-
tive effect on the phenotype. Here, we sampled a positive
or negative sign with equal probability. Note that this
event is unlikely under a scenario of hard selective
sweeps, for which only the derived allele is expected to
be selected for, but it could reasonably occur under a
model of selection on standing genetic variation, for
which an allele can be segregating under a mutation-
drift balance and then become rapidly selected for or
against under artificial selection.

Finally, environmental variance (Ve) was adjusted such
that the broad-sense heritability was H* = 0.25. To do this,
complete equilibrium was assumed, i.e.:

S " (Vai+ Vi

H? = .
> "™ (Vai+ vai) + Ve

Alternatively, the actual additive and dominance vari-
ances, given the observed genotypes in each base
population, can be computed and Ve can be adjusted
exactly for the base population. In practice, in spite of
disequilibrium, we observed only small differences be-
tween both strategies and thus we fitted Ve assuming
equilibrium.
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Figure 1 Distribution of additive and dominant variances and genetic effects. (A) Density of variances contributed by each QTN, both
additive and dominant. (B) Density of genetic effects contributed by each QTN. Note the different scales in each graph.

Effect

Genetic evaluation and array-SNP ascertainment

We predicted genetic merit based on pedigree BLUP
and on molecular information. For BLUP, we used broad
heritability (H* = 0.25) for evaluation instead of narrow
sense heritability (h?), this had a negligible effect on re-
sults and the rationale is that true parameters are rarely
known. Nevertheless, restricted maximum likelihood
(REML) estimates of h? in the simulated data were close
to 0.25. For the molecular-based method, we considered
the following ‘blind’ strategies:

1. A medium-density SNP array that comprised 7500
SNPs on average.

2. A high-density array that contained ~17 000 SNPs.

3. RAD (Restriction site associated DNA markers)
sequencing: all SNPs in 100 subsets of the genome,
each 10 kb long, were selected. This approach is
intended to mimic genotype by sequencing (GBS)
and, in our scenario, resulted in about 11 000 SNPs.
This strategy could also be assimilated to exome
sequencing that consists in sequencing a small
subset of the genome i.e. the coding regions.

4. Sequence: all simulated SNPs in the population,
~335 000 SNPs.

For comparison, we also mimicked the use of bio-
logical information, which differed in its degree of accur-
acy (and inversely to plausibility):

1. Causal SNPs: all QTN, irrespective of their
contribution to total variance, were included in the
model (20 or 100 SNPs).

2. All SNPs within the defined ‘genes’, that is, the 65
10-kb regions where QTN were located ~7500 SNPs.

3. All SNPs within a subset of genes (50%) were
included, to mimic incomplete biological
information, about 3800 SNPs.

4. A subset of 50% of genes plus 30 ‘neutral’ 10-kb
windows were included in the model, to mimic both
incompleteness and incorrect biological information.

The first strategy would correspond to the maximum
and unrealistically attainable accuracy. However, the lat-
ter three strategies cannot be deemed to be completely
implausible: we are assuming that only the genes that
contain the causal mutations are known, but not the
causal mutations themselves. Note that this information
should be available a priori. We shall come back to this
issue later.
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To simulate SNP ascertainment bias, as in commercial
arrays, a subset of 50 diploid individuals (100 sequences)
was selected among those simulated by the coalescence
approach; SNPs that segregated in that subsample were
chosen such that their minimum allele frequency (MAF)
was at least 0.15 and hence randomly selected to mimic
a 50 k and 700 k SNP density. In our simulations, this
implied selecting ~0.9% and ~20%, respectively, of those
SNPs with a MAF greater than 0.15. In the two-breed
model, the SNPs were chosen from those segregating in
the second breed. In a limited number of cases, we also
evaluated the consequences of choosing a random set of
SNPs, irrespective of frequency (MAF > 0). With whole-
genome sequence data, all SNPs were included in the
model irrespective of their frequency.

Genetic evaluation was based on the nonlinear A
method of VanRaden [16]. Evaluation based on a gen-
omic BLUP (GBLUP or RR-BLUP) model, also known as
SNP-BLUP, gave very similar results that are not shown.
In a limited number of cases, we also employed Vanraden’s
nonlinear B method, which is comparable to Bayes B [17],
but more efficient in computation time. The computation
of the VanRaden's B method was, nevertheless, much
slower than GBLUP or the A method. The model for the
phenotype was:

nS _
Y = KU+ Z/ Np(xi,'—x,-) a; + e, (1)

where x;; is the genotype, coded as -1, 0 and 1, and ¥; is
average genotype value (i.e., 1 minus twice the allelic fre-
quency under Hardy-Weinberg equilibrium); and total
genetic merit prediction was simply based on (1) and re-
placing a; by their estimates:

N nSNP _ R
& = Zj (x5~ %) . (2)

Nonlinear A was solved using the solve-SNP program
[18] that implements a preconditioned conjugate gradi-
ent algorithm, with outer loops for marker variance
updates; the initial a priori variance for all SNP effects
Oop = ZjSNP‘Tii/ZZ?SNPPi(l -p;), pi being the
allele frequency in the pedigree for the i SNP and nSNP
the number of SNPs. The variance of each SNP effect

(02 ) is updated in each iteration as:

ai

was

Ja|

0o = 0 (1.1255"’(&1»@;4)—2)

which in practice means that SNP effects that are
smaller than two standard deviations are more shrunken,
whereas SNP effects that are larger are less shrunken.
Formal justification of this algorithm is in Gianola [19],
who suggests a very similar iterative scheme to find the
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posterior mode of the well-known model BayesA. It
should be noted that the term “variance of each SNP ef-
fect” has no meaning per se, because there is only one
effect per locus; it can be seen as a computational device
to find nonlinear estimates of SNP effects [19].

