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CARLEMAN ESTIMATES FOR ELLIPTIC OPERATORS WITH COMPLEX COEFFICIENTS

PART II: TRANSMISSION PROBLEMS

MOURAD BELLASSOUED AND JÉRÔME LE ROUSSEAU

ABSTRACT. We consider elliptic transmission problems with complex coefficients across an interface. Under
proper transmission conditions, that extend known conditions for well-posedness, and sub-ellipticity we derive
microlocal and local Carleman estimates near the interface. Carleman estimates are weighted a priori estimates
of the solutions of the elliptic transmission problem. The weight is of exponential form, exp(τϕ) where τ
can be taken as large as desired. Such estimates have numerous applications in unique continuation, inverse
problems, and control theory. The proof relies on microlocal factorizations of the symbols of the conjugated
operators in connection with the sign of the imaginary part of their roots. We further consider weight functions
where ϕ = exp(γψ), with γ acting as a second large paremeter, and we derive estimates where the dependency
upon the two parameters, τ and γ, is made explicit. Applications to unique continuation properties are given.

RÉSUMÉ: Nous considérons des problèmes de transmission elliptiques à coefficients complexes. En étendant
des conditions qui rendent ce problème bien posé, et sous condition de sous-ellipticité nous obtenons des iné-
galités de Carleman microlocales et locales à l’interface qui sont des inégalités a priori à poids pour les solutions
du problème. Les fonctions poids sont exponentielles, exp(τϕ), où le paramètre τ peut être choisi arbitraire-
ment grand. De telles estimations ont de nombreuses applications comme pour les questions de prolongement
unique, les problèmes inverses et le contrôle. La démonstration repose sur des factorisations microlocales du
symbole des opérateurs conjugués liées aux signes des parties imaginaires de leurs racines. Nous considérons
le cas ϕ = exp(γψ), où γ peut-être arbitrairement grand et nous obtenons des inégalités de Carleman pour
lesquelles la dépendence en les deux grands paramètres, τ et γ, est rendue explicite. Des applications aux
questions de prolongement unique sont proposées.
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1. INTRODUCTION AND MAIN RESULT

Let Ω be an open subset of Rn with a smooth boundary and let Ω1 be an open subset of Ω such that
Ω1 ⋐ Ω and such that S = ∂Ω1 is smooth. We set Ω2 = Ω \ Ω1. We thus have ∂Ω2 = S ∪ ∂Ω.

Points in R
n are denoted by x = (x1, . . . , xn) and we write Dj = −i∂/∂xj where i =

√
−1. Let us

consider two linear partial differential operators Pk, k = 1, 2 of respective order mk = 2µk, with µk ≥ 1,

(1.1) Pk =
∑

|α|≤mk

akα(x)D
α, k = 1, 2,

where the coefficients akα(x) are bounded measurable complex-valued functions defined in Ω. The higher-
order coefficients akα(x) with |α| = mk are required to be C∞ in Ωk. In what follows, we assume that boths
operators Pk, k = 1, 2 are elliptic.

In addition, we consider a system of m1 +m2 linear transmission operators

(1.2) T jk =
∑

|α|≤βj
k

tjk,α(x)D
α, k = 1, 2, j = 1, . . . ,m = µ1 + µ2,
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with 0 ≤ βjk < mk, and where the coefficients tjk,α(x) are C∞ complex-valued functions defined in some

neighborhood of S. Setting βj = (βj1 + βj2)/2 we assume that

m1 − βj1 = m2 − βj2 = m− βj , j = 1, . . . ,m = µ1 + µ2.(1.3)

We consider a system of µ2 = m2/2 linear boundary operators of order less than m2

(1.4) Bj =
∑

|α|≤βj
∂

bjα(x)D
α, j = 1, . . . , µ2,

where the coefficients bjα(x) are C∞ complex-valued functions defined in some neighborhood of ∂Ω.
We can then consider the following elliptic boundary-value transmission problem











Pkuk = fk in Ωk, , k = 1, 2

T j1u1 + T j2u2 = gj , in S, j = 1, . . . ,m.

Bju = hj , in ∂Ω, j = 1, . . . , µ2.

The aim of the present article is to derive a Carleman estimate for this transmission problem. Carleman
estimates are weighted a priori inequalities for the solutions of a partial differential equation (PDE), where
the weight is of exponential type. For the partial differential operator P away from the boundary and from

the interface, say for w ∈ C∞
c (Ω1) or C∞

c (Ω2), it takes the form:

(1.5) ‖eτϕw‖L2 ≤ C ‖eτϕPw‖L2 , τ ≥ τ0.

The exponential weight involves a parameter τ that can be taken as large as desired. The weight function
ϕ needs to be chosen carefully. Additional terms in the l.h.s., involving derivatives of u, can be obtained
depending on the order of P and on the joint properties of P and ϕ. For instance for a second-order operator
P such an estimate can take the form

τ3 ‖eτϕw‖2L2 + τ ‖eτϕ∇xw‖2L2 ≤ C ‖eτϕPw‖2L2 , τ ≥ τ0, w ∈ C
∞
c (Ω1) or C

∞
c (Ω2).(1.6)

This type of estimate was used for the first time by T. Carleman [11] to achieve uniqueness properties for
the Cauchy problem of an elliptic operator. Later, A.-P. Calderón and L. Hörmander further developed
Carleman’s method [10, 18]. To this day, Carleman estimates remain an essential method to prove unique
continuation properties; see for instance [50] for manifold results. On such questions more recent advances
have been concerned with differential operators with singular potentials, starting with the contribution of
D. Jerison and C. Kenig [26]. The reader is also referred to [48, 28, 29]. In more recent years, the field of
applications of Carleman estimates has gone beyond the original domain; they are also used in the study of:

• Inverse problems, where Carleman estimates are used to obtain stability estimates for the unknown
sought quantity (e.g. coefficient, source term) with respect to norms on measurements performed
on the solution of the PDE, see e.g. [6, 24, 30, 23]; Carleman estimates are also fundamental in the
construction of complex geometrical optic solutions that lead to the resolution of inverse problems
such as the Calderón problem with partial data [27, 13].

• Control theory for PDEs; through unique continuation properties, Carleman estimates are used for
the exact controllability of hyperbolic equations [2]. They also yield the null controllability of linear
parabolic equations [37] and the null controllability of classes of semi-linear parabolic equations
[17, 1, 16].

For general elliptic operators, Carleman estimates away from boundaries and interfaces can be found in [19,
Chapter 8]. The essential condition for the derivation of such an estimate is a compatibility property between
the elliptic operator P and the weight function ϕ, the so-called sub-ellipticity condition which is known to
be necessary and sufficient for the estimate to hold in the case of an elliptic operator. At the boundary ∂Ω, a
Lopatinskii-type compatibility condition involving P , ϕ, and the operators Bk can be put forward yielding
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a Carleman estimate in conjunction with the sub-ellipticity condition [49, 4]. The main goal of the present
article is the extension of this analysis to transmission problems.

Note that Carleman estimates of the form given here are local. Yet, they can be patched together to form
global estimates. Our goal here is to derive such an estimate in the neighborhood of a point of the interface
S. Derivation of Carleman estimates away for the interface can be found in the aforementionned references.
Then, the patching procedure allows one to obtain a global estimate in the whole Ω, following for instance
[19, Lemma 8.3.1] and [32]. We do not cover this issue here.

Here the weight function ϕ will be chosen continuous and piecewise smooth, that is, ϕk = ϕ|Ωk ∈
C∞(Ωk). The estimate we shall obtain will exhibit additional terms that account for the transmission con-
ditions given by the operators T jk , k = 1, 2, j = 1, . . . , µ1+µ2. The key conditions for the derivation of the
present Carleman estimate are compatibility properties between the elliptic operator P , the weight function
ϕ, and the transmission operators T jk . Those are the sub-ellipticity condition described above that expresses

compatibility between P and ϕ, and in addition a condition that connects them to T jk at the interface; we
shall refer to this latter condition as to the transmission condition. This condition is an extension of the
condition presented in [47] in the case of a conjugated operator. There, it was introduced towards to under-
standing of the well-posedness of the elliptic transmission problem. The condition we use is very close in its
formulation to the Lopatinskii type boundary condition used in the first part of this work [4]. In [49, 4] the
derivation of Carleman estimates at a boundary is based on the study of interior and boundary differential
quadratic forms, an approach that originates in the work of [19] for estimates away from boundaries and
in [45, 46, 41] for the treatment of boundaries. This approach is here extended to interface tranmission
problems. By proper (tangential) microlocalizations at the interface we show the precise action of our trans-
mission condition. These microlocalizations are important as the transmission condition is function of the
sign of the imaginary parts of the roots of1 pk,ϕ(x, ξ

′, τ, ξn) = pk(x, ξ + iτϕ′(x)), k = 1, 2, viewed as a
polynomial in ξn. Of course the configuration of the roots changes as the other parameters (x′, ξ′, τ) are
modified. Roots can for instance cross the real axis. Each configuration needs to be addressed separately
through a microlocalization procedure. For the Laplace operator at a boundary this was exploited to obtain
a Carleman estimate in [38] for the purpose of proving a stabilization result for the wave equation. This
approach was used for the study of an interface problem in [3, 34, 33] in the case of second-order elliptic
operators. The present article provides a generalization of these earlier works, both with respect to the order
of the operators and with respect to the generality of the transmission operators used.

The Carleman estimate we prove here is of the form, with uk = u|Ωk ,
∑

k=1,2

‖eτϕkuk‖2 +
∑

k=1,2

|eτϕ tr(uk)|2

≤ C
(

∑

k=1,2

‖eτϕkP (x,D)uk‖2 +
µ1+µ2
∑

j=1
|eτϕ|S (T j1 (x,D)u1|S + T j2 (x,D)u2|S)|2

)

,

for u supported near a point at the interface, where tr(uk) stands for the trace of (uk,Dνuk, . . . ,D
m−1
ν uk),

the successive normal derivatives of uk, at the interface S. In this form, the estimate is incorrect as norms
needs to be made precise. For a correct statement please refer to Theorem 1.6 below.

For Carleman estimates, one is often inclined to choose a weight function of the form ϕ = exp(γψ), with
the parameter γ > 0 chosen large. Several authors have derived Carleman estimates for some operators in
which the dependency upon the second parameters γ is kept explicit. See for instance [17]. Such results can
be very useful to address systems of PDEs, in particular for the purpose of solving inverse problems. On
such questions see for instance [14, 15, 25, 5].

1Here to simplify we consider the case S = {xn = 0}. Then ξn corresponds the (co)normal direction at the interface. In the
main text we shall use change of variables to reach this configuration locally.
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Compatibility conditions need to be introduced between the operator P and the weight ψ. Those are
the so-called strong pseudo-convexity conditions introduced by L. Hörmander [19, 22]. With the weight
function ϕ of the form ϕ = exp(γψ), the parameter γ can be viewed as a convexification parameter.
As shown in Proposition 28.3.3 in [22] the strong pseudo-convexity of the function ψ with respect to P
implies the sub-ellipticity condition for ϕ mentioned above2 for γ chosen sufficiently large. Away from
any boundary and interface, for a second-order estimate the resulting Carleman estimate can take the form
(compare with (1.6)):

(γτ)3
∥

∥ϕ3/2eτϕu
∥

∥

2

L2 + γτ
∥

∥ϕ1/2eτϕ∇xu
∥

∥

2

L2 . ‖eτϕPu‖2L2 , τ ≥ τ0, γ ≥ γ0, u ∈ C
∞
c (Ω1) or C

∞
c (Ω2).

(1.7)

We aim to extend such estimate in the neighborhood of the interface S. We then assume that the transmission
condition holds for the operators P , T jk , k = 1, 2, j = 1, . . . , µ1 + µ2, and the weight ψ. The work [31]
provides a general framework for the analysis and the derivation of Carleman estimates with two large
parameters away from boundaries. For that purpose it introduces a pseudo-differential calculus of the Weyl-
Hörmander type that resembles the semi-classical calculus and takes into account the two large parameters
τ and γ as well as the weight function ϕ = exp(γψ). Here, following the first part of this article [4], the
analysis of [31] is adapted to the case of an estimate at the interface. Estimates with the two large parameters
τ and γ are derived in the case of general elliptic operators.

If we strengthen strong pseudo-convexity condition of ψ and P , assuming the so-called simple character-
istic property, sharper estimates can be obtained [31]. We also derive such estimates at the interface.

With the different Carleman estimate that we obtain here she shall be able to achieve unique continuation
properties at an interface across some hypersurface for some classes of elliptic operators and some products
of such operators.

1.1. Setting. Now, we give the precise setting of the problem we consider. For x = (x1, . . . , xn) ∈ R
n, we

denote by ξ = (ξ1, . . . , ξn) the corresponding Fourier variables. Moreover, for every ξ ∈ R
n and α ∈ N

n

we define ξα = ξα1
1 · · · ξαnn . We denote by

pk(x, ξ) =
∑

|α|=mk

akα(x)ξ
α

the principal symbol of the operator Pk given in (1.1), k = 1, 2. The operators Pk are assumed to be elliptic,
viz.,

pk(x, ξ) 6= 0, ∀x ∈ Ωk, ∀ξ ∈ R
n\ {0} .

With m = µ1 + µ2 = (m1 +m2)/2, we denote by

tjk(x, ξ) =
∑

|α|=βjk

tjk,α(x)ξ
α, k = 1, 2 j = 1, . . . ,m,

the principal symbol of the transmission operator T jk defined in (1.2). Each set
{

T j1

}

1≤j≤m
and

{

T j2

}

1≤j≤m
is assumed normal, that is

0 ≤ β1k ≤ β2k ≤ · · · ≤ βmk < mk,

and for all x ∈ S the conormal vector ν(x) is non characteristic, i.e., tjk(x, ν(x)) 6= 0.
We recall that we assume

m1 − βj1 = m2 − βj2 = m− βj , j = 1, . . . ,m = µ1 + µ2.

We now review the definition of two inportant notions that will be used in what follows:

2The terminology for the strong pseudo-convexity condition and the sub-ellipticity condition are often confused by authors.
Here we make a clear distinction of the two notions.
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• the sub-ellipticity condition between the operators Pk and the weight function ϕ;
• the transmission condition stating the compatibility between the transmission operators T jk , the op-

erators Pk, and the weight function ϕ at a point of the interface.

1.2. Sub-ellipticity condition. For any two functions f(x, ξ) and g(x, ξ) in C∞(Ωk×R
n) we denote their

Poisson bracket in phase-space by

{f, g} =
n
∑

j=0

( ∂f

∂ξj

∂g

∂xj
− ∂f

∂ξj

∂g

∂xj

)

.

It is to be connected with the commutator of two (pseudo-)differential operators. In fact, if f and g are poly-
nomials in ξ, then the principal symbol of the commutator [f(x,D), g(x,D)] is precisely −i{f, g}(x, ξ).

The sub-ellipticity condition connecting the symbol pk and a weight function ϕ is the following (See [19,
Chapter 8] and [22, Sections 28.2–3]).

Definition 1.1. Let k ∈ {1, 2} and let U be an open subset of Ωk and set ϕk = ϕ|Ωk . The pair {Pk, ϕk}
satisfies the sub-ellipticity condition on U if ϕ′

k(x) := ∇ϕ(x) 6= 0 at every point in U and if

pk(x, ξ + iτϕ′(x)) = 0 ⇒ 1

2i

{

pk(x, ξ − iτϕ′(x)), pk(x, ξ + iτϕ′(x))
}

> 0,

for all x ∈ U and all non-zero ξ ∈ R
n, τ > 0.

For an elliptic operator the sub-ellipticity condition is necessary and sufficient for a Carleman estimate
of the form of (1.5) to hold away from the boundary [22, Section 28.2]. For a simple exposition of the
derivation of Carleman estimates for second-order elliptic operators under the sub-ellipticity condition we
refer to [32].

Note also that the sub-ellipticity condition is invariant under changes of coordinates. This is an important
fact here as we shall work in local coordinates in what follows.

Remark 1.2. Note that here, as the operator Pk are elliptic, we have pk(x, ξ) 6= 0 for each ξ ∈ R
n, ξ 6= 0.

The sub-ellipticity condition thus holds naturally at τ = 0.

Remark 1.3. Setting pk,ϕ(x, ξ, τ) = pk(x, ξ + iτϕ′
k) and writing pk,ϕ = a+ ib with a and b real, we have

1

2i

{

pk(x, ξ − iτϕ′
k), pk(x, ξ + iτϕ′

k)
}

=
1

2i
{pk,ϕ, pk,ϕ}(x, ξ, τ) = {a, b}(x, ξ, τ).

Below, we shall use the sub-ellipticity condition in the form

pk(x, ξ + iτϕ′
k) = 0 ⇒ {a, b}(x, ξ, τ) > 0,

for all x ∈ U and all non-zero ξ ∈ R
n, τ > 0.

In connection with the symbol interpretation of the Poisson bracket given above, we see that the sub-
ellipticity condition guarantees some positivity for the operator i[a(x,D, τ), b(x,D, τ)] on the characteristic
set of pk(x,D + iτϕ′

k) = a(x,D, τ) + ib(x,D, τ). A proper combination of a(x,D, τ)∗a(x,D, τ) +
b(x,D, τ)∗b(x,D, τ) and i[a(x,D, τ), b(x,D, τ)] thus leads to a positive operator. This is the heart of the
proof of Carleman estimates.

1.3. Transmission conditions. We consider a neighborhood X of a point of the interface S, chosen suffi-
ciently small, so that there exists a smooth function θ(x) such that dθ(x) 6= 0 in X and

(1.8) {x ∈ X; θ(x) < 0} = Ω1 ∩X, {x ∈ X; θ(x) = 0} = S ∩X, {x ∈ X; θ(x) > 0} = Ω2 ∩X.
For x ∈ S, we denote by N∗

x(S) the conormal space above x given by

N∗
x(S) = {ν ∈ T ∗

x (Ω); ν(Z) = 0, ∀Z ∈ Tx(S)} .
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The conormal bundle of S is given by

N∗(S) = {(x, ν) ∈ T ∗(Ω); x ∈ S, ν ∈ N∗
x(S)} .

In fact, if x ∈ X ∩ S and (x, ν) ∈ N∗(S) then ν = t dθ(x) for some t ∈ R.

By an interface quadruple ω = (x, Y, ν, τ) we shall mean

x ∈ S ∩X, Y ∈ T ∗
x (S), ν = tdθ(x) ∈ N∗

x(S) with t > 0, and τ ≥ 0.

In particular ν “points” from Ω1 into Ω2. For an interface quadruple ω and λ ∈ C, we set, for k = 1, 2,

p̃k,ϕ(ω, λ) := pk(x, Y + λνk + iτdϕk(x)), with ϕk = ϕ|Ωk , and νk = (−1)kν ∈ N∗
x(S).(1.9)

Note that for Ωk the covector νk points inward and we have ν1 = −ν2 = −ν.
For a fixed interface quadruple ω0 = (x0, Y0, ν0, τ0), we denote by σjk, k = 1, 2, the roots of p̃k,ϕ(ω0, λ)

with multiplicity µjk, viewed as a polynomial of degree m in λ, with leading-order coefficient ck,0. We can
then factorize this polynomial as follows:

p̃k,ϕ(ω0, λ) = ck,0p̃
+
k,ϕ(ω0, λ)p̃

−
k,ϕ(ω0, λ)p̃

0
k,ϕ(ω0, λ),

with
p̃±k,ϕ(ω0, λ) =

∏

± Im σjk>0

(λ− σjk)
µjk , p̃0k,ϕ(ω0, λ) =

∏

Im σjk=0

(λ− σjk)
µjk .

