N

N

Carleman estimates for elliptic operators with complex
coeflicients Part II: transmission problems

Mourad Bellassoued, Jérome Le Rousseau

» To cite this version:

Mourad Bellassoued, Jérome Le Rousseau. Carleman estimates for elliptic operators with complex
coefficients Part II: transmission problems. Journal de Mathématiques Pures et Appliquées, 2018,
115, pp.127-186. 10.1016/j.matpur.2018.04.001 . hal-01312627

HAL Id: hal-01312627
https://hal.science/hal-01312627
Submitted on 7 May 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01312627
https://hal.archives-ouvertes.fr

CARLEMAN ESTIMATES FOR ELLIPTIC OPERATORS WITH COMPLEX COEFFICIENTS
PART II: TRANSMISSION PROBLEMS

MOURAD BELLASSOUED AND JEROME LE ROUSSEAU

ABSTRACT. We consider elliptic transmission problems with complex coefficients across an interface. Under
proper transmission conditions, that extend known conditions for well-posedness, and sub-ellipticity we derive
microlocal and local Carleman estimates near the interface. Carleman estimates are weighted a priori estimates
of the solutions of the elliptic transmission problem. The weight is of exponential form, exp(7y) where 7
can be taken as large as desired. Such estimates have numerous applications in unique continuation, inverse
problems, and control theory. The proof relies on microlocal factorizations of the symbols of the conjugated
operators in connection with the sign of the imaginary part of their roots. We further consider weight functions
where ¢ = exp(y1)), with -y acting as a second large paremeter, and we derive estimates where the dependency
upon the two parameters, 7 and -y, is made explicit. Applications to unique continuation properties are given.

RESUME: Nous considérons des problemes de transmission elliptiques a coefficients complexes. En étendant
des conditions qui rendent ce probléme bien posé, et sous condition de sous-ellipticité nous obtenons des iné-
galités de Carleman microlocales et locales a I’interface qui sont des inégalités a priori a poids pour les solutions
du probleme. Les fonctions poids sont exponentielles, exp(7¢), ol le paramétre 7 peut &tre choisi arbitraire-
ment grand. De telles estimations ont de nombreuses applications comme pour les questions de prolongement
unique, les problemes inverses et le contrdle. La démonstration repose sur des factorisations microlocales du
symbole des opérateurs conjugués liées aux signes des parties imaginaires de leurs racines. Nous considérons
le cas ¢ = exp(v1)), ol y peut-étre arbitrairement grand et nous obtenons des inégalités de Carleman pour
lesquelles la dépendence en les deux grands parametres, T et «, est rendue explicite. Des applications aux
questions de prolongement unique sont proposées.
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1. INTRODUCTION AND MAIN RESULT

Let 2 be an open subset of R™ with a smooth boundary and let 2; be an open subset of {2 such that
Q1 € Q and such that S = 9 is smooth. We set Q9 = Q\ 1. We thus have Q9 = S U 9f).

Points in R" are denoted by z = (x1,...,2,) and we write D; = —id/0x; where i = \/—1. Let us
consider two linear partial differential operators Py, k = 1, 2 of respective order my = 2ug, with g > 1,
(1.1) P.= Y df(x)D* k=12,

|| <my,

where the coefficients a” (z) are bounded measurable complex-valued functions defined in Q. The higher-
order coefficients af (z) with || = my, are required to be €' in Q. In what follows, we assume that boths
operators Py, k = 1,2 are elliptic.

In addition, we consider a system of m; + my linear transmission operators

(1.2) T/ = Y (@D k=12 j=1,....,m=/m+p,
la|<p]
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with 0 < ﬁi < my, and where the coefficients ti () are €°>° complex-valued functions defined in some
neighborhood of S. Setting 37 = (8] + $3)/2 we assume that

(1.3) my— Bl =my— B =m—B, j=1,..m=pm+p.
We consider a system of 119 = mg/2 linear boundary operators of order less than m
(14) BJ = Z bjoc(w)Da7 j:17"'7,u27
la| <Y

where the coefficients b]a(ac) are ¢*° complex-valued functions defined in some neighborhood of Jf2.
We can then consider the following elliptic boundary-value transmission problem

Prug = fr inQy, ,k=1,2
Tluy +Tyus = ¢, inS, j=1,...,m.
Biu=h, indQ, j=1,...,pus.

The aim of the present article is to derive a Carleman estimate for this transmission problem. Carleman
estimates are weighted a priori inequalities for the solutions of a partial differential equation (PDE), where
the weight is of exponential type. For the partial differential operator P away from the boundary and from
the interface, say for w € €°(Qy) or €°°(§22), it takes the form:

(1.5) lle™Pw|| 2 < Clle™Pwl| 2, T> 7).

The exponential weight involves a parameter 7 that can be taken as large as desired. The weight function
i needs to be chosen carefully. Additional terms in the Lh.s., involving derivatives of u, can be obtained
depending on the order of P and on the joint properties of P and . For instance for a second-order operator
P such an estimate can take the form

(1.6) 3 |ePw||22 + 7 [P Vw|32 < C e Pwl[3s, T > 70, W E E () or €°(02).

This type of estimate was used for the first time by T. Carleman [11] to achieve uniqueness properties for
the Cauchy problem of an elliptic operator. Later, A.-P. Calderén and L. Hérmander further developed
Carleman’s method [10, 18]. To this day, Carleman estimates remain an essential method to prove unique
continuation properties; see for instance [50] for manifold results. On such questions more recent advances
have been concerned with differential operators with singular potentials, starting with the contribution of
D. Jerison and C. Kenig [26]. The reader is also referred to [48, 28, 29]. In more recent years, the field of
applications of Carleman estimates has gone beyond the original domain; they are also used in the study of:

e Inverse problems, where Carleman estimates are used to obtain stability estimates for the unknown
sought quantity (e.g. coefficient, source term) with respect to norms on measurements performed
on the solution of the PDE, see e.g. [0, 24, 30, 23]; Carleman estimates are also fundamental in the
construction of complex geometrical optic solutions that lead to the resolution of inverse problems
such as the Calderén problem with partial data [27, 13].

e Control theory for PDEs; through unique continuation properties, Carleman estimates are used for
the exact controllability of hyperbolic equations [2]. They also yield the null controllability of linear
parabolic equations [37] and the null controllability of classes of semi-linear parabolic equations

(17,1, 16].

For general elliptic operators, Carleman estimates away from boundaries and interfaces can be found in [19,
Chapter 8]. The essential condition for the derivation of such an estimate is a compatibility property between
the elliptic operator P and the weight function ¢, the so-called sub-ellipticity condition which is known to
be necessary and sufficient for the estimate to hold in the case of an elliptic operator. At the boundary 0f2, a
Lopatinskii-type compatibility condition involving P, ¢, and the operators B* can be put forward yielding
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a Carleman estimate in conjunction with the sub-ellipticity condition [49, 4]. The main goal of the present
article is the extension of this analysis to transmission problems.

Note that Carleman estimates of the form given here are local. Yet, they can be patched together to form
global estimates. Our goal here is to derive such an estimate in the neighborhood of a point of the interface
S. Derivation of Carleman estimates away for the interface can be found in the aforementionned references.
Then, the patching procedure allows one to obtain a global estimate in the whole €2, following for instance
[19, Lemma 8.3.1] and [32]. We do not cover this issue here.

Here the weight function ¢ will be chosen continuous and piecewise smooth, that is, vr = ¢jo, €
%>°(Q). The estimate we shall obtain will exhibit additional terms that account for the transmission con-
ditions given by the operators T/, k = 1,2, 7 = 1,..., u1 + po. The key conditions for the derivation of the
present Carleman estimate are compatibility properties between the elliptic operator P, the weight function
(0, and the transmission operators T,g. Those are the sub-ellipticity condition described above that expresses

compatibility between P and ¢, and in addition a condition that connects them to Tlg at the interface; we
shall refer to this latter condition as to the transmission condition. This condition is an extension of the
condition presented in [47] in the case of a conjugated operator. There, it was introduced towards to under-
standing of the well-posedness of the elliptic transmission problem. The condition we use is very close in its
formulation to the Lopatinskii type boundary condition used in the first part of this work [4]. In [49, 4] the
derivation of Carleman estimates at a boundary is based on the study of interior and boundary differential
quadratic forms, an approach that originates in the work of [19] for estimates away from boundaries and
in [45, 46, 41] for the treatment of boundaries. This approach is here extended to interface tranmission
problems. By proper (tangential) microlocalizations at the interface we show the precise action of our trans-
mission condition. These microlocalizations are important as the transmission condition is function of the
sign of the imaginary parts of the roots of' Pro(@, & 7, &n) = pr(x,§ +it¢ (x)), k = 1,2, viewed as a
polynomial in &,. Of course the configuration of the roots changes as the other parameters (z/,&’,7) are
modified. Roots can for instance cross the real axis. Each configuration needs to be addressed separately
through a microlocalization procedure. For the Laplace operator at a boundary this was exploited to obtain
a Carleman estimate in [38] for the purpose of proving a stabilization result for the wave equation. This
approach was used for the study of an interface problem in [3, 34, 33] in the case of second-order elliptic
operators. The present article provides a generalization of these earlier works, both with respect to the order
of the operators and with respect to the generality of the transmission operators used.
The Carleman estimate we prove here is of the form, with u; = uq,,

> e a4 3 (€T br(up)?

) )

p1tp2 . .
< S e Ple, Dywl* 45 |7 (17 (2, Dyunjs + T4 (2, Dyuays) ),
k=1,2 j=1

for u supported near a point at the interface, where tr(uy) stands for the trace of (uy, Dyug, - .., D™ tuy),

the successive normal derivatives of uy, at the interface S. In this form, the estimate is incorrect as norms
needs to be made precise. For a correct statement please refer to Theorem 1.6 below.

For Carleman estimates, one is often inclined to choose a weight function of the form ¢ = exp(y¢), with
the parameter v > 0 chosen large. Several authors have derived Carleman estimates for some operators in
which the dependency upon the second parameters -y is kept explicit. See for instance [17]. Such results can
be very useful to address systems of PDEs, in particular for the purpose of solving inverse problems. On
such questions see for instance [14, 15, 25, 5].

Here to simplify we consider the case S = {x, = 0}. Then &, corresponds the (co)normal direction at the interface. In the
main text we shall use change of variables to reach this configuration locally.
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Compeatibility conditions need to be introduced between the operator P and the weight ). Those are
the so-called strong pseudo-convexity conditions introduced by L. Hormander [19, 22]. With the weight
function ¢ of the form ¢ = exp(y1)), the parameter v can be viewed as a convexification parameter.
As shown in Proposition 28.3.3 in [22] the strong pseudo-convexity of the function ) with respect to P
implies the sub-ellipticity condition for ¢ mentioned above® for  chosen sufficiently large. Away from
any boundary and interface, for a second-order estimate the resulting Carleman estimate can take the form
(compare with (1.6)):

(1.7)
(77)3H<,03/2ewuHiz + ’yTnglﬂeT‘pquHiz < HewPuH%g , T > 70, 7 = Y0, U € €0 (1) or €.°(Q0).

We aim to extend such estimate in the neighborhood of the interface S. We then assume that the transmission
condition holds for the operators P, T, k = 1,2, j = 1,..., 1 + o, and the weight v). The work [31]
provides a general framework for the analysis and the derivation of Carleman estimates with two large
parameters away from boundaries. For that purpose it introduces a pseudo-differential calculus of the Weyl-
Hormander type that resembles the semi-classical calculus and takes into account the two large parameters
7 and ~y as well as the weight function ¢ = exp(v1). Here, following the first part of this article [4], the
analysis of [31] is adapted to the case of an estimate at the interface. Estimates with the two large parameters
7 and ~ are derived in the case of general elliptic operators.

If we strengthen strong pseudo-convexity condition of ¢) and P, assuming the so-called simple character-
istic property, sharper estimates can be obtained [31]. We also derive such estimates at the interface.

With the different Carleman estimate that we obtain here she shall be able to achieve unique continuation
properties at an interface across some hypersurface for some classes of elliptic operators and some products
of such operators.

1.1. Setting. Now, we give the precise setting of the problem we consider. For x = (z1,...,z,) € R", we
denote by £ = (&1, ...,&,) the corresponding Fourier variables. Moreover, for every £ € R™ and o € N"
we define £ = £ - - - {5, We denote by
pr(e,&) = 3 ab(x)e”
lor|=my,

the principal symbol of the operator P given in (1.1), k = 1, 2. The operators Py, are assumed to be elliptic,
viz.,

pr(x,€) #0, Vo € Qy, V€€ R\ {0}.
With m = py + po = (mq + me)/2, we denote by

t(z.§) = Y (2, k=12j=1...m,
|al=54
the principal symbol of the transmission operator ng defined in (1.2). Each set {Tf } and {sz }
1<j<m 1<j<m

is assumed normal, that is
0<BL<BE< - < B < my,

and for all « € S the conormal vector v(z) is non characteristic, i.e., t],(z, v(x)) # 0.
We recall that we assume

my—pBl=mo—B=m—p, j=1,....,m=pus+ us.
We now review the definition of two inportant notions that will be used in what follows:

2The terminology for the strong pseudo-convexity condition and the sub-ellipticity condition are often confused by authors.
Here we make a clear distinction of the two notions.
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o the sub-ellipticity condition between the operators P and the weight function ¢;
e the transmission condition stating the compatibility between the transmission operators 77, the op-
erators P, and the weight function ¢ at a point of the interface.

1.2. Sub-ellipticity condition. For any two functions f(z,£) and g(z, ) in €°° (2 x R™) we denote their
Poisson bracket in phase-space by
n
ad= 3 (gr ot - o120,
=0 86] 81'j 86] 81'j
It is to be connected with the commutator of two (pseudo-)differential operators. In fact, if f and g are poly-
nomials in &, then the principal symbol of the commutator [f(x, D), g(x, D)] is precisely —i{ f, g}(x,&).

The sub-ellipticity condition connecting the symbol pj, and a weight function ¢ is the following (See [19,
Chapter 8] and [22, Sections 28.2-3]).
Definition 1.1. Let k € {1,2} and let U be an open subset of  and set o, = ¢q,. The pair { Py, pr}
satisfies the sub-ellipticity condition on U if @} (x) := Vp(z) # 0 at every point in U and if

. 1 _ . .
pe(z, & it (2) =0 = 5% {pr(z, & —ire (2)), pr(z, & + ity ()} >0,
for all x € U and all non-zero ¢ € R™, 7 > 0.

For an elliptic operator the sub-ellipticity condition is necessary and sufficient for a Carleman estimate
of the form of (1.5) to hold away from the boundary [22, Section 28.2]. For a simple exposition of the
derivation of Carleman estimates for second-order elliptic operators under the sub-ellipticity condition we
refer to [32].

Note also that the sub-ellipticity condition is invariant under changes of coordinates. This is an important
fact here as we shall work in local coordinates in what follows.

Remark 1.2. Note that here, as the operator P, are elliptic, we have py(x, &) # 0 for each £ € R", £ # 0.
The sub-ellipticity condition thus holds naturally at 7 = 0.

Remark 1.3. Setting py, (z, &, 7) = pr(z, & + iT¢)) and writing pi, , = a + ib with a and b real, we have

- . . T,
% {pk(x7§ - ZT(:D;g)7pk(x7§ + ZTQO;g)} = %{pk,apapk,ga}(wa 57 T) = {CL, b}(.%', 67 T)'
Below, we shall use the sub-ellipticity condition in the form

for all z € U and all non-zero £ € R™, 7 > 0.

In connection with the symbol interpretation of the Poisson bracket given above, we see that the sub-
ellipticity condition guarantees some positivity for the operator i[a(z, D, ), b(x, D, 7)] on the characteristic
set of pi(x,D + ity)) = a(zx,D,7) + ib(x, D, 7). A proper combination of a(z,D,7)*a(x,D,T) +
b(x, D, 7)*b(x, D, 7) and i[a(x, D, T),b(z, D, 7)| thus leads to a positive operator. This is the heart of the
proof of Carleman estimates.

1.3. Transmission conditions. We consider a neighborhood X of a point of the interface S, chosen suffi-
ciently small, so that there exists a smooth function é(z) such that df(z) # 0 in X and
(1) {reX;0(x) <0} =UNX, {ze€X;0x)=0}=5SNX, {zeX;0x) >0}=00nX.
For z € S, we denote by N(S) the conormal space above x given by
NI(S)={veT;(Q);v(Z)=0,VZ € T,(S)}.
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The conormal bundle of S is given by
N*(S)={(z,v) €eT*(2); z € S, ve N;(S)}.
In fact, if z € X N S and (z,v) € N*(S) then v =t df(x) for some t € R.
By an interface quadruple w = (z,Y, v, 7) we shall mean
reSNX, YeT;(S), v=tdd(z)e N;(S)witht>0, andT > 0.
In particular v “points” from €24 into €2,. For an interface quadruple w and A € C, we set, for k = 1, 2,
(1.9) Phyp(w, A) == p(z,Y + A, + itdpg(x)), with ¢ = ®|0,and vy, = (—1)’“1/ € N2 (S).
Note that for §2;, the covector v, points inward and we have vy = —1» = —v.

For a fixed interface quadruple wy = (o, Yy, v, 70), we denote by o7, k = 1,2, the roots of py, ,(wo, A)
with multiplicity ,uff, viewed as a polynomial of degree m in A, with leading-order coefficient ¢ . We can
then factorize this polynomial as follows:

Pr,p(wo, A) = Ck,oﬁzga(wo, APy (w0, A)pp o (wo, A),
with

N i .
wa(wo,)\): [T =0, BolwoX)= TI (A—op)l.

+Ima] >0 Im ol =0

We define the polynomial xy, ,,(wo, A) by

(1.10) Fkp (W0, ) = B, (w0, PR (wo, A).-

Similarly, for the set of transmission operators, {T ,g }k=1,2 , M = p1 + pa, and their principal

;7=1,....,m

symbols, ti(z, €), for an interface quadruple w = (z,Y, v, 7) we set
(1.11) B (W, A) = (@, Y + Mg + irder(z)),
with v, = (—1)*v as above.

Definition 1.4. We say that {Pk, T,g o, k=1,2,5=1,... ,m} satisfies the transmission condition at an
interface quadruple wy = (o, Yo, Vo, T0) if for all pairs of polynomials, qi()\), k = 1,2, there exist Uy,
k = 1,2, polynomials and c; € C, j = 1,...,m, such that:

m . m
a(\)=>2 cjtjl’¢(wo,A) + Ui(N)E1,p(wo, A)  and qa(X) = Y cjté@(w(],)\) + Uz (A)Ra,p(wo, ),
j=1 j=1
where the polynomials ky, ,(wo, \) are those defined by (1.10).

Additionally, for x¢o € S, we say that {Pk,Tlg,gp, k=125 =1,... ,m} satisfies the transmission
condition at xq if the above property holds for all interace quadruples w = (9, Yo, vo, 7o) with Y € T} (S),
v=tdf(xg)witht >0, and 7 > 0.

It should be noted that the same coefficients ¢; are used in both decompositions.

Remark 1.5. (1) There is a strong similarity in the form between Definition 1.4 and the strong Lopatin-
skii condition that is used in the derivation of a Carleman estimate at the boundary. The latter con-
dition connects the elliptic operator, the weight functions and the boundary operators given in (1.4)

in [49, 4].
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(2) Note that we did not choose any particular co-normal vectors v connected with the function 6 that
locally defines S, apart from their orientation. In fact, for any ¢t > 0 replacing v by tv, does not
affect the transmission condition of Definition 1.4. We could for instance use normalized conormal
vectors, yet keeping the directions of v.