To compare the performance of the three strategies (i.e.,
pedigree BLUDP, array genotyping, sequence-based), we
computed the correlation between true and predicted gen-
etic merit in a subset of individuals for which phenotypes
had been removed (as a measure of predictive ability). For
strategies using molecular information, Nonlinear A was
used. In practice, the breeder is primarily interested in
predicting the genetic merit of new individuals, and so
cross-validation was performed by removing the pheno-
types of the 500 last-generation individuals. One hundred
replicates per case were run.

Simulating sequencing and genotyping errors
For most results presented here, we assumed no missing
data and no genotyping or sequencing errors. This is, as
mentioned, a strong assumption. Modeling errors is,
however, no easy task because they are neither unbiased
nor independent in the case of NGS data. For NGS, se-
quencing depth is the most relevant factor but the bio-
informatics pipeline and the population structure are
also relevant [20]; furthermore, NGS genotyping errors
are not random, and popular algorithms like samtools
[21] or GATK [22] are biased towards the reference al-
lele at low depth and at low frequency of the alternative
allele [20]. For this reason, detecting rare variants can be
difficult. In practice, imputation errors will also be
present because, currently, no breeding program con-
siders the sequencing of all selection candidates. In a
previous study [11], we attempted a realistic simulation
of all these sources of errors, but such an approach is
extremely costly in terms of computer resources and is
not feasible for the population sizes considered here.
Here, to mimic NGS errors efficiently (yet somewhat
naively, we concede), we used a three-step procedure: (i)
a biased genotyping error (A model was applied (Table 1),
(if) SNPs with an allele count < K were removed, that is,
we required an allele to be observed at least K times in

Table 1 NGS error rate and imputation error matrices

Real Called (NGS) Imputed

RR RA AA RR RA AA
RR 1=M5 N5 0 1T-a /2 a/2
RA A 1—2A A a/2 1-a a/2
AA 0 N5 1-M5 o/2 a/2 1-a

R: reference allele; A: alternative allele; A\: base NGS genotyping error rate;

a: imputation error rate. The Table shows the probability of a true genotype
being called or imputed for each of the three possible genotypes; for instance,
under this model, a true heterozygous genotype RA has a probability A of
being called as homozygous RR or AA and 2\ of being wrongly called.
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order not to be taken as error, but we applied filtering after
the NGS errors had occurred, since we assumed that this
quality control is done after the genotypes have been called,
and (iii) an imputation error y in a subset of the individuals.
Parameters in Table 1 reflect, qualitatively, the errors we
found using our NGS simulator pipeline [23]. Base sequen-
cing error rates A =0.05 and 0.01 were considered. For
imputation, we considered a =0.20 and 0.01 error rates,
where rates were independent of genotype (Table 1). This
range covers the most extreme bounds since an error rate
as high as 20% was reported by Daetwyler et al. [4] for real
cattle data, whereas 1% can be considered as the lowest at-
tainable error [6]. We applied the imputation rate error to
all individuals under the assumption that the number of
fully sequenced individuals is likely to be very small com-
pared to the total population size. Similarly, for array
genotyping, we applied genotype independent error rates
of 10 and 10 per genotype. This range spans most re-
sults from the literature [23-25].

Results

Figure 1 shows the distribution of variances, f(Va) and
f(Vd) and of absolute gene effects as predicted by our
model. Figure 1A shows the distribution of additive and
dominant variances, that is, Va ~T1(5.4,0.42) and
Vd ~ exp(10). The distribution of gene effects was ob-
tained by integrating f(Va) and f(Vd) over the full
spectrum of site frequency (Figure 1B) and therefore the
variances of the gene effects are larger (i.e., flatter distribu-
tions are observed) than those of Va and Vd. Note that we
assumed independence of gene effect and frequency,
which is unlikely for a trait under strong selection but
may be a reasonable approximation with a large number
of loci. However, in the absence of detailed empirical evi-
dence, our model captures the plausible situation for
which a few genes may have a large effect but most of the
variance is explained by a larger number of loci with a
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small effect [26,27,28]. Note that contributions of each
locus to genetic variance are dynamic, since they depend
on allele frequencies that evolve under artificial selection.

For the simulated sequence of 30 Mb, an average of 335
000 SNPs were obtained from the coalescence simula-
tions. The unfolded site frequency spectrum (SES) for in-
dividuals in the pedigree is in Figure 2A. Note that most
variants have a low frequency (f < 0.05), which is a logical
outcome of the coalescence process. A fundamental differ-
ence between SNP and sequence genotypes is that the
former data are affected by ascertainment bias (Figure 2B).
Indeed, it shows the well-known highly distorted site fre-
quency spectrum due to ascertainment bias, for which
SNPs with high MAF are over-represented. Therefore, the
way SNPs are chosen can lead to differences between gen-
omic selection strategies [5].