We define the polynomial κk,ϕ(ω0, λ) by

(1.10) κk,ϕ(ω0, λ) = p̃+k,ϕ(ω0, λ)p̃
0
k,ϕ(ω0, λ).

Similarly, for the set of transmission operators,
{

T jk
}

k=1,2;j=1,...,m
, m = µ1 + µ2, and their principal

symbols, tjk(x, ξ), for an interface quadruple ω = (x, Y, ν, τ) we set

(1.11) t̃jk,ϕ(ω, λ) = tjk(x, Y + λνk + iτdϕk(x)),

with νk = (−1)kν as above.

Definition 1.4. We say that
{

Pk, T
j
k , ϕ, k = 1, 2; j = 1, . . . ,m

}

satisfies the transmission condition at an

interface quadruple ω0 = (x0, Y0, ν0, τ0) if for all pairs of polynomials, qk(λ), k = 1, 2, there exist Uk,

k = 1, 2, polynomials and cj ∈ C, j = 1, . . . ,m, such that:

q1(λ) =
m
∑

j=1
cj t̃

j
1,ϕ(ω0, λ) + U1(λ)κ1,ϕ(ω0, λ) and q2(λ) =

m
∑

j=1
cj t̃

j
2,ϕ(ω0, λ) + U2(λ)κ2,ϕ(ω0, λ),

where the polynomials κk,ϕ(ω0, λ) are those defined by (1.10).
Additionally, for x0 ∈ S, we say that

{

Pk, T
j
k , ϕ, k = 1, 2; j = 1, . . . ,m

}

satisfies the transmission

condition at x0 if the above property holds for all interace quadruples ω = (x0, Y0, ν0, τ0) with Y ∈ T ∗
x0(S),

ν = t dθ(x0) with t > 0, and τ ≥ 0.

It should be noted that the same coefficients cj are used in both decompositions.

Remark 1.5. (1) There is a strong similarity in the form between Definition 1.4 and the strong Lopatin-
skii condition that is used in the derivation of a Carleman estimate at the boundary. The latter con-
dition connects the elliptic operator, the weight functions and the boundary operators given in (1.4)
in [49, 4].
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(2) Note that we did not choose any particular co-normal vectors νk connected with the function θ that
locally defines S, apart from their orientation. In fact, for any t > 0 replacing νk by tνk does not
affect the transmission condition of Definition 1.4. We could for instance use normalized conormal
vectors, yet keeping the directions of νk.

1.3.1. Alternative formulation. Setting nk = d◦κk,ϕ we have nk = mk −m−
k with m−

k = d◦p̃−k,ϕ. We have
nk ≤ mk. Hence, it is sufficient to consider the polynomials qk, k = 1, 2, to be of degree less than mk − 1
respectively. Then both polynomials Uk are of degree less than or equal to mk−nk−1 = m−

k −1, recalling
that t̃jk,ϕ is of degree βjk < mk.

We then set

ẽj1 =

{

t̃j1,ϕ if j = 1, . . . ,m,

λj−(m+1)κ1,ϕ if j = m+ 1, . . . ,m+m−
1 ,

ẽj2 =

{

t̃j2,ϕ if j = 1, . . . ,m,

λj−(m+1)κ2,ϕ if j = m+ 1, . . . ,m+m−
2 ,

and the linear map

Φ : Cm × C
m−

1 × C
m−

2 → Cm1−1[λ]× Cm2−1[λ],(1.12)

(c, γ1, γ2) 7→
( m
∑

j=1
cj ẽ

j
1 +

m−
1

∑

j=1
γ1,j ẽ

j+m
1 ,

m
∑

j=1
cj ẽ

j
2 +

m−
2

∑

j=1
γ2,j ẽ

j+m
2

)

.

The transmission condition of Definition 1.4 means precisely that the map Φ is surjective. In particular this
implies that m′ = m+m−

1 +m−
2 ≥ m1 +m2 = 2m.

1.3.2. Transmission condition and well-posedness. Transmission conditions across an interface for elliptic
problems can be found in [47] to prove well-posedness of the transmission elliptic problem. In [47] it
corresponds to the case ϕ = 0, as no conjugation with a weight function is performed and, there, the
transmission condition reads as follows: let Uk, k = 1, 2, polynomials and cj ∈ C, j = 1, . . . ,m, be such
that

0 =
m
∑

j=1
cj t̃

j
1,ϕ=0(ω0, λ) + U1(λ)κ1,ϕ=0(ω0, λ) and 0 =

m
∑

j=1
cj t̃

j
2,ϕ=0(ω0, λ) + U2(λ)κ2,ϕ=0(ω0, λ),

then Uk ≡ 0, k = 1, 2, and cj = 0, j = 1, . . . ,m. This condition precisely means that the map Φ introduced
in (1.12) is injective in the case ϕ = 0. Above we gave a surjectivity condition that suits the purpose of the
present article. We now explain how the two conditions coincide in the cases studied in [47].

In fact if ϕ = 0 none of the roots can be real as the operator is elliptic. If #{Imσjk > 0} = #{Imσjk <
0}, such an operator is called properly elliptic by Schechter [47] and he only studies this type of elliptic
operators. In fact, if the dimension n ≥ 3 then every elliptic operator is properly elliptic (see e.g. the proof
of Proposition 1.1 in [40, Chapter 2, Section 1]). In such a case we have m−

k = mk/2 = µk. Hence for the
map Φ defined in (1.12) we have

dimC
m ×C

m−
1 × C

m−
2 = dimCm1−1[λ]× Cm2−1[λ],

as m + m−
1 + m−

2 = 2m = m1 +m2, meaning that in this case the surjectivity of Φ is equivalent to its
injectivity. In the case of a properly elliptic operator and ϕ = 0 the transmission condition of [47] thus
coincides with Definition 1.4 in the case ϕ = 0.

Note that the injectivity of the map Φ may be lost for ϕ 6= 0 and τ > 0, as the conjugated operator Pϕ
may not be elliptic, yet the transmission condition we give here precisely states that Φ is surjective.
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1.3.3. Invariance by change of local coordinates. We finish the presentation of the transmission condition
by observing that this definition is of geometrical nature, independent of the choice of coordinates. This fact
is important as we shall make use of local coordinates at the interface S in what follows.

In fact, for a point x ∈ S we consider an open neighborhood X ⊂ Ω of x, chosen sufficiently small so
that there exists θ as in (1.8).

We consider two coordinate systems (X(i), ψ(i)), i = 1, 2, that is ψ(i) : X → X(i) is a diffeomorphism
and X(i) is an open set in R

n. We set x(i) = ψ(i)(x). We moreover set

θ(i) = θ ◦ (ψ(i))−1, X
(i)
k = {x ∈ X(i); (−1)kθ(i)(x) > 0} = ψ(i)(X ∩ Ωk).

We then introduce the diffeomorphism κ : X(1) → X(2) given by κ = ψ(2) ◦ (ψ(1))−1 and we have

κ(x(1)) = x(2), θ(1) = θ(2) ◦ κ, yielding κ(X(1)
k ) = X

(2)
k .

We also define ϕ(i) = ϕ◦ψ(i), i = 1, 2, the local versions of the weight function in the coordinate patches

and we set ϕ(i)
k = ϕ(i)

|X
(i)
k

.

Let Y (i), ν
(i)
k , k = 1, 2, i = 1, 2, be the local versions of Y and νk in the two coordinate systems. With

standard differential geometry arguments we have the following relations:

Y (1) = tκ′(x(1))Y (2), ν
(1)
k = tκ′(x(1))ν

(2)
k , dϕ

(1)
k (x(1)) = tκ′(x(1))dϕ

(2)
k (x(2)),

Similarly let p(i)k and tj(i)k , k = 1, 2, j = 1, . . . ,m, i = 1, 2, be the local versions of the principal symbols

of the differential operators Pk and T jk . We have

p
(1)
k (x, ξ) = p

(2)
k (κ(x), tκ′(x)−1ξ), t

j(1)
k (x, ξ) = t

j(2)
k (κ(x), tκ′(x)−1ξ).

If we set f (i)k (λ) = p
(i)
k (x(i), Y (i) + λν

(i)
k + iτdϕ

(i)
k (x(i))), i = 1, 2, we find

f
(1)
k (λ) = p

(1)
k (x(1), Y (1) + λν

(1)
k + iτdϕ

(1)
k (x(1)))

= p
(2)
k

(

κ(x(2)), tκ′(x(1))−1(Y (1) + λν
(1)
k + iτdϕ

(1)
k (x(1)))

)

= p
(2)
k (x(2), Y (2) + λν

(2)
k + iτdϕ

(2)
k (x(2)))

= f
(2)
k (λ),

which simply means that the polynomial function p̃k,ϕ defined in (1.9) does not depend on the coordinate
system chosen. The same holds for the polynomial function t̃jk,ϕ defined in (1.11), which allows one to
conclude that the transmission condition of Definition 1.4 can be stated (and checked) in any coordinate
system.

1.4. Sobolev norms with a parameter. For non-negative integer m and a real number τ ≥ 0, we introduce
the Sobolev spaces Hm

τ (Ωk) and Hm
τ (S) defined by the following norms respectively:

(1.13) ‖u‖2m,τ =
m
∑

k=0

τ2(m−k) ‖u‖2Hk(Ωk)
and |u|2m,τ =

m
∑

k=0

τ2(m−k) |u|2Hk(S) ,

where we denote the usual Sobolev norms on Ωk and S by ‖.‖Hs(Ωk)
and |.|Hs(S). The L2 inner-products

on Ωk and S will be denoted by (., .) and (., .)∂ respectively. Observe that for the norm ‖.‖m,τ on Hm
τ (Ωk)

we do not specify explicitly the integer k that refers to which side of the interface we consider, Ω1 or Ω2.
In the main text there should never be any ambiguity as the norm will be used for functions that are clearly
defined on one of the open sets.
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For m ∈ N and s ∈ R we introduce the following interface space

Hm,s
τ (S) =

m
∏

j=0
Hm−j+s
τ (S),

equipped with the norm

(1.14) |u|2m,s,τ =
m
∑

j=0
|uj|2m−j+s,τ , u = (u0, . . . , um).

If u ∈ C∞(Ωk) we set trm(u) = (tr0(u), . . . , trm(u)) where trj(u) = (1i ∂ν)
ju|S , with ν conormal to

S, is the sectional trace of u of order j and, in accordance with (1.14), we define

|trm(u)|2m,s,τ =
m
∑

j=0
|trj(u)|2m−j+s,τ .

In what follows we shall write tr(u) in place of trm(u) for concision. We shall also write norms of the form
|eτϕ tr(u)|2m,s,τ actually meaning

|eτϕ trm(u)|2m,s,τ =
m
∑

j=0
|eτϕ trj(u)|2m−j+s,τ .

1.5. Statement of the main result. We can now state the local Carleman estimate that we prove in the
neighborhood of a point of the interface, with the sub-ellipticity and transmission conditions.

Theorem 1.6. Let x0 ∈ S and let ϕ ∈ C 0(Ω) be such that ϕk = ϕ|Ωk ∈ C∞(Ωk) for k = 1, 2 and such

that the pairs {Pk, ϕk} have the sub-ellipticity property of Definition 1.1 in a neighborhood of x0 in Ωk.

Moreover, assume that
{

Pk, ϕ, T
j
k , k = 1, 2, j = 1, . . . ,m

}

satisfies the transmission condition at x0.

Then there exist a neighborhood W of x0 in R
n and two constants C and τ∗ > 0 such that

(1.15)
∑

k=1,2

(

τ−1 ‖eτϕkuk‖2mk,τ + |eτϕ|S tr(uk)|2mk−1,1/2,τ

)

≤ C
(

∑

k=1,2

‖eτϕkPk(x,D)uk‖2L2(Ωk)
+

m
∑

j=1

∣

∣eτϕ|S
(

T j1 (x,D)u1 + T j2 (x,D)u2
)

|S

∣

∣

2

m−1/2−βj ,τ

)

,

for all uk = wk |Ωk with wk ∈ C∞
c (W ) and τ ≥ τ∗.

First, this results will be established microlocally: at an interface point x0 we shall assume that the
transmission condition holds for some interface quadruple (x0, Y0, ν0, τ0) and we shall prove that a Carle-
man estimate of the form above holds in a conic neighborhood of this interface quadruple in phase-space;
localization in phase-space will be done by means of cut-off functions and associated pseudo-differential
operators. We refer the reader to Section 4.3. Second, we will deduce Theorem 1.6 from such microlocal
estimates.

Estimate (1.15) concerns function located near the interface and vanishing near the boundary ∂Ω. Hence
this estimate involves the transmission operators T jk and not the boundary operators Bj .

Estimates of the form of (1.15) are local. Yet, such estimates and their counterpart estimates at the
boundary proven in [4] can be patched together to form global estimates. We do not cover such details here
and we refer to [35] where this is done in the case of a transmission problem.

In Section 6 we shall prove Carleman estimates with a weight function of the form ϕ(x) = exp(γψ(x))
as is usually done in practice with the parameter γ chosen as large as desired. We shall provide the precise
dependency of the Carleman estimate with respect to this second large parameter.

Examples of elliptic transmission problem and weight function for which the above result applies, and
other for which it does not, will be given in Section 1.7 below. In fact, as the condition for the Carleman
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estimate to hold are geometrical, that is, coordinate invariant, we shall postpone the exposition of example
after we introduce local variables that ease the writting of the transmission condition.

1.6. Local reduction of the problem near the interface. All the different aspects of the problem we
consider –operators, sub-ellipticity condition, transmission condition– are coordinate invariant as we saw
above. We shall thus work locally, in the neighborhood of a point of the interface and choose coordinates
that allow use to ease the subsequent analysis and derivation of the Carleman estimate.

1.6.1. Choice of local coordinates. Let x0 ∈ S. There exists a neighborhood V of x0 and a local system of
coordinates x = (x1, . . . , xn) where V ∩ Ω1 ⊂ {xn > 0}, V ∩ Ω2 ⊂ {xn < 0} and x′ = (x1, . . . , xn−1)
parametrizes the interfaceV ∩ S ⊂ {xn = 0}. We assume that V ∩ ∂Ω = ∅, that is, we focus our analysis
on the interface and remain away from the boudnary.

We denote by R
n
± the half space {±xn > 0} and V± = V ∩ R

n
±. For our purpose here, without any loss

of generality, we may assume that V± is bounded.

In such local coordinates, in V±, the differential operator3 Pk of order m with complex coefficients takes
the form

Pk = Pk(x,D) =
mk
∑

j=1
Pk,j(x,D

′)Dj
n, Dn =

1

i
∂n, k = 1, 2,

where Pk,j(x,D′), j = 1, . . . ,mk, k = 1, 2, are tangential differential operators with complex coefficients
of order mk − j. Similarly the transmission operators take the form

T jk = T jk (x,D) =
βj
k

∑

i=0
T jk,i(x,D

′)Di
n, 1 ≤ j ≤ m, k = 1, 2

where T jk,i(x,D
′), i = 0, . . . , βjk, are tangential differential operators of order βjk−i. The local transmission

problem we study thus takes the form










P1u1 = f1 in V1 = {xn < 0},
P2u2 = f2 in V2 = {xn > 0},
T j1u1 + T j2u2 = gj , in S, j = 1, . . . ,m.

(1.16)

We have Pk,m = Pk,m(x) 6= 0. Upon dividing the functions fk by Pk,m(x) we may assume that Pk,m = 1.

Calling (ξ′, ξn) the Fourier variables corresponding to (x′, xn) we have, for the principal symbol of Pk,

pk(x, ξ) =
mk
∑

j=0
pk,j(x, ξ

′)ξjn,

which is a polynomial homogeneous of degree mk in the n variables (ξ′, ξn).

We introduce
pk,ϕ(x, ξ, τ) := pk(x, ξ + iτϕ′

k(x)),

which is the principal symbol of the operator eτϕkPke−τϕk viewed in the class of (pseudo-)differential
operators with a large parameter presented in Section 2.

Setting ̺′ = (x, ξ′, τ) and ̺ = (̺′, ξn), for simplicity we shall write pk,ϕ(̺) in place of pk,ϕ(x, ξ, τ) and
often pk,ϕ(̺′, ξn) to emphasize that the symbol is polynomial in ξn. Similarly we introduce tjk,ϕ(x, ξ, τ) :=

tjk(x, ξ + iτϕ′
k(x)) = tjk,ϕ(̺) = tjk,ϕ(̺

′, ξn).

3By abuse of notation, in the new local coordinates, we keep the notation Pk and T jk , j = 1, . . . ,m, k = 1, 2, for the operators
introduced in the beginning of Section 1.
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In the present local coordinate, we have θ = xn and thus νk = (−1)kdxn (see Section 1.3). For a fixed
point ̺′ = (x, ξ′, τ) with x ∈ S, setting Y =

∑n−1
j=1 ξjdxj and ω = (x, Y, τ) this gives

p̃k,ϕ(ω, (−1)kξn) = pk(x, Y + (−1)kξnνk + iτdϕk(x))(1.17)

= pk(x, ξ + iτdϕk(x))

= pk,ϕ(x, ξ, τ),

with ξ = (ξ′, ξn) and p̃k,ϕ as defined in (1.9). Similarly, we have

t̃jk,ϕ(ω, (−1)kξn) = tjk,ϕ(x, ξ),(1.18)

with t̃jk,ϕ as defined in (1.11).

1.6.2. A system formulation. To avoid the (−1)k terms in the two previous equations and to simplify a large
part of the analysis that will follow we shall write the local transmission problem as a system of equation in
V+.

Without any loss of generality we can choose the open neighborhood V to be of the form V ′ × (−ε, ε)
with V ′ an open set of S and ε > 0.

In V− = V ′ × (ε, 0) we apply the change of variables (x′, xn) 7→ σ(x′, xn) = (x′,−xn). We denote by
Pℓ and T jℓ the operators obtained from P1 and T j1 through this change of variable. For the principal symbols
we have

pℓ(x, ξ) = p1
(

σ(x);σ(ξ)
)

, tℓ(x, ξ) = t1
(

σ(x);σ(ξ)
)

, for xn > 0,

using that tσ′(x)−1ξ = (ξ′,−ξn). We also define ϕℓ = ϕ1 ◦ σ for xn > 0. In V+ we do not apply any
change of variable and for the benefit of readibility we set Pr = P2, pr = p2, and ϕr = ϕ2. The subscripts
ℓ and r are chosen to keep in mind that part of the system we shall write comes from the left-hand side of
the interface and the second part from the right-hand side.

The transmission problems now reads as the following system
{

Pℓuℓ = fℓ, Prur = fr in V+ = {xn > 0},
T jℓ uℓ + T jr ur = gj , in S = {xn = 0}, j = 1, . . . ,m,

(1.19)

where uℓ = u1 ◦ σ, fℓ = f1 ◦ σ, ur = u2, fr = f2.
We set Pr/ℓ,ϕ = e

τϕr/ℓPr/ℓe
−τϕr/ℓ and T jr/ℓ,ϕ = e

τϕr/ℓT jr/ℓe
−τϕr/ℓ . They have for respective principal symbols

(in the calculus with a large parameter of Section 2)

pr/ℓ,ϕ(x, ξ, τ) = pr/ℓ(x, ξ + iτdϕr/ℓ(x)), tjr/ℓ,ϕ(x, ξ, τ) = tjr/ℓ(x, ξ + iτdϕr/ℓ(x)).