1.3.1. Alternative formulation. Setting nj = d°ky, , we have ny, = my —m, withm, = doﬁgw. We have
ng < my. Hence, it is sufficient to consider the polynomials g, kK = 1,2, to be of degree less than my — 1
respectively. Then both polynomials Uy, are of degree less than or equal to my —ng —1 = m, — 1, recalling
that fiup is of degree 3] < my.

We then set

o Eﬂw ifj=1,...,m,
Nt D, o ifj=m+1,...,m+my,

t o ifj=1,...,m,
ifj=m+1,....,m+my,
and the linear map

(1.12) D:C™xC™ xC™ — Cpyy—1[N] X Cpuy—1[N],

Mg gm0 5 RA L m
(e,m,72) = ( 2L X gl 2l Gy + ) 02,46 )

J=1 Jj=1 J=1 j=1
The transmission condition of Definition 1.4 means precisely that the map ® is surjective. In particular this
implies that m’ = m +mj + my > my + mg = 2m.

1.3.2. Transmission condition and well-posedness. Transmission conditions across an interface for elliptic
problems can be found in [47] to prove well-posedness of the transmission elliptic problem. In [47] it
corresponds to the case ¢ = 0, as no conjugation with a weight function is performed and, there, the
transmission condition reads as follows: let Uy, k = 1,2, polynomials and c; € C, j = 1,...,m, be such
that

m . m .
0= '21 ¢it] po(wo, A) + Ut (A)k1,p=0(wo, ) and 0 = '21 cith peo(Wo, A) + Ua(A) k2 =0 (wo, N),

j= j=
then U, =0,k =1,2,and ¢c; = 0, j = 1,...,m. This condition precisely means that the map ® introduced
in (1.12) is injective in the case ¢ = 0. Above we gave a surjectivity condition that suits the purpose of the
present article. We now explain how the two conditions coincide in the cases studied in [47].

In fact if ¢ = 0 none of the roots can be real as the operator is elliptic. If #{Im o7, > 0} = #{Im o}, <
0}, such an operator is called properly elliptic by Schechter [47] and he only studies this type of elliptic
operators. In fact, if the dimension n > 3 then every elliptic operator is properly elliptic (see e.g. the proof
of Proposition 1.1 in [40, Chapter 2, Section 1]). In such a case we have m, = my /2 = py. Hence for the
map P defined in (1.12) we have

dim C™ x C"™ x C™2 = dim C,,, _1[A\] X Cpy—1[N],

asm +mj +m, = 2m = my + me, meaning that in this case the surjectivity of ® is equivalent to its
injectivity. In the case of a properly elliptic operator and ¢¢ = 0 the transmission condition of [47] thus
coincides with Definition 1.4 in the case ¢ = 0.

Note that the injectivity of the map ® may be lost for ¢ # 0 and 7 > 0, as the conjugated operator P,
may not be elliptic, yet the transmission condition we give here precisely states that ® is surjective.
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1.3.3. Invariance by change of local coordinates. We finish the presentation of the transmission condition
by observing that this definition is of geometrical nature, independent of the choice of coordinates. This fact
is important as we shall make use of local coordinates at the interface .S in what follows.

In fact, for a point x € S we consider an open neighborhood X C € of x, chosen sufficiently small so
that there exists 6 as in (1.8).

We consider two coordinate systems (X (i),w(i)), i=1,2 thatisyp@ : X - X® jsa diffeomorphism
and X is an open set in R™. We set 2(9) = ¢)())(z). We moreover set

09 =00 (W)L, X ={reXD; ()50 (z) > 0} = v (X N Qy).

We then introduce the diffeomorphism x : X1 — X2 given by x = v o (¢(1))_1 and we have
k(zM) = 22, 90 = 9 o k, yielding R(Xlil)) = X]iz).

We also define (! = po() i = 1,2, the local versions of the weight function in the coordinate patches
and we set cpl(f) = cp(i) X

k

Let Y0, 1/,(:), k=1,2,7= 1,2, be the local versions of Y and 1 in the two coordinate systems. With
standard differential geometry arguments we have the following relations:

y() _t K (x (1 ))y(2) V}gl) :tm'(ac(l))yg), dcp]gl)(x(l)) :tm’(x(l))dgo(z)( (2))’

Similarly let p,(f) and ti(i), k=1,2,5=1,...,m,i= 1,2, be the local versions of the principal symbols
of the differential operators Py and T,g. We have

D (@,6) = pP (5(@), W (@)1, 0 (@,6) = 17 (k(x), 'K (2) 7€),
If we set f,gi)(/\) = p,(j)(aj(i) Y@ 4 /\V,gi) + Z'ngp,(f) (2®)),i = 1,2, we find
70 =5, Y“ +Au£ - irda) (2 )

p,(f (/ﬁ: x(l))_ (Y( )+ )\u,(gl) + decp,(gl)(w(l))))
P (2, Y<2 + 2 irde? (2?))
é%),

which simply means that the polynomial function py, ., defined in (1.9) does not depend on the coordinate
system chosen. The same holds for the polynomial function tj defined in (1.11), which allows one to
conclude that the transmission condition of Definition 1.4 can be stated (and checked) in any coordinate
system.

1.4. Sobolev norms with a parameter. For non-negative integer m and a real number 7 > 0, we introduce
the Sobolev spaces H"(£2;) and H"(.S) defined by the following norms respectively:

m
(1.13) lull, - = > 7" ullfg,)  and uly, . = Z T2 ufin

k=0 =0
where we denote the usual Sobolev norms on €2, and S by ||.|| ;- () and |.| . (s)- The L? inner-products
on €, and S will be denoted by (.,.) and (., .), respectively. Observe that for the norm ||.||,, . on H" ()
we do not specify explicitly the integer k that refers to which side of the interface we consiaer, Q1 or Q.
In the main text there should never be any ambiguity as the norm will be used for functions that are clearly
defined on one of the open sets.
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For m € N and s € R we introduce the following interface space

HP(S) = T1 B I3(S),

j=0
equipped with the norm
2 o 2
(1.14) s, = 2:0|uj|m_j+sﬁ, u = (ug,...,Un)-
J:
If u € €°(Q) we set tr™(u) = (tro(u), ..., trm,(u)) where trj(u) = (%8,,)ju|s, with v conormal to

S, is the sectional trace of u of order j and, in accordance with (1.14), we define
m
2 2
0 @l = 2 I e
‘]:

In what follows we shall write tr(u) in place of tr"*(u) for concision. We shall also write norms of the form
|e7# tr(u)|2, ;.- actually meaning

2
m—j+s,7 "

s

2
W), =

|7 trj(u))]

7=0

1.5. Statement of the main result. We can now state the local Carleman estimate that we prove in the
neighborhood of a point of the interface, with the sub-ellipticity and transmission conditions.

Theorem 1.6. Let xo € S and let ¢ € €°(2) be such that ), = Pl € € () for k = 1,2 and such
that the pairs { Py, @1} have the sub-ellipticity property of Definition 1.1 in a neighborhood of g in ..
Moreover, assume that {Pk, @,Tg, k=12 7=1,... ,m} satisfies the transmission condition at x.
Then there exist a neighborhood W of xq in R™ and two constants C' and T, > 0 such that

(1.15) k21:2 (r! ||€Wkuk”3nk,r + |e7715 tr(uk)ﬁzk—l,l/l'r)

- m - . . 2
< O(kz12 |7 Pe(, D)ul[72(q,) + _zl |e™?1s (T (z, D)y +Tg(az,D)uz)w‘m_l/z_Bj’T),
= N j:

for all uy, = wyq, withwy, € €°(W) and T > 7.

First, this results will be established microlocally: at an interface point xo we shall assume that the
transmission condition holds for some interface quadruple (z¢, Yy, 10, 79) and we shall prove that a Carle-
man estimate of the form above holds in a conic neighborhood of this interface quadruple in phase-space;
localization in phase-space will be done by means of cut-off functions and associated pseudo-differential
operators. We refer the reader to Section 4.3. Second, we will deduce Theorem 1.6 from such microlocal
estimates.

Estimate (1.15) concerns function located near the interface and vanishing near the boundary dq. Hence
this estimate involves the transmission operators Tlg and not the boundary operators B7.

Estimates of the form of (1.15) are local. Yet, such estimates and their counterpart estimates at the
boundary proven in [4] can be patched together to form global estimates. We do not cover such details here
and we refer to [35] where this is done in the case of a transmission problem.

In Section 6 we shall prove Carleman estimates with a weight function of the form ¢(z) = exp(y¥(z))
as is usually done in practice with the parameter + chosen as large as desired. We shall provide the precise
dependency of the Carleman estimate with respect to this second large parameter.

Examples of elliptic transmission problem and weight function for which the above result applies, and
other for which it does not, will be given in Section 1.7 below. In fact, as the condition for the Carleman
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estimate to hold are geometrical, that is, coordinate invariant, we shall postpone the exposition of example
after we introduce local variables that ease the writting of the transmission condition.

1.6. Local reduction of the problem near the interface. All the different aspects of the problem we
consider —operators, sub-ellipticity condition, transmission condition— are coordinate invariant as we saw
above. We shall thus work locally, in the neighborhood of a point of the interface and choose coordinates
that allow use to ease the subsequent analysis and derivation of the Carleman estimate.

1.6.1. Choice of local coordinates. Let xg € S. There exists a neighborhood V' of x( and a local system of
coordinates = (x1,...,x,) where VN Qy C {x, > 0}, VN Q2 C {x, <0} and 2’ = (z1,...,2y-1)
parametrizes the interfaceV N S C {z, = 0}. We assume that V' N 92 = (), that is, we focus our analysis
on the interface and remain away from the boudnary.

We denote by R} the half space {£+x,, > 0} and V. = V N R’.. For our purpose here, without any loss
of generality, we may assume that V. is bounded.

In such local coordinates, in V., the differential operator’ P of order m with complex coefficients takes
the form

my . 1
Pk:Pk(:L'vD): ZPk,j(xyD,)DZm Dy =-0,, k=12,

j=1 L
where P j(z,D’), j = 1,...,my, k = 1,2, are tangential differential operators with complex coefficients
of order my — 7. Similarly the transmission operators take the form

S B ,
T] =T} (z,D) = %Tgﬂ.(x,D')D;, 1<j<m, k=12
1=
where T; g J(x,D),i=0,..., ﬁi, are tangential differential operators of order ﬁ]z — 1. The local transmission
problem we study thus takes the form
P1u1 = f1 in ‘/1 = {l’n < 0},

(1.16) Poug = f2 in Vo = {xn > O},

leul +Tius =g/, inS, j=1,...,m.
We have Py, ,,, = P () # 0. Upon dividing the functions fi, by Py ,,(z) we may assume that Py, ,,, = 1.

Calling (&', &,,) the Fourier variables corresponding to (z’, x;,) we have, for the principal symbol of P,
mg .
pk(x7 é.) = Zopk,j(x7 6,)5%7
j:

which is a polynomial homogeneous of degree my, in the n variables (&', &,).
We introduce
pk,cp($> 3 T) = pk($> £+ ZT(,O;Q(ZL')),
which is the principal symbol of the operator e”¥* Poe~7¥% viewed in the class of (pseudo-)differential
operators with a large parameter presented in Section 2.
Setting ¢’ = (x,&’,7) and ¢ = (¢, &), for simplicity we shall write py, ,(0) in place of py ,(z, &, 7) and
often py, ,(¢', &) to emphasize that the symbol is polynomial in &,,. Similarly we introduce ti, gO(ac, &,7) =

(e, € + iy (@) = (o) = t] (e &).

3By abuse of notation, in the new local coordinates, we keep the notation P and Tg ,j=1,...,m, k= 1,2, for the operators
introduced in the beginning of Section 1.
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In the present local coordinate, we have 6 = x,, and thus v = (—1)kdajn (see Section 1.3). For a fixed
point ¢’ = (z,&,7) with x € S, setting Y = Z;L;ll ¢jdxj and w = (z,Y, 7) this gives

(1.17) ﬁk,go(wa (_1)k§n) = pk(x7 Y + (_1)k§nyk + de(Pk(w))
= pi(z,§ +itdog(z))
= pk,go(wa 57 T)?

with £ = (¢, &,,) and py, , as defined in (1.9). Similarly, we have

(1.18) i (w, (~1)F&,) = 1] (2,€),

with ], as defined in (1.11).

1.6.2. A system formulation. To avoid the (—1)¥ terms in the two previous equations and to simplify a large
part of the analysis that will follow we shall write the local transmission problem as a system of equation in
V.

Without any loss of generality we can choose the open neighborhood V' to be of the form V' x (—¢,¢)
with V’/ an open set of S and € > 0.

In V_ =V’ x (e,0) we apply the change of variables (2/, z,,) — o(2/, z,) = (2/, —z,,). We denote by
P, and Tg the operators obtained from Py and 77 through this change of variable. For the principal symbols
we have

pe(x, &) = p1 (a(x);a(f)), te(z, &) =t (a(w);a(g)), for z,, > 0,

using that ‘o’ (2)71¢ = (¢, —&,). We also define ¢y = ¢y o o for x, > 0. In V; we do not apply any
change of variable and for the benefit of readibility we set P, = P», p, = pa, and ¢, = 9. The subscripts
¢ and r are chosen to keep in mind that part of the system we shall write comes from the left-hand side of
the interface and the second part from the right-hand side.

The transmission problems now reads as the following system

{PZW = fs, Poup=f, inVy={z, >0},

1.19 .
(1.19) T)ue + Tl u, = ¢, inS={x,=0}, j=1,...,m,

whereu@:uloa, fé:floa,ur = U2, fr :f2~

Weset Py, , = el Py, e 7 and Té{ o= el ﬂ;le_T@T/é. They have for respective principal symbols
(in the calculus with a large parameter of Section 2)

Pyp(@,6,7) = py (2, & +irdpy,(2),  t) (2,6,7) = 1], (2,€ + irdipy, (x)).
‘We have
Pep(x,€,7) = pr(a(x),0(€ + itdpy(x))) = pi(o(x),0(§) + itdpi(o())))

Now, as to’(x) "ty = vy = v, for a fixed point o' = (z,¢,7) with z € S, i.e., z,, = 0 giving o(z) = =,
ifwesetY = E;L:_ll jdxj and w = (z,Y, 7) we have, for p ., as defined in (1.9),

(1.20) P1p(w, &) =pi(z,Y — v+ itde: ()
= pe(x,Y + v + irdpy(x))
= pf,go(x7§77')a

with & = (¢/,&,). Similarly we have

(1.21) B (w,&n) =t] (2,€7).
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Naturally by (1.17)—(1.18) we have
ﬁl@(wv En) = pT,gO(x7 67 T)7 fg,¢(wa En) = tz’,cp(:pv 57 7_)‘

1.6.3. Symbol factorizations. For a fixed point oy = (20,&),70) € S, (V) (see the definition below

in Section 1.8) with g € S we denote the roots of pr/mo(g’o,fn), viewed as a polynomial in &,, by

Q15 - - Oy with respective multiplicities pr, 1, ..., ur, n satisfying pr, 1 + -+ + pr, ny, = M
b b Z b b Z b K Z

with my = my and m,, = ms. By [4, Lemma A.2], there exists a conic open neighborhood % of g6 such
that

(1.22) Prp(@6n) = 0, (060 by, (0 6n) 1Y, (0 6n), @ €U, &n ER,

with pi/tl o and pQ/l . polynomials in &, of constant degrees in %/, smooth and homogeneous; in % the
imaginary parts of the roots of pﬂ/rl eo( o', &) (resp. p% go( o', &,)) are all positive (resp. negative) and we have
- pr, o0 iy,
P &) = T (Gn—ay ), By (e = TT (60— )T,
+Imaor, .>0 Imar, .=0
Te.i Te.d
The polynomials pr, ., are thus decomposed into three factors in the neighborhood % of 0y For pi o the

sign of the imaginary part of their roots remain constant equal to + respectively; for pQ/Z o this sign may

change and the roots are precisely real at ¢’ = g],.
We then define the polynomial m/Mp(g’ ,€n) by

(1.23) K€ &) = 1, (0 6n) P9, o(0' En)-
As above, for the principal symbols of the conjugated transmission operators T,?/“Z o g =1...,m, we

write tz/e#(aj, £,7) = t%e’¢( o, &) where o' = (z,£', 7) to emphasize that the symbol is polynomial in &,,.

Remark 1.7. Observe that the factorizations in (1.22) depends quite significantly on the point o). They
may actually be different even for point ¢’ in the neighborhood % introduced above. We should rather write
something like

p7lv<p(gl7§n) = p;!/—l7gp7g(’)(g/7 gn)p%’go’gé(gcSn)pg/l,gp,ga(gl7 gn)? Ql S %7 Sn S R?
in place of (1.22) and set
_ .t 0
KT/K7§07Q€)(Q/7 Sn) - pf/e’<p796 (0/7 gn) pr/{7§p79{)(gl7 Sn)'
For ¢} € % we may very well have

+ / + / - / - /
p’r/lvsovgé)(g 7671) # pr/evspvgll(g 7677/)7 or p%v%@{)(g 7671) # p%y%gll(g 7677/)7

or p(r}b%%(g/, &n) # p%z,eo,g’l (&),
Yet, we shall see below that the notation in (1.22) is sufficiently clear for our purpose.
Still, if we denote by Mri(g’ ) the number of roots (counted with their multiplicities) with postive (resp.

700 &n) for @ € % we may have Mi(gg) # M;Z(g’) for some ¢’ € % .
Note that in such case we have M;;( 0p) < Mi( ¢') from the construction of the neighborhood % given in

negative) imaginary parts of p

[4, Lemma A.2]. Arguing as in the proof of [4, Lemma A.2], using the continuity of the roots w.r.t. ¢’ we
can in fact prove that for ¢} € % there exists a conic neighborhood %' C % of ¢} such that

(1.24) "i’/e,gp,gg)(gl7§n) = hr/g(gl7gn)ﬁ’"/e,go,g’l(glafn)a Q/ € %/7

where hy, (¢', &,) is polynomial in &, with coefficients that are smooth w.r.t. o' € %',
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1.6.4. The transmission conditions in the local coordinates. In the present coordinate system (z’,x,) in
V., a conormal vector v pointing from 2 to 25 is given by (0, ..., 0, v, ) with v, > 0. For the statement of
the transmission condition we may choose v = (0,...,0,1). A boundary quadruple w = (x,Y, v, 7), with
Y = (¢',0) can thus be identified with o’ = (z, &', 7).

The transmission condition of Definition 1.4 being invariant under change of variables as seen in Sec-

tion 1.3.3, because of (1.20) and (1.21), we may use the polynomials pr, , and tf:/e ,, to state locally this
condition for {PT/Z,TTJ/;,@%, j=1,....,m} at gfy = (z0, &), 70). It reads:

For all pairs of polynomials, qr, (&n), there exist Uy,, polynomials, and c; € C, j = 1,...,m, such that

(1.25) @) = gl ¢it] (0,60) + UslEa)reg (0, 6n),
and

(1.26) 0r(6n) = é it (0, 60) + Up(€n)tingo(0 €0),
for o = g

We set m% =d° (przZ SD(Q/ , )), that is independent of ¢’ € % , with the open conic neighborhood % as
introduced above, and we let m/mo(g’ ,&n) be the polynomial function given in (1.23). It takes the form

m%—m% '
K‘%,cp(glvgn) = Z K’%,i(gl) :m Q, S 02/7 gn € Rv

1=0

where k7, ; 1s homogeneous of degree my, — m% —iw.rt (&, 7). Similarly we write

j
. Te .
ti/bw(g/,fn) = %tg/l,i(g/)§%7 Q/ €EU, neR, j=12,
1=
with BZ = { and Bﬂ = ﬁg , and where tZ/Z ; is homogeneous of degree BZ){ — i w.rt. (¢, 7). We recall that
we have (see (1.3))
(1.27) me— B =m,—Bl=m—p, j=1,...,m.