To study ascertainment effect on prediction accuracy,
scenarios that differ in the choice of MAF and ascertain-
ment in one or more breeds were compared (Table 2). The
first interesting observation is that setting a moderate mini-
mum MAF (>0.15) for the SNP discovery panel improved
prediction accuracy more than not filtering the SNPs
(MAF > 0), which is explained by the fact that most variants
are rare variants (Figure 2B); indeed, setting a minimum
MAF when ascertaining SNPs increases the probability that
the markers segregate in the whole population and, as a re-
sult, increases the probability that they are informative in
the cross-validation panel. Discovering the SNPs in a breed
different to that under study also decreases prediction ac-
curacy. Even at very low differentiation levels (Fst ~0.05),
using ascertained SNPs in another breed leads to decreased
prediction accuracy. Nevertheless, the effect of ascertain-
ment seems to be modest and tends to decrease with in-
creasing SNP density. In the following, we present only the
results that were obtained when SNP ascertainment was
done in the same breed as that under study and only SNPs
with a MAF greater than 0.15 were included.
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Table 2 Effect of SNP ascertainment scenario on prediction
accuracy

Array size (Nb of SNPs)  Ascertainment  MAF  Prediction
breed accuracy (SD)

Medium-density (7 k) Same 0.00 041 (0.07)
Same 0.15 0.45 (0.08)
Different 0.15 0.40 (0.08)

High-density (17 k) Same 000 044 (0.08)
Same 0.15 047 (0.08)
Different 0.15 0.43 (0.08)

The medium-density array contains ~ 7.5 k SNPs; the high-density array
contains ~17 k SNPs; the trait is affected by 100 QTN and h? = 0.25; results are
averages of 100 replicates.

Table 3 and Figure 3 summarize the main results of
the comparison of the performance between methods
(pedigree BLUP, array genotyping, RAD, whole-genome
sequence and causal SNPs) and for two genetic architec-
tures, namely 20 or 100 QTN. In all cases, the number
of genes that potentially carry QTN was set to 65 and
they were distributed among seven of the 10 chromo-
somes (see Methods section). As is well known, genomic
selection can improve upon pedigree BLUP; in our simu-
lation scenario, the increase in prediction accuracy was
~10 to 20% when using the high-density SNP array
(Table 3). Using the sequence data, there was a 4% im-
provement in accuracy compared to the HD array. An
important result of Table 3 is the evident law of dimin-
ishing returns with SNP density: as the number of SNPs
increased, the differences between sequence and SNP
genotyping tended to disappear. This is perhaps clearer
in Figure 3. Overall, this is a consequence of most SNPs
being redundant because of linkage disequilibrium and
because they are not very informative, since most vari-
ants are rare (Figure 2). Nevertheless, how these SNPs
are chosen is important. For RAD-sequencing, predic-
tion accuracy was actually much lower than for the
medium density array, despite the fact that 45% more
SNPs were used. The likely reason is twofold: with
RAD-sequencing, many SNPs are tightly linked whereas

Table 3 Accuracy obtained with different strategies

Method Number of SNPs* Number of QTN
20 100

Pedigree BLUP - 038 (0.09) 043 (0.09)
RAD 11,000 0.28 (0.10) 0.27 (0.09)
Medium-density array 7,500 045 (0.09) 045 (0.09)
High-density array 17,000 047 (0.08) 047 (0.08)
Sequence 335,000 049 (0.10) 049 (0.08)
Causal SNPs 20/100 0.98 (0.01) 0.95 (0.02)

Accuracy is measured as the correlation between true and predicted breeding
values of the last generation individuals in cross-validation and is the average
of 100 replicates; *number of SNPs used for prediction; for Sequence, all SNPs
are used; for causal SNPs, only 20 or 100 QTN are used.
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SNPs in arrays are uniformly distributed along the gen-
ome and second, SNPs in arrays tend to be more in-
formative than those obtained by direct sequencing due
to MAF restrictions. In the limited number of cases
tested, the nonlinear B method resulted in comparable
accuracies as for nonlinear A, and we did not observe a
large gain when using sequence vs. the HD array
(Table 4).

The second important conclusion from Table 3 and
Figure 3 is that there is still much room for improve-
ment, i.e., when causal SNPs (the QTN) were known,
prediction accuracy was greater than 95%. In this case, a
mild effect of the number of QTN was observed. Given
that all QTN are within the whole set of SNPs, it is evi-
dent that the performance of sequence-based methods
can be dramatically boosted by carefully assigning bio-
logically meaningful priors. Certainly, knowing the QTN
is an extreme, unrealistic scenario of prior information,
whereby all non-causal SNPs are removed from the
model and the only uncertainty lies in the estimation of
the effect of each causal mutation.

We investigated milder and more realistic options than
knowing all QTN (see Methods). The next most favor-
able situation would be to know all the genes that might
contain the causal variants. This resulted in a model
containing ~7000 SNPs on average. Importantly, this
strategy resulted in prediction accuracy equal to 0.69,
which was 40% higher than with the sequence-based
strategy (Figure 4). Since biological knowledge is always
limited, we also considered incomplete or partially incor-
rect specified models. Including only a subset (50%) of
all causative genes in the model or a 50% subset of
causal genes with 30 additional neutral windows resulted
in poorer accuracy predictions that were similar to those
obtained by using whole-genome sequence data (Figure 3).
In these cases, average accuracies were equal to 0.52 and
0.55 when 30 random windows were included or not in
the model, respectively. Although the evidence is limited,
these results suggest that the performance of the pre-
dictor is quite sensitive to accurate and complete prior
information.