We have

pℓ,ϕ(x, ξ, τ) = p1(σ(x), σ(ξ + iτdϕℓ(x))) = p1
(

σ(x), σ(ξ) + iτdϕ1(σ(x)))
)

Now, as tσ′(x)−1ν1 = ν2 = ν, for a fixed point ̺′ = (x, ξ′, τ) with x ∈ S, i.e., xn = 0 giving σ(x) = x,
if we set Y =

∑n−1
j=1 ξjdxj and ω = (x, Y, τ) we have, for p̃1,ϕ as defined in (1.9),

p̃1,ϕ(ω, ξn) = p1(x, Y − ξnν + iτdϕ1(x))(1.20)

= pℓ(x, Y + ξnν + iτdϕℓ(x))

= pℓ,ϕ(x, ξ, τ),

with ξ = (ξ′, ξn). Similarly we have

t̃j1,ϕ(ω, ξn) = tjℓ,ϕ(x, ξ, τ).(1.21)
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Naturally by (1.17)–(1.18) we have

p̃2,ϕ(ω, ξn) = pr,ϕ(x, ξ, τ), t̃j2,ϕ(ω, ξn) = tjr,ϕ(x, ξ, τ).

1.6.3. Symbol factorizations. For a fixed point ̺′0 = (x0, ξ
′
0, τ0) ∈ S

∗
T,τ (V ) (see the definition below

in Section 1.8) with x0 ∈ S we denote the roots of pr/ℓ,ϕ(̺
′
0, ξn), viewed as a polynomial in ξn, by

αr/ℓ,1, . . . , αr/ℓ,nr/ℓ
, with respective multiplicities µr/ℓ,1, . . . , µr/ℓ,nr/ℓ

satisfying µr/ℓ,1 + · · · + µr/ℓ,nr/ℓ
= mr/ℓ ,

with mℓ = m1 and mr = m2. By [4, Lemma A.2], there exists a conic open neighborhood U of ̺′0 such
that

(1.22) pr/ℓ,ϕ(̺
′, ξn) = p+r/ℓ,ϕ(̺

′, ξn) p
−
r/ℓ,ϕ

(̺′, ξn) p
0
r/ℓ,ϕ

(̺′, ξn), ̺′ ∈ U , ξn ∈ R,

with p±r/ℓ,ϕ and p0r/ℓ,ϕ, polynomials in ξn of constant degrees in U , smooth and homogeneous; in U the

imaginary parts of the roots of p+r/ℓ,ϕ(̺
′, ξn) (resp. p−r/ℓ,ϕ(̺

′, ξn)) are all positive (resp. negative) and we have

p±r/ℓ,ϕ(̺
′
0, ξn) =

∏

± Imαr/ℓ,j
>0

(ξn − αr/ℓ,j)
µr/ℓ,j , p0r/ℓ,ϕ(̺

′
0, ξn) =

∏

Imαr/ℓ,j
=0
(ξn − αr/ℓ,j)

µr/ℓ,j .

The polynomials pr/ℓ,ϕ are thus decomposed into three factors in the neighborhood U of ̺′0. For p±r/ℓ,ϕ the

sign of the imaginary part of their roots remain constant equal to ± respectively; for p0r/ℓ,ϕ this sign may

change and the roots are precisely real at ̺′ = ̺′0.
We then define the polynomial κr/ℓ,ϕ(̺

′, ξn) by

(1.23) κr/ℓ,ϕ(̺
′, ξn) = p+r/ℓ,ϕ(̺

′, ξn) p
0
r/ℓ,ϕ

(̺′, ξn).

As above, for the principal symbols of the conjugated transmission operators T jr/ℓ,ϕ, j = 1, . . . ,m, we

write tjr/ℓ,ϕ(x, ξ, τ) = tjr/ℓ,ϕ(̺
′, ξn) where ̺′ = (x, ξ′, τ) to emphasize that the symbol is polynomial in ξn.

Remark 1.7. Observe that the factorizations in (1.22) depends quite significantly on the point ̺′0. They
may actually be different even for point ̺′ in the neighborhood U introduced above. We should rather write
something like

pr/ℓ,ϕ(̺
′, ξn) = p+r/ℓ,ϕ,̺′0

(̺′, ξn) p
−
r/ℓ,ϕ,̺

′
0
(̺′, ξn) p

0
r/ℓ,ϕ,̺

′
0
(̺′, ξn), ̺′ ∈ U , ξn ∈ R,

in place of (1.22) and set

κr/ℓ,ϕ,̺′0(̺
′, ξn) = p+r/ℓ,ϕ,̺′0

(̺′, ξn) p
0
r/ℓ,ϕ,̺

′
0
(̺′, ξn).

For ̺′1 ∈ U we may very well have

p+r/ℓ,ϕ,̺′0
(̺′, ξn) 6= p+r/ℓ,ϕ,̺′1

(̺′, ξn), or p−r/ℓ,ϕ,̺′0
(̺′, ξn) 6= p−r/ℓ,ϕ,̺′1

(̺′, ξn),

or p0r/ℓ,ϕ,̺′0(̺
′, ξn) 6= p0r/ℓ,ϕ,̺′1

(̺′, ξn).

Yet, we shall see below that the notation in (1.22) is sufficiently clear for our purpose.
Still, if we denote by M±

r/ℓ
(̺′) the number of roots (counted with their multiplicities) with postive (resp.

negative) imaginary parts of pr/ℓ,ϕ(̺
′, ξn) for ̺′ ∈ U we may have M±

r/ℓ
(̺′0) 6= M±

r/ℓ
(̺′) for some ̺′ ∈ U .

Note that in such case we have M±
r/ℓ
(̺′0) ≤ M±

r/ℓ
(̺′) from the construction of the neighborhood U given in

[4, Lemma A.2]. Arguing as in the proof of [4, Lemma A.2], using the continuity of the roots w.r.t. ̺′ we
can in fact prove that for ̺′1 ∈ U there exists a conic neighborhood U ′ ⊂ U of ̺′1 such that

κr/ℓ,ϕ,̺′0(̺
′, ξn) = hr/ℓ(̺

′, ξn)κr/ℓ,ϕ,̺′1(̺
′, ξn), ̺′ ∈ U

′,(1.24)

where hr/ℓ(̺
′, ξn) is polynomial in ξn with coefficients that are smooth w.r.t. ̺′ ∈ U ′.
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1.6.4. The transmission conditions in the local coordinates. In the present coordinate system (x′, xn) in
V+, a conormal vector ν pointing from Ω1 to Ω2 is given by (0, . . . , 0, νn) with νn > 0. For the statement of
the transmission condition we may choose ν = (0, . . . , 0, 1). A boundary quadruple ω = (x, Y, ν, τ), with
Y = (ξ′, 0) can thus be identified with ̺′ = (x, ξ′, τ).

The transmission condition of Definition 1.4 being invariant under change of variables as seen in Sec-
tion 1.3.3, because of (1.20) and (1.21), we may use the polynomials pr/ℓ,ϕ and tjr/ℓ,ϕ to state locally this

condition for
{

Pr/ℓ , T
j
r/ℓ
, ϕr/ℓ , j = 1, . . . ,m

}

at ̺′0 = (x0, ξ
′
0, τ0). It reads:

For all pairs of polynomials, qr/ℓ(ξn), there exist Ur/ℓ , polynomials, and cj ∈ C, j = 1, . . . ,m, such that

qℓ(ξn) =
m
∑

j=1
cjt

j
ℓ,ϕ(̺

′, ξn) + Uℓ(ξn)κℓ,ϕ(̺
′, ξn),(1.25)

and

qr(ξn) =
m
∑

j=1
cjt

j
r,ϕ(̺

′, ξn) + Ur(ξn)κr,ϕ(̺
′, ξn),(1.26)

for ̺′ = ̺′0.

We set m−
r/ℓ

= d◦
(

p−r/ℓ,ϕ(̺
′, .)

)

, that is independent of ̺′ ∈ U , with the open conic neighborhood U as

introduced above, and we let κr/ℓ,ϕ(̺
′, ξn) be the polynomial function given in (1.23). It takes the form

κr/ℓ,ϕ(̺
′, ξn) =

mr/ℓ
−m−

r/ℓ
∑

i=0
κr/ℓ,i(̺

′)ξin, ̺′ ∈ U , ξn ∈ R,

where κr/ℓ,i is homogeneous of degree mr/ℓ −m−
r/ℓ
− i w.r.t. (ξ′, τ). Similarly we write

tjr/ℓ,ϕ(̺
′, ξn) =

βjr/ℓ
∑

i=0
tjr/ℓ,i(̺

′)ξin, ̺′ ∈ U , ξn ∈ R, j = 1, 2,

with βjℓ = βj1 and βjr = βj2, and where tjr/ℓ,i is homogeneous of degree βjr/ℓ − i w.r.t. (ξ′, τ). We recall that
we have (see (1.3))

mℓ − βjℓ = mr − βjr = m− βj, j = 1, . . . ,m.(1.27)

Now, we introduce two famillies of polynomial functions, ejr/ℓ(̺
′, .), of degree less than or equal to mr/ℓ−

1, for j = 1, . . . ,m′
r/ℓ

, with m′
r/ℓ

= m+m−
r/ℓ

. We recall that m = (mℓ +mr)/2. We set

ejr/ℓ
(̺′, ξn) =

{

tjr/ℓ,ϕ(̺
′, ξn) for 1 ≤ j ≤ m,

ξ
j−(m+1)
n κr/ℓ,ϕ(̺

′, ξn) for m+ 1 ≤ j ≤ m′
r/ℓ
, if m′

r/ℓ
> m.

Observe that m′
r/ℓ
> m if m−

r/ℓ
> 0. If we write

ejr/ℓ(̺
′, ξn) =

mr/ℓ
−1

∑

i=0
ejr/ℓ,i(̺

′)ξin,
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we thus obtain

• for 1 ≤ j ≤ m, ejr/ℓ,i =

{

tjr/ℓ,i if 0 ≤ i ≤ βjr/ℓ ,

0 otherwise.

• for m+ 1 ≤ j ≤ m′
r/ℓ
, ejr/ℓ,i =

{

κr/ℓ,i−j+m+1 if j − (m+ 1) ≤ i ≤ j − (m+ 1) +mr/ℓ −m−
r/ℓ
,

0 otherwise,

if m′
r/ℓ
> m.

For 1 ≤ j ≤ m, ejr/ℓ,i is homogeneous of degree βjr/ℓ − i w.r.t. (ξ′, τ). If m′
r/ℓ
> m, setting

(1.28) βjr/ℓ = j +mr/ℓ − (m+m−
r/ℓ
+ 1), j = m+ 1, . . . ,m′

r/ℓ
,

we see that, for m+1 ≤ j ≤ m′
r/ℓ

, the tangential symbol ejr/ℓ,i is homogeneous of degree βjr/ℓ − i w.r.t. (ξ′, τ)

and the symbol ejr/ℓ is homogeneous of degree βjr/ℓ w.r.t. (ξ, τ).
Introducing the matrices

T 1
r/ℓ
(̺′) =

(

ejr/ℓ,i−1

)

1≤i≤mr/ℓ
1≤j≤m

, T 2
r/ℓ
(̺′) =

(

ej+mr/ℓ,i−1

)

1≤i≤mr/ℓ
1≤j≤m−

r/ℓ

,

by Section 1.3.1, we see that the transmission condition of Definition 1.4 for
{

Pr/ℓ , T
j
r/ℓ
, ϕr/ℓ , j = 1, . . . ,m

}

at ̺′0 = (x0, ξ
′
0, τ0) ∈ S

∗
T,τ (V ), with x0 ∈ S, also stated in (1.25)–(1.26) with the local setting introduced

here, reads as follows

rankT (̺′) = mℓ +mr = 2m, with T (̺′) =





T 1
ℓ (̺

′) T 2
ℓ (̺

′) 0

T 1
r (̺

′) 0 T 2
r (̺

′)



 ,(1.29)

for ̺′ = ̺′0. Note that 2m is the number of rows in T (̺′).

We find again that m′ = m +m−
ℓ +m−

r ≥ 2m. Moreover, there exists a 2m × 2m sub-matrix T0(̺′0)
such that det T0(̺′0) 6= 0. As the coefficients of T 1

r/ℓ
(̺′) and T 2

r/ℓ
(̺′) are continuous and homogeneous of

degree βjr/ℓ − i + 1 and βj+mr/ℓ
− i + 1 w.r.t. (ξ′, τ) respectively, where j is the column number and i is the

line number, we then have detT0(̺′) 6= 0 homogenous w.r.t. (ξ′, τ). It follows that det T0(̺′) 6= 0 for ̺′ in
a small conic neighborhood V ⊂ U of ̺′0. Note that the homogeneity of the coefficients is important for
V to be chosen conic since detT0(̺′) is itself homogeneous w.r.t. (ξ′, τ). The rank of T (̺′) thus remains
equal to 2m in V , meaning that condition (1.29) is valid for ̺′ in the whole V .

We have thus reached the following result.

Proposition 1.8. Let the transmission condition
{

Pr/ℓ , T
j
r/ℓ
, ϕr/ℓ , j = 1, . . . ,m

}

hold at ̺′0 = (x0, ξ
′
0, τ0).

Then we have m−
ℓ +m−

r ≥ m. Moreover there exists a conic neighborhood V of ̺′0 such that (1.29) is valid

for ̺′ ∈ V .

Remark 1.9. Observe that the result of Proposition 1.8 implies the condition (1.25)–(1.26) holds for ̺′ ∈
V ⊂ U , yet with κr/ℓ,ϕ defined by the symbol factorizations at ̺′0, that is κr/ℓ,ϕ = κr/ℓ,ϕ,̺′0 using the notation
of Remark 1.7. Now using (1.24) we see that this implies that the transmission condition also holds at ̺′1.
We thus see that the transmission condition remains valid in a conic neighborhood of ̺′0. However, we shall
not use this aspect here. The importance aspect we shall use is the local persistence of condition (1.25)–
(1.26) for ̺′ in a conic neighborhood of ̺′0 as stated in Proposition 1.8 (of course the two are very related).
This explains why we do not use the “more precise” notation of Remark 1.7 throughout the article.
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With the locally presistant decomposition of the conjugated opeators pr/ℓ,ϕ = p−r/ℓ,ϕκ
r/ℓ,ϕ in the neighbor-

hood U of ̺′0, the following states roughly the proof strategy we shall adopt:

(1) The factors p−r/ℓ,ϕ associated with roots with negative imaginary parts yields two perfect elliptic
estimates at the interface and no transmission condition is needed.

(2) Each factors κr/ℓ,ϕ yields an estimate at the interface that involves trace terms. These terms will

be estimated via the actions of the transmission operators T jr/ℓ,ϕ by means of to the transmission
condition.

Note that we have 2m − m−
ℓ − m−

r ≤ m by Proposition 1.8. The number of trace relations available at
the interface in (1.19) is precisely m. This indicates that we shall have at hand a sufficiently large number
of transmission relation to control the terms originating from the estimate with the factors κr/ℓ,ϕ that are of
degree mr/ℓ −m−

r/ℓ
whose sum is mℓ −m−

ℓ +mr −m−
r = 2m−m−

ℓ −m−
r .

1.7. Examples. We provide several examples that illustrate the generality of the elliptic transmission prob-
lems that can be addressed through the results of the present article.

1.7.1. Second-order elliptic operators. We start by providing fairly classical cases of transmission prob-
lems, where the operators are of second order on both sides of the interface. Consider the operators

Pk =
∑

1≤i,j≤n
Dia

(k)
ij (x)Dj , k = 1, 2,

with real coefficients, assumed to be ellitpic, that is, a(k)ij = a
(k)
ji and (a

(k)
ij (x)) ≥ C > 0 uniformly for

x ∈ Ωk. Let x0 ∈ S. As above, local coordinates are chosen so that Ω1 = {xn < 0} and Ω2 = {xn > 0}
in a neighborhood of x0.

A. A natural transmission problem for second-order elliptic operators. A natural and classical transmis-
sion problem can be stated with the following interface operators

T 1
k = (−1)k, T 2

k = (−1)k
∑

1≤j≤n
a
(k)
nj (x)Dj , k = 1, 2.

The transmission problem thus reads

P1u1 = f1 in Ω1, P2u2 = f2 in Ω2,

and

u1|S = u2|S and
∑

1≤j≤n
a
(1)
nj (x)Dju1|S =

∑

1≤j≤n
a
(2)
nj (x)Dju2|S ,

that is, we impose, at the interface, the continuity of the solution, as well as that of the normal flux (in

the sense of the anisotropic diffusion matrices (a
(1)
ij ) and (a

(2)
ij )) . This is physically very natural, and,

mathematically, it implies that piecewise smooth functions satisfying these two conditions are in the domain

of the self-adjoint operator P = ∇ ·A∇, where A = (aij(x)) with aij(x) = a
(k)
ij (x) if x ∈ Ωk, k = 1, 2.

This configuration was treated in [33] following some works on some particular “conformal” cases [3, 34].
Since this example has been extensively studied, it is natural to question if the results of the present article
generalize those provided in these references.

We choose a weight function ϕ(x) that is smooth on both sides of S and continuous across S. Then for
an interface quadruple ω = (x0, Y, ν, τ), with here ν = (0, . . . , 0, 1), Y = (ξ′, 0) = (ξ1, . . . , ξn−1, 0), we
have, for k = 1, 2,

t̃1k,ϕ(ω, λ) = (−1)k,
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and

t̃2k,ϕ(ω, λ) = (−1)ka(k)nn (x0)
(

(−1)kλ+ iτ∂xnϕk(x0)
)

+ (−1)k
∑

1≤j≤n−1
a
(k)
nj (x0)

(

ξj + iτ∂xjϕk(x0)
)

.

As a(k)nn 6= 0 because of the ellipticity of Pk we see that t̃2k,ϕ(ω, λ) are exactly of degree 1 in λ.
Observe that we can write the principal symbol of Pk, k = 1, 2, as

pk(x, ξ) = a(k)nn

(

(

ξn +
n−1
∑

j=1
a
(k)
nj /a

(k)
nn ξj

)2
+ bk(x, ξ

′)
)

,

with the quadratic form

bk(x, ξ
′) =

(

a(k)nn

)−2
n−1
∑

i,j=1

(

a
(k)
ij a

(k)
nn − a

(k)
ni a

(k)
nj

)

ξiξj,

which is positive definite in ξ′. We thus find

p̃k,ϕ(ω, λ) = a(k)nn (x0)
(

(

(−1)kλ+ iτ∂xnϕk(x0) +
n−1
∑

j=1
a
(k)
nj (x0)/a

(k)
nn (x0)(ξj + iτ∂xjϕk(x0))

)2

+ bk(x0, ξ
′ + iτdx′ϕk(x0))

)

In fact, we may write bk(x, ξ′ + iτdx′ϕk) = (Ak − iBk)
2, where Ak and Bk are functions of x, ξ′ and τ ,

homogeneous of degree one in (ξ′, τ), with Ak ≥ 0, and we thus find

p̃k,ϕ(ω, λ) = a(k)nn

∏

k′=1,2

(

(−1)kλ+ iτ∂xnϕk(x0) +
n−1
∑

j=1
a
(k)
nj /a

(k)
nn (x0)(ξj + iτ∂xjϕk(x0))

+ (−1)k
′
(Bk + iAk)

)

.