Now, we introduce two famillies of polynomial functions, eZ/Z (0, .), of degree less than or equal to me, —

1,forj=1,... ,mfyl, with mi/e = m +m,, . We recall that m = (my + my)/2. We set

th, (0, 6n) for 1 < j <m,

62:/‘3(&7/7&) = {ggL—(m—l—l)

’{’/z,go(glygn) form+4+1<j5< mi/z’ ifm’% > m.

Observe that mi/z > m if m% > 0. If we write

TI’M/Z—].

(e 6) = 2 €@
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we thus obtain

. o ifo<i<pgl,
eforl <j<m, eg/,: Te 1 _%—B/Z
et 0 otherwise.

, ; K, i 1 ifj—(m+1)<i<j—(m+1)+my —m,,
eform+1<j<ml, e = Tosi—j+m+ /] 7
=9 =T {0 otherwise,

. /
if My, > M.
Forl <j <m, ez/l ; is homogeneous of degree Bﬁ){ —iwrt (&,7). If mi/z > m, setting
(1.28) Z/Z:j—i—m%—(m—km%—i—l), j:m—i—l,...,mi/l,

we see that, form+1 < j < m’%, the tangential symbol e%e ; 1s homogeneous of degree BZ& —iw.rt. (¢, 7)

and the symbol eZ/Z is homogeneous of degree BZ)@ w.rt. (£, 7).
Introducing the matrices

1/ _ (5 2/ 1 _ [ j+m _
TS = (e, ) rsizmy, + TR = () ssizm,
1<j<m 1<j<m,,

Te
by Section 1.3.1, we see that the transmission condition of Definition 1.4 for {Pr/z, Tﬂ/'z, oy =1, ,m}
at oy = (z0,&),70) € St.-(V), with zg € S, also stated in (1.25)~(1.26) with the local setting introduced
here, reads as follows

Tl / 7"2 / 0
(1.29) rank 7 (¢') = my + m, = 2m, with 7 (o) = gl(Q ) T ,

') 0 T

for ¢’ = o{,. Note that 2m is the number of rows in 7 (¢').

We find again that m’ = m +m, + m, > 2m. Moreover, there exists a 2m x 2m sub-matrix To(0{)
such that det To(gf,) # 0. As the coefficients of Tr/lz(g’ ) and 7:2(9’ ) are continuous and homogeneous of

degree ﬁf/l —t¢+1and Bﬁ/zrm — i+ 1 wrt. (&, 7) respectively, where j is the column number and i is the
line number, we then have det 7p(¢’) # 0 homogenous w.r.t. (¢, 7). It follows that det Ty(o') # 0 for ¢ in
a small conic neighborhood ¥ C % of gf,. Note that the homogeneity of the coefficients is important for
¥ to be chosen conic since det Ty(¢') is itself homogeneous w.r.t. (¢, 7). The rank of 7 (o) thus remains
equal to 2m in ¥/, meaning that condition (1.29) is valid for ¢’ in the whole ¥'.

We have thus reached the following result.

Proposition 1.8. Let the transmission condition {P%,Tﬂ/‘e, oy j=1,... ,m} hold at o, = (w0,&}, o).

Then we have m, +m, > m. Moreover there exists a conic neighborhood V' of o(, such that (1.29) is valid

foro eV.

Remark 1.9. Observe that the result of Proposition 1.8 implies the condition (1.25)—(1.26) holds for ¢’ €
V C %, yetwith fr, , defined by the symbol factorizations at 0 that is Ko = K70y 0,00 using the notation
of Remark 1.7. Now using (1.24) we see that this implies that the transmission condition also holds at ¢} .
We thus see that the transmission condition remains valid in a conic neighborhood of gf,. However, we shall
not use this aspect here. The importance aspect we shall use is the local persistence of condition (1.25)—
(1.26) for ¢’ in a conic neighborhood of gf, as stated in Proposition 1.8 (of course the two are very related).
This explains why we do not use the “more precise” notation of Remark 1.7 throughout the article.
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With the locally presistant decomposition of the conjugated opeators pr, , = p% L in the neighbor-
hood % of gf), the following states roughly the proof strategy we shall adopt:

(1) The factors p&l o associated with roots with negative imaginary parts yields two perfect elliptic
estimates at the interface and no transmission condition is needed.
(2) Each factors Ky o yields an estimate at the interface that involves trace terms. These terms will

be estimated via the actions of the transmission operators Tfj

T by means of to the transmission

condition.
Note that we have 2m — m, — m, < m by Proposition 1.8. The number of trace relations available at
the interface in (1.19) is precisely m. This indicates that we shall have at hand a sufficiently large number
of transmission relation to control the terms originating from the estimate with the factors xr, , that are of
degree mv, — mryl whose sum is my —m, +m; —m, =2m —m, —m, .

1.7. Examples. We provide several examples that illustrate the generality of the elliptic transmission prob-
lems that can be addressed through the results of the present article.

1.7.1. Second-order elliptic operators. We start by providing fairly classical cases of transmission prob-
lems, where the operators are of second order on both sides of the interface. Consider the operators
k
P.= Y Di@)D;, k=12,
1<i,j<n
with real coefficients, assumed to be ellitpic, that is, a, ; i

x € Q. Let zp € S. As above, local coordinates are chosen so that Q; = {z,, < 0} and Q3 = {z,, > 0}
in a neighborhood of x.

*) = ¥ and (ag?) (x)) > C > 0 uniformly for

A. A natural transmission problem for second-order elliptic operators. A natural and classical transmis-
sion problem can be stated with the following interface operators

k
T =(-1F T2=(-D" ¥ o@D;, k=12

1<j<n
The transmission problem thus reads
Prup = fiin&,  Pyug = foin Qo

and
= d W VDo o = @)D
Uy|s = u2|s an > any(w) iUl > an](x) U215
1<j<n 1<j<n

that is, we impose, at the interface, the continuity of the solution, as well as that of the normal flux (in

the sense of the anisotropic diffusion matrices (agjl-)) and (ag-))) . This is physically very natural, and,
mathematically, it implies that piecewise smooth functions satisfying these two conditions are in the domain

of the self-adjoint operator P = V - AV, where A = (a;j(x)) with a;;(x) = al(f) (x)ifx e Qp, k=1,2.
This configuration was treated in [33] following some works on some particular “‘conformal” cases [3, 34].
Since this example has been extensively studied, it is natural to question if the results of the present article
generalize those provided in these references.
We choose a weight function ¢(x) that is smooth on both sides of S and continuous across S. Then for
an interface quadruple w = (g, Y, v, 7), with here v = (0,...,0,1), Y = (¢/,0) = (&1,...,&,-1,0), we
have, for k = 1, 2,

{Ilﬁ,cp(wv /\) = (_1)k7
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and

%w(w, A) = (—1)kagﬁz (mo)((—l)k)\ + iT@xngpk(wo)) + (—1)k - ; » ag;-) (xo)(gj + 970y, gpk(aco)).

As aﬁfﬁ # 0 because of the ellipticity of Pj we see that fi SO(w, A) are exactly of degree 1 in \.
Observe that we can write the principal symbol of Py, k = 1,2, as

n—1
pr(@,€) = alf) (& + X ol /a)e)” + by(a,€)),
j=1
with the quadratic form

5 n—1
bi(x,&) = (all) Y (az(f)agjz) - ag?af@?)&&,

i,j=1

which is positive definite in &’. We thus find
~ (k) k . bk (k) . 2
Prp(w, A) = apy) (o) (((—1) A+ 070y, pr(20) + 3 ap; (z0)/ag,) (£0) (&5 + i1, 0k (%0)))
i=1

+ bk(l'o, fl + demeDk(wO))>

In fact, we may write bg(z, &' + itdyor) = (Ax — z’Bk)z, where Ay, and By, are functions of x, £’ and T,
homogeneous of degree one in (¢/,7), with Ay, > 0, and we thus find

n—1
Prp(w,N) = all) T ((“DFA+ir0s,0n(@0) + X alf) /alk) (20)(&; + i70s, 00 (20))
k=12 j=1

+ (D (B + z'Ak)>.

Writing py ,(w, A) = alt) (A=} (w))(A— o2 (w)), several cases can occur depending on the signs of the

imaginary part of the roots ai, k=1,2,7=1,2.

Case 1. Either pq ,(w, ) or p2 ,(w,A) has two roots in {Im z < 0}. Assume that for instance
D1,o(w, A) has its two roots in {Imz < 0}. Then k1, = 1 while kg, (w,\) is of degree 0, 1, or 2.
Let then ¢; (), g2(\) be two polynomial functions.

As %’@(w, A) =1, and fg’@(w, A) is exaclty of degree 1, we may write

g2 (A) = 01%7@((», A) + czfgm(w, A) + Ua(N)Rg,p(w, A).

by means of a Euclidean division by k2, (w, A), writing the remainder polynomial as a linear combination
of tgﬁp(w, A) and f%#p(w, A). We then have

(N = it} y(w, A) + eaff (W, A) + Ur(N) kg p(w, A),

by simply choosing U1 (\) = ¢1(\) — clt}@(w, A) — 025%730(“)’ A). The transmission condition of Defini-
tion 1.4 thus holds in this case.
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Case 2. Each symbol py ,(w, X), k = 1, 2 has only one roots in {Im z < 0}. In this case, both poly-
nomials 1 ,(w,\) and ky ,(w, ) are of degree 1 in A. As we chose A, > 0, the root of py ,(w, A) with

non-negative imaginary part is given by a,j = —Ci/ aﬁfn) (xo) + By + 1Ay with

n—1
G= (D52 av) (20) (&) + 0y, 05 (20)) + i7alk) (20) D, 01 (0) ).
‘7:

To understand whether the transmission condition holds or not, it is handy to use the matrix 7 introduced
in (1.29). Itis a 4 x 4 matrix here. Using (1.20) and (1.21), we find

-1 G -of 0
0 oY 1 0

1 & 0 —of
0 a2 o 1

T:

Observe that the rank of 7T is 4 if and only if (1 + (2 # —aS}TZ af — aS{‘;Z a; . This yields the condition
a,(fg (Bl + ’LAl) + a£L2,2(Bg + ZAQ) £ 0.

As we have A; > 0 and Ay > 0 this condition holds if A1 > 0 or Ay > 0. In fact if A;, = 0 this mean that
Im a,i =Im ai which is exluded here. Hence we have A; > 0 and A5 > 0 and the transmission condition
holds in this case.

Case 3. One symbol py ., (w, A) has two roots in {Im z > 0} and the second one has at most one root
in {Im z < 0}. Assume, for instance, that p ,,(w, A) has two roots in {Im z > 0}. Then, &1, is of degree
2. With the assumption on po ,(w, A), then, K1 ,, is at least of degree 1. In this case, we find that the matrix
7'(@’) has 4 lines and, at most, 3 columns. It cannot be of rank 4. Hence, the transmission condition cannot
hold in this case.

From the three exhaustive cases studied above we thus conclude that the derivation of a Carleman estimate
in a neighborhood of the point zy can be achieved, according to Theorem 1.6, if one chooses the weight
function ¢ so that Case 3 does not occur.

Using the computation made above we write

n—1 ,
Prip(w, ) = af) TT ((-1FA+ 3 al) /al)(@o); +irm + (~1)Y (By +i4y)).
k=12 j=1

where
n—1

(1.30) Yo = O, (o) + - ab /all) (20)0s, o1 (o)
j=1

The values of vy, are fixed by the choice of the weight function (. The imaginary parts of the roots are given
by

(1.31) Imaf = —(—1)F(ry + (=¥ 4).
If both by (2, & + iTdy o), k = 1,2, are nonpositive real numbers, that is A = 0, in particular if &’ = 0
and 7 > 0, then, the imaginary parts of the roots of jj ,(w, A) coincide: Imaf = —(—1)Fry;, & = 1,2.

In particular, this requires

(1.32) 2 >0 if v >0, and 1 <0 if v <0,
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as, otherwise, we face the occurence of Case 3. The case y; > 0 and 2 < 0 is thus excluded.
Let us assume that v; > 0 and 2 > 0. On the one hand, as we have assumed A > 0, the root a%
remains in {Im z > 0} and the root a3 remains in {Im z < 0}. On the other hand, we have

Ima% =717 — Ay, Ima% = —T7v + As.
Hence, Case 3 does not occur if and only if Im a% >0 = Im a% < 0, that is,
0< Ty <Ay = 0< 7y < A;.
A sufficient condition is then

(1.33) 1A e, o0
v2 o Az

Observe that in the case where ¢y, are only functions of x,,, then A; and A are independent of 7 and (1.33)
becomes a necessary and sufficient condition for the transmission condition to hold.

The case y; < 0 and 72 < 0 leads similarly to the sufficient condition

2 A2 e .
1 A
Finally, we consider the case 73 < 0 and o > 0. Because of (1.31) we then find that Case 3 cannot

occur with this choice of «; and 9. This particular choice, is however not very interesting, as it somehow
corresponds to an observation® of the transmission problem both from €5 and ;. The choice 7; > 0 and
~9 > 0 correspond to an observation of the transmission problem from 2, only. This is relevant for pratical
applications, for instance, in unique continuation problems, as one may want to find uniqueness across an
interface, having information on the solution on one side of the interface only. Similarly, the choice v; < 0
and 2 < 0 corresponds to an observation from €2; only.

Remark and open question. Note that with (1.33) we recover the condition stated in [33]. There, in the
case v = @i(xy,) it is proven to be sharp for a Carleman estimate to hold. This raises the following
question: is the transmission condition presented here necessary and sufficient for the Carleman estimate
to hold? Sufficiency is the subject of the present article. Necessity is clear in particular cases as shown in
[33] but it is not clear in general. Second-order transmission problems, in the case where ;. depend on x,,
and also 2’ would be a natural field of investigation, but the question extends to higher order transmission
problems.

B. Two ‘“non communicating” Dirichlet problems. If we consider

Tl=Ty=1, T?=-Ti=1,
observe, then, that the transmission problem

Piuy = fiiny,  Pyug = fain Oy,
and
Tllul‘s + Tzlug‘s =01, Tfuus + T22u2|5 = g2,

corresponds two having the following two problems

Pruy = f1, ws = (91 +92)/2,
and

Pyug = fa, ugg = (91— 92)/2,

“This interpretation makes sense in the case ¢ = ¢(zr). Then v; = O, ¢r. In Carleman estimates, “observation” region are
associated with regions where the weight function is the largest.
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that is, two well-posed elliptic equations with independent Dirichlet boundary conditions.

Using the notation and symbol computations of the previous example, let us assume that one of the
symbols Py, ,(w, ), say for k = 1, has two roots in {Im z > 0}. Then, the matrix 7 introduced in (1.29)
takes the form

11
_ OFO
B I S O

0 0 )

and thus cannot be of rank 4. Hence, to derive a Carleman estimate, according to Theorem 1.6, we need
to avoid an occurance of two roots associated with the same symbol py, ,(w, ) in {Im z > 0}. With ~y,
as defined in (1.30), and the imaginary parts of the roots given in (1.31), we note that we then need to
impose 71 < 0 and 792 > 0. As explained in the previous example, this corresponds to observing the
transmission problem from both sides of the interface S. This is totally sensible here, as the example we
consider represents two totally decoupled ellitpic problems: observing from one side of the interface cannot
yield any information about the system on the other side. As Theorem 1.6 implies unique continuation
properties (see Section 7) we see that it is very natural that the Carleman estimate cannot be derived, unless
observations are made on both sides.

1.7.2. Higher-order elliptic operators. Here, we consider an example that involves both a second- and a
fourth-order elliptic operator. In R?, we consider the operators Py (z, D), k = 1,2, such that in the local
coordinates as above, the principal symbols are given by

pl(x7§17§2) = fg + bl(x7§1)7 p2($,§1,§2) = fg + b%(x7§1)7

where by (x,.), k = 1,2, are two positive definite quadratic forms. We assume that the principal symbols of
the transmission operators are given by

th(z,61,6) = -1, th(z,&1,&) =1,
t1(2,&1,8) = —&, t5(z,&,6) =6,

t?(£7£17£2) =0, t%(£7£17£2) :gg
We choose a weight function p(x) = ¢(x2) that is smooth on both sides of S and continous across S. Then
for an interface quadruple w = (o, Y, v, 7), with v = (0,1), Y = (&, 0), we have for yi, = —iT¢},

fi@(w,)\) =-1, %730(“”)‘) =1,
73%7@(&),)\) = (A + ), %’@(W,A) = (A - /L2)3,
1o, 2) =0, B,wA) = p)

For smooth function ¢y, k = 1, 2, such that ¢y, is only a function of z2, we assume that 9,1 (z¢) > 0 and
Ozyp2(x0) > 0. We obtain

Prp(w,A) = (A —a1)(A — az),

a1 =170, ¢1(x0) + i/ b1(20,&1), o = iT0xp1(x0) — iv/b1 (20, &1)-

We thus have Im «; > 0. The sign of Im as may however vary. We also have

where

4

Prp(w;A) = IT(A = 5))

Jj=1
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where

,8]' = —iT@chpg(aco) - 6i7r(2j_1)/4 V bg(l’(), 61)7 Jj=12,34.

As Oy,02(z9) > 0, this forbid all the roots to be in the upper complex half plane. Then Im 5; < 0 and
ImfBy < 0. Yet, the signs of Im 3 and Im (3, are equal and may vary. We have

Im B3 = Im B4 = —70,,02(x0) + /b2(20, 1) /2.

According to Section 1.6.4, using (1.20) and (1.21), we have,

1 -3 3

T = -1 m 0 T 0 3u3 —2up
0 1 0 0 —3up 1
0 1 0

Casel. Im oz < OandIm 83 = Im B4 < 0. Inthis case, we have 71 o, (w, A) = (A—aq) and Rg ,(w, \) =
1. We then have

T2 =
1

and 7}2 = Idy4. Recalling the form of T in (1.29), we have

o
7,00

T: 77777 | 1

7L 00 Idy

whose rank is 6 as rankﬁ1 = 2. Hence, the transmission condition holds in this case, by its formulation
given in (1.29).

Case 2. Im a3 > 0 and Im 33 = Im B4 < 0.In such case, we have 71 ,(w,\) = (A — a1)(A — a2)
and g ,(w,A) = 1. As m; = 0 then no matrix 7,* enters in the composition of 7. Still, this matrix has
the same form as in Case 1 with the fourth column removed and, in this case, the rank is 6 implying that the
transmission condition holds in this case.

Case 3. Imaz < 0 and Im 33 = Im B4 > 0.In such case, we have Ky ,(w,\) = (A — 1) and
Rop(w, A) = (A — B3)(A — B4). We thus have

B34 0
7 = —ay e —(B3 + Ba) B34
1 1 —(B3 + Ba)

0 1
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Thus, the matrix 7 reads

et 0 -y 0 0

0 1 0 1 0 0
_ 1 -3 4l 0 B3 B4 0

0 3u3 —2u 0 —(B3+B4) BB

0 —3ux 1 0 1 —(B3 + Ba)

0 1 0 0 0 1

Computing its determinant we find det(7") = ba(z0,£1)? that does not vanish as here & # 0. In fact, & = 0
yields Im ag = 70,,¢1(x0) > 0 in contradiction with the assumption Im o < 0 made here.

Case4. Imaz > 0 and Im B3 = Im B4 > 0. In this case we have 71 ,(w, \) = (A — a1)(A — az) and
Rop(w,A) = (A — a3)(A — a4). In such case the matrix 7 is a 6 x 5 matrix. Its rank cannot be 6. The
transmission condition cannot hold in this case.

The four exhaustive cases studied above reveal that the weight function  needs to be chosen so that Case
4 does not occur. Hence, the following condition needs to be fulfilled:
ImBs=ImpBy >0 = Imay<O0.

Recalling the forms of the roots derived above this reads

0 < 79y (w0) < Vb2(w0,61)/2 = 0 <71¢h(z0) < /b1(z0,&1).