In all the predictors considered here, equal priors were
assigned to each SNP, and our simulations suggest that
the increase in information with sequence data is offset
by added noise in the prediction compared to HD geno-
typing. This is illustrated in Figure 5, which presents the
Manhattan plots of SNP effects on a random replicate for
a medium-density chip (Figure 5A) and whole-genome se-
quence data (Figure 5B). Even with whole-genome se-
quence data, larger weights in the predictor (Equation 2)
were not necessarily assigned to the causal SNPs (black
dots) compared to neutral SNPs, although the largest ef-
fects do tend to be picked up. Moreover, the profile of the
last three chromosomes (i.e., those that did not carry any
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QTN) was not very different from that of the other chro-
mosomes that did contain QTN: for example, compare
chromosomes 7 and 8. Unsurprisingly, the panorama is
rather blurred when SNP arrays instead of whole-genome
sequence data are considered (Figure 5A vs. 5B). Note that
the scales of the two graphs in Figure 5 are quite different:
SNP effect estimates are much more shrunken towards 0
with whole-genome sequence data than with array data.
Figure 6 shows the distribution of SNP effects obtained
with a sequence-based analysis according to whether they
are causal, located within genes, or elsewhere.

Prediction accuracies obtained with the different se-
quencing or genotype error models are in Figure 7.
Overall, the effects were small but several interesting
points should be noted. First, the current error rate of
SNP genotyping technologies (10~ to 10™*) is unlikely to

Table 4 Accuracy obtained using the non linearB method

Method Number of SNPs* Number of QTN

20 100
High-density array 17 000 0.52 (0.19) 0.46 (0.08)
Sequence 335 000 049 (0.11) 046 (0.11)
Causal SNPs 20/100 0.98 (0.01) 095 (0.01)

Accuracy is measured as the correlation between true and predicted breeding
values of last generation individuals in cross-validation and is the average of
50 replicates; *number of SNPs used for prediction; for Sequence, all SNPs are
used, for causal SNPs, only 20 or 100 QTN are used.

have a strong influence on prediction accuracy. Given
that the loss in prediction accuracy observed with the
HD chip compared to whole-genome sequence data is
~4% (Table 3), genotyping errors may cause an add-
itional loss of 4%, or 0.45 vs. 0.47. As for sequence-based
methods, the impact of errors was negligible, unless the
imputation error rate increased to about 20%. Note that
the recent sequencing of 234 bulls [4] reported an im-
putation accuracy of 80%. At such high imputation
error rates, the gain in accuracy of sequence over array
genotypes is not guaranteed. Removing very rare vari-
ants (K = 3) did not change the prediction accuracy.

Discussion

The use of whole-genome sequence data for the predic-
tion of genetic merit creates major challenges, primarily
in terms of bioinformatics and computational demands,
but also from a statistical point of view. Notwithstand-
ing, given that the sequencing prices still continue to de-
crease, this topic is attracting much interest and is a
highly active area in the field of quantitative genetics. To
date, the few published investigations do not allow us to
draw absolute conclusions. Thus, the advantage of whole-
genome sequence data over very high-density genotyping
is still unclear, even with total absence of sequencing er-
rors and of missing data (which is equivalent to an error-
free imputation process). Overall, our simulations suggest
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that the availability of whole-genome sequence data could
increase prediction accuracy, measured as correlation be-
tween predicted and true genetic value in the last gener-
ation, by 4 to 8% compared to SNP arrays. This increase is
much lower than the results reported by Meuwissen and
Goddard [3], who suggested that increases of 40% could

be attained, although in a population with low disequilib-
rium. Other authors i.e., Druet et al. [5] reported that the
advantage depended on the genetic architecture; the lar-
gest increase was observed when all causal mutations were
rare. Meuwissen and Goddard [3] reported that a nonlin-
ear predictor such as BayesB gave much higher accuracies
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Figure 5 Manhattan plot of SNP effect estimates. A) high-density chip, dashes represent causal loci positions; B) sequence results, black dots are the
causal loci. Each chromosome is represented in a different shade of grey; the last three chromosomes do not contain any QTN. Effects are absolute values.
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than a linear predictor (RR-BLUP), whereas Druet et al.
[5] did not use RR-BLUP. However, in our case, both the
linear RR-BLUP and the nonlinear A (comparable to
BayesA) gave similar results, RR-BLUP resulting in accur-
acy reductions of ~0.02% across scenarios (results not
shown). As for nonlinear-B, we did not find either an im-
provement when using sequence (Table 4). Nonlinear A
and nonlinear B are predictors that can pick up very large
QTN effects, with estimates as large as 0.5 genetic stand-
ard deviations for a single marker, which makes it compar-
able to the nonlinear predictors of the other authors [29].
More recently, Macleod et al. [30] showed by simulation
that low linkage disequilibrium has a strong effect in
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increasing the advantage of sequence over high density
genotyping. Given that rather different genetic and simu-
lation scenarios were used in all these studies, it is some-
what difficult to compare them.

Interestingly, Hayes et al. [31] recently reported a min-
imal increase (0 to 3% depending on trait) when sequen-
cing followed by imputation vs. SNP array genotyping
were compared on real dairy cattle data. Our work sug-
gests at least three reasons to explain this result. First,
there is a large uncertainty on the outcome of the selec-
tion and drift processes involved, a natural consequence
of the coalescence process that directly affects disequi-
librium, and hence predictive ability. Figure 3 clearly
shows this variability, which corresponds to a 30 Mb se-
quence, divided in 10 independent chromosomes. Al-
though variability along a whole mammalian genome
would be smaller, it will certainly exist. Second, most
SNPs are rare and in strong disequilibrium. This means
that they will be difficult to pick up in any cross-
validation study (that is, most likely rare alleles will not
be sampled in both the reference and target populations
simultaneously), irrespective of whether they contribute
to variance or not. The third reason is imputation errors
rather than sequencing errors. Most imputation errors
occur for low-frequency variants, but these are the most
frequent variants. As a result, added noise can hamper
the potential advantages of sequence-based methods
(Figure 7).