Writing p̃k,ϕ(ω, λ) = a
(k)
nn (λ−σ1k(ω))(λ−σ2k(ω)), several cases can occur depending on the signs of the

imaginary part of the roots σjk, k = 1, 2, j = 1, 2.

Case 1. Either p̃1,ϕ(ω, λ) or p̃2,ϕ(ω, λ) has two roots in {Im z < 0}. Assume that for instance
p̃1,ϕ(ω, λ) has its two roots in {Im z < 0}. Then κ1,ϕ = 1 while κ2,ϕ(ω, λ) is of degree 0, 1, or 2.
Let then q1(λ), q2(λ) be two polynomial functions.

As t̃12,ϕ(ω, λ) = 1, and t̃22,ϕ(ω, λ) is exaclty of degree 1, we may write

q2(λ) = c1t̃
1
2,ϕ(ω, λ) + c2t̃

2
2,ϕ(ω, λ) + U2(λ)κ2,ϕ(ω, λ).

by means of a Euclidean division by κ2,ϕ(ω, λ), writing the remainder polynomial as a linear combination
of t̃12,ϕ(ω, λ) and t̃22,ϕ(ω, λ). We then have

q1(λ) = c1t̃
1
1,ϕ(ω, λ) + c2t̃

2
1,ϕ(ω, λ) + U1(λ)κ1,ϕ(ω, λ),

by simply choosing U1(λ) = q1(λ) − c1t̃
1
1,ϕ(ω, λ) − c2t̃

2
1,ϕ(ω, λ). The transmission condition of Defini-

tion 1.4 thus holds in this case.
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Case 2. Each symbol p̃k,ϕ(ω, λ), k = 1, 2 has only one roots in {Im z < 0}. In this case, both poly-
nomials κ1,ϕ(ω, λ) and κ2,ϕ(ω, λ) are of degree 1 in λ. As we chose Ak ≥ 0, the root of p̃k,ϕ(ω, λ) with

non-negative imaginary part is given by σ+k = −ζk/a(k)nn (x0) +Bk + iAk with

ζk = (−1)k
(

n−1
∑

j=1
a
(k)
nj (x0)(ξj + iτ∂xjϕj(x0)) + iτa(k)nn (x0)∂xnϕk(x0)

)

.

To understand whether the transmission condition holds or not, it is handy to use the matrix T introduced
in (1.29). It is a 4× 4 matrix here. Using (1.20) and (1.21), we find

T =

















−1 ζ1 −σ+1 0

0 a
(1)
nn 1 0

1 ζ2 0 −σ+2
0 a

(2)
nn 0 1

















.

Observe that the rank of T is 4 if and only if ζ1 + ζ2 6= −a(1)nnσ+1 − a
(2)
nnσ

+
2 . This yields the condition

a(1)nn(B1 + iA1) + a(2)nn(B2 + iA2) 6= 0.

As we have A1 ≥ 0 and A2 ≥ 0 this condition holds if A1 > 0 or A2 > 0. In fact if Ak = 0 this mean that
Imσ1k = Imσ2k which is exluded here. Hence we have A1 > 0 and A2 > 0 and the transmission condition
holds in this case.

Case 3. One symbol p̃k,ϕ(ω, λ) has two roots in {Im z ≥ 0} and the second one has at most one root

in {Im z < 0}. Assume, for instance, that p̃1,ϕ(ω, λ) has two roots in {Im z ≥ 0}. Then, κ1,ϕ is of degree
2. With the assumption on p̃2,ϕ(ω, λ), then, κ1,ϕ is at least of degree 1. In this case, we find that the matrix
T (̺′) has 4 lines and, at most, 3 columns. It cannot be of rank 4. Hence, the transmission condition cannot
hold in this case.

From the three exhaustive cases studied above we thus conclude that the derivation of a Carleman estimate
in a neighborhood of the point x0 can be achieved, according to Theorem 1.6, if one chooses the weight
function ϕ so that Case 3 does not occur.

Using the computation made above we write

p̃k,ϕ(ω, λ) = a(k)nn

∏

k′=1,2

(

(−1)kλ+
n−1
∑

j=1
a
(k)
nj /a

(k)
nn (x0)ξj + iτγk + (−1)k

′
(Bk + iAk)

)

.

where

γk = ∂xnϕk(x0) +
n−1
∑

j=1
a
(k)
nj /a

(k)
nn (x0)∂xjϕk(x0)(1.30)

The values of γk are fixed by the choice of the weight function ϕ. The imaginary parts of the roots are given
by

Imαk
′

k = −(−1)k
(

τγk + (−1)k
′
Ak

)

.(1.31)

If both bk(x, ξ′ + iτdx′ϕk), k = 1, 2, are nonpositive real numbers, that is Ak = 0, in particular if ξ′ = 0

and τ > 0, then, the imaginary parts of the roots of p̃k,ϕ(ω, λ) coincide: Imαk
′

k = −(−1)kτγk, k′ = 1, 2.
In particular, this requires

γ2 > 0 if γ1 ≥ 0, and γ1 < 0 if γ2 ≤ 0,(1.32)
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as, otherwise, we face the occurence of Case 3. The case γ1 ≥ 0 and γ2 ≤ 0 is thus excluded.
Let us assume that γ1 ≥ 0 and γ2 > 0. On the one hand, as we have assumed Ak ≥ 0, the root α2

1

remains in {Im z ≥ 0} and the root α2
2 remains in {Im z < 0}. On the other hand, we have

Imα1
1 = τγ1 −A1, Imα1

2 = −τγ2 +A2.

Hence, Case 3 does not occur if and only if Imα1
2 ≥ 0 ⇒ Imα1

1 < 0, that is,

0 < τγ2 ≤ A2 ⇒ 0 ≤ τγ1 < A1.

A sufficient condition is then
γ1
γ2

<
A1

A2
if A2 6= 0.(1.33)

Observe that in the case where ϕk are only functions of xn, then A1 and A2 are independent of τ and (1.33)
becomes a necessary and sufficient condition for the transmission condition to hold.

The case γ1 < 0 and γ2 ≤ 0 leads similarly to the sufficient condition

γ2
γ1

<
A2

A1
if A1 6= 0.

Finally, we consider the case γ1 < 0 and γ2 > 0. Because of (1.31) we then find that Case 3 cannot
occur with this choice of γ1 and γ2. This particular choice, is however not very interesting, as it somehow
corresponds to an observation4 of the transmission problem both from Ω2 and Ω1. The choice γ1 ≥ 0 and
γ2 > 0 correspond to an observation of the transmission problem from Ω2 only. This is relevant for pratical
applications, for instance, in unique continuation problems, as one may want to find uniqueness across an
interface, having information on the solution on one side of the interface only. Similarly, the choice γ1 < 0
and γ2 ≤ 0 corresponds to an observation from Ω1 only.

Remark and open question. Note that with (1.33) we recover the condition stated in [33]. There, in the
case ϕk = ϕk(xn) it is proven to be sharp for a Carleman estimate to hold. This raises the following
question: is the transmission condition presented here necessary and sufficient for the Carleman estimate
to hold? Sufficiency is the subject of the present article. Necessity is clear in particular cases as shown in
[33] but it is not clear in general. Second-order transmission problems, in the case where ϕk depend on xn
and also x′ would be a natural field of investigation, but the question extends to higher order transmission
problems.

B. Two “non communicating” Dirichlet problems. If we consider

T 1
1 = T 1

2 = 1, T 2
1 = −T 2

2 = 1,

observe, then, that the transmission problem

P1u1 = f1 in Ω1, P2u2 = f2 in Ω2,

and

T 1
1 u1|S + T 1

2 u2|S = g1, T 2
1 u1|S + T 2

2 u2|S = g2,

corresponds two having the following two problems

P1u1 = f1, u1|S = (g1 + g2)/2,

and

P2u2 = f2, u2|S = (g1 − g2)/2,

4This interpretation makes sense in the case ϕ = ϕ(xn). Then γk = ∂xnϕk . In Carleman estimates, “observation” region are
associated with regions where the weight function is the largest.
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that is, two well-posed elliptic equations with independent Dirichlet boundary conditions.
Using the notation and symbol computations of the previous example, let us assume that one of the

symbols p̃k,ϕ(ω, λ), say for k = 1, has two roots in {Im z ≥ 0}. Then, the matrix T introduced in (1.29)
takes the form





























1

0

1

0

1

0

-1

0

0

⊗
T =

and thus cannot be of rank 4. Hence, to derive a Carleman estimate, according to Theorem 1.6, we need
to avoid an occurance of two roots associated with the same symbol p̃k,ϕ(ω, λ) in {Im z ≥ 0}. With γk,
as defined in (1.30), and the imaginary parts of the roots given in (1.31), we note that we then need to
impose γ1 < 0 and γ2 > 0. As explained in the previous example, this corresponds to observing the
transmission problem from both sides of the interface S. This is totally sensible here, as the example we
consider represents two totally decoupled ellitpic problems: observing from one side of the interface cannot
yield any information about the system on the other side. As Theorem 1.6 implies unique continuation
properties (see Section 7) we see that it is very natural that the Carleman estimate cannot be derived, unless
observations are made on both sides.

1.7.2. Higher-order elliptic operators. Here, we consider an example that involves both a second- and a
fourth-order elliptic operator. In R

2, we consider the operators Pk(x,D), k = 1, 2, such that in the local
coordinates as above, the principal symbols are given by

p1(x, ξ1, ξ2) = ξ22 + b1(x, ξ1), p2(x, ξ1, ξ2) = ξ42 + b22(x, ξ1),

where bk(x, .), k = 1, 2, are two positive definite quadratic forms. We assume that the principal symbols of
the transmission operators are given by

t11(x, ξ1, ξ2) = −1, t12(x, ξ1, ξ2) = 1,

t21(x, ξ1, ξ2) = −ξ2, t22(x, ξ1, ξ2) = ξ32 ,

t31(x, ξ1, ξ2) = 0, t32(x, ξ1, ξ2) = ξ22 .

We choose a weight function ϕ(x) = ϕ(x2) that is smooth on both sides of S and continous across S. Then
for an interface quadruple ω = (x0, Y, ν, τ), with ν = (0, 1), Y = (ξ1, 0), we have for µk = −iτϕ′

k,

t̃11,ϕ(ω, λ) = −1, t̃12,ϕ(ω, λ) = 1,

t̃21,ϕ(ω, λ) = (λ+ µ1), t̃22,ϕ(ω, λ) = (λ− µ2)
3,

t̃31,ϕ(ω, λ) = 0, t̃32,ϕ(ω, λ) = (λ− µ2)
2.

For smooth function ϕk, k = 1, 2, such that ϕk is only a function of x2, we assume that ∂x2ϕ1(x0) > 0 and
∂x2ϕ2(x0) > 0. We obtain

p̃1,ϕ(ω, λ) = (λ− α1)(λ− α2),

where
α1 = iτ∂x2ϕ1(x0) + i

√

b1(x0, ξ1), α2 = iτ∂x2ϕ1(x0)− i
√

b1(x0, ξ1).

We thus have Imα1 > 0. The sign of Imα2 may however vary. We also have

p̃2,ϕ(ω, λ) =
4
∏

j=1
(λ− βj)
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where

βj = −iτ∂x2ϕ2(x0)− eiπ(2j−1)/4
√

b2(x0, ξ1), j = 1, 2, 3, 4.

As ∂x2ϕ2(x0) > 0, this forbid all the roots to be in the upper complex half plane. Then Imβ1 < 0 and
Imβ2 < 0. Yet, the signs of Imβ3 and Imβ4 are equal and may vary. We have

Imβ3 = Imβ4 = −τ∂x2ϕ2(x0) +
√

b2(x0, ξ1)/2.

According to Section 1.6.4, using (1.20) and (1.21), we have,

T 1
ℓ =





−1 µ1 0

0 1 0



 , T 1
r =

















1 −µ32 µ22

0 3µ22 −2µ2

0 −3µ2 1

0 1 0

















.

Case 1. Imα2 < 0 and Imβ3 = Imβ4 < 0. In this case, we have κ̃1,ϕ(ω, λ) = (λ−α1) and κ̃2,ϕ(ω, λ) =
1. We then have

T 2
ℓ =





−α1

1





and T 2
r = Id4. Recalling the form of T in (1.29), we have





























T 1
ℓ

T 1
r

0

Id4

T =

−α1

1

0

whose rank is 6 as rankT 1
ℓ = 2. Hence, the transmission condition holds in this case, by its formulation

given in (1.29).
Case 2. Imα2 ≥ 0 and Imβ3 = Imβ4 < 0. In such case, we have κ̃1,ϕ(ω, λ) = (λ − α1)(λ − α2)
and κ̃2,ϕ(ω, λ) = 1. As m−

ℓ = 0 then no matrix T 2
ℓ enters in the composition of T . Still, this matrix has

the same form as in Case 1 with the fourth column removed and, in this case, the rank is 6 implying that the
transmission condition holds in this case.
Case 3. Imα2 < 0 and Imβ3 = Imβ4 ≥ 0. In such case, we have κ̃1,ϕ(ω, λ) = (λ − α1) and
κ̃2,ϕ(ω, λ) = (λ− β3)(λ− β4). We thus have

T 2
ℓ =





−α1

1



 , T 2
r =

















β3β4 0

−(β3 + β4) β3β4

1 −(β3 + β4)

0 1

















.
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Thus, the matrix T reads

T =





























−1 µ1 0 −α1 0 0

0 1 0 1 0 0

1 −µ32 µ22 0 β3β4 0

0 3µ22 −2µ2 0 −(β3 + β4) β3β4

0 −3µ2 1 0 1 −(β3 + β4)

0 1 0 0 0 1





























.

Computing its determinant we find det(T ) = b2(x0, ξ1)
2 that does not vanish as here ξ1 6= 0. In fact, ξ1 = 0

yields Imα2 = τ∂x2ϕ1(x0) > 0 in contradiction with the assumption Imα2 < 0 made here.

Case 4. Imα2 ≥ 0 and Imβ3 = Imβ4 ≥ 0. In this case we have κ̃1,ϕ(ω, λ) = (λ− α1)(λ− α2) and
κ̃2,ϕ(ω, λ) = (λ − α3)(λ − α4). In such case the matrix T is a 6 × 5 matrix. Its rank cannot be 6. The
transmission condition cannot hold in this case.

The four exhaustive cases studied above reveal that the weight function ϕ needs to be chosen so that Case
4 does not occur. Hence, the following condition needs to be fulfilled:

Imβ3 = Imβ4 ≥ 0 ⇒ Imα2 < 0.

Recalling the forms of the roots derived above this reads

0 < τϕ′
1(x0) ≤

√

b2(x0, ξ1)/2 ⇒ 0 < τϕ′
2(x0) <

√

b1(x0, ξ1).

A necessary and sufficient condition is then

ϕ′
1(x0)

ϕ′
2(x0)

<

√

2b1(x0, ξ1)

b2(x0, ξ1)
.

Since b1(x, ξ1)/b2(x, ξ1) is bounded from below, for any ξ1, locally in x, we see that this yields a precise
condition on the weight function ϕ. The condition prescribes a minimal relative jump of the normal deriva-
tive of the weight function across the interface (going from {x2 < 0} to {x2 > 0}). Note that one can also
provide a sufficient condition in the case ϕ depends also on the x1 variable, as in Example 1.7.1-A.

1.8. Notation. If V ⊂ R
n
+ we denote the semi-classical unit half cosphere bundle over V (in the cotangen-

tial direction ξ′) by

S
∗
T,τ (V ) = {(x, ξ′, τ); x ∈ V, ξ′ ∈ R

n−1, τ ∈ R+, |ξ′|2 + τ2 = 1}.
The canonical inner product in C

m is denoted by (z, z′)
Cm

=
∑m−1

j=0 zjz′j , for z = (z0, . . . , zm−1), z
′ =

(z′0, . . . , z
′
m−1) ∈ C

m. The associated norm will be denoted |z|2
Cm

=
∑m−1

j=0 |zj |2.

We shall use some spaces of smooth functions in the closed half space. We set

S (R
n
+) = {u|Rn+ ; u ∈ S (Rn)}.

For two u, v ∈ S (R
n
+) we set

(u, v)+ = (u, v)L2(Rn+)

(

u|xn=0+ , v|xn=0+
)

∂
=

(

u|xn=0+ , v|xn=0+
)

L2(Rn−1)
.

We also set
‖u‖+ = ‖u‖L2(Rn+)

∣

∣u|xn=0+
∣

∣

∂
=

∣

∣u|xn=0+
∣

∣

L2(Rn−1)
.
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In this article, when the constant C is used, it refers to a constant that is independent of the large parameter
τ . Its value may however change from one line to another. If we want to keep track of the value of a constant
we shall use another letter.

In what follows, for concision, we shall sometimes use the notation . for ≤ C , with a constant C > 0.
We shall write a ≍ b to denote a . b . a.

2. PSEUDO-DIFFERENTIAL OPERATORS WITH A LARGE PARAMETER

Parameter-dependent pseudo-differential operators have proven to be important tools for the derivation
of Carleman estimates. The general aim is to obtain a pseudo-differential calculus with a large parameter,
and then to derive estimates with constants that are independent of the parameter. Often such a pseudo-
differential calculus is referred to as a semi-classical calculus.

2.1. Classes of symbols. We first introduce symbols that depend on a parameter.

Definition 2.1. Let a(̺) ∈ C∞(Rn × R
n), ̺ = (x, ξ, τ), with τ as a parameter in [τmin,+∞), τmin > 0,

and m ∈ R, be such that for all multi-indices α, β ∈ N
n we have

(2.1)
∣

∣

∣∂αx ∂
β
ξ a(̺)

∣

∣

∣ ≤ Cα,βλ
m−|β|, x ∈ R

n, ξ ∈ R
n, τ ∈ [τmin,+∞),

where λ = |(ξ, τ)| =
(

|ξ|2 + τ2
)

1
2 . Thus differentiation with respect to ξ improves the decay in ξ and τ

simultaneously. We write a ∈ Smτ (Rn × R
n) or simply Smτ . For a ∈ Smτ we denote by σ(a) its principal

part, that is, its equivalence class in Smτ /S
m−1
τ .

We also introduce tangential symbols. Let a(̺′) ∈ C∞(R
n
+ × R

n−1), ̺′ = (x, ξ′, τ), with τ as a

parameter in [τmin,+∞), τmin > 0, and m ∈ R, be such that for all multi-indices α ∈ N
n, β ∈ N

n−1 we

have
∣

∣

∣
∂αx ∂

β
ξ′a(̺

′)
∣

∣

∣
≤ Cα,βλ

m−|β|
T

, x ∈ R
n
+, ξ

′ ∈ R
n−1, τ ∈ [τmin,+∞),

where λT = |(ξ′, τ)| =
(

|ξ′|2 + τ2
)

1
2 . We write a ∈ Sm

T,τ (R
n
+ × Rn−1) or simply Sm

T,τ . For a ∈ Sm
T,τ we

denote by σ(a) its principal part, that is, its equivalence class in Sm
T,τ/S

m−1
T,τ .