A necessary and sufficient condition is then

90,1(330)< 201 (0, 1)
@b (o) ba(xo,&1)

Since by (z,&1)/ba(x,&1) is bounded from below, for any i, locally in x, we see that this yields a precise
condition on the weight function ¢. The condition prescribes a minimal relative jump of the normal deriva-
tive of the weight function across the interface (going from {z3 < 0} to {2 > 0}). Note that one can also
provide a sufficient condition in the case ¢ depends also on the x; variable, as in Example 1.7.1-A.

1.8. Neotation. If V' C @i we denote the semi-classical unit half cosphere bundle over V' (in the cotangen-
tial direction £¢’) by
S;,(V)={(z,¢,7); z eV, eR" 1 reRy, [P+ =1}

The canonical inner product in C™ is denoted by (z,2z’)cm = Z;-”:_Ol zj2'j, forz = (20,. .., 2m—1),2 =
(26, ..., _,) € C™. The associated norm will be denoted |25, = Z;-”:_Ol |22

We shall use some spaces of smooth functions in the closed half space. We set

—n
L (Ry) = {u\@i; u e (R}
For two u,v € (R, ) we set
(’LL, U)+ = (u7 U)LQ(Rﬁ) (u\xn:O+ ) ’U|:cn=0+)a = (u\xn:O+ ) U|xn:0+)L2(Rn—1) :

We also set

ully. = HUHH(]M) |u|rn=0+‘a = |u|mn:0+‘L2(Rn*1).
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In this article, when the constant C' is used, it refers to a constant that is independent of the large parameter
7. Its value may however change from one line to another. If we want to keep track of the value of a constant
we shall use another letter.

In what follows, for concision, we shall sometimes use the notation < for < C, with a constant C' > 0.
We shall write a < b to denote a < b < a.

2. PSEUDO-DIFFERENTIAL OPERATORS WITH A LARGE PARAMETER

Parameter-dependent pseudo-differential operators have proven to be important tools for the derivation
of Carleman estimates. The general aim is to obtain a pseudo-differential calculus with a large parameter,
and then to derive estimates with constants that are independent of the parameter. Often such a pseudo-
differential calculus is referred to as a semi-classical calculus.

2.1. Classes of symbols. We first introduce symbols that depend on a parameter.

Definition 2.1. Let a(p) € €°(R™ x R"), o = (,§,T), with T as a parameter in [Tyin, +00), Tmin > 0,
and m € R, be such that for all multi-indices o, 5 € N we have

@.1) 0200a(0)| < CapX™ VI, @ €R", € R, 7 € [rin, +00),

where A = |(§,7)] = (\5 > + 7'2) % Thus differentiation with respect to £ improves the decay in £ and T
simultaneously. We write a € ST'(R™ x R™) or simply SI". For a € SI" we denote by o(a) its principal
part, that is, its equivalence class in S™/S™ !,

We also introduce tangential symbols. Let a(d') € €®°([R} x R*™ 1Y), o = (2,&,7), with T as a
parameter in [Tmin, +00), Tmin > 0, and m € R, be such that for all multi-indices o« € N", § € N1 we
have
8;‘8?,&(9/) < C’aﬁ)an_‘ﬁ', x € Ri, ¢ e R, 7 € [min, +00),
where A\x = |(&',7)] = (|¢']* + 72)%. We write a € -??T(RZ x R"=1) or simply ST'.. For a € ST, we
denote by o(a) its principal part, that is, its equivalence class in ST, /ST L

We also introduce symbol classes that behave polynomially in the &, variable. Let a(p) € € (RZL_ x R™),
with T as a parameter in [Tyin, +00), Tmin > 0, and m € N and r € R, be such that

m . 4
ao) = Zoaj(@’) b, a; € ST, 0=1(d,6), o = (z,€,7),
j:

with x € RZL_, £ €R", T > Tynin, and &, € R. We write a(p) € ST’T(R:L_ x R™) or simply S7"".

Note that we have S™" ST ™™™ if m,m’ € Nand r € R. We shall call the principal symbol of
a the symbol

m

a(a)(e) = X ol(a;)(e)g),

Jj=0
which is a representative of the class of a in S7"" /ST =1

Note that S7"" ¢ S™*". For example consider a(z,&,7) = |(¢/,7)|&, for [(¢',7)] > 1. We have
ae€ S NSy and yet a ¢ S2. In fact observe that differentiating with respect to ¢ yields

08 a(z,€,7)| < Cal (€', 1)1l

An estimate of the form of (2.1) is however not achieved for || > 2. A microlocalization is required
to repair this flaw and to use the two different symbol classes in a pseudo-differential calculus (See [21,
Theorem 18.1.35]).
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Finally, we define the corresponding spaces of poly-homogeneous symbols. Such symbols are often
referred to as classical symbols; they are characterized by an asymptotic expansion where each term is
positively homogeneous with respect to (£, 7) (resp. (&, 7)):

Definition 2.2. We shall say a € S, (]R” xR") or simply ST, (resp. ST',. Cl(@n x R or simply ST )

if there exists a¥) € ST (resp. ST 7), homogeneous of degree m — j in (£,7) for |(£,7)| > ro, (resp.
(&, 7) for |(&,7)| > r0), with ro > 0, such that

(2.2) a~ S a9, inthe sense that a — z a") € STV (resp. S??T_N_l).
Jj=20
A representative of the principal part is then given by the first term in the expansion.

Finally for m € N and r € R, we shall say that a(g) € S”" T(R x R™) or simply ST, if

T,cl
2 / 1 . m +r /
a(p) = z aj(0")&, witha; € STril , 0= (0,&).

The principal part is given by Z;-”:O o(a;) (0 )5% and is homogeneous of degree m in (£, 7).

2.2. Classes of semi-classical pseudo-differential operators. For a € S"(R™ x R") (resp. SZ}CI(R" X
R™)) we define the following pseudo-differential operator in R™:

23) a2, D,m)u(z) = Op(a)u(z) = 2m) " [ “Da(z, &, m)a€) dE,  ue S (R),
RTL
where 7 is the Fourier transform of u. In the sense of oscillatory integrals we have
a(z, D, T)u(z) = Op(a)u(x) = (2m)~" ff ¢ a(x, & T)uly) dE dy.

We write Op(a) € WI'(R") or simply W' (resp. W7*(R") or simply W" ). Here D denotes D,. The
principal symbol of Op(a) is 0(Op(a)) = o(a) € S™/S™ ! (resp. S C1/5’:;11)

Tangential operators are defined similarly. For a € S?}T(R L x R™) (resp. ST 4 (RY x R™)) we set

24 a(z, D', m)u(z) = Op(a)u(z) = (2m) "D [ &V Da(e, & Tyuly, ,) dE' dy,

R2n—2
for u € #(R'}), where 2 € R;. Here D’ denotes D,,. We write A = Op(a) € \I/TmT(@i) or simply W',
(resp. U7 Cl(RJF) or simply W' ). The principal symbol of A = Op(a)is 0(A) = o(a) € S??T/S{LT_I
(resp. S'TIIJT Cl/ T,, Cl
Finally form € N, r € R, and a € S7"" (resp. S'/) with

<>=; a;(0)&, a; € ST (resp. ST, 0= (&),
we set

CL(I’,D,T) = Op(a) = Z CLj(I',D/,T)Dg“
=0

and we write A = Op(a) € 7" (RY) or simply W7"" (resp. W' (R'}) or simply W "}). The principal

7,cl

symbol of A s 7(4)(0) = o(a)(0) = Y- o(a;)(¢)h in S /ST (resp. S /5™ ).

7,cl

We provide some basic calculus rules in the case of tangential operators.
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Proposition 2.3 (composition). Let a € S7'; (resp. ST, ) and b € Sfr’?;( resp. S-’,-rf;’d ) be two tangential
symbols. Then Op(a) Op(b) = Op(c) € \I/?,im, (resp. \I/q}iﬁ/) with ¢ € S-Tr’?;rm/ (resp. S-T:fg”,) defined by
the (oscillatory) integral:
c(d) = (a#b) () = (2m) "V 17V Da(e, & +of 1) ba’ + 20, € 7) dy dif
(=)

= 2 —0ga(d) 95b(e) + 7,
lo|<N &
where ry € ST N (resp. ST N ) is given by
—i)N IN(1—s)N-1
v s -
T (2(7r)(2z—1> e ( a.) [[e= WL a(w, & + o, 7)0%b(! + sy, xn, €, 7) dy dif ds.
a|l=N .

Proposition 2.4 (formal adjoint). Let a € SY!. (resp. S-"r"fml ). There exists a* € ST'. (resp. S-"r"fml ) such
that

(Op(a)u,v), = (u,0p(a*)v),,  w,ve.L[RL).
and a* is given be the following asymptotic expansion
a*(¢') = 2m)" "V [ e WA 4y s, & 40 ) dy dif
(i)

- | ‘2: al ogogald) +rn, rye€ S-??;N(resp. S?T_?{),
al<N :
where
—i)N IN(1—s)N-1
[ s il _
TN = (2;)(31_1)(1'_1\75 % [fe iy 777)3?, Gz + sy, x, €+, 7) dy'diy ds.

We denote Op(a)* = Op(a*). We refer to Op(a)* as to the formal adjoint of Op(a).
A consequence of the previous calculus results is the following proposition.

Proposition 2.5. Let a(o') € ST, (resp. ST 1) and b(0') € STm/T (resp. ST ), with m,m’ € R. Define
ho') = Dy (b0e@) (o) € ST 1. Then we have

Op(a)* Op(b) — Op(@b + h) € WFF™ =2 (resp. Wyt =2),
or equivalently a*#b —ab — h € S??:fm,_2 (resp. S-"r"bjgl_z).

For semi-classical operators in the half space with symbols that are polynomial in &,, we also provide a
notion of formal adjoint.

Definition 2.6. Letb € S (resp. S”*7), with

T,cl
b(z,D,T) = Zobj(w,D’,T)Dfl, b; € S-Tr'?:r_j (resp. S?:_rzl_j)
j:

We set

b(x,D,7)" = D 'bj(l’,D,,T)*.

J
n

s

0

J
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In other words, in this definition we ignore the possible occurrence of boundary terms when performing
the operator transposition.

Note that for a € ST, we have [D,,, Op(a)] = Op(Dpa) € YT, and more generally, for j > 1, we
have

) Jj—1
[D%, Op(a)] = kzo Op(ak)wa Qg € Szlrtr,cl?

where the symbols oy involve various derivatives of a in the z,-direction. As an application we see that if

we consider a; € ST ” Cl " then we have

m ) .
> Dlaj(z,D',7) = > aj(z,D',7)D],

J=0

I

where a; € STm;ifrr and its principal part satisfies 0'(a;) = a; in ST, J+T/Sm 7171 Hence

0( > D%aj(:E,D',T)) => aj(:n,él,T){fl mod ST’T_l.

j=0 j=0
From the calculus rules given above for the tangential operators and the above observation we have the
following results on the principal symbols.

Proposition 2.7. Leta € S (resp. S o ")and b € ST ( resp. S o )wzth

!

a(0) = 3 a;()El, blo) = S bi()El, 0= (06, & = (,€,7).

7=0 Jj=0
(1) We have a(x, D, 7)* € U"" (resp. \I/Z?J) and

3

/Sm 7’—1)'

T,cl

o(a(z,D,7)") = Z ()€ € ST /ST (resp.

T, Cl
Moreover we have Op(a)* — Op(@) € U7 (resp. \IJ:LJ_I).
(2) a(x,D,7)b(z,D,T) € G esp, UTETTET ) and

7,cl

o(a(w, D, T)b(, D7) = 5 a;(@)by(e)EH € Spmre fgmamte
0<j<m
0<k<m/

m+m/ r+r’ ; am+m’ r+r'—1
(resP‘ ST cl /ST,Cl )

We have Op(a) Op(b)u — Op(ab)u € gt =1 (resp. g =1y

T,cl

2.3. Sobolev continuity results. Here we state continuity results for the operators defined above using the
Sobolev norms with parameters introduced in Section 1.4. Such results can be obtained from their standard
counterparts.

1/2
Let A\r(¢/,7) = (7'2 + ¢ ]2> and At := Op(At). For a given real number s, the boundary norm given
by (1.14) is equivalent to the following norms (see (1.13) for the definition of |.|, ;):

2.5) .= Y A u=(ug,. . um) € (7 (R 1))™

Moreover, we define the following semi-classical interior norm

(2.6) lull?, s = IASull?, , we L (RY).



ELLIPTIC TRANSMISSION PROBLEMS 27

Proposition 2.8. If a(o) € S7"", withm € Nand r € R, then for m' € N and r' € R there exists C > 0
such that

|Op(a)ull < Clluf ue S ([RY).

m/ ' m~+m/ r+r/ 7

A consequence of this results and Proposition 2.7 is the following property.
Corollary 2.9. Leta € S7"" and m' € N and s € R. We have

la(z, D, 7)"u —a(z, D, T)ull Clul ue S (RY).

m/,s,T — m+m/ r+s—1,7°

The following simple inequality will be used implicitly at many places in what follows when we invoke
the parameter 7 to be chosen sufficiently large. This will then allow us to absorb semi-classical norms of
lower order.

Corollary 2.10. Let m € Nand s € R and £ > 0. For some C > 0, we have

[t sr < CT ] ue SR

m,s,T m,s+6,7

This implies that ||u| < |u| for 7 sufficiently large.

™m,s,T m,s+4,T

3. INTERFACE QUADRATIC FORMS

For a(o) € SP% (R, x R™), we have

T,cl
P N ed . p—j+o n—1
(I(Q) = Z aj(@) n’ with a; € ST,T,CI (R-‘r xR )’
=0
and for z = (20, ...,2) € CP! we set
/ L /
3.1) Yald's2) = 3 a;()z.
=0

We let m, and m, be two integers. For applications of the results of this section we shall use the values
of my, that come with the elliptic transmission problem we consider in the present article.

Definition 3.1 (interface quadratic forms). Let w = (wg, wy) € (- (Ei)f We say that

N
s s s s
g('w) = Z (‘Afwf|mn=0+ + Arwr|mn:0+7 Bﬁwﬂxn:(ﬁ + Brwr\xn=0+)87
s=1

with Af( = af/z (z,D,T)and By = bfl (z, D, ), is an interface quadratic form of type (my — 1,m, — 1,0)

mr) —
with € coefficients, if for each s = 1,..., N, we have af/l(g), by, (o) € S, C{l
oy +or=20,0= (Q,7£n) with Q, = (:L'aélaT)'

Forw = (2',27),w = (2',2") € C"™ x C"™, g/t = (zg‘,...,z:{fr/ )7 = (Ege,...,EZfT/ _4) €
£ 14

lor
“IRY x R™), with

C™e with the interface quadratic form & we associate the following bilinear symbol

N
By (¢ w, W) = 3 (Sa (¢ 2') + Saz (¢, 2)) (Tn (¢, 2°) + B (¢, 27)).
s=

with Eag/ and Ebg;/ defined as in (3.1).
2 4
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Definition 3.2. Let # be an open conic set in R"~! x R"~1 x R, and let 4 be an interface quadratic form
of type (my — 1,m, — 1,0) associated with the bilinear symbol Yo (0, w,W). We say that 4 is positive
definite in W' if there exists C > 0 and R > 0 such that
2
A1),

for any w = (z,2"), 27 = (zge,...,z:{fr/ ) € C"e, and o' = («',¢',7) € W, T > 0, such that
£
A=, 7) = R

me—1 : mye—1 )
Re g (0”,an = 0F,w,w) = O30 Ao )2 4 5 pqmtdter)

Then we have the following Lemma

Lemma 3.3. Let # be an open conic set in R"~' x R~ x R and let 4 be an interface quadratic form
of type (my — 1,m, — 1, 0) that is positive definite in #'. Let x € S%T be homogeneous of degree 0, with
supp(x‘xn:m) C W and let N € N. Then there exist T, > 1, C > 0, Cn > 0 such that
Re % (Op(x)u) > C([tr(Op(x)we)|2,—1.6,.r + [tr(OPO)UR) 70 1001 )
2 2
- CN( ’tr(ug)‘mg—l,a'(—N,T + ‘tr(uT’)’mr—l,or—Nﬂ')
foru = (ug,u,) € (Y(@Z))z and T > Ty.

Proof. The interface quadratic form can be written as

my—1 .
. 00 N me—1—j+0s my—1—k+o, 0k
%(u) = kZ (ijAT Dnué|mn:0+aAT Dnuf\xn:m)a
j7 :0
my

—1
rr A Mr—1—j+0r g my—1—k+o,r Nk
+ Z (ijAT Dnur\xn:OJﬂATr TDnur\gcn:(ﬁ)

0
J,k=0

me—1m,—1

vl A My—1—j+0¢ g my—1—k+o k
" ‘Zo kz(] (GrjAT Dy, =g+ A" "Dy, =0+ )
‘]: =

my—1my—1 .
lr A Mr—1=j+0r ;i my—1—k+oy 0k
+ ZO kZO (GrjAT Dy, —o+> At Dyttt =0+ ) o
]: =

L " o
where G = Op(gﬁ) € \I/%]-md, with i,i = 7,.
We set the 2m x 2m-matrix tangential symbol

gl gt ,

g(o) = @), 97 (@)= (gie(0) osicmi1 . i,i =7

gM grr 0<k<m,, —1

We introduce x € S%T that has the same properties as xy with moreover 0 < y < land Yy = lina
neighborhood of supp x. We then set

g=xg+ (1 —X)I2m,
where I, is the 2m x 2m identity matrix.
As ¥ is positive definite in #” we have, for some C' > 0,

Re (g(0", , = 0")w,w) > C Weam, o €W, weC™
Therefore we have, for some C’ > 0,

(3.2) Re (&(¢",2n = 0N )w,w) > C'|W|gam, o €R" xR xRy, weC¥™,
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For a function v we define the my,-tuple functions Vi, = (vy, 0, . - - Uy _1) by
14
mr/ —|—0'77 —k k -
U7Zk_A ‘ Dnvr/uwn:o+7 k—o,...,m%—l,

We then have, for N € Z,

m'r -1 m'r -1

2 mr/ +0or,
(3.3) 2_: UT/&k‘N,T = ‘A Te e ™ DfLU%'mn:m |N,r
- T O—T/Z k) 2 2
- k_O ‘A D U7Z mr/ —1 k sT ‘tr(/lh/e) ‘mr/e—Lo'r/e +N,T :

We set uy, = Op(x)ur, and introduce Uy, = (ur, o, - .- ,’LLr/hm%_l) and Uy, = (W, 05+ W)y m—1) @S
above:

m’I/lJFU’I/Z_l_k

mry —i—Ur/ —1-k
— L 0 k
u%,k = AT

k
Dnu%‘xnzo+, Q%,k - AT Dng”yz‘xn:(yf’ k= 0, e ,m% — 1.
Setting ‘U = (U, U,.) we obtain
g(ﬂ) = (Op(g|xn:0+)g7 Q)a
Writing g = g + r withr = (g — I2,,)(1 — \) we find

g(g) = (Op(g|mn:0+ )Qv Q)a + (Op(r|mn:0+ )Qa Q)@

As the supports of 1 — y and  are disjoint, with the pseudo-differential calculus, for any NV € N we have
for some C'y > 0

(3.4) |(OP()e, =0+ )T, U) | < Ox U2y, -

Next, from (3.2) with the Garding inequality in the tangential direction we deduce that for some C' > 0 we
have

(3.5) Re (Op(&)s,—0+)U, V), = C U3,
for 7 sufficiently large. Combining (3.4)—(3.5) with (3.3) yields the conclusion. O

Proposition 3.4. Assume that the transmission condition of Definition 1.4 holds at o) = (z0,&,70) €
S;T(V) with xg € S (see also (1.25)—(1.26) and (1.29) for a formulation in the local setting). Then there

exists 71 a conic open neighborhood of o), in Vi x Rt x Ry such that

7) 2
ZA2(m 1/2—p7) ‘E Q Z )+Etl,¢(gl7zr)‘

+ Z )\ 2(my—1/2— Bz |2 Q Z ‘ + Z )\ 2(mr—1/2— Br)
J=m+1 j=m+1

< Z /\2(ml 1/2—3) |Zz| n Z )\ 2(myp—1/2—7) |z |)

j_

2 (d,2)|?