Furthermore, our results also show that prediction
accuracy plateaus as SNP density increases. This phe-
nomenon was already reported by Ober et al. [32], who
did not observe any clear change in accuracy when using
either 2.5 million or 150 k SNPs for an analysis on star-
vation stress in Drosophila, although in a very small
population (157 lines). Vanraden et al. [6,33] also ob-
served that gain in accuracy declined gradually when
passing from 10 k, 20 k and 40 k to high-density (more
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Figure 7 Accuracy with several error models. All data refer to a 100 QTN model and are the average of 100 replicates, chip refers to the high-
density array. CHIPOOT: 10 genotyping error; CHIPO0O1: 10 genotyping error; SEQ05: sequence error A = 0.05, imputation error y = 0.001,
minimum K number for an allele to be considered K= 1 (all SNPs are considered); SEQ05_K3, as previous model with K= 3; SEQ05_|20: as previous
model with y=0.20. Table 1 describes the error models. Values represented are relative to accuracy obtained with full sequence without errors.
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than 700 k) SNP chips in dairy cattle data. In our simu-
lated scenario, prediction accuracies obtained with whole-
genome sequence data were close to those attained with
high-density chips containing 17 k SNPs. Although the
SNP density at which accuracy plateaus will vary depend-
ing on the specific scenario and on the genetic architec-
ture of the trait, there is little doubt that a small
percentage of all SNPs that segregate in the population
may be sufficient to make predictions as accurate as with
whole-genome sequence data. The question is then
whether it will be cheaper to sequence at very sparse
coverage and impute sequence variants to SNP genotypes
obtained with very high-density arrays. Genotyping by se-
quencing has been proposed as an interesting alternative
to high-density genotyping [34]. Although we have not
compared all these strategies in detail here, our results
suggest that genotyping by sequencing will not pay off
because it suffers from the same limitations as sequencing,
i.e,, the use of an excess of tightly linked and lowly inform-
ative markers. As for sparse sequencing and imputation,
the success of this strategy may depend critically on error
rates. In a recent work [11], we compared how much mo-
lecular relationship matrices computed using either
complete sequence or ascertained SNPs were similar. We
concluded that, at least with relatively simple demographic
scenarios (without admixture), the correlation was as high
with NGS data as with HD SNP array data. Thus, we sug-
gested that producing complete sequences was probably
unnecessary, and simulations presented here tend to sup-
port this hypothesis, provided no external, biologically
meaningful information is used.

In fact, we have shown that that there is still ample
room for improvement, as evident from the large in-
crease in prediction accuracy that could be obtained if
QTN were known. In practice, decades of research have
shown that this is highly unlikely to happen, and many
causal variants will remain undiscovered even in the lar-
gest GWAS (genome-wide association studies) experi-
ments [35] as shown in Figures 5 and 6. Using the most
significant SNPs may not increase prediction either. In
our study, we found that the distributions of SNP effects
(causal, genic and intergenic) overlap (Figure 6), which
suggests that including or not a SNP in a model based
on its estimated effect may not have a strong impact.

A much less ambitious target is the characterization of
genomic regions that are involved in the determination
of a given phenotype, and here we have shown that this
can result in a dramatic improvement of about 40% (in
our scenario) compared to the use of whole-genome se-
quence data. This suggests that one main reason why
whole-genome sequencing does not meet expectations —
compared to high-density genotyping — is ‘simply’ the
use of wrong prior information. In all the predictors
considered here, equal priors are assigned to each SNP
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(this is true also for Bayesian regressions such as the
Lasso or BayesB), and our simulations suggest that the
increase in information provided by whole-genome se-
quence data is offset by added noise in the prediction.

An unfortunate side effect is that even moderate errors
when determining the set of true QTN can reduce this
advantage (Figure 4). For future studies, the important
message is that incorporating meaningful biological
knowledge into the predictor can make a difference, and
that research to uncover causative genes and or poly-
morphisms is well justified. At this point, much research
remains to be done on optimum approaches for assign-
ing priors using biological information, but there are
several ongoing projects in this area. Macleod et al. [36]
and Hayes et al. [31] have suggested to partition the mu-
tations according to functional classes, combining it with
BayesR. Ideally, approaches that combine functional in-
formation (say gene ontologies or presence of certain se-
quence motifs like transcription factors) with empirical
information from population genetic studies (say select-
ive sweeps evidence, although see Kemper et al. [37] for
how this can be misleading) could be considered. In this
setting, it may make sense to obtain a whole-genome se-
quence and accurately assign priors to each set of poly-
morphisms. Alternatively, specialized arrays with an
optimum set of SNPs could be designed.

Without doubt, genetic architecture affects the per-
formance of genomic selection, with and without the use
of whole-genome sequence data. Unfortunately, there is
much uncertainty on the precise genetic architecture of
quantitative traits under selection. Therefore, all simula-
tion studies, including ours, should be taken with some
caution. Two extreme architectures have been tradition-
ally considered: (1) a major gene model in which a few
genes explain most of the genetic variance and (2) the
infinitesimal model. The former does not explain the
wealth of experimental data that has accumulated along
the last decades whereas the latter, while not being bio-
logically sound, can be considered as operationally correct
for prediction purposes. Here, we chose an intermediate
architecture that comprises a reasonable large number of
loci, but each with a different effect. To study the potential
effects of increasing the number of loci, even if briefly, we
also simulated a model with 1000 loci that all have an
equal effect and are randomly distributed among 10 chro-
mosomes. The results (Figure 8) were not completely
unexpected since they showed an increased relative ad-
vantage of all methods, and a smaller associated variance,
compared to previous results (Figure 3). Importantly, the
ranking of the methods was the same as for the oligogenic
models used here; in particular, it is worth noting the large
advantage that could still be obtained if the 1000 causal
mutations were known. Therefore, in general, it seems
that our results (Table 3, Figure 3) are robust to the
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underlying genetic architecture, although they suggest that
the relative advantage of sequence data decreases when
the number of causal loci increases.