We also introduce symbol classes that behave polynomially in the ξn variable. Let a(̺) ∈ C∞(R
n
+×R

n),
with τ as a parameter in [τmin,+∞), τmin > 0, and m ∈ N and r ∈ R, be such that

a(̺) =
m
∑

j=0
aj(̺

′)ξjn, aj ∈ Sm−j+r
T,τ , ̺ = (̺′, ξn), ̺

′ = (x, ξ′, τ),

with x ∈ R
n
+, ξ ∈ R

n, τ ≥ τmin, and ξn ∈ R. We write a(̺) ∈ Sm,rτ (R
n
+ × R

n) or simply Sm,rτ .

Note that we have Sm,rτ ⊂ Sm+m′,r−m′

τ , if m,m′ ∈ N and r ∈ R. We shall call the principal symbol of
a the symbol

σ(a)(̺) =
m
∑

j=0
σ(aj)(̺

′)ξjn,

which is a representative of the class of a in Sm,rτ /Sm,r−1
τ .

Note that Sm,rτ 6⊂ Sm+r
τ . For example consider a(x, ξ, τ) = |(ξ′, τ)|ξn for |(ξ′, τ)| ≥ 1. We have

a ∈ S2,0
τ ∩ S1,1

τ and yet a /∈ S2
τ . In fact observe that differentiating with respect to ξ′ yields

|∂αξ′a(x, ξ, τ)| ≤ Cα|(ξ′, τ)|1−|α||ξn|.
An estimate of the form of (2.1) is however not achieved for |α| ≥ 2. A microlocalization is required
to repair this flaw and to use the two different symbol classes in a pseudo-differential calculus (See [21,
Theorem 18.1.35]).



24 M. BELLASSOUED AND J. LE ROUSSEAU

Finally, we define the corresponding spaces of poly-homogeneous symbols. Such symbols are often
referred to as classical symbols; they are characterized by an asymptotic expansion where each term is
positively homogeneous with respect to (ξ, τ) (resp. (ξ′, τ)):

Definition 2.2. We shall say a ∈ Smτ,cl(R
n×R

n) or simply Smτ,cl (resp. Sm
T,τ,cl(R

n
+×R

n−1) or simply Sm
T,τ,cl)

if there exists a(j) ∈ Sm−j
τ (resp. Sm−j

T,τ ), homogeneous of degree m − j in (ξ, τ) for |(ξ, τ)| ≥ r0, (resp.

(ξ′, τ) for |(ξ′, τ)| ≥ r0), with r0 ≥ 0, such that

(2.2) a ∼ ∑

j≥0
a(j), in the sense that a−

N
∑

j=0
a(j) ∈ Sm−N−1

τ (resp. Sm−N−1
T,τ ).

A representative of the principal part is then given by the first term in the expansion.

Finally for m ∈ N and r ∈ R, we shall say that a(̺) ∈ Sm,rτ,cl (R
n
+ × R

n) or simply Sm,rτ,cl , if

a(̺) =
m
∑

j=0
aj(̺

′)ξjn, with aj ∈ Sm−j+r
T,τ,cl , ̺ = (̺′, ξn).

The principal part is given by
∑m

j=0 σ(aj)(̺
′)ξjn and is homogeneous of degree m in (ξ, τ).

2.2. Classes of semi-classical pseudo-differential operators. For a ∈ Smτ (Rn × R
n) (resp. Smτ,cl(R

n ×
R
n)) we define the following pseudo-differential operator in R

n:

a(x,D, τ)u(x) = Op(a)u(x) = (2π)−n ∫
Rn
ei(x,ξ)a(x, ξ, τ)û(ξ) dξ, u ∈ S (Rn),(2.3)

where û is the Fourier transform of u. In the sense of oscillatory integrals we have

a(x,D, τ)u(x) = Op(a)u(x) = (2π)−n ∫∫
R2n

ei(x−y,ξ)a(x, ξ, τ)u(y) dξ dy.

We write Op(a) ∈ Ψm
τ (R

n) or simply Ψm
τ,cl (resp. Ψm

τ (R
n) or simply Ψm

τ,cl). Here D denotes Dx. The

principal symbol of Op(a) is σ(Op(a)) = σ(a) ∈ Smτ /S
m−1
τ (resp. Smτ,cl/S

m−1
τ,cl ).

Tangential operators are defined similarly. For a ∈ Sm
T,τ (R

n
+ × R

n) (resp. Sm
T,τ,cl(R

n
+ × R

n)) we set

a(x,D′, τ)u(x) = Op(a)u(x) = (2π)−(n−1) ∫∫
R2n−2

ei(x
′−y′,ξ′)a(x, ξ′, τ)u(y′, xn) dξ

′ dy′,(2.4)

for u ∈ S (R
n
+), where x ∈ R

n
+. Here D′ denotes Dx′ . We write A = Op(a) ∈ Ψm

T,τ (R
n
+) or simply Ψm

T,τ

(resp. Ψm
T,τ,cl(R

n
+) or simply Ψm

T,τ,cl). The principal symbol of A = Op(a) is σ(A) = σ(a) ∈ Sm
T,τ/S

m−1
T,τ

(resp. Sm
T,τ,cl/S

m−1
T,τ,cl).

Finally for m ∈ N, r ∈ R, and a ∈ Sm,rτ (resp. Sm,rτ,cl ) with

a(̺) =
m
∑

j=0
aj(̺

′)ξjn, aj ∈ Sm−j+r
T,τ (resp. Sm−j+r

T,τ,cl ), ̺ = (̺′, ξn),

we set

a(x,D, τ) = Op(a) =
m
∑

j=0
aj(x,D

′, τ)Dj
n,

and we write A = Op(a) ∈ Ψm,r
τ (Rn+) or simply Ψm,r

τ (resp. Ψm,r
τ,cl (R

n
+) or simply Ψm,r

τ,cl ). The principal

symbol of A is σ(A)(̺) = σ(a)(̺) =
∑m

j=0 σ(aj)(̺
′)ξjn in Sm,rτ /Sm,r−1

τ (resp. Sm,rτ,cl /S
m,r−1
τ,cl ).

We provide some basic calculus rules in the case of tangential operators.
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Proposition 2.3 (composition). Let a ∈ Sm
T,τ (resp. Sm

T,τ,cl) and b ∈ Sm
′

T,τ (resp. Sm
′

T,τ,cl) be two tangential

symbols. Then Op(a)Op(b) = Op(c) ∈ Ψm+m′

T,τ (resp. Ψm+m′

T,τ,cl ) with c ∈ Sm+m′

T,τ (resp. Sm+m′

T,τ,cl ) defined by

the (oscillatory) integral:

c(̺′) = (a# b)(̺′) = (2π)−(n−1) ∫∫ e−i(y′,η′)a(x, ξ′ + η′, τ) b(x′ + y′, xn, ξ
′, τ) dy′ dη′

=
∑

|α|<N

(−i)|α|
α!

∂αξ′a(̺
′) ∂αx′b(̺

′) + rN ,

where rN ∈ Sm+m′−N
T,τ (resp. Sm+m′−N

T,τ,cl ) is given by

rN =
(−i)N

(2π)(n−1)

∑

|α|=N

1
∫
0

N(1− s)N−1

α!
∫∫e−i(y′,η′)∂αξ′a(x, ξ′ + η′, τ)∂αx′b(x

′ + sy′, xn, ξ
′, τ) dy′dη′ds.

Proposition 2.4 (formal adjoint). Let a ∈ Sm
T,τ (resp. Sm

T,τ,cl). There exists a∗ ∈ Sm
T,τ (resp. Sm

T,τ,cl) such

that

(Op(a)u, v)+ = (u,Op(a∗)v)+ , u, v ∈ S (R
n
+).

and a∗ is given be the following asymptotic expansion

a∗(̺′) = (2π)−(n−1) ∫∫ e−i(y′,η′)a(x′ + y′, xn, ξ
′ + η′, τ) dy′ dη′

=
∑

|α|<N

(−i)|α|
α!

∂αξ′∂
α
x′a(̺

′) + rN , rN ∈ Sm−N
T,τ (resp. Sm−N

T,τ,cl ),

where

rN =
(−i)N

(2π)(n−1)

∑

|α|=N

1
∫
0

N(1− s)N−1

α!
∫∫e−i(y′,η′)∂αξ′∂αx′a(x′ + sy′, xn, ξ

′ + η′, τ) dy′dη′ds.

We denote Op(a)∗ = Op(a∗). We refer to Op(a)∗ as to the formal adjoint of Op(a).

A consequence of the previous calculus results is the following proposition.

Proposition 2.5. Let a(̺′) ∈ Sm
T,τ (resp. Sm

T,τ,cl) and b(̺′) ∈ Sm
′

T,τ (resp. Sm
′

T,τ,cl), with m,m′ ∈ R. Define

h(̺′) = Dx′(b∂ξ′a)(̺
′) ∈ Sm+m′−1

τ . Then we have

Op(a)∗ Op(b)−Op(ab+ h) ∈ Ψm+m′−2
T,τ (resp. Ψm+m′−2

T,τ,cl ),

or equivalently a∗#b− ab− h ∈ Sm+m′−2
T,τ (resp. Sm+m′−2

T,τ,cl ).

For semi-classical operators in the half space with symbols that are polynomial in ξn we also provide a
notion of formal adjoint.

Definition 2.6. Let b ∈ Sm,rτ (resp. Sm,rτ,cl ), with

b(x,D, τ) =
m
∑

j=0
bj(x,D

′, τ)Dj
n, bj ∈ Sm+r−j

T,τ (resp. Sm+r−j
T,τ,cl ).

We set

b(x,D, τ)∗ =
m
∑

j=0
Dj
nbj(x,D

′, τ)∗.
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In other words, in this definition we ignore the possible occurrence of boundary terms when performing
the operator transposition.

Note that for a ∈ Sm
T,τ,cl we have [Dn,Op(a)] = Op(Dna) ∈ Ψm

T,τ,cl and more generally, for j ≥ 1, we
have

[

Dj
n,Op(a)

]

=
j−1
∑

k=0

Op(αk)D
k
n, αk ∈ Sm

T,τ,cl,

where the symbols αk involve various derivatives of a in the xn-direction. As an application we see that if
we consider aj ∈ Sm−j+r

T,τ,cl then we have

m
∑

j=0
Dj
naj(x,D

′, τ) =
m
∑

j=0
ãj(x,D

′, τ)Dj
n,

where ãj ∈ Sm−j+r
T,τ,cl and its principal part satisfies σ(ãj) ≡ aj in Sm−j+r

T,τ /Sm−j+r−1
T,τ . Hence

σ
( m
∑

j=0
Dj
naj(x,D

′, τ)
)

=
m
∑

j=0
aj(x, ξ

′, τ)ξjn mod Sm,r−1
τ .

From the calculus rules given above for the tangential operators and the above observation we have the
following results on the principal symbols.

Proposition 2.7. Let a ∈ Sm,rτ (resp. Sm,rτ,cl ) and b ∈ Sm
′,r′

τ (resp. Sm
′,r′

τ,cl ) with

a(̺) =
m
∑

j=0
aj(̺

′)ξjn, b(̺) =
m′
∑

j=0
bj(̺

′)ξjn, ̺ = (̺′, ξn), ̺
′ = (x, ξ′, τ).

(1) We have a(x,D, τ)∗ ∈ Ψm,r
τ (resp. Ψm,r

τ,cl ) and

σ
(

a(x,D, τ)∗
)

≡
m
∑

j=0
aj(̺

′)ξjn ∈ Sm,rτ /Sm,r−1
τ (resp. Sm,rτ,cl /S

m,r−1
τ,cl ).

Moreover we have Op(a)∗ −Op(a) ∈ Ψm,r−1
τ (resp. Ψm,r−1

τ,cl ).

(2) a(x,D, τ)b(x,D, τ) ∈ Ψm+m′,r+r′
τ (resp. Ψm+m′,r+r′

τ,cl ) and

σ
(

a(x,D, τ)b(x,D, τ)
)

≡ ∑

0≤j≤m
0≤k≤m′

aj(̺
′)bk(̺

′)ξj+kn ∈ Sm+m′,r+r′
τ /Sm+m′,r+r′−1

τ

(resp. Sm+m′,r+r′

τ,cl /Sm+m′,r+r′−1
τ,cl ).

We have Op(a)Op(b)u−Op(ab)u ∈ Ψm+m′,r+r′−1
τ (resp. Ψm+m′,r+r′−1

τ,cl ).

2.3. Sobolev continuity results. Here we state continuity results for the operators defined above using the
Sobolev norms with parameters introduced in Section 1.4. Such results can be obtained from their standard
counterparts.

Let λT(ξ
′, τ) =

(

τ2 + |ξ′|2
)1/2

and ΛT := Op(λT). For a given real number s, the boundary norm given

by (1.14) is equivalent to the following norms (see (1.13) for the definition of |.|p,τ ):

(2.5) |u|2m,s,τ =
m
∑

k=0

|Λs
T
uk|2m−k,τ , u = (u0, . . . , um) ∈

(

S (Rn−1)
)m+1

.

Moreover, we define the following semi-classical interior norm

(2.6) ‖u‖2m,s,τ = ‖Λs
T
u‖2m,τ , u ∈ S (R

n
+).
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Proposition 2.8. If a(̺) ∈ Sm,rτ , with m ∈ N and r ∈ R, then for m′ ∈ N and r′ ∈ R there exists C > 0
such that

‖Op(a)u‖m′,r′,τ ≤ C ‖u‖m+m′,r+r′,τ , u ∈ S (R
n
+).

A consequence of this results and Proposition 2.7 is the following property.

Corollary 2.9. Let a ∈ Sm,rτ and m′ ∈ N and s ∈ R. We have

‖a(x,D, τ)∗u− a(x,D, τ)u‖m′,s,τ ≤ C ‖u‖m+m′,r+s−1,τ , u ∈ S (R
n
+).

The following simple inequality will be used implicitly at many places in what follows when we invoke
the parameter τ to be chosen sufficiently large. This will then allow us to absorb semi-classical norms of
lower order.

Corollary 2.10. Let m ∈ N and s ∈ R and ℓ ≥ 0. For some C > 0, we have

‖u‖m,s,τ ≤ Cτ−ℓ ‖u‖m,s+ℓ,τ , u ∈ S (R
n
+).

This implies that ‖u‖m,s,τ ≪ ‖u‖m,s+ℓ,τ for τ sufficiently large.

3. INTERFACE QUADRATIC FORMS

For a(̺) ∈ Sp,στ,cl(R
n
+ × R

n), we have

a(̺) =
p
∑

j=0
aj(̺

′)ξjn, with aj ∈ Sp−j+σ
T,τ,cl (R

n
+ × R

n−1),

and for z = (z0, . . . , zp) ∈ C
p+1 we set

Σa(̺
′, z) =

p
∑

j=0
aj(̺

′)zj .(3.1)

We let mℓ and mr be two integers. For applications of the results of this section we shall use the values
of mr/ℓ that come with the elliptic transmission problem we consider in the present article.

Definition 3.1 (interface quadratic forms). Let w = (wℓ, wr) ∈
(

S (R
n
+)

)2
. We say that

G (w) =
N
∑

s=1

(

Asℓwℓ|xn=0+ +Asrwr |xn=0+ , B
s
ℓwℓ|xn=0+ +Bs

rwr |xn=0+
)

∂
,

withAsr/ℓ = asr/ℓ(x,D, τ) andBs
r/ℓ

= bsr/ℓ(x,D, τ), is an interface quadratic form of type (mℓ − 1,mr − 1, σ)

with C∞ coefficients, if for each s = 1, . . . , N , we have asr/ℓ(̺), b
s
r/ℓ
(̺) ∈ S

mr/ℓ
−1,σr/ℓ

τ,cl (R
n
+ × R

n), with

σℓ + σr = 2σ, ̺ = (̺′, ξn) with ̺′ = (x, ξ′, τ).

For w = (zℓ, zr), w̃ = (z̃ℓ, z̃r) ∈ C
mℓ × C

mr , z
r/ℓ = (z

r/ℓ
0 , . . . , z

r/ℓ
mr/ℓ

−1), z̃
r/ℓ = (z̃

r/ℓ
0 , . . . , z̃

r/ℓ
mr/ℓ

−1) ∈
C
mr/ℓ with the interface quadratic form G we associate the following bilinear symbol

ΣG (̺
′,w, w̃) =

N
∑

s=1

(

Σasℓ (̺
′, zℓ) + Σasr(̺

′, zr)
)(

Σbs
ℓ
(̺′, z̃ℓ) + Σbsr(̺

′, z̃r)
)

.

with Σasr/ℓ
and Σbsr/ℓ

defined as in (3.1).
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Definition 3.2. Let W be an open conic set in R
n−1×R

n−1×R+ and let G be an interface quadratic form

of type (mℓ − 1,mr − 1, σ) associated with the bilinear symbol ΣG (̺
′,w, w̃). We say that G is positive

definite in W if there exists C > 0 and R > 0 such that

ReΣG (̺
′′, xn = 0+,w,w) ≥ C

(mℓ−1
∑

j=0
λ
2(mℓ−1−j+σℓ)
T

∣

∣zℓj
∣

∣

2
+
mr−1
∑

j=0
λ
2(mr−1−j+σr)
T

∣

∣zrj
∣

∣

2
)

,

for any w = (zℓ, zr), z
r/ℓ = (z

r/ℓ
0 , . . . , z

r/ℓ
mr/ℓ

−1) ∈ C
mr/ℓ , and ̺′′ = (x′, ξ′, τ) ∈ W , τ ≥ 0, such that

λT = |(ξ′, τ)| ≥ R.

Then we have the following Lemma

Lemma 3.3. Let W be an open conic set in R
n−1 × R

n−1 × R+ and let G be an interface quadratic form

of type (mℓ − 1,mr − 1, σ) that is positive definite in W . Let χ ∈ S0
T,τ be homogeneous of degree 0, with

supp(χ|xn=0+) ⊂ W and let N ∈ N. Then there exist τ∗ ≥ 1, C > 0, CN > 0 such that

ReG (Op(χ)u) ≥ C
(

|tr(Op(χ)uℓ)|2mℓ−1,σℓ,τ
+ |tr(Op(χ)ur)|2mr−1,σr ,τ

)

− CN
(

|tr(uℓ)|2mℓ−1,σℓ−N,τ
+ |tr(ur)|2mr−1,σr−N,τ

)

for u = (uℓ, ur) ∈
(

S (R
n
+)

)2
and τ ≥ τ∗.

Proof. The interface quadratic form can be written as

G (u) =
mℓ−1
∑

j,k=0

(

GℓℓkjΛ
mℓ−1−j+σℓ
T

Dj
nuℓ|xn=0+ ,Λ

mℓ−1−k+σℓ
T

Dk
nuℓ|xn=0+

)

∂

+
mr−1
∑

j,k=0

(

GrrkjΛ
mr−1−j+σr
T

Dj
nur |xn=0+ ,Λ

mr−1−k+σr
T

Dk
nur |xn=0+

)

∂

+
mℓ−1
∑

j=0

mr−1
∑

k=0

(

GrℓkjΛ
mℓ−1−j+σℓ
T

Dj
nuℓ|xn=0+ ,Λ

mr−1−k+σr
T

Dk
nur |xn=0+

)

∂

+
mr−1
∑

j=0

mℓ−1
∑

k=0

(

GℓrkjΛ
mr−1−j+σr
T

Dj
nur |xn=0+ ,Λ

mℓ−1−k+σℓ
T

Dk
nuℓ|xn=0+

)

∂
,

where Gii
′

jk = Op(gii
′

jk) ∈ Ψ0
T,τ,cl, with i, i′ = r/ℓ.