€r,o

for o€ U and 2t = (zge, L ) € Cc™.

7m7/

We recall that 57 = (ﬁg + ﬂﬂ)/2 for j = 1,...,m, and that we have (1.27).
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Proof. With the transmission condition holding at o{,, by Proposition 1.8 there exists a conic open set %
neighborhood of o, where condition (1.29) is valid. Observe that K = %4 N St ..(V') is compact, recalling
that V. is bounded.

Let o) € K and 7 (¢}) be as in (1.29). We have

rank 7 (¢}) = rank T (o)) "T (¢}) = 2m,
Forw = (z‘,2") € C*™, 2t = (zg‘, . ,szT/ _,) € C"e, recalling that 2m = my + m,., we thus have
4
(T(0h) T (0)w,w) > C|w/|2s,,, for some C > 0.
Observe that we have

T T el = T T T T (eh) N T2 (0)) 'T2 () 0
T "THe)  TA(eh) 'TH(eh) 0 T2(0)) "T2(0h)
Forw = (z{,2"), 2t = (zge, cee n/fr/ 1) € C™e, we have

(T() ‘T (eh)yw,w) = |'T}! <@’1)z T [ + T2 L + [ T2 (07 [

UL O A4 meZl J I\ T 2
Zl ZO t) (o)) + 'Zo t;:(01)%
= i=
& + s + 2
+21\Z€jm )2 Zejm()”
j:

= Z ‘Etzw(gh )+2 (Q/l7zr)

2 e / £y |2 m’f / ry|2
+ Z |2ej+m(glvz )‘ + Z |Eej,+m(glvz )| .
g=1 b =1 "
We thus obtain

m
l
];1 Eti,w (Q?l) z ) + Eﬂw (Q?l) Zr)

2 TN (e /T 2> 0 ry|2
+ 3 B (en, 2"+ X [T gemlel, 2] 2 1(25 2%
j=1 b¢ =1 "%

By continuity this inequality remains true in a small neighborhood of ¢} in XC. Using the compactness of
we thus find

m 2 mz 2 myr 2
3° 15, (¢2) 45y (0| + 38 + 3 (8, (0 )] 2 (a2,
=il tee T =1 tp =1 T

for o' € K and 27t = (zg L ) € C™7e. Introducing the map

> Zing, —1
Mo = (x,tn), o = (z,n) € @i xR xRy, t>0,

as we have 2 = {M;o'; t > 0, o' € K}, we find

m

2 By (Mg, 2 + 2y (Med 27)
=1t

2 my /12 mr ~ ~
+ 3 [Sgim (M 2| + 3 [Sgim (Mie 2] 2 |2, 2P
j=1 Lp j=1 e
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where t = A7t = |(¢',7)| L and 2% = (3", ... ,2:/;%_1) € C™e, with 2" = ¢ "I HEH T yielding

- j_m'r T
; (¢ ) AT sy, ()|

Ly 1\~ (Bl —met1/2)
Z P‘T o Ztl
J=1 #

AT met1/) g

my j o
—(B)—my+1/2) N2 2
+ Z:l P‘T ¢ ¢ Ze%Lm(Q’,Z )‘ + JZ:I eg‘:—pm(@’,Zr)‘

J
myp—1 . my—1 .
2O TR S
J= J=

With (1.27) we obtain the sought result. ]

4. PROOF OF THE CARLEMAN ESTIMATE

As is usual in the proof of Carleman estimates we consider the following conjugated operators

PT/MO = e Pr/ze_no%'

2m,0
T,cl

As el Dje” " = Dj + irjipy, € Uy, we see that Py, € W

T,cl?
. 2m,0
by p%’cp(g) = pr/e (:L',é + ZT(’DL/Z (:L')) = S‘[_Zli .

Similarly we recall that we set

. Their principal symbols are given

j
/Bf/e 70

T,cl

T, =% T,; e Tlew
A

7(,4P_ j:1,...,m,

. 87,0
with principal symbols tr, ,(0) = tf/l (z, &+ z'Tch/e (x)) €S Je

T,cl
We start the proof of the main theorem with a microlocal estimate that exploits the transmission condition.

4.1. Estimate with the transmission condition. Let us first consider a polynomial function with roots with
negative imaginary parts in a microlocal region. Then, we have the following perfect microlocal elliptic
estimate. We refer to Lemma 4.1 in Part I [4] for a proof.

Lemma 4.1. Let h(0.,&,) € S¥° o = (x,¢,7), with k > 1, be polynomial in &, with homogeneous
coefficients in (£',7) and H = h(x, D, ). When viewed as a polynomial in &, the leading coefficient is
1. Let % be a conic open subset of Vi x R~ x R,. We assume that all the roots of h(¢',&,) = 0 have
negative imaginary part for o' = (x,&',7) € % . Letting x(0') € S%T be homogeneous of degree 0 and
such that supp(x) C %, and N € N, there exist C > 0, Cn > 0, and 7. > 0 such that

2 2 2 2 2
”OP(X)w”k,T + ’tY(OP(X)w)’k_LUzT <C|H OP(X)U)H+ + CN( HwHk,_N,T + ’tr(w)’k_1,_zv,7)7
forw € y(@i) and T > T,.
Now, we consider a point in the cotangent bundle, at the interface where the transmission condition holds.
We then obtain an estimate of an interface norm.

Proposition 4.2. Assume that the transmission condition of Definition 1.4 is satisfied at oy = (zo, &), T0) €
i"rJ(V) with xg € SNV. Then there exists %, a conic open neighborhood of o, in Vi X R x R, such



32 M. BELLASSOUED AND J. LE ROUSSEAU

that for x € S%T, homogeneous of degree 0, with supp(x) C %, there exist C > 0 and 7, > 0 such that
C(Itr(OP(x)v) [y —1,1/.7 + 10DV 3, —1.1/5.7)
< gl 1T Jotisnmot + Tttt oy oo o+ 1 Peigell2 + [ Prgvl
+ HWH2 —1r T H’Ur”mr 10t ‘tr(vf)‘zml—l,—l/zr + ‘tr(vr)”?nr—l,—l/2,T )
for T > 1, vg, v, € Y(@i)
Proof. As the transmission condition holds at gf, the local smooth symbol factorizations of Section 1.6.3,
Pro(€6n) = Py, (€ 6n) Ky (0, 60),

is such that condition (1.29) is valid for ¢’ € % with Uy a conic neighborhood of g}, in V_+ x RP1 x R,.
Moreover, by Proposition 3.4 there exists % C %, a conic open neighborhood of g{,, such that

Z )\(mé 1/2— Bz |E Q Z)‘ 4 Z )\( —1/2—572)
Jj=m+1 j=m-+1

2
Eei,w(gl’zrﬂ
my—1
+ZA Ay, (a4 Dy (@) 2 X T z AT,
for o € % and z7¢ € C"c. We now choose % a conic open subset, neighborhood of gf,, such that

% C . We let x be as in the statement and we also choose §¥ € S%T homogeneous of degree 0 with
supp(X) C % and Y = 1 in a neighborhood of %/. Then,

M (me—1/2-67)) . my my—1/2—8]
@an X TR, (@A 3 A
j=m+1 R j=m+1

. 2
X()2, (¢ 7))

(m— 2 me—1 o — . my—1 o — .
+2A VNS, (@ + 2y (0 ) 2 D TR g
= ]:

for o/ € Z and 27t € C""e.
We set’ Ev, » = Op(xer, ) and we define the following interface quadratic form (see Definition 3.1):

_ j ] 2
=1 |Tzvﬂou£\wn:0+ + TTvsﬁu”mn:OJr |m—1/2—5j7'r

i

j 2 A j 2
+ . Z |Ef7wu£‘xn:0+|m+mz+1/2—j;r + . Z ‘ETWUZ‘IHZOJF|m+m;+1/2—j;r'
]:m+l ]:m—i—l

SThe introduction of X is made so that )Ze]; is defined on the whole tangential phase-space.



ELLIPTIC TRANSMISSION PROBLEMS 33

m., . We thus

Observe that with (1.28) Wehavem+mr7z+1/2—j = my, —1/2—53){ forj=m+1,..., 7

find that ¥s is of type (m‘ — 1,m" — 1, %) and its bilinear symbol is given by

m

~ 2(m—1/2—87 - ey - ==
Egs(gl’ W, W) = Z /\T(m /2P )(El‘% w(gl’ ZZ) + Etl ¢(Ql’ ZT)) (Eti w(Q/, ZZ) + Et?-v(g/’ ZT))
Jj=1 ' ' ' '

m;

- 2 1/2-8 o —

LR S AT (oS (4,7
j=m-+1 Lyp Ly

P 2mp—1/2—5) o , —

+ ‘X(Q )‘ Z AT " " Zej (Q 7Z7“) (Q ’ZT’)7
j=mat1 T, T,

with w = (2%, 2"), W = (z°,2") € C™ x C™ . Hence (4.1) gives
EgS(Q w, W) > E /\2(ml 1/2—j) |z£| + Z /\2(mr—1/2 ) |Zr|2
i=0 '

for ¢’ € % . For any N € N, by Lemma 3.3 there exists 7, > 1, C' > 0, C'y > 0 such that

(4.2) Ys(v) = Re%s(v) > O ’tr(ﬁz)ﬁml—l,l/w + ’tr(ﬁr)lgnr—m/w)

- Cn( ‘tY(W)‘?m—LUz—N,T + ’tr(vr)‘er—1,1/2—N,T)=
with v = (vy,v,) and vy, = Op(x)vy,, for v = (v, v;) € (Y(@Z))z and 7 > T,.

The functions p% SD(g/ ,&n) and /ir/“p(g’ ,&n) in the symbol factorization recalled at the begining of the

proof are polynomial in &, with homogeneous coefficients in ¢ € % and the leading coefficient of
pryl gO(Q’ ,&n) is equal to 1. For o' € %, their degrees are constant and equal to mryl and my, — m% re-

spectively. We smoothly extend p&l g0(@’ ,&n) for o outside of % keeping the leading coefficient equal
to 1 and we denote this extension by ]3% o In fact we have xpr, , = Xm/mopfz o = X)ZH7Z’4P]§% o We

thus obtain Op(x)P, , = Op(p, Py, so) Op(x) Op(X#7,,,) + Ry, with Ry, in U™~ by the last point of
Proposition 2.7. Observe that xxr, , is a well defined symbol.
Applying Lemma 4.1 to Op(ﬁf/z eo) and wr, = Op(X#, ,)vy, We obtain

HOP(X)WH2 ~ +10p0)w |2, + [tr(Op(x)we )|2 g FIOPOOWN -y
< || Op(5; sp) Op(x)we||>. + H Op(pr.,) Op(x H+ + lwelly, -y + el

2
+‘tr(w€)‘ - 1_N7—+‘tr(wr)‘ T —1,—-N,r

—N,T

< HOP PZ@UZH_F“‘ HOP rgovr|‘++H’UéHme,—lr"i'H’UTHmT,—lr
2 2
+ ”Uf”mz, N,t + HUT’Hmr, N,t + ]tr(w)]mz 1,—N,7 + ‘tr(vr)’mr—l,—N,T
< HPZ @UZ”_,’_ + ”P SDUT’HJ,- + HUZHml,—l T + HUT”mr,—l T

2 2
+ ‘tr(vf)’ml—l,—N,T + ’tr(vr)‘mr—l,—N,T )
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yielding

| ) me1
2. |D;, Op(X)wZ|xn:0+‘mZ—1/2—j,T+ Zo | Dy, Op(x )wr\xn—w‘mr —1/2—j7
- =

2 2 2 2 2 2
S WPeovelly + 1Brpvrlly + el 17 + 1orlln, —1 7 + Ttr(ue) 1 v + T (on) o, 21 v s

Recalling that eZ/+m+1 = m/wgﬁl, j = 0,...,m; —1in % we have D, Op(x) Op(XHr, )V, =

mry —my; +j,—1
Eﬁ/;rgﬁ vy, + Ry, juy, with Ry, 5 € U, e by the last point of Proposition 2.7. We then ob-

tain, for 7 chosen sufﬁmently large

v

Jj+m—+1 2
|E —T|$n:0+‘m:—1/2—j77

2 melt Fimtl
U£‘$n=0+|mz—l/2—j,7'+ Z ‘ T,

SN Pepvel? + 1 Prgorll + llvell; + ol

my,—1,7 my,—1,7

2 2
+ 1tr(ve) [, —1,—1 /2,7 + [tr(0r) [0, —1. 2172, »

which we write, by a shift of indices,

/

m[ . 2 m; . 2
(43) . Z ‘Eg,kpw\wnZOJr |m+mz+1/2—j7‘r + . Z ‘Eivﬂpyr‘wn:(fr |m+m:+1/2—j7T
j=m-+1 J=m+1
< ”Pf QOUZH+ + HPT SDUT”+ + ”vf”mg,—l T + ”UT’HmT 1,7

2 2
+ [tr(ue)l,—1,-1/2, + 100 (0) [ 212127 5
Collecting estimates (4.2) and (4.3) we thus obtain

tr(We) 1,1 /2, 1000 ) 00211 /27 S 2 |T£],<p2€\xn:0+ + T Pl T’\:vn—0+‘m 1/2-Bi 7

+ 1 Prgvelly + 1 Prporlly. + lloell; + ol

my,—1,7 my,—1,7
2 2
+ [tr(vo)lim,—1,-1/2,- + [tr(0r) 5, —1—1/2. -
Writing TZJ'W Op(x) = Op(x)T} + [TV t Op(x)] we observe that (using that m, — 5? =m, — Bl =

m — B7)
|Tfj,eoyf|rn=0+ + 1 U =0+ ‘m—l/Q—Bj,T N ‘Tg,sovfll‘n:()* + Tg,sovf\%FO*‘m—l/?—Bf,T
1O g sp—1/2- 5710 F 150 lg1m, 172317
+ 6oy —1,-1 /2,7 + [t0(0) 1, —1, 2172, -
This concludes the proof. O

4.2. Estimate with a positive Poisson bracket on the characteristic set. If we consider the case of two
symbols a,b such that the Poisson bracket {a,b} is positive on the characterisitic set {a = b = 0}, an
estimate with the control of a volume norm can be achieved.

Lemma 4.3. Let U be an open set of V.. Let a € S0 and b € S

degree m in (7,§), and set
Qap(v) = 2Re (Av,iBv),, A=a(z,D,7), B=0b(x,D,T).

be real symbols homogeneous of
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We assume that
a(e) =b(e) =0 = {a,b} >0, o= (2,{7),
forxz €U, (&,7) # (0,0). Then there exist C > 0, C' > 0, and 7. > 0 such that
Cllolly. < C' (1403 + 1Bull% + It () 511 /2,7 ) + 7(Qap(v) — Re By (v))),
for > 7. and for v € € (R.,) with supp(v) C U, with B, satisfying

| Bap(v)] < C| tr(”)|7271—1,1/2,r'

We refer to [4] for a proof.

4.3. A microlocal Carleman estimate. With the results of Sections 4.1 and 4.2, if the transmission condi-
tion holds at one point of the cotangent bundle at the interface and if the sub-ellipticity property also holds
we can then derive a Carleman estimate that holds microlocally, that is, with a cut-off in phase-space applied
through a tangential pseudo-differential operator.

Theorem 4.4. Let xqg € SNV. Assume that {Pr/e, cpr/e} satisfies the sub-ellipticity condition on a neighbor-
hood of xq in V... Assume moreover that {P’F/e , 1 TZ, o g =1,... ,m} satisfies the transmission condition
at oy = (x0,&p,70) € S5 (Vy). Then there exists % a conic open neighborhood of gfy in V. x R"™! x R

such that for x € S-Ow, homogeneous of degree 0, with supp(x) C %, there exist C > 0 and 7, > 0 such
that

4.4)
1Pl + | Brgorl® 4 3 T2 vejmmor + T granmos | T ol 1y + o2
LoVl PeTE g e Clwn=0" T LrpUr|z, =0T _1/2-pi ¢ llme, =1, rlme, =17
+ |tr(vg) |2 + |tr(v,) 2 >CO(r 7o 2 e 2
) lme—1,-1/2,7 rNm.—1,-1/2,7 = “\T P(X)WHmZ,T‘FT | P(X)’Uerr,T
2 2
+ [t (OP(X)ve) 1,12, + [EE(OPO) V) 5 1172, )
forT > Ty, vg, v, € y(@i)
Note that there are remainder terms, viz.
2 2
HUT/leT/Z,—l,T’ ‘tr(vr/z)|m%—1,—1/2,7

that concern the unknown functions vr, everywhere and not only in the microlocal region % we consider
here. The norms of these remainder terms are weaker that those in the r.h.s. of the estimates. When patching

microlocal estimates of the form of (4.4) together these remainder terms can be dealt with; see Section 4.4
below.

Proof. Let Ug be a open neighborhood of zg in V; with the sub-ellipticity condition holding in Uy.
In the local coordinates we have chosen we have

m -
Pr/l = Pr/z (J}, D) = Zl Pr/w-(a:, D/)D%,
]:
with P, ., =1 (see Section 1.6). We decompose the conjugated operator Pr, , = e e Pr/le_w% as

P7/lv§0 = P77Z72 + ZP7/Z717 P77[72 = §(P7(7§0 + P%#P)’ P7/Z71 = 2_Z(P7/Z74P - P7lv§0).
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The operators P, 5 and P, ; are thus formally self-adjoint. Their respective principal symbols ar, (z, €, 7) €

7,0 r—1,1
S;% /" and by, (x,&,7) € S;% Je are both real and homogeneous. We set pr, , = ar, + ibr,. We then set

QUly(v) = 2Re(Ay,vy,,iByvy,) s, Ay, = Op(ay,), By, = Op(by,).
Note that we have
m, 7—1
(4.5) Py, = Ay +iBy, + Ry, Ry e,
The sub-ellipticity condition of Definition 1.1 reads
Py0(2,6,7)=0 = {ar/z,br/l}(a:,f,T) >0

for x € Up and (£, 7) # (0,0). Note that the case 7 = 0 is achieved because of the ellipticity of P (see
Definition 1.1 and Remark 1.2).