A persistent matter of concern in genomic data is the
occurrence of errors, due to the difficulty of ensuring
uniform quality control in such massive datasets. For
most of the simulations investigated in this work, we as-
sumed that errors and missing data were absent and this
is, admittedly, a strong assumption. In this sense, our re-
sults should be interpreted as the uppermost attainable
limits, for the genetic architecture and experimental de-
signs considered. Nevertheless, we also evaluated in a
simplified manner the potential impact of sequencing
and genotyping errors and we found (Figure 7) that, un-
less imputation errors are really high, they should not
affect the results strongly. In practice, imputation errors
can be high for low-frequency variants, as reported by
Daetwyler et al. [4]. Note that the recent sequencing of
234 bulls [4] reported an imputation accuracy of 80%,
which is rather low compared to the typical values
greater than 95% reported with 6k to high-density SNP
arrays [6]. With genotyping, a small decrease in predic-
tion accuracy is expected for the typical error rates that
occur with standard platforms (10 to 10™). It is also
expected that, with the ongoing development of im-
proved technology and imputation tools, errors will tend
to decrease.

The issue of SNP ascertainment bias in the design of
arrays has received considerable interest, in particular
for its effects on the inference of genetic parameters
[38]. The main effect of ascertainment bias is that it
modifies the SFS (Figure 2), and therefore genetic infer-
ences based on the SFS will be difficult to interpret.
However, the effects of ascertainment on genomic selec-
tion have been much less studied. Here, we found that

ascertainment bias can have a moderate effect on predic-
tion accuracy but the effect decreases as SNP density in-
creases. Importantly, we found that setting a minimum
MATF requirement had a beneficial effect on prediction,
because it increases the informativity of the markers. In
summary, our study suggests that the ascertainment
process may not have a strong impact on accuracy of
genomic selection provided SNP density is high enough.
This conclusion holds at least for simple demographic
scenarios such as those investigated here. In scenarios
with more complex histories that involve admixture be-
tween distant lineages, such as for pig, ascertainment
may have a stronger influence than in dairy cattle [11].

Here, we have only considered the case of single-breed
evaluation. The more distant, genetically, the breed of
interest is from the breed(s) used to ascertain the SNPs
in the array, the worse is the array expected to perform
compared to direct sequencing [11]. Prediction across
multiple breeds should benefit from NGS data due to
an increased persistence in accuracy over generations,
compared to array-based predictions [3]. Nevertheless,
the impact of NGS for this application needs further
investigation.

Conclusions

The availability of whole-genome sequence data can lead
to increased selection response compared to current
strategies based on medium-density SNP arrays but this
increase, per se, is likely to be minimal, at least in a
single-breed scenario. This conclusion seems relatively
insensitive to the SNP ascertainment process, number of
causal loci, presence of dominance and to modest geno-
typing or sequencing errors. In contrast, our work shows
that a dramatic increase in prediction accuracy can be
attained by using correct prior information. However,
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and importantly, this advantage can be quickly removed
if the biological information used is partially incorrect or
incomplete. Therefore, an improved biological under-
standing of the trait(s) is critical. However, in commer-
cial breeding schemes selection targets are continuously
changing to adapt to market requirements. This is
equivalent to continuously modifying, even if partially,
the genetic basis of the trait(s) under selection, which
hinders the use of biological prior information. Further-
more, as shown, e.g, by the ENCODE project, many
functional motifs in the genome are outside the coding
regions, which may make it difficult to precisely delin-
eate potential causal regions for any given trait. For all
these reasons, we recommend caution on this issue that
also requires further methodological developments.

Along this vein, although our results were relatively
robust to genetic architecture, it is necessary to better
understand and ascertain the genetic basis of complex
traits. This implies characterizing not only the distribu-
tion of the effects of causative alleles and their frequen-
cies, but also the influence of complex demographic
scenarios that may include admixture events and mul-
tiple bottlenecks, quite frequent in livestock and plant
species. For instance, Lohmueller [39] has predicted an
excess of deleterious SNPs as a consequence of the ex-
ponential growth of the population in humans. Although
exponential growth is unlikely to have occurred in live-
stock, the important issue is that demography can affect
the genetic architecture of traits and, indirectly, the per-
formance of genomic selection. Finally, despite widespread
evidence of additivity [40], the effect of epistasis also
merits further research. Overall, a better characterization
of the genetic architecture of the traits under selection
should help to successfully include biological information
into genomic selection procedures. This is an active area
of research and many important topics remain to be in-
vestigated, e.g., a better characterization of the genetic
architecture of the traits under selection, methods to suc-
cessfully include biological information into genomic
selection procedures or the usefulness of sequence in
multi-breed populations.

Appendix
Coalescence commands
The single-population coalescence command was:

macs N 3e6 -i 10 -t 0.0012 -r 0.001 -eN 1.67 10,

where N is the total number of sequences (i.e., twice the
number of individuals), -i specifies the number of chro-
mosomes (10) of length 3 Mb, -t specifies the nucleotide
diversity per base pair, -1, the scaled recombination rate
(in 4Ne units), and -eN specifies the bottleneck parame-
ters. Properties of this model and its expected genomic
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relationship matrix are in Pérez-Enciso [11]. The com-
mand to simulate the structured population was:

macs N 3e6 —i 10 -t 0.0012 -r 0.001 -I 2 N1 100
-€j 0.042 2 1 -eN 1.67 10,

where N1 is the number of founder sequences in breed
1, and 100 is the number of sequences sampled in breed
2, where SNPs are ascertained, N = N1 + 100, -ej speci-
fies time of splitting between the two breeds. This model
results in mild structuring (Fst ~0.05).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

MPE conceived the research; MPE and AL developed software; JCR and MPE
did the simulation analyses; MPE wrote the manuscript with help from the
other authors. All authors read and approved the final manuscript.