We set the 2m× 2m-matrix tangential symbol

g(̺′) =





gℓℓ gℓr

grℓ grr



 (̺′), gii
′
(̺′) =

(

gii
′

jk(̺
′)
)

0≤j≤mi−1
0≤k≤m

i′
−1

, i, i′ = r/ℓ.

We introduce χ̃ ∈ S0
T,τ that has the same properties as χ with moreover 0 ≤ χ̃ ≤ 1 and χ̃ = 1 in a

neighborhood of suppχ. We then set

g̃ = χ̃g + (1− χ̃)I2m,

where I2m is the 2m× 2m identity matrix.
As G is positive definite in W we have, for some C > 0,

Re
(

g(̺′′, xn = 0+)w,w
)

≥ C |w|2
C2m , ̺′′ ∈ W , w ∈ C

2m.

Therefore we have, for some C ′ > 0,

Re
(

g̃(̺′′, xn = 0+)w,w
)

≥ C ′ |w|2
C2m , ̺′′ ∈ R

n−1 × R
n−1 ×R+, w ∈ C

2m.(3.2)
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For a function v we define the mr/ℓ-tuple functions Vr/ℓ = (vr/ℓ,0, . . . , vr/ℓ,mr/ℓ−1) by

vr/ℓ,k = Λ
mr/ℓ

+σr/ℓ
−1−k

T
Dk
nvr/ℓ |xn=0+

, k = 0, . . . ,mr/ℓ − 1.

We then have, for N ∈ Z,

∣

∣Vr/ℓ
∣

∣

2

N,τ
=

mr/ℓ
−1

∑

k=0

∣

∣vr/ℓ,k
∣

∣

2

N,τ
=

mr/ℓ
−1

∑

k=0

∣

∣Λ
mr/ℓ

+σr/ℓ
−1−k

T
Dk
nvr/ℓ |xn=0+

∣

∣

2

N,τ
(3.3)

≍
mr/ℓ

−1
∑

k=0

∣

∣Λ
σr/ℓ

+N

T
Dk
nvr/ℓ

∣

∣

2

mr/ℓ
−1−k,τ

=
∣

∣tr(vr/ℓ)
∣

∣

2

mr/ℓ
−1,σr/ℓ

+N,τ
.

We set ur/ℓ = Op(χ)ur/ℓ and introduce Ur/ℓ = (ur/ℓ,0, . . . , ur/ℓ,mr/ℓ−1) and U r/ℓ
= (ur/ℓ,0, . . . , ur/ℓ,m−1) as

above:

ur/ℓ,k = Λ
mr/ℓ

+σr/ℓ
−1−k

T
Dk
nur/ℓ |xn=0+

, ur/ℓ,k = Λ
mr/ℓ

+σr/ℓ
−1−k

T
Dk
nur/ℓ |xn=0+

, k = 0, . . . ,mr/ℓ − 1.

Setting tU = (U ℓ, U r) we obtain

G (u) =
(

Op(g|xn=0+)U,U
)

∂
.

Writing g = g̃ + r with r = (g − I2m)(1− χ̃) we find

G (u) =
(

Op(g̃|xn=0+)U,U
)

∂
+

(

Op(r|xn=0+)U,U
)

∂

As the supports of 1 − χ̃ and χ are disjoint, with the pseudo-differential calculus, for any N ∈ N we have
for some CN > 0

∣

∣

(

Op(r|xn=0+)U,U
)

∂

∣

∣ ≤ CN |U |2−N,τ .(3.4)

Next, from (3.2) with the Gårding inequality in the tangential direction we deduce that for some C > 0 we
have

Re
(

Op(g̃|xn=0+)U,U
)

∂
≥ C |U |2∂ ,(3.5)

for τ sufficiently large. Combining (3.4)–(3.5) with (3.3) yields the conclusion. �

Proposition 3.4. Assume that the transmission condition of Definition 1.4 holds at ̺′0 = (x0, ξ
′
0, τ0) ∈

S
∗
T,τ (V ) with x0 ∈ S (see also (1.25)–(1.26) and (1.29) for a formulation in the local setting). Then there

exists U1 a conic open neighborhood of ̺′0 in V+ × R
n−1 × R+ such that

m
∑

j=1
λ
2(m−1/2−βj )
T

∣

∣Σ
tj
ℓ,ϕ

(̺′, zℓ) + Σ
tjr,ϕ

(̺′, zr)
∣

∣

2

+
m′
ℓ

∑

j=m+1
λ
2(mℓ−1/2−βjℓ )
T

∣

∣Σ
ej
ℓ,ϕ

(̺′, zℓ)
∣

∣

2
+

m′
r

∑

j=m+1
λ
2(mr−1/2−βjr)
T

∣

∣Σ
ejr,ϕ

(̺′, zr)
∣

∣

2

≥ C
(mℓ−1

∑

j=0
λ
2(mℓ−1/2−j)
T

|zℓj |2 +
mr−1
∑

j=0
λ
2(mr−1/2−j)
T

|zrj |2
)

,

for ̺ ∈ U1 and z
r/ℓ = (z

r/ℓ
0 , . . . , z

r/ℓ
mr/ℓ

−1) ∈ C
mr/ℓ .

We recall that βj = (βjℓ + βjr)/2 for j = 1, . . . ,m, and that we have (1.27).
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Proof. With the transmission condition holding at ̺′0, by Proposition 1.8 there exists a conic open set U1

neighborhood of ̺′0 where condition (1.29) is valid. Observe that K = U1 ∩ S∗
T,τ (V ) is compact, recalling

that V+ is bounded.
Let ̺′1 ∈ K and T (̺′1) be as in (1.29). We have

rank T (̺′1) = rankT (̺′1)
tT (̺′1) = 2m,

For w = (zℓ, zr) ∈ C
2m, z

r/ℓ = (z
r/ℓ
0 , . . . , z

r/ℓ
mr/ℓ

−1) ∈ C
mr/ℓ , recalling that 2m = mℓ +mr, we thus have

(

T (̺′1)
tT (̺′1)w,w

)

≥ C|w|2
C2m , for some C > 0.

Observe that we have

T (̺′1)
tT (̺′1) =





T 1
ℓ (̺

′
1)

tT 1
ℓ (̺

′
1) T 1

ℓ (̺
′
1)

tT 1
r (̺

′
1)

T 1
r (̺

′
1)

tT 1
ℓ (̺

′
1) T 1

r (̺
′
1)

tT 1
r (̺

′
1)



+





T 2
ℓ (̺

′
1)

tT 2
ℓ (̺

′
1) 0

0 T 2
r (̺

′
1)

tT 2
r (̺

′
1)



 .

For w = (zℓ, zr), z
r/ℓ = (z

r/ℓ
0 , . . . , z

r/ℓ
mr/ℓ

−1) ∈ C
mr/ℓ , we have

(

T (̺′1)
tT (̺′1)w,w

)

=
∣

∣

tT 1
ℓ (̺

′
1)z

ℓ + tT 1
r (̺

′
1)z

r
∣

∣

2

Cm
+

∣

∣

tT 2
ℓ (̺

′
1)z

ℓ
∣

∣

2

C
m

−
ℓ
+

∣

∣

tT 2
r (̺

′
1)z

r
∣

∣

2

Cm
−
r

=
m
∑

j=1

∣

∣

∣

mℓ−1
∑

i=0
tjℓ,i(̺

′
1)z

ℓ
i +

mr−1
∑

i=0
tjr,i(̺

′
1)z

r
i

∣

∣

∣

2

+
m−
ℓ

∑

j=1

∣

∣

mℓ−1
∑

i=0
ej+mℓ,i (̺′1)z

ℓ
i

∣

∣

2
+

m−
r

∑

j=1

∣

∣

mr−1
∑

i=0
ej+mr,i (̺′1)z

r
i

∣

∣

2

=
m
∑

j=1

∣

∣

∣Σtjℓ,ϕ
(̺′1, z

ℓ) + Σ
tjr,ϕ

(̺′1, z
r)
∣

∣

∣

2
+

m−
ℓ

∑

j=1

∣

∣Σ
ej+mℓ,ϕ

(̺′1, z
ℓ)
∣

∣

2
+
m′−
r
∑

j=1

∣

∣Σ
ej+mr,ϕ

(̺′1, z
r)
∣

∣

2
.

We thus obtain

m
∑

j=1

∣

∣

∣
Σ
tjℓ,ϕ

(̺′1, z
ℓ) + Σ

tjr,ϕ
(̺′1, z

r)
∣

∣

∣

2
+

m−
ℓ

∑

j=1

∣

∣Σ
ej+mℓ,ϕ

(̺′1, z
ℓ)
∣

∣

2
+

m−
r

∑

j=1

∣

∣Σ
ej+mr,ϕ

(̺′1, z
r)
∣

∣

2
& |(zℓ, zr)|2.

By continuity this inequality remains true in a small neighborhood of ̺′1 in K. Using the compactness of K
we thus find

m
∑

j=1

∣

∣

∣
Σ
tjℓ,ϕ

(̺′, zℓ) + Σ
tjr,ϕ

(̺′, zr)
∣

∣

∣

2
+

m−
ℓ

∑

j=1

∣

∣Σ
ej+mℓ,ϕ

(̺′, zℓ)
∣

∣

2
+

m−
r

∑

j=1

∣

∣Σ
ej+mr,ϕ

(̺′, zr)
∣

∣

2
& |(zℓ, zr)|2,

for ̺′ ∈ K and z
r/ℓ = (z

r/ℓ
0 , . . . , z

r/ℓ
mr/ℓ

−1) ∈ C
mr/ℓ . Introducing the map

Mt̺
′ = (x, tη), ̺′ = (x, η) ∈ R

n
+ × R

n−1 ×R+, t > 0,

as we have U1 = {Mt̺
′; t > 0, ̺′ ∈ K}, we find

m
∑

j=1

∣

∣

∣
Σ
tj
ℓ,ϕ

(Mt̺
′, z̃ℓ) + Σ

tjr,ϕ
(Mt̺

′, z̃r)
∣

∣

∣

2
+

m−
ℓ

∑

j=1

∣

∣Σ
ej+m
ℓ,ϕ

(Mt̺
′, z̃ℓ)

∣

∣

2
+

m−
r

∑

j=1

∣

∣Σ
ej+mr,ϕ

(Mt̺
′, z̃r)

∣

∣

2
& |(z̃ℓ, z̃r)|2,
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where t = λ−1
T

= |(ξ′, τ)|−1 and z̃
r/ℓ = (z̃

r/ℓ
0 , . . . , z̃

r/ℓ
mr/ℓ

−1) ∈ C
mr/ℓ , with z̃

r/ℓ
j = t

−mr/ℓ
+1/2+j

z
r/ℓ
j , yielding

m
∑

j=1

∣

∣λ
−(βj

ℓ
−mℓ+1/2)

T
Σ
tj
ℓ,ϕ

(̺′, zℓ) + λ
−(βjr−mr+1/2)
T

Σ
tjr,ϕ

(̺′, zr)
∣

∣

2

+
m−
ℓ

∑

j=1

∣

∣λ
−(βjℓ−mℓ+1/2)
T

Σ
ej+m
ℓ,ϕ

(̺′, zℓ)
∣

∣

2
+

m−
r

∑

j=1

∣

∣λ
−(βjr−mr+1/2)
T

Σ
ej+mr,ϕ

(̺′, zr)
∣

∣

2

&
mℓ−1
∑

j=0
|λmℓ−1/2−j

T
zℓj |2 +

mr−1
∑

j=0
|λmr−1/2−j

T
zrj |2.

With (1.27) we obtain the sought result. �

4. PROOF OF THE CARLEMAN ESTIMATE

As is usual in the proof of Carleman estimates we consider the following conjugated operators

Pr/ℓ,ϕ = e
τϕr/ℓPr/ℓe

−τϕr/ℓ .

As e
τϕr/ℓDje

−τϕr/ℓ = Dj + iτ∂jϕr/ℓ ∈ Ψ1,0
τ,cl, we see that Pr/ℓ,ϕ ∈ Ψ2m,0

τ,cl . Their principal symbols are given

by pr/ℓ,ϕ(̺) = pr/ℓ(x, ξ + iτϕ′
r/ℓ
(x)) ∈ S2m,0

τ,cl .
Similarly we recall that we set

T jr/ℓ,ϕ = e
τϕr/ℓT jr/ℓe

−τϕr/ℓ ∈ Ψ
βjr/ℓ

,0

τ,cl , j = 1, . . . ,m,

with principal symbols tr/ℓ,ϕ(̺) = tjr/ℓ(x, ξ + iτϕ′
r/ℓ
(x)) ∈ S

βjr/ℓ
,0

τ,cl .
We start the proof of the main theorem with a microlocal estimate that exploits the transmission condition.

4.1. Estimate with the transmission condition. Let us first consider a polynomial function with roots with
negative imaginary parts in a microlocal region. Then, we have the following perfect microlocal elliptic
estimate. We refer to Lemma 4.1 in Part I [4] for a proof.

Lemma 4.1. Let h(̺′, ξn) ∈ Sk,0τ , ̺′ = (x, ξ′, τ), with k ≥ 1, be polynomial in ξn with homogeneous

coefficients in (ξ′, τ) and H = h(x,D, τ). When viewed as a polynomial in ξn the leading coefficient is

1. Let U be a conic open subset of V+ × R
n−1 × R+. We assume that all the roots of h(̺′, ξn) = 0 have

negative imaginary part for ̺′ = (x, ξ′, τ) ∈ U . Letting χ(̺′) ∈ S0
T,τ be homogeneous of degree 0 and

such that supp(χ) ⊂ U , and N ∈ N, there exist C > 0, CN > 0, and τ∗ > 0 such that

‖Op(χ)w‖2k,τ + |tr(Op(χ)w)|2k−1,1/2,τ ≤ C ‖H Op(χ)w‖2+ + CN
(

‖w‖2k,−N,τ + |tr(w)|2k−1,−N,τ

)

,

for w ∈ S (R
n
+) and τ ≥ τ∗.

Now, we consider a point in the cotangent bundle, at the interface where the transmission condition holds.
We then obtain an estimate of an interface norm.

Proposition 4.2. Assume that the transmission condition of Definition 1.4 is satisfied at ̺′0 = (x0, ξ
′
0, τ0) ∈

S
∗
T,τ (V ) with x0 ∈ S ∩V . Then there exists U , a conic open neighborhood of ̺′0 in V+×R

n−1×R+, such
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that for χ ∈ S0
T,τ , homogeneous of degree 0, with supp(χ) ⊂ U , there exist C > 0 and τ∗ > 0 such that

C
(

|tr(Op(χ)vℓ)|2mℓ−1,1/2,τ + |tr(Op(χ)vr)|2mr−1,1/2,τ

)

≤
m
∑

j=1

∣

∣T jℓ,ϕvℓ|xn=0+ + T jr,ϕvr |xn=0+
∣

∣

2

m−1/2−βj ,τ
+ ‖Pℓ,ϕvℓ‖2+ + ‖Pr,ϕvr‖2+

+ ‖vℓ‖2mℓ,−1,τ + ‖vr‖2mr ,−1,τ + |tr(vℓ)|2mℓ−1,−1/2,τ + |tr(vr)|2mr−1,−1/2,τ ,

for τ ≥ τ∗, vℓ, vr ∈ S (R
n
+).

Proof. As the transmission condition holds at ̺′0 the local smooth symbol factorizations of Section 1.6.3,

pr/ℓ,ϕ(̺
′, ξn) = p−r/ℓ,ϕ(̺

′, ξn)κr/ℓ,ϕ(̺
′, ξn),

is such that condition (1.29) is valid for ̺′ ∈ U0 with U0 a conic neighborhood of ̺′0 in V+ × R
n−1 × R+.

Moreover, by Proposition 3.4 there exists U1 ⊂ U0, a conic open neighborhood of ̺′0, such that

m′
ℓ

∑

j=m+1
λ
2(mℓ−1/2−βj

ℓ
)

T

∣

∣Σ
ej
ℓ,ϕ

(̺′, zℓ)
∣

∣

2
+

m′
r

∑

j=m+1
λ
2(mr−1/2−βjr)
T

∣

∣Σ
ejr,ϕ

(̺′, zr)
∣

∣

2

+
m
∑

j=1
λ
2(m−1/2−βj )
T

∣

∣Σ
tj
ℓ,ϕ

(̺′, zℓ)+Σ
tjr,ϕ

(̺′, zr)
∣

∣

2
&

mℓ−1
∑

j=0
λ
2(mℓ−1/2−j)
T

|zℓj |2 +
mr−1
∑

j=0
λ
2(mr−1/2−j)
T

|zrj |2,

for ̺′ ∈ U1 and z
r/ℓ ∈ C

mr/ℓ . We now choose U a conic open subset, neighborhood of ̺′0, such that
U ⊂ U1. We let χ be as in the statement and we also choose χ̃ ∈ S0

T,τ homogeneous of degree 0 with

supp(χ̃) ⊂ U1 and χ̃ = 1 in a neighborhood of U . Then,

(4.1)
m′
ℓ

∑

j=m+1
λ
2(mℓ−1/2−βj

ℓ
)

T

∣

∣χ̃(̺′)Σ
ej
ℓ,ϕ

(̺′, zℓ)
∣

∣

2
+

m′
r

∑

j=m+1
λ
2(mr−1/2−βjr)
T

∣

∣χ̃(̺′)Σ
ejr,ϕ

(̺′, zr)
∣

∣

2

+
m
∑

j=1
λ
2(m−1/2−βj )
T

∣

∣Σ
tj
ℓ,ϕ

(̺′, zℓ)+Σ
tjr,ϕ

(̺′, zr)
∣

∣

2
&

mℓ−1
∑

j=0
λ
2(mℓ−1/2−j)
T

|zℓj |2 +
mr−1
∑

j=0
λ
2(mr−1/2−j)
T

|zrj |2,

for ̺′ ∈ U and z
r/ℓ ∈ C

mr/ℓ .
We set5 Er/ℓ,ϕ = Op(χ̃er/ℓ,ϕ) and we define the following interface quadratic form (see Definition 3.1):

GS(u) =
m
∑

j=1

∣

∣T jℓ,ϕuℓ|xn=0+ + T jr,ϕur |xn=0+
∣

∣

2

m−1/2−βj ,τ

+
m′
ℓ

∑

j=m+1

∣

∣Ejℓ,ϕuℓ|xn=0+
∣

∣

2

m+m−
ℓ
+1/2−j,τ

+
m′
r

∑

j=m+1

∣

∣Ejr,ϕuℓ|xn=0+
∣

∣

2

m+m−
r +1/2−j,τ

.