Let now % be as given by Proposition 4.2, possibly reduced so that % C Uy x R"~! x R, and let y be
as in the statement of the theorem. By Lemma 4.3 we then have, for v», = Op(x)vy,

. _ 2
“6) Qly(vy,) —Re By b, (vg) 2 C7 ey, -

= (Mgl + 1B L+ @)L, 11n0):
with 93&% b satisfying

2
‘@a% b, (wy,) ‘ ~ |tr ”T/e)|m%—1,1/2,r'

With Proposition 4.2, making use of the transmission condition, we obtain for M chosen sufficiently large

(47) Re ‘@ae be( ) + Re ‘@ar br( ) + M Z ‘Tg,cpvelfn:0+ + T;‘y,gov7‘|$n:0+ ‘m_1/2_ﬁj,7—

2
>C ’tr( )’ml 1,1/2,7 + ’tr( )’mr—1,1/2,7 C/( HUZHml,—l . HUT”mr,—l T
2 2
+ [tr(ve) [, —1,—1 /2,7 + 1t (ur) |, 1 —1 /2, + ”Pé,goW”Jr + HPr,soUrH+ )-
Summing (4.6),, (4.6),., and (4.7) we find, by taking 7 sufficiently large,

|Pegelly + 1Prgvrlly + 3 |T0 pvefe =0+ + ThpUrian=ot n1/0-gi
J:

¢
+ Qap(we) +Qup(w,) + 7 (1Al + 1 Bewelly + 14r [ + [1Br, |3)
2 2 2
+ HUZng,—l,T + HUTHmr,—l T |tr(vé)|mg 1,-1/2,7 |tr(v7")|m7n—1,—1/2;r

2 2
2 T ( ||Uf||me77' + H’U’r‘HmT,T) + |tr(y£)|mz—l7l/2,r + |tr(y7‘)|m7«—171/2,7' .
Finally, noting that

T (| Ay |13+ | Byon |12) + QU (wy,) < |I( A%HBT/@)’U%
~ ‘ P% oV, 1| 4 + HU/eHmr/ —1,7
‘ Pr/u Ul + HU/szT/ 1,7

by (4.5) and pseudo-differential calculus (last point of Proposition 2.7), we obtain the sought microlocal
estimate. g
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4.4. Proof of Theorem 1.6. We shall patch together estimates of the form given in Theorem 4.4.

With z as in the statement of Theorem 1.6 the transmission condition holds for all boundary quadruples
w = (z0,Y,1,7) With Y € T} (09), vy € N, (5), and 7 > 0. In the local coordinates that we use here
this means that this property is satisfied for v = d,, equal to the (oriented) unit conormal to {z,, = 0}
and all o' = (x0,¢,7) with ¢ € R" ! and 7 > 0. (See Section 1.6.4.) It is fact sufficient to consider
(¢, 7)eSyt={(¢, ) eR", 720, |(¢,7)| =1}

By Theorem 4.4 for all (), 70) € S’fr_l there exists a conic openneighborhood %, of 0y = (%0,&),70) in
V, x R"~1 xR, such that the estimate (4.4) holds. In fact by reducing 02/96 we can choose %96 = 096 xT o
where 096 is an open set in V; and I" A is a conic open set in R"~! x R . With the compactness of S’}r_l
we can thus find finitely many such open sets %; = O; x I';, j € J, such that SCLF_I C Ujegl';j. We then set
O = N, 0, that is an open neighborhood of xo in V. and we set ¥; = O x T'; C %;. We also choose an
open neighborhood W of zg in R™ such that W+ =W NV, € O.

We then choose a partition of unity, x; € S%T, j € J,on W, x R"! x R, subordinated by the covering
by the open sets 7;:

> Xj(g’) =1, for o = (z,¢,7) € Wy x R x Ry and |(¢,7)] > 19 > 0, supp(x;) C ¥;.
jeJ

The symbols x; are chosen homogeneous of degree 0 for |(£', 7)| > ro > 0. We set x=1- ZjeJ X; and

have x € ﬂNeNS{]TV.
As supp(x;) C %;, we can apply the microlocal estimate of Theorem 4.4:

4.8)

2 2 | A i ; 2 2 2
”P@PU[”-;- + HPT’,<PUT’H+ + Zl |Téwvﬁ\xn=0+ + T?‘Z7QDUT|"En:0+ ‘m_l/g_gjﬂ— + ”UZHmZ,—l,T + ”UT”mr,—l,T
‘7:

2 2 - 2 2
+ |tr(vé)|mz—l,—l/2,7' + |tr(v7‘)|m7«—17—1/277 2 T 1( ||,UZHmZ77' + ||,U7‘||m,,«77')
2 2
+ [tr(Op (i) vo) i, —1,1 /2,  182(OPOXG))0r) 5 1 12,7

for 7 chosen sufficiently large and for vy, = e e ury, With ur, = wr, " with wry, € €2°(W). (see the
+

statement of Theorem 1.6).
Observe then that, for any NV € N,

‘ m,T S Z “Op(Xj)UT/Z
jeJ

vy, mr H 0PIy, 5%”©P<Xﬂ% e V%

and
|tr(v7l)‘m—1 1/2,7 < Z ‘tI‘( p(Xj)U%)|m—l 1/2,7 ‘tI‘( : p(i)”%)‘m_l 1/2,7
b b jEJ b b b} K
’S Z ‘tI‘( : p(Xj)U%)|m—l 1/2,7 ‘tr(v%>|m—l —N,7°
jEJ b b b b

Summing estimates (4.8) for each ; we thus obtain

2 2 L j 2 2 2
1Pevelly +1Prpvrlly + 2 T} pveten=0+ + T oVrian=0t |10 + 10l -1z + Vel 1 s
‘7:

2 2 — 2 2
+ |tr(vé)|mz—l,—l/2,7' + |tr(v7‘)|m7«—17—1/277 2 T 1( ||,UZHmZ77' + ||,U7‘||m,,«77')

2 2
+ b1 (o), 1,172, + 10050 —1,1/2, 5
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Choosing now 7 sufficiently large we obtain
2 2 j 2
Il + 1P+ 5 Tt + Tt s

-1 2 2 2 2
Z T ( HvéHme,T + HUTHmT.,T) + |tr(vz)|me—l,1/277 + |tr(v7‘)|m7«—171/2,7' ’
Setting vr), = el ur, the conclusion of the proof of Theorem 1.6 is then classical. O

4.5. Shifted estimates. As in [4] it may be interesting to consider shifted estimates in the Sobolev scales.
Namely we may wish to have an estimate of the following form.

Corollary 4.5. Let zg € S and let ¢ € €°() be such that o), = pjq, € €°°(Q) for k = 1,2 and such
that the pairs { Py, @1} have the sub-ellipticity property of Definition 1.1 in a neighborhood of xq in Q.
Moreover, assume that {Pk, ©p, T,g k=12 7=1,... ,m} satisfies the transmission condition at x. Let
¢ € N. Then there exist a neighborhood W of xq in R"™ and two constants C and 1, > 0 such that

_ 2 2
(4.9) k21:2 (T e un iy, + €715 b0 () 7y — 1,1 /2,7 )

T & T ] j 2
= C<k21:2 72 P, Dyurllp + 21 | €715 (T{ (2, D)u1 + Tg(%D)u2)|s|z,m—1/2—ﬁj,7)v
= =

for all wy, = wyq, withwy, € €°(W) and 7 > 7.

The proof of this corollary can be adapted from that of its counterpart at a boundary, namely Corollary
4.51n [4].

4.6. Interior-eigenvalue transmission problems. Interior-eigenvalue transmission problems are very re-
lated to the transmission problem we have considered. In fact, for €2, a bounded open set in R™, we consider
two elliptic operators P; and P, of respective orders m; and mo, as in Section 1, yet both defined on §2.

In addition, we consider 2m = m; + my boundary operators operators

(4.10) T/ = St (x)D% k=12 j=1,...,m,
lo| <51

with 0 < ﬁ,i < my, and where the coefficients ti () are €°° complex-valued functions defined in some
neighborhood of 2. Setting 37 = (5{ + ﬁg )/2 we assume that

4.11) my—pBl=ma—pB=m—-p, j=1,....,m.
The interior-eigenvalue transmission problem consist in resolving a system of the form

(Pk_ka)uk:fk inQ, ,k=1,2
Tluy +Tyus = ¢’, inT, j=1,...,m.

We refer to [12, 7, 42, 8, 9, 44, 43] and the reference therein for more details on this very active field of
research.

In the analysis of such problems, resolvant estimates are central. In the proof of such resolvent estimates,
a Carleman inequality at the boundary can be a very efficient tool. Here, we provide such an estimate in
a neighborhood of a point of 02, as the proof is in fact given by the analysis of the previous section, in
particular, as we used the system formulation of Section 1.6.2, which yield a formulation close to that of the
interior-eigenvalue transmission problem.

Let 29 € 092 and V be a neighborhood of g where Q = {x,, > 0}. We consider two smooth weight
functions ¢; and o in V' such that Plizn=0t = P2|z,=0+-
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With the notation of Sections 1.6.2—1.6.3, with the letter ¢ replaced by 1 and the letter r replaced by 2,
and moreover Py (resp. P,) replaced by P, — 7 (resp. P, — 7"*2), we say that the transmission condition
holds at x¢ for {P, — 7™, T} ¢r, k = 1,2, j =1,...,m}if for all ¢’ = (xo,&’,7) and for all pairs of
polynomials, ¢1 (&), g2(&n), there exist Uy, Ua, polynomials, and ¢; € C, j = 1,...,m, such that

4.12) 06 = 3 et (€6 + UiEm (@ €).
P2

and

“.13) B(60) = 3 et o (¢ 60) + ValEamald €0).
P2

Then the proof of the following local Carleman estimate is the same as that of Theorem 1.6.

Theorem 4.6. Let xy € 0N and let v, € €° (), k = 1,2, as above, such that the pairs { P, — 7™, 1 }
satisfy the sub-ellipticity property of Definition 1.1 in a neighborhood of xy in Q. Moreover, assume that
{Pk — ka,T,g, v, k=12, 7=1,... ,m} satisfies the transmission condition at xy. Then there exist a
neighborhood W of x¢ in R™ and two constants C and 1, > 0 such that

— T 2 T 2
@14 3 (rM ey, .+ 1w 110 )

k=12
m . .
< C(kZ le7* (P, D) — 7™ Jug||72 + 2 lerrien (77 (z, Dyur + T3 (z, D)uz)jpaly, 12— +)
=1,2 j=

for all wy, = wyq with wy € €°(W) and T > 7.
5. A PSEUDO-DIFFERENTIAL CALCULUS WITH TWO LARGE PARAMETERS

The weight function we shall consider below is of the form ¢(x) = exp(yy(x)). The function ¥ is
assumed to be €, piecewise smooth, and to satisfy

0<C<v¢ and|p®], .,

We take v > 1. The goal of what follows is to achieve estimates as in Theorem 1.6 with the explicit
dependency upon the additional parameter ~v. This can be done by the introduction of an appropriate pseudo-
differential calculus. Assumption of the function vy will be made in Section 6.1, namely, the strong pseudo-
convexity conditions, to obtain a Carleman estimate.

< oo, keN.

5.1. Metric, symbols and Sobolev norms. Here, by ¢ and ¢’ we shall denote ¢ = (z,&,7,7) € R® X R™ X
R, xRy and ¢’ = (z,¢,7,7) € R® x R" 1 x R, x R,.
We set 7(x) = 7yp(x). Following [31] we consider the metrics on phase-space

|dg]*

g =*|dz]” + it 1 = (o) = |(7(2), &) = 7(x)* + ¢,
and on tangent phase space
— ~2(dzl? |d¢'|? ith u2 = 12(0) = |(7 N2 — 2 ()2 "2
gr =7"ldz|" + o i pr = pr(e) = |(7(2), &) = 7(=)" + £,
T

for 7 > 1 and v > 1. Below, the explicit dependencies of 4 and pt upon o and ¢ are dropped to ease
notation.

The metric g (resp. gr) along with the order function u (resp. ) generates a (resp. tangential) Weyl-
Hormander pseudo-differential calculus as proven in [3 1, Proposition 2.2]. Note that this uses the conditions
0 < C <1 and HWH < o0.
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For a presentation of the Weyl-Hormander calculus we refer to [39], [21, Sections 18.4—6] and [20].
Let a(z,&,7,7) € €°(R™ x R™), with 7, as parameter in [Tyin, +00) and [Ymin, +00), Tmin > 0,
Ymin > 0, and m € R, be such that for all multi-indices ~, 8 € N we have

5.1

52!8?&(9)‘ <Gy ™l 0 € R X R™ X [Tinin, +00) X [Ymin, +00).

With the notation of [21, Sections 18.4-18.6] we then have a(g) € S(u™, g)(R™ x R™), which we write

S™(g) for simplicity®. The associated class of pseudo-differential operators is denoted by U™ (g) =
(", g) (R x R?).

Similarly we define tangential symbols and operators. Let a(x, &, 7,7) € € (RZL_ x R* 1) and m € R,
be such that for all multi-indices v, 8 € N we have

(5.2)

106a(0)| < Cogn i, o € R X R x [Tnin, +00) X [inin, +00).

We then have a(¢') € S™(gr) = S(u, gr)(R] x R"~1). The associated class of tangential pseudo-
differential operators is denoted by U™ (gr) = (1™, g7) (R} x R*~1).
Note that the condition Hw(k) | < o0, k €N, is used to prove’ that 7 € S(7,9) N S(7, gr).

With o = (2,&,7,7) € R" x R" x Ry x Ry (resp. o' = (x,&,7,7) € err x R x Ry x Ry) we
shall associate § = (z,&,7(z)) € R® x R" x Ry (resp. & = (z,&,7(z)) € R x R" x Ry).

Note that if a(z,&,7) € S, with the notation of Section 2.1, satisfying moreover, for all multi-indices
7,8, 8" € N, with 8 = g’ + 3",

53) 00000 a(w.6,7)| < Crpar (€)™, 2 €R™, € €R™, F € [rmin, +00),
i.e., differentiation w.r.t. 7 yields the same additional decay as a differentiation w.r.t. £, then

a(z,&7,7) = a(x, &, 7(x)) € S™(g),

which we shall write a(¢) = a(g). Similarly if a(x,¢’, 7) € ST, with the same additional property regard-
ing differentiation w.r.t. 7 we have a(¢’) = a(g') € S™(gr). In what follows we shall assume that symbols
in S7* and ST, have this additional regularity property. We then say that a € S™(g) (resp. S™(gr)) is ho-
mogeneous of degree m with respect to (&, 7) (resp. (&', 7)) if we have a(o) = a(@)) (resp. a(¢’) = a(d'))
with a(z,§,7) € S7* (resp. a(x, &', 7) € S7',) homogeneous of degree m in (&,7) (resp. (¢, 7)).

We shall also use the following classes of symbols S(7"uf, gr) = 77S™(gr) on @i x R"~1, for
r,m € R. The associated class of tangential pseudo-differential operators is denoted by 7"V (g1) =
FrU(ui, gr)(RY. x R™1). We have the following lemma whose proof is similar to that of Lemma 2.7 in

[31].
Lemma 5.1. Letr,m € R and a € 7"S™(gt). There exists C' > 0 such that for T sufficiently large
) ’ ! " —_n
| (Op(a)u,v)y < C||Op(F" ui Ju|| | Op(F™ p7 Yol . we L (RY).
forr=r"+r"m=m'+m".
The dependence upon the metric g is kept explicit here as we shall actually have to face two calculi simultaneously, associated

with the weight functions on both sides of the interface. Interactions between the two calculi will only occur at the interface where
they coincide. See Section 5.2.

TThis condition was not written in [31] and [4]. This is however made precise in [30], including the proof of 7 € S(7,g) N
S (7:7 gT) .



ELLIPTIC TRANSMISSION PROBLEMS 41

This contains the estimate
| Op(7* &) O u”+ < C||Op(7**” TAR) uHJr, ue SR,
for s, p € R. Note also that we have
(54) 1 Op(F" s )ul| = [| Op ()7

for 7 chosen sufficiently large.

Next we say that a(z, £, 7,7) € 7S (gr) on R, x R" 1 if there exists a sequence al¥) € 49775~ (gy),
with y~7a(/) homogeneous of degree m + r — j in (§ ,7) for |(&',7)| > 7o, with o > 0, such that

. N
(5.5) a~ Y aY, inthesensethat a— > aV) e yNFtlFrgm=N-1(g)
j=0 J=0

A representative of the principal part, denoted by o (a), is then given by the first term in the expansion. Then
we shall say that a(g) € 751" (g) on R, x R" 1 if

<>=z ()&, withaj € 7S (gr).

The principal part is given by Z;” oo (a;) (o )fn With these symbol classes we associate classes of pseudo-
differential operators, 7" W™ (gr) = 7" U7 (gr)(R} x R"™1) and 77U/ (g) = 77U (g)(R], x R*71),
as is done in Section 2.2.

We define the following semi-classical interior norm, for m € N,
(5.6) lull?, 7 = > 0Py ) Dfull,  we S ®Y.
]:
We also set, form € Nand o € R,

5.7) lul?, 0z = | OP(u9)u]% » ~ z |Op(u ) Diul2,  we S (RL).

mch

At the interface {z,, = 07} we define the following norms, for m € Nand o € R,

(5.8) [tr(u)[2, o5 = z | Op (g =77 )t (u)|

Py u e 7 RY).

5.2. Transmission problem with two calculi. In the present setting, using the system formulation of Sec-

tion 1.6.2 we shall in fact work in {z;,, > 0} with two weight functions, namely or), = ¢ . With each
weight function we shall associate a pseudo-differential calculus, classes of symbols and pseudo-differential
operators, and Sobolev norms, as introduced in the previous section.

We shall thus define 7, (x) = Ty7,(z),

e R TV

the associated metrics

|d¢|? |d¢’|?
g, = 72|d$|2 + = 91,7, = 72|CL’17|2 + =,
Ha, K.,

and the symbol classes S™ (g7, ). S™(gr7,). Sty (9r7,) So’” (gr7,) and the associated operator classes
\I’m(gr/e)’ \I/m(gT,T/z)’ \II:;?(QT,%)’ \I,leﬂ(g'rf/e)'
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Accordingly for a function defined in {z,, > 0} we denote by ||u|| the associated

norms as in (5.6)—(5.7).

m,%r/e and Hu”m,afr/e

Observe that the two calculi coincide at x,, = 0, that is, on the interface, since Q,Z)g‘xn:m = ¢T|mn:0+,
implying ¢\, —o+ = Pr|p,—o+ and (|, —g+ = fr|z,—o+- In particular we shall keep the notation
[t (u)

m,o,T = ’tr(u)‘m,o‘,ﬁ = ’tr(u)’m,o,f’r

as in (5.8) for interface norms.

5.3. Interface quadratic forms.

Definition 5.2. Let w = (wy, w,) € (. (Ri)f We say that

N
_ s s s s
g('w) - Z (‘Afwfk(:n:(ﬁL + Arwr|xn:0+7 BﬁwﬂxnzoJr + Ber’\xn=0+)87
s=1

with A?e = af/l (x,D,T,v)and Bf.‘Z = b?e (x, D, T,7), is an interface quadratic form of type (my — 1,m, — 1, 0)

Ly —1,0’7' —
with €°° coefficients, if for each s = 1,..., N, we have af/l(g),bfe(g) € S:;/e Je (gT,r/Z)(]Ri x R™),
with oy + o, = 20, 0 = (0, &) with o = (x, &', 7,7).
As in Section 3 we associate to 4 a bilinear symbol Y4 (o', w, W).

We let # be an open conic set in R* 7! x R"~! x R,

Definition 5.3. Let & be an interface quadratic form of type (my—1, m, — 1, o) associated with the bilinear
symbol 3y (o', w,W). We say that 94 is positive definite in W' if there exists C > 0 and R > 0 such that

1%,

P )€ C"e, and §" € W, such that T gm0t = HTrjg g+ 2

’ m7z_l

R, with ¢" = (2',¢',7,7) and " = (¢, &', 7(2', zn, = OT)).

my—1

. —1 .
7 2(my—1—j+o 012 M 2(my—1—j+or
Re Xy (0", 2n = O+7W7W) = C( > NT,E\;L:‘ZM e)‘zj| + 2 :uTﬂ“|aEn:0+ )
j=0 7=0

foranyw = (z',2"), 27t = (zg‘, .

We have the following Garding estimate.