Acknowledgements

We thank for comments from A Garcfa-Dorado on the genetic architecture
of complex traits. JCR was funded by Colciencias, call no. 528 (Colombia).
Work was funded by projects AGL2010-14822 and AGL2013-41834-R to MPE.
AL acknowledges financing from the project GenSSeq of the INRA
metaprogram SelGen (France). This work was carried out while the senior
author, kindly invited by G. de los Campos, was visiting the University of
Alabama Birmingham (USA).

Author details

!Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB
Consortium, 08193 Bellaterra, Barcelona, Spain. “Departament de Ciéncia
Animal i dels Aliments, Universitat Autdnoma de Barcelona, 08193 Bellaterra,
Barcelona, Spain. 3Institut Catala de Recerca i Estudis Avancats (ICREA), Carrer
de Lluis Companys 23, Barcelona 08010, Spain. “Universidad Nacional de
Colombia, Sede Medellin, Facultad de Ciencias Agrarias, Departamento de
produccién Animal, Medellin, Colombia. °INRA, UMR 1388 GENPHYSE,
Génétique, Physiologie et Systemes d'Elevage, Castanet-Tolosan 31326,
France.

Received: 15 October 2014 Accepted: 31 March 2015
Published online: 09 May 2015

References

1. Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard ME. Invited review:
Genomic selection in dairy cattle: progress and challenges. J Dairy Sci.
2009,92:433-43.

2. Hutchison JL, Cole JB, Bickhart DM. Short communication: Use of young
bulls in the United States. J Dairy Sci. 2014;97:3213-20.

3. Meuwissen T, Goddard M. Accurate prediction of genetic values for
complex traits by whole-genome resequencing. Genetics. 2010;185:623-31.

4. Daetwyler HD, Capitan A, Pausch H, Stothard P, van Binsbergen R, Brandum
RF, et al. Whole-genome sequencing of 234 bulls facilitates mapping of
monogenic and complex traits in cattle. Nat Genet. 2014,46:858-65.

5. Druet T, Macleod IM, Hayes BJ. Toward genomic prediction from whole-
genome sequence data: impact of sequencing design on genotype
imputation and accuracy of predictions. Heredity (Edinb). 2014;112:39-47.

6. VanRaden PM, Null DJ, Sargolzaei M, Wiggans GR, Tooker ME, Cole JB, et al.
Genomic imputation and evaluation using high-density Holstein genotypes.
J Dairy Sci. 2013,96:668-78.

7. Van Binsbergen R, Bink MCAM, Calus MPL, van Eeuwijk FA, Hayes BJ,
Hulsegge |, et al. Accuracy of imputation to whole-genome sequence data
in Holstein Friesian cattle. Genet Sel Evol. 2014/46:41.

8. Gibbs RA, Taylor JF, Van Tassell CP, Barendse W, Eversole KA, Gill CA, et al.
Genome-wide survey of SNP variation uncovers the genetic structure of
cattle breeds. Science. 2009;324:528-32.

9. Rosenberg NA, Nordborg M. Genealogical trees, coalescent theory and the
analysis of genetic polymorphisms. Nat Rev Genet. 2002;3:380-90.



Pérez-Enciso et al. Genetics Selection Evolution (2015) 47:43

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

Chen GGK, Marjoram P, Wall JDJ. Fast and flexible simulation of DNA 36.
sequence data. Genome Res. 2009;19:136-42.

Pérez-Enciso M. Genomic relationships computed from either next-generation
sequence or array SNP data. J Anim Breed Genet. 2014;131:85-96.

Eyre-Walker A, Keightley PD. The distribution of fitness effects of new

mutations. Nat Rev Genet. 2007;8:610-8.

Garcfa-Dorado A. Understanding and predicting the fitness decline of 37.
shrunk populations: inbreeding, purging, mutation, and standard selection.
Genetics. 2012;190:1461-76.

Hayes B, Goddard ME. The distribution of the effects of genes affecting 38.
quantitative traits in livestock. Genet Sel Evol. 2001;33:209-29.

Falconer DS, Mackay TFC. Introduction to quantitative genetics. 4th ed. 39,
Harlow: Longman Scientific and Technical; 1996.

VanRaden PM. Efficient methods to compute genomic predictions. J Dairy 40.

Sci. 2008,91:4414-23.

Meuwissen TH, Hayes BJ, Goddard ME. Prediction of total genetic value
using genome-wide dense marker maps. Genetics. 2001;157:1819-29.
Legarra A, Misztal |. Technical note: Computing strategies in genome-wide
selection. J Dairy Sci. 2008;91:360-6.

Gianola D. Priors in whole-genome regression: the bayesian alphabet
returns. Genetics. 2013;194:573-96.

Nevado B, Ramos-Onsins S, Perez-Enciso M. Re-sequencing studies of non-
model organisms using closely-related reference genomes: optimal
experimental designs and bioinformatics approaches for population genomics.
Mol Ecol. 2014;23:1764-79.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The
Sequence Alignment/Map format and SAMtools. Bioinformatics.
2009;25:2078-9.