5The introduction of χ̃ is made so that χ̃ekϕ is defined on the whole tangential phase-space.
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Observe that with (1.28) we have m+m−
r/ℓ
+1/2− j = mr/ℓ − 1/2−βjr/ℓ for j = m+1, . . . ,m′

r/ℓ
. We thus

find that GS is of type (mℓ − 1,mr − 1, 12) and its bilinear symbol is given by

ΣGS
(̺′,w, w̃) =

m
∑

j=1
λ
2(m−1/2−βj )
T

(

Σ
tj
ℓ,ϕ

(̺′, zℓ) + Σ
tjr,ϕ

(̺′, zr)
)(

Σ
tj
ℓ,ϕ

(̺′, z̃ℓ) + Σ
tjr,ϕ

(̺′, z̃r)
)

+ |χ̃(̺′)|2
m′
ℓ

∑

j=m+1
λ
2(mℓ−1/2−βjℓ )
T

Σ
ej
ℓ,ϕ

(̺′, zℓ)Σ
ej
ℓ,ϕ

(̺′, z̃ℓ)

+ |χ̃(̺′)|2
m′
r

∑

j=m+1
λ
2(mr−1/2−βjr)
T

Σ
ejr,ϕ

(̺′, z̃r)Σ
ejr,ϕ

(̺′, z̃r),

with w = (zℓ, zr), w̃ = (z̃ℓ, z̃r) ∈ C
mℓ ×C

mr . Hence (4.1) gives

ΣGS
(̺′,w, w̃) &

mℓ−1
∑

j=0
λ
2(mℓ−1/2−j)
T

|zℓj |2 +
mr−1
∑

j=0
λ
2(mr−1/2−j)
T

|zrj |2,

for ̺′ ∈ U . For any N ∈ N, by Lemma 3.3 there exists τ∗ ≥ 1, C > 0, CN > 0 such that

GS(v) = ReGS(v) ≥ C
(

|tr(vℓ)|2mℓ−1,1/2,τ + |tr(vr)|2mr−1,1/2,τ

)

(4.2)

− CN
(

|tr(vℓ)|2mℓ−1,1/2−N,τ + |tr(vr)|2mr−1,1/2−N,τ

)

,

with v = (vℓ, vr) and vr/ℓ = Op(χ)vr/ℓ , for v = (vℓ, vr) ∈
(

S (R
n
+)

)2
and τ ≥ τ∗.

The functions p−r/ℓ,ϕ(̺
′, ξn) and κr/ℓ,ϕ(̺

′, ξn) in the symbol factorization recalled at the begining of the

proof are polynomial in ξn with homogeneous coefficients in ̺′ ∈ U0 and the leading coefficient of
p−r/ℓ,ϕ

(̺′, ξn) is equal to 1. For ̺′ ∈ U0, their degrees are constant and equal to m−
r/ℓ

and mr/ℓ − m−
r/ℓ

re-

spectively. We smoothly extend p−r/ℓ,ϕ(̺
′, ξn) for ̺′ outside of U0 keeping the leading coefficient equal

to 1 and we denote this extension by p̃−r/ℓ,ϕ. In fact we have χpr/ℓ,ϕ = χκr/ℓ,ϕp
−
r/ℓ,ϕ

= χχ̃κr/ℓ,ϕp̃
−
r/ℓ,ϕ

. We

thus obtain Op(χ)Pr/ℓ,ϕ = Op(p̃−r/ℓ,ϕ)Op(χ)Op(χ̃κr/ℓ,ϕ) + Rr/ℓ with Rr/ℓ in Ψm,−1
τ by the last point of

Proposition 2.7. Observe that χ̃κr/ℓ,ϕ is a well defined symbol.
Applying Lemma 4.1 to Op(p̃−r/ℓ,ϕ) and wr/ℓ = Op(χ̃κr/ℓ,ϕ)vr/ℓ we obtain

‖Op(χ)wℓ‖2m−
ℓ ,τ

+ ‖Op(χ)wr‖2m−
r ,τ

+ |tr(Op(χ)wℓ)|2m−
ℓ −1,1/2,τ

+ |tr(Op(χ)wr)|2m−
r −1,1/2,τ

.
∥

∥Op(p̃−ℓ,ϕ)Op(χ)wℓ
∥

∥

2

+
+

∥

∥Op(p̃−r,ϕ)Op(χ)wr
∥

∥

2

+
+ ‖wℓ‖2m−

ℓ ,−N,τ
+ ‖wr‖2m−

r ,−N,τ

+ |tr(wℓ)|2m−
ℓ −1,−N,τ

+ |tr(wr)|2m−
r −1,−N,τ

.
∥

∥Op(χ)Pℓ,ϕvℓ
∥

∥

2

+
+

∥

∥Op(χ)Pr,ϕvr
∥

∥

2

+
+ ‖vℓ‖2mℓ,−1,τ + ‖vr‖2mr ,−1,τ

+ ‖vℓ‖2mℓ,−N,τ + ‖vr‖2mr ,−N,τ + |tr(vℓ)|2mℓ−1,−N,τ + |tr(vr)|2mr−1,−N,τ

. ‖Pℓ,ϕvℓ‖2+ + ‖Pr,ϕvr‖2+ + ‖vℓ‖2mℓ,−1,τ + ‖vr‖2mr ,−1,τ

+ |tr(vℓ)|2mℓ−1,−N,τ + |tr(vr)|2mr−1,−N,τ ,
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yielding

m−
ℓ
−1

∑

j=0

∣

∣Dj
nOp(χ)wℓ|xn=0+

∣

∣

2

m−
ℓ −1/2−j,τ

+
m−
r −1
∑

j=0

∣

∣Dj
nOp(χ)wr |xn=0+

∣

∣

2

m−
r −1/2−j,τ

. ‖Pℓ,ϕvℓ‖2+ + ‖Pr,ϕvr‖2+ + ‖vℓ‖2mℓ,−1,τ + ‖vr‖2mr ,−1,τ + |tr(vℓ)|2mℓ−1,−N,τ + |tr(vr)|2mr−1,−N,τ ,

Recalling that ej+m+1
r/ℓ,ϕ

= κr/ℓ,ϕξ
j
n, j = 0, . . . ,m−

r/ℓ
− 1 in U1 we have Dj

nOp(χ)Op(χ̃κr/ℓ,ϕ)vr/ℓ =

Ej+m+1
r/ℓ,ϕ

vr/ℓ + Rr/ℓ,jvr/ℓ with Rr/ℓ,j ∈ Ψ
mr/ℓ

−m−
r/ℓ

+j,−1

τ by the last point of Proposition 2.7. We then ob-
tain, for τ chosen sufficiently large

m−
ℓ −1
∑

j=0

∣

∣Ej+m+1
ℓ,ϕ vℓ|xn=0+

∣

∣

2

m−
ℓ
−1/2−j,τ

+
m−
r −1
∑

j=0

∣

∣Ej+m+1
r,ϕ vr |xn=0+

∣

∣

2

m−
r −1/2−j,τ

. ‖Pℓ,ϕvℓ‖2+ + ‖Pr,ϕvr‖2+ + ‖vℓ‖2mℓ,−1,τ + ‖vr‖2mr ,−1,τ

+ |tr(vℓ)|2mℓ−1,−1/2,τ + |tr(vr)|2mr−1,−1/2,τ ,

which we write, by a shift of indices,

m′
ℓ

∑

j=m+1

∣

∣Ejℓ,ϕvℓ|xn=0+

∣

∣

2

m+m−
ℓ
+1/2−j,τ

+
m′
r

∑

j=m+1

∣

∣Ejr,ϕvr |xn=0+

∣

∣

2

m+m−
r +1/2−j,τ

(4.3)

. ‖Pℓ,ϕvℓ‖2+ + ‖Pr,ϕvr‖2+ + ‖vℓ‖2mℓ,−1,τ + ‖vr‖2mr ,−1,τ

+ |tr(vℓ)|2mℓ−1,−1/2,τ + |tr(vr)|2mr−1,−1/2,τ ,

Collecting estimates (4.2) and (4.3) we thus obtain

|tr(vℓ)|2mℓ−1,1/2,τ + |tr(vr)|2mr−1,1/2,τ .
m
∑

j=1

∣

∣T jℓ,ϕvℓ|xn=0+ + T jr,ϕvr |xn=0+

∣

∣

2

m−1/2−βj ,τ

+ ‖Pℓ,ϕvℓ‖2+ + ‖Pr,ϕvr‖2+ + ‖vℓ‖2mℓ,−1,τ + ‖vr‖2mr ,−1,τ

+ |tr(vℓ)|2mℓ−1,−1/2,τ + |tr(vr)|2mr−1,−1/2,τ .

Writing T jℓ,ϕOp(χ) = Op(χ)T jℓ,ϕ + [T jℓ,ϕ,Op(χ)] we observe that (using that mℓ − βjℓ = mr − βjr =

m− βj)
∣

∣T jℓ,ϕvℓ|xn=0+ + T jr,ϕvr |xn=0+

∣

∣

m−1/2−βj ,τ
.

∣

∣T jℓ,ϕvℓ|xn=0+ + T jr,ϕvr |xn=0+
∣

∣

m−1/2−βj ,τ

+ |tr(vℓ)|βj
ℓ
,mℓ−1/2−βj

ℓ
−1,τ

+ |tr(vr)|βjr ,mr−1/2−βjr−1,τ

.
∣

∣T jℓ,ϕvℓ|xn=0+ + T jr,ϕvr |xn=0+
∣

∣

m−1/2−βj ,τ

+ |tr(vℓ)|mℓ−1,−1/2,τ + |tr(vr)|mr−1,−1/2,τ .

This concludes the proof. �

4.2. Estimate with a positive Poisson bracket on the characteristic set. If we consider the case of two
symbols a, b such that the Poisson bracket {a, b} is positive on the characterisitic set {a = b = 0}, an
estimate with the control of a volume norm can be achieved.

Lemma 4.3. Let U be an open set of V+. Let a ∈ Sm,0τ and b ∈ Sm−1,1
τ be real symbols homogeneous of

degree m in (τ, ξ), and set

Qa,b(v) = 2Re (Av, iBv)+ , A = a(x,D, τ), B = b(x,D, τ).
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We assume that

a(̺) = b(̺) = 0 ⇒ {a, b} > 0, ̺ = (x, ξ, τ),

for x ∈ U , (ξ, τ) 6= (0, 0). Then there exist C > 0, C ′ > 0, and τ∗ > 0 such that

C ‖v‖2m,τ ≤ C ′
(

‖Av‖2+ + ‖Bv‖2+ + |tr(v)|2m−1,1/2,τ

)

+ τ
(

Qa,b(v)− ReBa,b(v)
)

,

for τ > τ∗ and for v ∈ C∞(R
n
+) with supp(v) ⊂ U , with Ba,b satisfying

∣

∣Ba,b(v)
∣

∣ ≤ C ′
∣

∣ tr(v)
∣

∣

2

m−1,1/2,τ
.

We refer to [4] for a proof.

4.3. A microlocal Carleman estimate. With the results of Sections 4.1 and 4.2, if the transmission condi-
tion holds at one point of the cotangent bundle at the interface and if the sub-ellipticity property also holds
we can then derive a Carleman estimate that holds microlocally, that is, with a cut-off in phase-space applied
through a tangential pseudo-differential operator.

Theorem 4.4. Let x0 ∈ S ∩V . Assume that {Pr/ℓ , ϕr/ℓ} satisfies the sub-ellipticity condition on a neighbor-

hood of x0 in V+. Assume moreover that {Pr/ℓ , T
j
r/ℓ
, ϕr/ℓ , j = 1, . . . ,m} satisfies the transmission condition

at ̺′0 = (x0, ξ
′
0, τ0) ∈ S

∗
T,τ (V+). Then there exists U a conic open neighborhood of ̺′0 in V+ ×R

n−1 ×R+

such that for χ ∈ S0
T,τ , homogeneous of degree 0, with supp(χ) ⊂ U , there exist C > 0 and τ∗ > 0 such

that

(4.4)

‖Pℓ,ϕvℓ‖2+ + ‖Pr,ϕvr‖2+ +
m
∑

j=1

∣

∣T jℓ,ϕvℓ|xn=0+ + T jr,ϕvr |xn=0+
∣

∣

2

m−1/2−βj ,τ
+ ‖vℓ‖2mℓ,−1,τ + ‖vr‖2mr ,−1,τ

+ |tr(vℓ)|2mℓ−1,−1/2,τ + |tr(vr)|2mr−1,−1/2,τ ≥ C
(

τ−1 ‖Op(χ)vℓ‖2mℓ,τ + τ−1 ‖Op(χ)vr‖2mr ,τ
+ |tr(Op(χ)vℓ)|2mℓ−1,1/2,τ + |tr(Op(χ)vr)|2mr−1,1/2,τ

)

,

for τ ≥ τ∗, vℓ, vr ∈ S (R
n
+).

Note that there are remainder terms, viz.
∥

∥vr/ℓ
∥

∥

2

mr/ℓ
,−1,τ

,
∣

∣tr(vr/ℓ)
∣

∣

2

mr/ℓ
−1,−1/2,τ

that concern the unknown functions vr/ℓ everywhere and not only in the microlocal region U we consider
here. The norms of these remainder terms are weaker that those in the r.h.s. of the estimates. When patching
microlocal estimates of the form of (4.4) together these remainder terms can be dealt with; see Section 4.4
below.

Proof. Let U0 be a open neighborhood of x0 in V+ with the sub-ellipticity condition holding in U0.
In the local coordinates we have chosen we have

Pr/ℓ = Pr/ℓ(x,D) =
m
∑

j=1
Pr/ℓ,j(x,D

′)Dj
n,

with Pr/ℓ,m = 1 (see Section 1.6). We decompose the conjugated operator Pr/ℓ,ϕ = e
τϕr/ℓPr/ℓe

−τϕr/ℓ as

Pr/ℓ,ϕ = Pr/ℓ,2 + iPr/ℓ,1, Pr/ℓ,2 =
1

2
(Pr/ℓ,ϕ + P ∗

r/ℓ,ϕ
), Pr/ℓ,1 =

1

2i
(Pr/ℓ,ϕ − P ∗

r/ℓ,ϕ
).
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The operators Pr/ℓ,2 and Pr/ℓ,1 are thus formally self-adjoint. Their respective principal symbols ar/ℓ(x, ξ, τ) ∈
S
mr/ℓ

,0

τ and br/ℓ(x, ξ, τ) ∈ S
mr/ℓ

−1,1

τ are both real and homogeneous. We set pr/ℓ,ϕ = ar/ℓ + ibr/ℓ . We then set

Q
r/ℓ
a,b(v) = 2Re(Ar/ℓvr/ℓ , iBr/ℓvr/ℓ)+, Ar/ℓ = Op(ar/ℓ), Br/ℓ = Op(br/ℓ).

Note that we have

(4.5) Pr/ℓ,ϕ = Ar/ℓ + iBr/ℓ +Rr/ℓ , Rr/ℓ ∈ Ψ
mr/ℓ

,−1

τ .

The sub-ellipticity condition of Definition 1.1 reads

pr/ℓ,ϕ(x, ξ, τ) = 0 ⇒ {ar/ℓ , br/ℓ}(x, ξ, τ) > 0,

for x ∈ U0 and (ξ, τ) 6= (0, 0). Note that the case τ = 0 is achieved because of the ellipticity of P (see
Definition 1.1 and Remark 1.2).

Let now U be as given by Proposition 4.2, possibly reduced so that U ⊂ U0 ×R
n−1 ×R+, and let χ be

as in the statement of the theorem. By Lemma 4.3 we then have, for vr/ℓ = Op(χ)vr/ℓ ,

(4.6) Q
r/ℓ
a,b(vr/ℓ)− ReBar/ℓ

,br/ℓ
(vr/ℓ) ≥ Cτ−1

∥

∥vr/ℓ
∥

∥

2

mr/ℓ
,τ

− C ′τ−1
(∥

∥Ar/ℓvr/ℓ
∥

∥

2

+
+

∥

∥Br/ℓvr/ℓ
∥

∥

2

+
+

∣

∣ tr(vr/ℓ)
∣

∣

2

mr/ℓ
−1,1/2,τ

)

,

with Bar/ℓ
,br/ℓ

satisfying
∣

∣Bar/ℓ
,br/ℓ

(vr/ℓ)
∣

∣ .
∣

∣ tr(vr/ℓ)
∣

∣

2

mr/ℓ
−1,1/2,τ

.

With Proposition 4.2, making use of the transmission condition, we obtain for M chosen sufficiently large

ReBaℓ,bℓ(vℓ) + ReBar ,br(vr) +M
m
∑

j=1

∣

∣T jℓ,ϕvℓ|xn=0+ + T jr,ϕvr |xn=0+
∣

∣

2

m−1/2−βj ,τ
(4.7)

≥ C |tr(vℓ)|2mℓ−1,1/2,τ + |tr(vr)|2mr−1,1/2,τ − C ′
(

‖vℓ‖2mℓ,−1,τ + ‖vr‖2mr ,−1,τ

+ |tr(vℓ)|2mℓ−1,−1/2,τ + |tr(vr)|2mr−1,−1/2,τ + ‖Pℓ,ϕvℓ‖2+ + ‖Pr,ϕvr‖2+
)

.

Summing (4.6)ℓ, (4.6)r, and (4.7) we find, by taking τ sufficiently large,

‖Pℓ,ϕvℓ‖2+ + ‖Pr,ϕvr‖2+ +
m
∑

j=1

∣

∣T jℓ,ϕvℓ|xn=0+ + T jr,ϕvr |xn=0+
∣

∣

2

m−1/2−βj ,τ

+Qℓa,b(vℓ) +Qra,b(vr) + τ−1(‖Aℓv‖2+ + ‖Bℓvℓ‖2+ + ‖Arvr‖2+ + ‖Brvr‖2+)
+ ‖vℓ‖2mℓ,−1,τ + ‖vr‖2mr ,−1,τ + |tr(vℓ)|2mℓ−1,−1/2,τ + |tr(vr)|2mr−1,−1/2,τ

& τ−1
(

‖vℓ‖2mℓ,τ + ‖vr‖2mr ,τ
)

+ |tr(vℓ)|2mℓ−1,1/2,τ + |tr(vr)|2mr−1,1/2,τ .

Finally, noting that

τ−1
(∥

∥Ar/ℓvr/ℓ
∥

∥

2

+
+

∥

∥Br/ℓvr/ℓ
∥

∥

2

+

)

+Q
r/ℓ
a,b(vr/ℓ) ≤

∥

∥(Ar/ℓ + iBr/ℓ)vr/ℓ
∥

∥

2

+

.
∥

∥Pr/ℓ,ϕvr/ℓ
∥

∥

2

+
+

∥

∥vr/ℓ
∥

∥

2

mr/ℓ
,−1,τ

.
∥

∥Pr/ℓ,ϕvr/ℓ
∥

∥

2

+
+

∥

∥vr/ℓ
∥

∥

2

mr/ℓ
,−1,τ

,

by (4.5) and pseudo-differential calculus (last point of Proposition 2.7), we obtain the sought microlocal
estimate. �
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4.4. Proof of Theorem 1.6. We shall patch together estimates of the form given in Theorem 4.4.
With x0 as in the statement of Theorem 1.6 the transmission condition holds for all boundary quadruples

ω = (x0, Y, ν0, τ) with Y ∈ T ∗
x0(∂Ω), ν0 ∈ N∗

x0(S), and τ ≥ 0. In the local coordinates that we use here
this means that this property is satisfied for ν = dxn equal to the (oriented) unit conormal to {xn = 0}
and all ̺′ = (x0, ξ

′, τ) with ξ′ ∈ R
n−1 and τ ≥ 0. (See Section 1.6.4.) It is fact sufficient to consider

(ξ′, τ) ∈ S
n−1
+ = {(ξ′, τ) ∈ R

n, τ ≥ 0, |(ξ′, τ)| = 1}.
By Theorem 4.4 for all (ξ′0, τ0) ∈ S

n−1
+ there exists a conic openneighborhood U̺′0

of ̺′0 = (x0, ξ
′
0, τ0) in

V+×R
n−1×R+ such that the estimate (4.4) holds. In fact by reducing U̺′0

we can choose U̺′0
= O̺′0

×Γ̺′0
where O̺′0

is an open set in V+ and Γ̺′0 is a conic open set in R
n−1 × R+. With the compactness of Sn−1

+

we can thus find finitely many such open sets Uj = Oj ×Γj , j ∈ J , such that Sn−1
+ ⊂ ∪j∈JΓj . We then set

O = ∩j∈JOj that is an open neighborhood of x0 in V+ and we set Vj = O × Γj ⊂ Uj . We also choose an
open neighborhood W of x0 in R

n such that W+ =W ∩ V+ ⋐ O.
We then choose a partition of unity, χj ∈ S0

T,τ , j ∈ J , on W+×R
n−1×R+ subordinated by the covering

by the open sets Vj:
∑

j∈J

χj(̺
′) = 1, for ̺′ = (x, ξ′, τ) ∈W+ × R

n−1 ×R+ and |(ξ′, τ)| ≥ r0 > 0, supp(χj) ⊂ Vj.