Lemma 5.4. Let # be an open conic set in R"~' x R~ x R and let 4 be an interface quadratic form
of type (0, mg — 1, m, — 1, 0) that is positive definite in #'. Let X € S-?-J be homogeneous of degree 0, with
supp()z‘xn:m) C W andlet N € N. Then there exist T, > 1, v, > 1, C > 0, C'y > 0 such that

Re¥ (Op(x)u) > C( |tT(OP(Xé)W)|3m_1,ge,; + |'51"(OP(XT)U7«)|72W._1,UT5)
— On( ’tr(ué)ﬁnz_ml—]v,% + ’tr(ur)ﬁnr_mr—]v,%)

n

foru = (ug,up) € (LRD)E 7> 1 v > i and o, (0) = X(8y,) € 83z with o = (2, 7,7) and

&, = (2,&,7,(x)).
The proof is similar to that of Lemma 3.3 using that the two calculi, associated with v, and ), respec-

tively, coincide on the interface S = {z,, = 0}. In particular note that Xlzn=0+ = Xr|z,—0+ @S T¢ coincides
with 7, at the interface.
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6. CARLEMAN ESTIMATE WITH TWO LARGE PARAMETERS

With a weight function of the form ¢(x) = exp(y1(x)), some condition on % can yield ¢ to fulfill
the sub-ellipticity condition of Definition 1.1. Those are the strong pseudo-convexity conditions introduced
by L. Hormander (see [18], [19, Section 8.6] and [22, Section 28.3]). We shall see that along with the
transmission condition they are sufficient to derive Carleman estimates with an explicit dependency upon
the additional parameter . In fact the strong pseudo-convexity condition is also necessary if one considers
a weight function of this form; for such question we refer to [31].

6.1. Strong pseudo-convexity. We recall the notion of strong pseudo-convexity and then adapt it to the
geometry we consider.

As we restrict ourselves to elliptic operators in the present article, the classical notion of strong pseudo-
convexity then reduces to the following one (the reader can compare with Section 28.3 in [22]).

Definition 6.1 (strong pseudo-convexity up to a boundary). Let O be an open set. We say that a smooth
function ) is strongly pseudo-convex at x € O w.r.t. p if ' (x) # 0 and if for all £ € R™ and 7 > 0,

(s-Wc) p(x, &+ ity () = 0 and {p,w}(w,f + ity (z)) =0
= %{ﬁ(m,g — ity (x)), p(x, € + z'ﬁ//(x))} > 0.

Let U be an open subset of O. The function 1 is said to be strongly pseudo-convex w.r.t. p in U up to the
boundary if (s-Wc) is valid for all x € U.

Definition 6.2 (strong pseudo-convexity at an interface). Let §2, 21, (o, and S be as in Section 1. Let 1) be
a continuous function such that ¥y, = 1|, are smooth for k = 1,2. Let U be an open subset of <) that meets
S. The function 1) is said to be strongly pseudo-convex w.r.t. P; and Py in U up to the interface if both ),
k = 1,2, are strongly pseudo-convex w.r.t. Py in Uy, = U N Qy, up to the boundary.

Note in particular that for x € S NU (s-Wc) is required to hold for both k = 1 and k = 2.

6.2. Conjugated operators and transmission condition. Here we use directly the notation introduced in
Section 1.6.2 with the weight functions of the form ¢r, = exp(vy1)y, ), which is sensible as the transmission
is a coordinate invariant property.

The principal symbol of Py, , = el Pr/ee_w% € \I/Zf’o(gr/e) in the present calculus is
. - - 0

Py (2. 6,7) = py,(2,€ + iy, (2)) = py, (2, € + iFy, ()00, (2)) = py,. (2, & Ty, (2)) € S5 (97,),

Similarly, the principal symbol of Tﬂ/'mo = 7 Tf/'z e e \I’fl’“o(gr/z), J=1,...,m,is
. . ‘ . N : B 0
B (@67) =t (@,¢ + irgd (1)) = £, (2,6 + iy, ()0 (@) = £, , (2, 6,7,(2) € ST(gp,).
The dependency upon  is hidden either in ¢ or in 7.
: _ ot _ ot
Setting Ky, , = p%’@pg/hw and £, 4 = pr/lvagw, we then find
K%,Sﬂ(‘r’é’T) = ’{%ﬂﬁ(x’g’%% (z))-

From these simple observations we thus conclude that {P%, T,;l, ¢, j = 1,...,m} satisfies the trans-
mission condition at (z,&), 70), with xg € S, if and only if {Pr/e,Tf/Z,w, j = 1,...,m} satisfies the
transmission condition at (x, &, 7o) with 7o = 7¢(z0) = 7 (x0).
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6.3. Statement of the Carleman estimate with two large parameters. We shall prove the following theo-
rem, counterpart of Theorem 1.6 in the case of a weight function of the form ¢ = exp(~y)), with an explicit
dependency with respect to the second large parameter +y.

Theorem 6.3. Let z € S and let ) € €°(Q) be such that iy, = b, € € () for k = 1,2 and such that
Y has the strong pseudo-convexity property of Definition 6.2 with respect to Py and Py in a neighborhood
of xg in Q. Moreover, assume that {Pk, T,g W k=1,2, 7=1,... ,m} satisfies the transmission condition
at xg. Then there exist a neighborhood W of xq in R"™ and three constants C, T, > 0, and v, > 0 such that
Jor o, = exp(Yr) and T, = Typg:

RV (H%l;l/Zew’@ukHi%%k + €718 tr(wg) |2, 11707 )

)

m . .
< C<k21:2 179 Py (2, D)ug | 22y + '21 ™IS (T (z, D)u1 + Tg(x’D)u2)\S|3n—l/2—Bj,%)a
= ) ‘]:

for all uy, = wyq, withwy, € €°(W), 7 > 74, and vy > s

Here norms of defined on 2, and S. They are locally equivalent to their counterpart defined on {z,, > 0}
and {z,, = 0} above.

6.4. Preliminary estimates. The following lemma is the counterpart of Lemma 4.1, that is, an elliptic
estimate. It will be applied on both the £ and r “sides”. Hence, we formulate it for a weight funtion ¢, 7 and
phase-space metric g in place of ¢, 77,, and gr,.

With o' = (z,¢,7,7) € R xR ! xR} xR we shall associate §' = (z, ¢, 7(z)) € R} xR" ' xRy,
with 7(x) = 7y¢(x).
Lemma 6.4. Let h(p) € Sfl’o(g), with o = (z,&,7,7) and k > 1, be polynomial in &, with homogeneous
coefficients in (¢, 7) and H = h(x, D, T,v). When viewed as a polynomial in &, the leading coefficient
is 1. Let % be a conic open subset of V,, x R"~! x R,. We assume that all roots of h(¢',&,) = 0 have
negative imaginary part for §' € % . Letting X(0') € S%T, o = (z,&,7), be homogeneous of degree 0 and
such that supp(x) C %, and N € N, there exist C > 0, Cy > 0, 7. > 0 and 7, such that

IOP()wll} 5 + [tr(OP()W)[z 1.1 /0.7 < CIIHOp(x)w||% + Cn ([lwllf _x 7 + ltr(w)[z_y _n ),
forwe SRY)and T > 7., v > o and x(¢') = (') € 5°(gr).

We refer to [4] for a proof.
The following proposition is the counterpart of Proposition 4.2, that is, an estimate exploiting the trans-
mission condition, yielding an estimate of an interface norm.

Proposition 6.5. Assume that the transmission condition for {P7Z,T§Z, Yy J=1,... ,m} is satisfied at
(z0,&0,70) € ST (V) with xg € S NV Then there exists %, a conic open neighborhood of (9, &y, 7o) in

Vi x R* ! x Ry, such that for X € S%T, homogeneous of degree 0, with supp(X) C %, and there exist
C >0, 7 >0, and v, > 0 such that

C( \tY(OP(XZ)W)’iw—u/z,% + \tF(OP(Xr)Ur)‘i%—l,l/z% )

UL j 2 2 2
< .21 |Tg7901)£‘xn:0+ + Tﬂvwvr|xn:0+|m—l/2—ﬁj7‘? + ”Pg"PvZ”-i- + HPT?‘PUT’H—F
j:

2 2 2 2
+ ’Y2( lvellimg,—1,7, + Nvrllim, —1.7 + [tr(v) |5, —1, -1 /2.7 + ‘tr(vT’)’mr—l,—l/Zf—)’
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for T > Ty 2 e vvr € S (RY) and xy,(d) = R(@),) € S%gry,), with o = (x,¢,7,7) and

Proof. The beginning of the proof is nearly identical to that of Proposition 4.2. In particular the neighbor-
hood % is chosen similarly. Inequality (4.1) becomes

M o(me—1/2-80) 5 . . 2 M lme—1/2- 1) &
SNy, (@ S TR s
j=m+1 L9 j=m+1 b

‘ 2 Mmr—

M 2(m—1/2—p7 . o2 el ome—1/2—j 2(myp—1/2—
3N (@) (@) = 0SS g,
J= ’ ’

j=0
for 270 € C™e and ¢’ = (¢/, 2, = 01,&,7) € % N {x, = 0} with \2 = [£|?> + 72. Here, x € S9
is homogeneous of degree 0 and such that X =1lina neighborhood of %. We set X7, (x, &, 7,7) =
)Z($7£/77~—%) S SO(QT,%)‘
We then obtain, taking ¢’ = ¢’ = (¢/, z,, = 07, &, 7(x)),

my 2me—1/2—57) - 2 iy 2mp—1/2—p
> NT|m(m:Z0+/ U‘X(Q//)Eej (Q/,ZZ” + > Mném:m/ o)
j=m+1 " by j=m+1 "

1/2—p7 1/2— r—1/2—
+Z T \E (o2 H+3y (2] = ¢ Z prpt 2 24P+ Z prie o 2R,

2

X%, (e,2")]

forall z/¢ € C"7 and o/ = (2,2, = 0+,&,7,7) and o" = (', &, 7,7) such that ' € % N {x, = 0}.
Here X(¢") = x(&",2n = 07) with §" = (/,¢',7(2', x, = 07)). We have X(¢") = Xe(¢)jz,=0+ =
Xr(0") |z, =0+ We set

m
i 2
J
Z | UZ‘LL:O‘F + TTv@ur|xn:0+ |m—1/2—ﬁjﬂ'
’

l . r
j 2 j 2
+ > |Ez,goué\wn=0+|m+m;+1/2—j,7 + > ‘Ermué\wn:O*|m+m;+1/2—j,r‘
=m+1 j=m+1

with Er, = Op()~(7eer/e7¢). Then, according to the Garding inequality of Lemma 5.4 for interface quadratic
forms of type (my — 1,m, — 1,1/2), there exists 7, > 0, v« > 0, C' > 0, and Cy > 0 such that

(6.2) Ys(v) = Re%s(v) > C( tr(vy )|me 1127 T ltr(v )|$m.—1,1/2,%)

2 2
- Cn( ltr(ve)lim, —1,1/2- N7 T ’tr(vr)‘mr_1,1/2—zv,%)=

with v = (vy,v,) and vy, = Op(x, )vy,, for v = (v, v.) € (Y(@Z))z, T > Ty, and 7 > 7.

Now, arguing as in the proof of Proposition 4.2 we write x=,p, », = X7, /-ir/l,@p% o = X7 X7, “’/moﬁ:/e o

where p,, denotes an extension of p,, _to the whole phase space. Then
/Zvﬂp / 204

Op(x7,)Py,.e = Op(py, ,,) Op(x7,) Op(X7,hm,0) + Ry,
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with Ry, in W\P:f’_l(gr/l). Applying Lemma 6.4 to Op(ﬁf/‘w) and wr, = Op(X7, ki, ) vy, we find
2 2 2 2
HOp(XZ)wZHm;,;—Z + HOP(XT’)wT”m;j—T + ’tr(Op(XZ)wf)’mz_l,l/Qﬂt + ’tr(Op(XT)wT)’m;_l,l/Qﬂt

2 2 2 2
S HPE,AOUZ“+ + ”Pmovr”+ + ’Y2( ”W”mZ,_Lﬁ + ”UT’HmT,_L%T )

2 2
+ [tr(ve)lny—1,— w7 + [t (0r) [, 1 N7 5

yielding
me —1
‘Dj Op Xé)wf\xn—(ﬁL‘m —1/2—j7 + z |Dj Op Xr)wr|:cn—0+|m —1/2—jF
]:
S HPZ,goW”+ + ”Pr,chrH+ +7 (HW”mZ,_Lﬁ + ”UT’HmT,_L%T)
2 2
+ [t (V)1 Nz T 1600 [, 1 N
Recalling that e{l::“ = K, wfﬁ;, j=0,...,m; — 1inaneighborhood of 7% we have
j o +m+1
D3, Op(xy,) Op(X, Ky )V = EZ/ e Uyt By, vy,
mr/ —mr/ +7,—

with Ry, ; € vV ( 7,)- We thus obtain

my —1 .
> B

j+m+1 2
(6.3) !E L D SN P e

2 2 2
S IPypvelly + 1 Prvrll + 72< vellmng 1.7 + Iorll, —1,2,)

2 2
+ [tr(ve)li,—1,-1/2,7 + ’tr(vr)’mr—l,—l/l%)‘
Collecting (6.2) and (6.3) we obtain the result of Proposition 6.5, for 7 and ~y chosen sufficiently large, with

an additional commutator argument as in the end of the proof of Proposition 4.2. O

6.5. Proof of the Carleman estimate with two-large parameters. We prove a microlocal result, counter-
part of that of Theorem 4.4. Patching microlocal estimates of this type, arguing as in Section 4.4 we can
then obtain the local Carleman estimate of Theorem 6.3. The proof is left to the reader.

Theorem 6.6. Let zq € S NV and let 1) € €°(V) be such that Y, € € (V) has the strong pseudo-

convexity property of Definition 6.1 with respect to Py, in a neighborhood of xq in V.. Moreover, assume

that {P7Z,¢7Z,TT;Z, j =1,...,m} satisfies the transmission condition at (¢, &), 7) € S; . (Vi). Then

there exists 7/ a conic open neighborhood of (x, &), 7o) in Vi x R*! x Ry such that for X € S$

homogeneous of degree 0, with supp(x) C %, there exist C > 0, 7. > 0, and v« > 0 such that, for
py, = exp(yiy,) and Ty, = Typy,,

2 2 m . . 2
(6.4) ”PWW”JF + HPT,sDUT’HJr + _Zl |Te],gp”€\xn:0+ + Tr],sovrlxnzm ‘m_ﬁj—l/z,%
]:

2 2 2 2
+ ’Y2( lvelli, —17, + Hvr”mr,—l 7 (o)), -1 107 ‘tr(vr)‘mr—1,—1/2,%)
2 O(HTZ 2 Op Xé ZHml Ty

+ ‘tr(Op(Xé)W)’ml—Luz% + ’tr(OP(Xr)”r)‘er—Ll/m)=

+ 7% Op(x |

My, TT
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for all vy, v, € y(@i), T 2> Te, 7 2 Ve and xv, (o) = X(gi/l) IS SO(QT%), with @’% = (x,&, 7y, (x)) for
Q, = (1:7 6,7 7—7 /7)'
Proof. Applying Lemma 6.8 in [4] we obtain that there exists % a conic open neighborhood of (o, &), 7o)

in V, x R"™! x R, such that for ¥ € S%T, homogeneous of degree 0, with supp(x) C %, there exist
C > 0,79 >0, and 7 > 0 such that

2 —3 2
(6.5) C‘ Pty — Re %a%,b% (Op(xy,)vy,) = C/‘ 7'%2 Op(X’/z)U%Hm%,%%
"(.2 2 -3 2 2
= O (P ol 1.5, 7 OPOGIV) |y 11725, T 7 18OPOGI0) 107, )
for 7 > 79, v > 70, and x7, (") = X(@’%) € SO(QT%), where %’a%,b% satisfies
2
‘r@a%,b% (Op(x7, )vy,)| S |tr(Op(X%)vr/e)‘m%_m/zi.

With Proposition 6.5, making use of the transmission condition, we obtain for M chosen sufficiently large,
in a possibly reduced neighborhood %/,

(6.6) Re %y, p,(0p(xe)ve) + Re Ba, p, (Op(xr)vr) + Mj; T} Jvtiwn=0t + T70r |z, =0+ ‘m_l/z—ﬁj,%

2 2 2 2
> C( ‘tr(op(XZ)Uf)’ml—l,l/Z% + ’tr(op(Xr)vr)‘mr—l,l/z%) - C/( HPZ,@UZH+ + ”Pr,cpvr’H+
2 2 2 2
+7%( lvellrng,—1,7 + lvrllm, —1.7 + [tr(0) 5, -1, 21 /2.7 + (6T (Vr) |5, -1 1 /27 ),

Summing (6.5),, (6.5),., and (6.6) we obtain the result of Theorem 6.6, by taking 7 and -y sufficiently large.
0

6.6. Estimate with the simple characterisitic property. As in [31] and [4] a stronger estimate with two
parameters can be achieved if one assumes that the operator P and the weight function ) fulfills the so-called
simple characterisitic property.

We introduce the map

Pz - Rt — C,
7o ple, ity (2),

6.7

where z € Q and € € R™.

Definition 6.7. Let U be an open subset of ). Given a weight function 1 and an operator P we say that the
simple-characteristic property is satisfied in U if, for all x € U, we have £ = 0 and 7 = 0 when the map
pz.¢ has a double root.

Remark 6.8. In fact the simple-characteristic property implies the property of strong pseudo-convexity. We
refer the reader to [31] and [4].

We have the following result.

Theorem 6.9. Let xo € S and let i) € €°(Q) be such that |y, = VYo, € € () for k = 1,2 and such
that 1y, and Py, have the simple characteristic property of Definition 6.7 in a neighborhood of x in Q.
Moreover, assume that {Pk,TIg,T/J, k=12 53=1,... ,m} satisfies the transmission condition at x.
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Then there exist a neighborhood W of xq in R™ and three constants C, 7, > 0, and v, > 0 such that, for
P = exp(Yr) and T, = TPy,

69 5 Gl el

2
M, Tk + |eT<P\S tr(uk”mk—lvl/z%)

)

<CO( X €™ Pu(x, D)ull32(q,) + Z | €715 (T (x, DYy + T (x, DYua) s |2, 1 j2— i 7>
k=12
for all wy, = wyq, withwy, € €°(W), 7 > 7y and vy > s

We prove the following microlocal result and the result of Theorem 6.9 can be deduced, arguing as in
Section 4.4.