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al.
The genome analysis Toolkit: A MapReduce framework for analyzing next-
generation DNA sequencing data. Genome Res. 2010;20:1297-303.

Nevado B, Perez-Enciso M. Pipeliner: Software to evaluate the performance
of bioinformatics pipelines for next-generation resequencing. Mol Ecol
Resour. 2015;15:99-106.

Oliphant A, Barker DL, Stuelpnagel JR, Chee MS. BeadArray technology:
Enabling an accurate, cost-effective approach to high-throughput genotyping.
Biotechniques. 2002,Suppl 56:60-61.

Kim KK, Won HH, Cho SS, Park JH, Kim MJ, Kim S, et al. Comparison of
identical single nucleotide polymorphisms genotyped by the GeneChip
Targeted Genotyping 25K, Affymetrix 500K and lllumina 550K platforms.
Genomics. 2009;94:89-93.

Hoffman JI, Tucker R, Bridgett SJ, Clark MS, Forcada J, Slate J. Rates of assay
success and genotyping error when single nucleotide polymorphism
genotyping in non-model organisms: a case study in the Antarctic fur seal.
Mol Ecol Resour. 2012;12:8361-72.

Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunte D Jr, et al.
Finding the missing heritability of complex diseases. Nature 2009; 461:747-753.
Visscher PM. Sizing up human height variation. Nat Genet. 2008;40:489-90.
Cole JB, VanRaden PM, O'Connell JR, Van Tassell CP, Sonstegard TS,
Schnabel RD, et al. Distribution and location of genetic effects for dairy
traits. J Dairy Sci. 2009;92:2931-46.

MaclLeod IM, Hayes BJ, Goddard ME. The effects of demography and long-
term selection on the accuracy of genomic prediction with sequence data.
Genetics. 2014;198:1671-84.

Hayes BJ, MacLeod IM, Daetwyler HD, Bowman PJ, Chamberlian AJ, Vander
Jagt CJ, et al. Genomic prediction from whole genome sequence in

Page 14 of 14

Macleod IM, Hayes BJ, Vander Jagt CJ, Kemper KE, Haile-Mariam M, Bowman
PJ, et al. A bayesian analysis to exploit imputed sequence variants for QTL
discovery. In Proceedings of the 10th World Congress of Genetics Applied to
Livestock Production:17-22 August 2014; Vancouver; 2014. httpsy//asas.org/
docs/default-source/wcgalp-proceedings-oral/193_paper_9933_manuscript_
1173_0pdf?sfursn=2.

Kemper KE, Saxton SJ, Bolormaa S, Hayes BJ, Goddard ME. Selection for
complex traits leaves little or no classic signatures of selection. BMC
Genomics. 2014;15:246.

Lachance J, Tishkoff S. SNP ascertainment bias in population genetic
analyses: why it is important, and how to correct it. Bioessays. 2013;35:780-6.
Lohmueller KE. The distribution of deleterious genetic variation in human
populations. bioRxiv. 2014;29:139-46.

Hill WG, Goddard ME, Visscher PM. Data and theory point to mainly additive
genetic variance for complex traits. PLoS Genet. 2008;4:¢1000008.

livestock: the 1000 bull genomes project. In Proceedings of the 10th World (
Congress of Genetics Applied to Livestock Production: 17-22 August 2014;
Vancouver; 2014. https/asas.org/docs/default-source/wcgalp-proceedings-oral/
183_paper_10441_manuscript_1644_0.pdf?sfvrsn=2.

Ober U, Ayroles JF, Stone EA, Richards S, Zhu D, Gibbs RA, et al. Using
whole-genome sequence data to predict quantitative trait phenotypes in
Drosophila melanogaster. PLoS Genet. 2012;8:¢1002685.

Vanraden PM, Van Tassell CP, Wiggans GR, Sonstegard TS, Schnabel RD,
Taylor JF, et al. Invited review: reliability of genomic predictions for North
American Holstein bulls. J Dairy Sci. 2009;92:16-24.

Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. A
robust, simple genotyping-by-sequencing (GBS) approach for high diversity
species. PLoS One. 2011,6:219379.

Weiss KM. Tilting at quixotic trait loci (QTL): An evolutionary perspective on
genetic causation. Genetics. 2008;179:1741-56.

~
Submit your next manuscript to BioMed Central
and take full advantage of:
¢ Convenient online submission
¢ Thorough peer review
* No space constraints or color figure charges
¢ Immediate publication on acceptance
¢ Inclusion in PubMed, CAS, Scopus and Google Scholar
* Research which is freely available for redistribution
Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central
J



https://asas.org/docs/default-source/wcgalp-proceedings-oral/183_paper_10441_manuscript_1644_0.pdf?sfvrsn=2
https://asas.org/docs/default-source/wcgalp-proceedings-oral/183_paper_10441_manuscript_1644_0.pdf?sfvrsn=2
https://asas.org/docs/default-source/wcgalp-proceedings-oral/193_paper_9933_manuscript_1173_0.pdf?sfvrsn=2
https://asas.org/docs/default-source/wcgalp-proceedings-oral/193_paper_9933_manuscript_1173_0.pdf?sfvrsn=2
https://asas.org/docs/default-source/wcgalp-proceedings-oral/193_paper_9933_manuscript_1173_0.pdf?sfvrsn=2

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	General setting
	Genome structure, genetic architecture and population history
	Genetic evaluation and array-SNP ascertainment
	Simulating sequencing and genotyping errors

	Results
	Discussion
	Conclusions
	Appendix
	Coalescence commands

	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