Theorem 6.10. Let zg € SNV and let i € €°(V) be such that vy, € € (V+) and such that Yy, and
Py, have the simple characteristic property of Definition 6.7 in a neighborhood of x in V+. Moreover,
assume that {Pr/z, Tg/?v#’%v 7=1,... ,m} satisfies the transmission condition at (xg, &y, 7o) € STFT(V_JF)

Then there exists % a conic open neighborhood of (0, &), 7o) in Vi x R* 1 x Ry such that for X € SQ
homogeneous of degree 0, with supp(x) C %, there exist C > 0, 7. > 0, and v, > 0 such that, for
e, = exp(yipy,) and g, = vy,

6.9 ||Prpvell’y + |1 Prpvrlly + '21 |Tégpvé‘xn:0+ + T} o Vrjw, =0+ ‘m—ﬁj—l/l%
‘7:

2 2 2 2
+ ’Yz( lvelln, —17, + Hvr”mr,—l s ltr(ve)l,, 1 —1/2 T ‘tr(vr)‘mr—1,—1/2,%)
> (117 * Oplxeur||

+ [tr(Op(xe)ve) |, —1.1/2.5 + [EH(OPOX)0r) 50 11/2.7 )

+)|7 2 Op(xy) Yo ||

me,Te My, Ty

Sfor all vy, v, € Y(@Z) T > T Y 2 Ve and xy,(0') = X(@L/Z) € 5%gry,), with @ﬁ/z = (z,&,7y,(x)) for
o =(z,&,7,7)
Proof. Applying Lemma 6.13 in [4] we obtain that there exists % a conic open neighborhood of (z, &), 7o)

in V,, x R""! x R, such that for ¥ € ST +» homogeneous of degree 0, with supp(y) C %, there exist
C >0, 19 > 0, and 7y > 0 such that

6.10) C||Py, vy, |2 — Re Ban, by, (OP(x7,)v7,) > C'||7,, £ Op(x O ’U/eHmT/ o,
C”(’Y HU/ZHmV —17, 7'% tr(Op( T/e)vr/z)‘mr/ —-1,1/2,7 + |tr Op(x T/e)vr/z)‘mr/ 1 07)
for 7 > 70,7 > 0. and x7, (¢) = X(27,) € 5%(gr,y,), where By, by, satisfies
B, O )0 | £ [OD O )07, g

Summing (6.10),, (6.10),., and (6.6) we obtain the result of Theorem 6.10 by taking 7 and ~ sufficiently
large. U

6.7. Shifted estimates. As in [4] it may be interesting to consider shifted estimates in the Sobolev scales.
Namely we may wish to have an estimate of the following form.
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Corollary 6.11. Let o € S and let 1) € €°(Q) be such that 1), = VYo, € €(Q) for k = 1,2
and such that 1) has the strong pseudo-convexity property of Definition 6.2 with respect to Py and Ps in
a neighborhood of xq in ). Moreover, assume that {Pk,TIg,l/J,k =12 5 =1,... ,m} satisfies the
transmission condition at xy. Let { € N and s € R. Then there exist a neighborhood W of xg in R™ and
three constants C, T, > 0, and 7y, > 0 such that for o), = exp(yx) and T, = TYPk:

©11) % (152 rwy,,, 1R )y 1107

m . .
<O( X I Pula, D), + 3 170770 (1] (o, Dy + T3, Duo)sl 12 7).
= N ]:

for all uy, = wyq, withwy, € €°(W), 7 > 74, and vy > s

Corollary 6.12. Let g € S and let ) € €°(Q) be such that ¢y, = o, € () for k = 1,2 and
such that by, and Py have the simple characteristic property of Definition 6.7 in a neighborhood of xg in
Q. Moreover, assume that {Pk, T,g, v, k=12, j=1,... ,m} satisfies the transmission condition at x.
Let ¢ € N and s € R. Then there exist a neighborhood W of xq in R™ and three constants C, T, > 0, and
vV« > 0 such that, for ¢y, = exp(y) and T, = Y@y,

_1
©12) 5 (7 ]y, 5, + 1T 00 1 172)

~ m N . . 2
<C( X e Pela Dyucl, + X |7 (T, Dyur + T D)sl o)
=12 j=
for all uy, = wyq, withwy, € €°(W), 7 > 7y and vy > s

The proofs of these two corollaries can be adapted from the proofs of their counterpart at a boundary,
namely Corollaries 6.14 and 6.15 in [4].

7. APPLICATION TO UNIQUE CONTINUATION

With the Carleman estimates we have derived here we can obtain unique continuation results near an inter-
face for high-order elliptic operators with the transmission condition, if we make a geometrical assumption,
namely the strong pseudo-convexity condition. Result for a product of two operators can be obtained if
additionaly the simple characteristic propery holds for one of them.

7.1. Uniqueness under strong pseudo-convexity and transmission condition.

Theorem 7.1. Let P, and T?, j = 1,...,m be given as in Section 1. Let xq € S, f € %O(Q), andV be a
neighborhood of xo, be such that f has the strong pseudo-convexity property of Definition 6.2 with respect
to Py and P, in V' . Moreover, assume that {Pk, f, T,g, k=1,2,7=1,... ,m} satisfies the transmission
condition at xo. Assume that u is such that ui, = g, € H™* (Q) and satisfies

[
(7.13) |Prug(x)] < C > [ D%yg(x)], ae inVpy=VNQ, k=1,2;
|a|<m—1
e forj=1,....,mand|a| <m — B, witha € N*~1,
(7.14) |D-‘,3‘(Tfu1(3:) + Tgug(:n))| <C Y Y |DYuy(x)|, aeinVNS;
k=12 |o/|<|a|
+6]-1

e and w vanishes in {x € V; f(x) > f(zo)}.
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T Nl = elao))

FIGURE 1. Local geometry for the unique continuation problem. The shaded region X
contains the supports of [P, x]u and [y, D7, ]u. In the figure the funtions f and ¢ are
continuous and yet only piecewise smooth. Here unique continuation is performed across a
surface that is not related to S.

Then u vanishes in a neighborhood of x.

Here D¢ denotes a familly of differential operators that act tangentially to the interface .S and, in local
coordinates near g, where S = {x,, = 0}, their principal symbol is .

Proof. Strong pseudo-convexity is a stable notion in €’ (see Proposition 28.3.2 in [22]). Here the function
f is continuous and piecewise smooth. The argument of [22] applies on both sides of the interface. For
e chosen sufficiently small, there exists a neighborhood V' of z( such that the function ¥(z) = f(z) —
|z — xo|? has the strong pseudo-convexity property of Definition 6.2 with respect to P; and P, in V.
Similary we saw in Section 1.6.4 for the proof of Proposition 1.8, that the transmission condition (or rather
property (1.29) ) is robust upon perturbation of the weight function. Hence if € is chosen sufficiently small
{P, o, BF k=1,... ,,u} will also satisfy this condition.

We set ¢ = exp(y1)). As shown in Proposition 28.3.3 in [22] the strong pseudo-convexity of the function
1 with respect to P; and P, implies the sub-ellipticity condition for { P, ¢ } for v chosen sufficiently large
for both k = 1,2 with ¢ = ¢|, . Moreover, as seen in Section 6.2 {Pk,T,g,go; k=12 7=1,... ,,u}
also satisfies the transmission condition at x.

The geometrical situation we describre is illustrated in Figures 1 and 2. The two figures show different
unique continuation configuration: across an hypersuface that is not related to the interface S, or across the
interface S. We call I the region {z € V; f(z) > f(xo)} (region beneath {f(x) = f(zo)} in Figure 1)
where u vanishes by assumption. We choose V" a neighborhood of z such that V" &€ V.

We pick a function x € €>°(R™) such that x = 1 in V" and supp(x) NV C V’. We observe that the

Carleman estimate of Theorem 1.6 applies to yu by density (possibly by reducing the neighborhoods V' and
V' of 2¢):

(7.15) k_zm (T2 €™ Xk, 7+ €795 (XU [y 11727 )

m . .
S X 17 Pl o) + 2 1677 (1 00 + T 0002) s o 1
= N ]:

for 7 > 7.
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FIGURE 2. Local geometry for the unique continuation problem. Here, unique continuation
is performed across the interface S.

We have Py (xur) = xPruk + [P, X]ug, where the commutator is a differential operator of order m — 1.
With (7.13) we have

€77 Pe(xun) | 20, S 22
|| <m—1

S o2 €D (xur)ll o) + 20 €™ Miiugll 2, ) »
|a|<m—1 i€l

€™ XD uk || L2(q, ) + 1€ [Brs x]unll 20y

where I}, is finite and the operators M, ; are commutators fo x and differential operators. They are of order
myj — 1 at most.

We also write

|eT#1s (le(xul) + T{(xuz)) |S|m—1/2_ﬁj77

< ‘ew\s (le(xul) + sz(XUZ)) \S‘m—ﬁj,r

= X [P DR () + T () s
Smfﬂj
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We write D-?-‘T]g(xuk) = XD-?-‘T]guk + [D-?—‘T,z, X]ui and have
€718 (T (xu1) + TY (xuz)) \S‘m—1/2—ﬁj,7—

< 3 (o5t + D5Tw)
r+|a|

<m7ﬂj

+ |77e™1s ([DYTY , x]ur + [DSTY, X u2)|S‘L2(S )
SE XY Tetsx(DY s )

k=1,2 r+lal |o/|<]al
<m—pBJ ﬁj 1

+ 3 2 |7 ([DYTE Xuk) g 2 s
k=1,2 r+lal
<m—pJ

|s|L2(S)

Using commutators once more we write

‘TTeTw‘SX(Daluk)\shg(S) < |TrDal(eTw‘SXUk)\S‘L2(S) + ‘TT([eT@‘Sx’Dal]uk)\S‘LZ(S)'

We thus find

- j j
'21 |71 (T (xur) + T3 (xu2)) \S‘m—1/2—ﬁj,7—
]:

m ’ ~

NDD > > ‘TT(DQ (eT715 xuy,) )|S|Lz + > > ‘(Mk,iuk)\S|L2(S)
j=1k=1,2 r+lal |a/|<|al k=1,2i€J}
<m-pJ +,3171
tr(e™xug) + z My, up,
]{;:172 ‘ ‘mk 10 sT [ ZZGJk ‘ )t |L2

where J}, is finite and M, ki 1s the commutator of x with a differential operator. The operator M, ki 1s of order
at most my — 1 (w.r.t. to 7 and &).
As

1 1
7718 tr(XU)|mk—1,1/2,r > 72 |eT¥15 tr(Xuk)|mk—1,o,r > 72 |tr(€kaUk)|mk—1,o,r’

for 7 chosen sufficiently large, from (7.15) we thus obtain

k—ZI:Q (T_1/2 HeTSDquk:Hmk,T + |e7_90k: tr(Xuk‘)|mk—17l/2,T)

S 2 ( €7 Mic i 12y, + Z | (M |S‘L2(S)
k=1,2 “i€l}

We set 3 := V' \ (V" U W) (see the shaded region in Figure 1). We have
supp(My jui) C 3, i€ I, and supp(Mk,juk) cX, i€ J,

as they are confined in the region where y varies and u does not vanish.
We thus obtain

k_Zlfz (7'_1/2 €™ xugll,y,, » + le77* tr(XUk)‘mk—m/z,T)

SEDY > Hew’ﬁDaukHLZz + > |TT(DO[“’€)IS‘L2 =ns) )
(%) (ENS)

k=12 " |a|<mi—1 r+|a|<mg—1
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Forall § > 0, weset Vs = {z € V; p(z) < (z0) — 0}. There exists § > 0 such that 3 € V5. We then
choose B a neighborhood of ¢ such that B C V" \ Vj /2 and obtain, as x =1 on B,

MY T gl ) S €D Sl + X D ) T=m
k=12 Hk (B) k=12 Hk (Z) Ia‘gmk_l | ‘ |L2(EOS
for some 71 > 0. Since infp ¢ > supy; ¢ + 6/2, letting 7 go to oo, we obtain u = 0 in B. ]

7.2. Uniqueness for products of operators. We now consider two sets of elliptic operators: P; and Q1

defined on ; and P and ) defined on Qy. We denote their respective orders by m}, m?, mb, and mi.

We assume that m} = mb = m?.

We also consider interface operators T]f J ,k=1,2,7 =1,...,mP of order Z’j and T]g’j ,k=1,2,
ji=1,... ,m? of order ﬁg” 'with mi = (m[f +m3)/2. We assume that m? - B =mP — Y = mpP — [P
and m{ — {7 = m — 837 = m? — 3%7. Then the operators Py, P>, Ty7, k=1,2,j=1,...,mP, allow

one to define an elliptic transmission problem as presented in Section 1. The same is valid for @1, Q2, T} ,g 7
k=1,2,7=1,...,m4. ' '

We observe that P1Q1, P>Q2, and the intreface operators Tp7Qy, k = 1,2, j = 1,...,mP, and T}/,
k=1,2,5=1,...,m? also allow to define an elliptic transmission problem. In fact, the operators P; Q)1
and P> Q- are of respective order my = mP+m{ and ma = mP+mi. We set m = mP+m? = (m1+ma)/2.

The interface operator 7} is of order 3 and we have m; — 3] = mg — 837 = m — 397, The interface
operator T% 7 Qy, is of order 827 + m{ and we have my — (877 + m{) = mo — (857 + mi).

One may possibly wonder about unique continuation for this product transmission problem, in particuler
in the case no Carleman estimate of the type derived here can be achieved. Let us however assume that for
a function 1) and the weigth function ¢ = exp(7y1) we can derive Carleman estimates for the transmission
problems associated with Py, P> and 1, Q)2. More precisely we assume that the first problem satisfies the
simple characteristic property while the second one only satisfies the strong pseudo-convexity condition.

Theorem 7.2. Let Py, Tlf’j, k=1,2,5=1,...,mP, and Qy, Tg’j, k=1,2,7=1,...,mY be given as
above. Let vg € S, [ € €°(Q), with f;, = fi, and V' a neighborhood of o, be such that

(1) fi and Py, have the simple characteristic property of Definition 6.7 in V N0 Q5

(2) f has the strong pseudo-convexity property of Definition 6.2 with respect to Q1 and Q2 in'V;
3) {Pk, 1, T,f’j, k=12, 7=1,... ,mp} satisfies the transmission condition at xg;

4) {Qk, 1, Tg’j, k=12, 7=1,... ,mq} satisfies the transmission condition at x.

Assume that w is such that up, = uq, € H mPmj (Q) and satisfies

[}

(7.16) | P Qrup(z)| < C > D%y (z)|, ae inVy=VNQ, k=1,2;
|| <mP+m] —1

e forj=1,....mP |a] <mP — BPJ, witha € N*~ 1,

(7.17) | DS (TP Quur () + TE Qaus(z))| < C 32 S |DYug(z)|, ae inVNS;
I

o forj=1,....m9, |a1| <mP, |ag| < md — B9, with oy € N* and cig € N1,

(7.18) | DY D2 (T uy (x) + T ug(2))| < O 32 S DY ug(z)|, ae inVNS;

k=1,2 |o|<|a7 | +|ag|
+807 -1
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e and u vanishes in {x € V; f(x) > f(x0)}.

Then u vanishes in a neighborhood of x.

Here D¢ denotes a familly of differential operators that act tangentially to the interface S and, in local
coordinates near x, where S = {x,, = 0}, their principal symbol is £'*.

Remark 7.3. Here we have assume that m} = m}. It would be interesting to know if such an assumption
can be removed. This assumption is connected to the shifted estimate of Corollary 6.11, where the shift is
the same on both sides of the interface. Having different Sobolev-scale shifts from one side to the other leads
to technical difficulties with the transmission terms on the interface. It is not clear whether such estimates
can be achieved without modifying the properties of the transmission operators.

Proof. The proof follows that of Theorem 7.1. We set 1)(z) = f(x) — |z — zo|? and conditions (1)-(4)
in the statement of the theorem are also satisfied by ¢ for € chosen sufficiently small in a neighborhood
V' C V of zp. We then set ¢ = exp(y1)).

We derive an estimate for P,(Q,. We first write an estimate for P,. By Theorem 6.9, there exists V;
neighborhood of ¢ in R™ such that V; C V' and

_1
> (’71/2“%]@ QETWkUkaP,%k + |e™#1s tr(vk)|mp—171/2v7~')

)

mP . .
S kzl2 HeTSOkPkUk”LQ(Qk) + Zl ‘eTW\S(Tlpvjvl + T§)7]7}2)‘S|mp_1/2_5p,j77-7
= 5 ]:

for all vy, = wgq, With wy, € ¢>°(V1), 7 > 11 and v > 1, for 71 and 7, chosen sufficiently large.
For Qy, by Corollary 6.11, there exists V5 neighborhood of xy in R™ such that V5 C V' and

k:212 (H%k_leTgOkkamp-i-mZv‘?k + ‘%_1/267% tr(”k)|mp+m2—1,1/2,%)

mP, Ty, mP,mi—1/2—p0I 7’

q . .
5 kzl2 H7~_k—1/2e-rgokaka + %1 ‘7:—1/267—@\5(T1¢M,Ul _|_T2¢17J,U2)‘S‘
= 5 ]:

for all vy, = Wk |0, with wy, € €2°(Va), 7 > 7 and v > 79, for 75 and 7, chosen sufficiently large.
Letting V3 = V1 N V5 with the previous two estimates we obtain

(7.19) A2 (|7 e |
k=1,2

mP . .
S X e PQuvill oo, + 2 e (T77 Qror +T§)’]Q2”2)|S‘mp_1/2—ﬁp,j F
k=12 =1 ’

+ |7~'_1/2ew\3 tr(vk)|

mP+mi, 7, mp+mz—1,l/2,7~')

md . .
+,Yl/2 Z ‘7:—1/267¢‘5(T1(]J,Ul _|_T2(]J

= UQ)\S‘mmmq—lﬂ—Bw,%’
for all vy, = Wk |0, with wy, € €2°(V3), 7 > 73 and v > ~s, for 73 and 73 chosen sufficiently large.

We choose x as in the proof of Theorem 7.1 and we apply estimate (7.19) to v, = xu as can be done by
a density argument. We now sketch how the remainder of the proof can be carried out.
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We have P,Qr(xu) = xPyQru+ [PrQk, x|u. The term [P, Qy, x]u is supported in the set ¥ introduced
in the proof of Theorem 7.1 and can be handle as it is done there. For the first term, with (7.16) we have

1™ xPuQull 120, S > le™*xDYul| 12 (0,
|| <mP4+m] —1
S X D)l X 1€ D ull g, -
|| <mP4m] —1 || <mP+m] —1

The second term in the r.h.s. concerns functions with support located in X and their treatment is done as in
the proof of Theorem 7.1. For the first term we have

2 DOy S I 1, S I
ajsmP+m; —

which can be absorbed by the first term in (7.19) by chosing ~ sufficiently large.
Next we have

€718 (TP Qy vy + T;JQZQJQ)‘S|mp_1/2_6p7j7% < |e™Is (TP Qyuy + T2p’]Q2?}2)|S|mp_Bp,j77-

= X |[FDRe s (TP Quur + T3 Qova)ys| o
r+laf
<mP—BP:J

< Z ‘%TETW‘SD-?(Tf’le’Ul —|—T§’jQ2U2)‘S|L2(S).

rlal
<mP —pBP>J

Writing D$TF7 Qo = xDSTP? Qrug + [DSTP Qy, x]u we have

€715 (TP Q1vy + T;’JQ2U2)\S|mp—1/2—ﬁwyf

S 2 |7~'T€W‘SXD$(Tf’jQ1U1+T§’jQ2U2)\S|Lz(5)

r+lal
<mP—BPsJ

+ X e (IDFTT Qu XJun + (DTS Qa, X]v2) s 12
r+|al
ngﬂ’J‘p’j

The terms [D$7T; ;f J Qk, x]u are supported in the set 3 and can be treated as in the proof of Theorem 7.1. For
the first term, with (7.17) we have

\%"ew‘SxD{'—‘(Tf’j@m + Tg’jQW?)IS‘L?(S)
<> > ‘?TETHD‘S(XDO/UkhS‘LQ(S)

k=1,2 |o/|<|a|+md

+607 -1
- / . ’
S > > |7D~ (ew’“xuk)\s\Lz(S) + > > |7 (e x, D ]Uk)|s|L2(5)
k=12 |a/|<|a|+m] k=12 |o/|<|a|+m]
+607 1 +607 -1

The second term in the r.h.s. concerns functions with support located in X and their treatment is done as in
the proof of Theorem 7.1. For the first term we have r + || < mP — 877 and |o/| < |af +m{ + B17 — 1
and thus we write

77D (P ) sl sy S X0y
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,71/2 ‘%_1/2€T¢‘5 tr(xuk)‘ > ,71/2 ‘eTSD\S tr(XUk)‘

mP+mi—1,1/2,7 mP+mj—1,0,7

2 72| te(emxur)|

mP+m]—1,0,7

we see that the above terms can be absorbed by the second term in (7.19) by chosing -y sufficiently large.

We finally write

md . .
> [T (T vy + T va)

= mP mi—1/2—p0I F

md . .
< X [FTYRTAS (T vy + T v
j=1

§ 5 |77 =12 Do D2eme1s (T8 vy + T vy) 4],

mpPp ’mQ—BQJ T

~Y
lag |[SmP

lag|<md—pB49:J
r+|a|+|ag|<mP+md—paJ

which can be treated as above by using (7.18). We then conclude the proof as in that of Theorem 7.1. O
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