The symbols χj are chosen homogeneous of degree 0 for |(ξ′, τ)| ≥ r0 > 0. We set χ = 1−∑

j∈J χj and

have χ ∈ ∩N∈NS
−N
T,τ .

As supp(χj) ⊂ Uj , we can apply the microlocal estimate of Theorem 4.4:

(4.8)

‖Pℓ,ϕvℓ‖2+ + ‖Pr,ϕvr‖2+ +
m
∑

j=1

∣

∣T jℓ,ϕvℓ|xn=0+ + T jr,ϕvr |xn=0+
∣

∣

2

m−1/2−βj ,τ
+ ‖vℓ‖2mℓ,−1,τ + ‖vr‖2mr ,−1,τ

+ |tr(vℓ)|2mℓ−1,−1/2,τ + |tr(vr)|2mr−1,−1/2,τ & τ−1
(

‖vℓ‖2mℓ,τ + ‖vr‖2mr ,τ
)

+ |tr(Op(χj)vℓ)|2mℓ−1,1/2,τ + |tr(Op(χj))vr)|2mr−1,1/2,τ ,

for τ chosen sufficiently large and for vr/ℓ = e
τϕr/ℓur/ℓ with ur/ℓ = wr/ℓ |Rn+

with wr/ℓ ∈ C∞
c (W ). (see the

statement of Theorem 1.6).
Observe then that, for any N ∈ N,

∥

∥vr/ℓ
∥

∥

m,τ
≤ ∑

j∈J

∥

∥Op(χj)vr/ℓ
∥

∥

m,τ
+

∥

∥Op(χ)vr/ℓ
∥

∥

m,τ
.

∑

j∈J

∥

∥Op(χj)vr/ℓ
∥

∥

m,τ
+

∥

∥vr/ℓ
∥

∥

m,−N,τ
,

and
∣

∣tr(vr/ℓ)
∣

∣

m−1,1/2,τ
≤ ∑

j∈J

∣

∣tr(Op(χj)vr/ℓ)
∣

∣

m−1,1/2,τ
+

∣

∣tr(Op(χ)vr/ℓ)
∣

∣

m−1,1/2,τ

.
∑

j∈J

∣

∣tr(Op(χj)vr/ℓ)
∣

∣

m−1,1/2,τ
+

∣

∣tr(vr/ℓ)
∣

∣

m−1,−N,τ
.

Summing estimates (4.8) for each χj we thus obtain

‖Pℓ,ϕvℓ‖2+ + ‖Pr,ϕvr‖2+ +
m
∑

j=1

∣

∣T jℓ,ϕvℓ|xn=0+ + T jr,ϕvr |xn=0+
∣

∣

2

m−1/2−βj ,τ
+ ‖vℓ‖2mℓ,−1,τ + ‖vr‖2mr ,−1,τ

+ |tr(vℓ)|2mℓ−1,−1/2,τ + |tr(vr)|2mr−1,−1/2,τ & τ−1
(

‖vℓ‖2mℓ,τ + ‖vr‖2mr ,τ
)

+ |tr(vℓ)|2mℓ−1,1/2,τ + |tr(vr)|2mr−1,1/2,τ ,
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Choosing now τ sufficiently large we obtain

‖Pℓ,ϕvℓ‖2+ + ‖Pr,ϕvr‖2+ +
m
∑

j=1

∣

∣T jℓ,ϕvℓ|xn=0+ + T jr,ϕvr |xn=0+
∣

∣

2

m−1/2−βj ,τ

& τ−1
(

‖vℓ‖2mℓ,τ + ‖vr‖2mr ,τ
)

+ |tr(vℓ)|2mℓ−1,1/2,τ + |tr(vr)|2mr−1,1/2,τ ,

Setting vr/ℓ = e
τϕr/ℓur/ℓ the conclusion of the proof of Theorem 1.6 is then classical. �

4.5. Shifted estimates. As in [4] it may be interesting to consider shifted estimates in the Sobolev scales.
Namely we may wish to have an estimate of the following form.

Corollary 4.5. Let x0 ∈ S and let ϕ ∈ C 0(Ω) be such that ϕk = ϕ|Ωk ∈ C∞(Ωk) for k = 1, 2 and such

that the pairs {Pk, ϕk} have the sub-ellipticity property of Definition 1.1 in a neighborhood of x0 in Ωk.

Moreover, assume that
{

Pk, ϕ, T
j
k , k = 1, 2, j = 1, . . . ,m

}

satisfies the transmission condition at x0. Let

ℓ ∈ N. Then there exist a neighborhood W of x0 in R
n and two constants C and τ∗ > 0 such that

(4.9)
∑

k=1,2

(

τ−1 ‖eτϕkuk‖2ℓ+mk ,τ + |eτϕ|S tr(uk)|2ℓ+mk−1,1/2,τ

)

≤ C
(

∑

k=1,2

‖eτϕkPk(x,D)uk‖2ℓ,τ +
m
∑

j=1

∣

∣eτϕ|S
(

T j1 (x,D)u1 + T j2 (x,D)u2
)

|S

∣

∣

2

ℓ,m−1/2−βj ,τ

)

,

for all uk = wk |Ωk with wk ∈ C∞
c (W ) and τ ≥ τ∗.

The proof of this corollary can be adapted from that of its counterpart at a boundary, namely Corollary
4.5 in [4].

4.6. Interior-eigenvalue transmission problems. Interior-eigenvalue transmission problems are very re-
lated to the transmission problem we have considered. In fact, for Ω, a bounded open set in R

n, we consider
two elliptic operators P1 and P2 of respective orders m1 and m2, as in Section 1, yet both defined on Ω.

In addition, we consider 2m = m1 +m2 boundary operators operators

(4.10) T jk =
∑

|α|≤βj
k

tjk,α(x)D
α, k = 1, 2, j = 1, . . . ,m,

with 0 ≤ βjk < mk, and where the coefficients tjk,α(x) are C∞ complex-valued functions defined in some

neighborhood of ∂Ω. Setting βj = (βj1 + βj2)/2 we assume that

m1 − βj1 = m2 − βj2 = m− βj, j = 1, . . . ,m.(4.11)

The interior-eigenvalue transmission problem consist in resolving a system of the form
{

(Pk − τmk)uk = fk in Ω, , k = 1, 2

T j1u1 + T j2u2 = gj , in Γ, j = 1, . . . ,m.

We refer to [12, 7, 42, 8, 9, 44, 43] and the reference therein for more details on this very active field of
research.

In the analysis of such problems, resolvant estimates are central. In the proof of such resolvent estimates,
a Carleman inequality at the boundary can be a very efficient tool. Here, we provide such an estimate in
a neighborhood of a point of ∂Ω, as the proof is in fact given by the analysis of the previous section, in
particular, as we used the system formulation of Section 1.6.2, which yield a formulation close to that of the
interior-eigenvalue transmission problem.

Let x0 ∈ ∂Ω and V be a neighborhood of x0 where Ω = {xn > 0}. We consider two smooth weight
functions ϕ1 and ϕ2 in V such that ϕ1|xn=0+ = ϕ2|xn=0+ .
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With the notation of Sections 1.6.2–1.6.3, with the letter ℓ replaced by 1 and the letter r replaced by 2,
and moreover Pℓ (resp. Pr) replaced by P1 − τm1 (resp. P2 − τm2), we say that the transmission condition
holds at x0 for {Pk − τmk , T jk , ϕk, k = 1, 2, j = 1, . . . ,m} if for all ̺′ = (x0, ξ

′, τ) and for all pairs of
polynomials, q1(ξn), q2(ξn), there exist U1, U2, polynomials, and cj ∈ C, j = 1, . . . ,m, such that

q1(ξn) =
m
∑

j=1
cjt

j
ℓ,ϕ(̺

′, ξn) + U1(ξn)κ1(̺
′, ξn),(4.12)

and

q2(ξn) =
m
∑

j=1
cjt

j
r,ϕ(̺

′, ξn) + U2(ξn)κ2(̺
′, ξn).(4.13)

Then the proof of the following local Carleman estimate is the same as that of Theorem 1.6.

Theorem 4.6. Let x0 ∈ ∂Ω and let ϕk ∈ C∞(Ω), k = 1, 2, as above, such that the pairs {Pk − τmk , ϕk}
satisfy the sub-ellipticity property of Definition 1.1 in a neighborhood of x0 in Ω. Moreover, assume that
{

Pk − τmk , T jk , ϕk, k = 1, 2, j = 1, . . . ,m
}

satisfies the transmission condition at x0. Then there exist a

neighborhood W of x0 in R
n and two constants C and τ∗ > 0 such that

(4.14)
∑

k=1,2

(

τ−1 ‖eτϕkuk‖2mk,τ + |eτϕkγ(uk)|2mk−1,1/2,τ

)

≤ C
(

∑

k=1,2

‖eτϕk(Pk(x,D)− τmk)uk‖2L2 +
m
∑

j=1
|eτϕ|∂Ω(T j1 (x,D)u1 + T j2 (x,D)u2)|∂Ω|2m−1/2−βj ,τ

)

,

for all uk = wk |Ω with wk ∈ C∞
c (W ) and τ ≥ τ∗.

5. A PSEUDO-DIFFERENTIAL CALCULUS WITH TWO LARGE PARAMETERS

The weight function we shall consider below is of the form ϕ(x) = exp(γψ(x)). The function ψ is
assumed to be C 0, piecewise smooth, and to satisfy

0 < C ≤ ψ and
∥

∥ψ(k)
∥

∥

L∞ <∞, k ∈ N.

We take γ ≥ 1. The goal of what follows is to achieve estimates as in Theorem 1.6 with the explicit
dependency upon the additional parameter γ. This can be done by the introduction of an appropriate pseudo-
differential calculus. Assumption of the function ψ will be made in Section 6.1, namely, the strong pseudo-
convexity conditions, to obtain a Carleman estimate.

5.1. Metric, symbols and Sobolev norms. Here, by ̺ and ̺′ we shall denote ̺ = (x, ξ, τ, γ) ∈ R
n×R

n×
R+ × R+ and ̺′ = (x, ξ′, τ, γ) ∈ R

n × R
n−1 × R+ × R+.

We set τ̃(x) = τγϕ(x). Following [31] we consider the metrics on phase-space

g = γ2|dx|2 + |dξ|2
µ2

, with µ2 = µ2(̺) = |(τ̃(x), ξ)|2 = τ̃(x)2 + |ξ|2,

and on tangent phase space

gT = γ2|dx|2 + |dξ′|2
µ2
T

, with µ2
T
= µ2

T
(̺′) = |(τ̃ (x), ξ′)|2 = τ̃(x)2 + |ξ′|2,

for τ ≥ 1 and γ ≥ 1. Below, the explicit dependencies of µ and µT upon ̺ and ̺′ are dropped to ease
notation.

The metric g (resp. gT) along with the order function µ (resp. µT) generates a (resp. tangential) Weyl-
Hörmander pseudo-differential calculus as proven in [31, Proposition 2.2]. Note that this uses the conditions
0 < C ≤ ψ and

∥

∥ψ′
∥

∥ <∞.
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For a presentation of the Weyl-Hörmander calculus we refer to [39], [21, Sections 18.4–6] and [20].
Let a(x, ξ, τ, γ) ∈ C∞(Rn × R

n), with τ, γ as parameter in [τmin,+∞) and [γmin,+∞), τmin > 0,
γmin > 0, and m ∈ R, be such that for all multi-indices γ, β ∈ N

n we have

(5.1)
∣

∣

∣
∂γx∂

β
ξ a(̺)

∣

∣

∣
≤ Cγ,βγ

γµm−|β|, ̺ ∈ R
n × R

n × [τmin,+∞)× [γmin,+∞).

With the notation of [21, Sections 18.4-18.6] we then have a(̺) ∈ S(µm, g)(Rn × R
n), which we write

Sm(g) for simplicity6. The associated class of pseudo-differential operators is denoted by Ψm(g) =
Ψ(µm, g)(Rn × R

n).

Similarly we define tangential symbols and operators. Let a(x, ξ′, τ, γ) ∈ C∞(R
n
+ ×R

n−1) and m ∈ R,
be such that for all multi-indices γ, β ∈ N

n we have

(5.2)
∣

∣

∣
∂γx∂

β
ξ′a(̺

′)
∣

∣

∣
≤ Cγ,βγ

γµ
m−|β|
T

, ̺′ ∈ R
n
+ × R

n−1 × [τmin,+∞)× [γmin,+∞).

We then have a(̺′) ∈ Sm(gT) = S(µm
T
, gT)(R

n
+ × R

n−1). The associated class of tangential pseudo-
differential operators is denoted by Ψm(gT) = Ψ(µm, gT)(R

n
+ × R

n−1).
Note that the condition

∥

∥ψ(k)
∥

∥ <∞, k ∈ N, is used to prove7 that τ̃ ∈ S(τ̃ , g) ∩ S(τ̃ , gT).
With ̺ = (x, ξ, τ, γ) ∈ R

n × R
n × R+ × R+ (resp. ̺′ = (x, ξ′, τ, γ) ∈ R

n
+ × R

n−1 × R+ × R+) we
shall associate ˜̺ = (x, ξ, τ̃ (x)) ∈ R

n × R
n × R+ (resp. ˜̺′ = (x, ξ′, τ̃ (x)) ∈ R

n
+ × R

n−1 × R+).
Note that if â(x, ξ, τ̂ ) ∈ Smτ , with the notation of Section 2.1, satisfying moreover, for all multi-indices

γ, β′, β′′ ∈ N
n, with β = β′ + β′′,

(5.3)
∣

∣

∣∂γx∂
β′

ξ ∂
β′′

τ̂ â(x, ξ, τ̂ )
∣

∣

∣ ≤ Cγ,β′,β′′ |(ξ, τ̂)|m−|β| , x ∈ R
n, ξ ∈ R

n, τ̂ ∈ [τmin,+∞),

i.e., differentiation w.r.t. τ̂ yields the same additional decay as a differentiation w.r.t. ξ, then

a(x, ξ, τ, γ) = â(x, ξ, τ̃ (x)) ∈ Sm(g),

which we shall write a(̺) = â(˜̺). Similarly if â(x, ξ′, τ̂) ∈ Sm
T,τ with the same additional property regard-

ing differentiation w.r.t. τ̂ we have a(̺′) = â(˜̺′) ∈ Sm(gT). In what follows we shall assume that symbols
in Smτ and Sm

T,τ have this additional regularity property. We then say that a ∈ Sm(g) (resp. Sm(gT)) is ho-
mogeneous of degree m with respect to (ξ, τ̃ ) (resp. (ξ′, τ̃ )) if we have a(̺) = â(˜̺)) (resp. a(̺′) = â(˜̺′))
with â(x, ξ, τ̂ ) ∈ Smτ (resp. â(x, ξ′, τ̂ ) ∈ Sm

T,τ ) homogeneous of degree m in (ξ, τ̂ ) (resp. (ξ′, τ̂ )).

We shall also use the following classes of symbols S(τ̃ rµm
T
, gT) = τ̃ rSm(gT) on R

n
+ × R

n−1, for
r,m ∈ R. The associated class of tangential pseudo-differential operators is denoted by τ̃ rΨm(gT) =

τ̃ rΨ(µm
T
, gT)(R

n
+ × R

n−1). We have the following lemma whose proof is similar to that of Lemma 2.7 in
[31].

Lemma 5.1. Let r,m ∈ R and a ∈ τ̃ rSm(gT). There exists C > 0 such that for τ sufficiently large

| (Op(a)u, v)∂ ≤ C
∥

∥Op(τ̃ r
′
µm

′

T
)u
∥

∥

+

∥

∥Op(τ̃ r
′′
µm

′′

T
)v
∥

∥

+
, u ∈ S (R

n
+).

for r = r′ + r′′, m = m′ +m′′.

6The dependence upon the metric g is kept explicit here as we shall actually have to face two calculi simultaneously, associated
with the weight functions on both sides of the interface. Interactions between the two calculi will only occur at the interface where
they coincide. See Section 5.2.

7This condition was not written in [31] and [4]. This is however made precise in [36], including the proof of τ̃ ∈ S(τ̃ , g) ∩
S(τ̃ , gT).
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This contains the estimate
∥

∥Op(τ̃ sµp
T
)Op(a)u

∥

∥

+
≤ C

∥

∥Op(τ̃ s+rµp+m
T

)u
∥

∥

+
, u ∈ S (R

n
+),

for s, p ∈ R. Note also that we have
∥

∥Op(τ̃ rµm
T
)u
∥

∥

+
≍

∥

∥Op(µm
T
)τ̃ ru

∥

∥

+
,(5.4)

for τ chosen sufficiently large.

Next we say that a(x, ξ′, τ, γ) ∈ τ̃ rSmcl (gT) on R
n
+×R

n−1 if there exists a sequence a(j) ∈ γj τ̃ rSm−j(gT),
with γ−ja(j) homogeneous of degree m+ r − j in (ξ′, τ̃) for |(ξ′, τ̃)| ≥ r0, with r0 ≥ 0, such that

(5.5) a ∼ ∑

j≥0
a(j), in the sense that a−

N
∑

j=0
a(j) ∈ γN+1τ̃ rSm−N−1(gT).

A representative of the principal part, denoted by σ(a), is then given by the first term in the expansion. Then
we shall say that a(̺) ∈ τ̃ rSm,σcl (g) on R

n
+ × R

n−1 if

a(̺) =
m
∑

j=0
aj(̺

′)ξjn, with aj ∈ τ̃ rSm−j+σ
cl (gT).

The principal part is given by
∑m

j=0 σ(aj)(̺
′)ξjn. With these symbol classes we associate classes of pseudo-

differential operators, τ̃ rΨm
cl (gT) = τ̃ rΨm

cl (gT)(R
n
+ × R

n−1) and τ̃ rΨm,σ
cl (g) = τ̃ rΨm,σ

cl (g)(R
n
+ × R

n−1),
as is done in Section 2.2.

We define the following semi-classical interior norm, for m ∈ N,

(5.6) ‖u‖2m,τ̃ =
m
∑

j=0

∥

∥Op(µm−j
T

)Dj
nu

∥

∥

2

+
, u ∈ S (R

n
+).

We also set, for m ∈ N and σ ∈ R,

(5.7) ‖u‖2m,σ,τ̃ =
∥

∥Op(µσ
T
)u
∥

∥

2

m,τ̃
∼

m
∑

j=0

∥

∥Op(µm−j+σ
T

)Dj
nu

∥

∥

2

+
, u ∈ S (R

n
+).

At the interface {xn = 0+} we define the following norms, for m ∈ N and σ ∈ R,

(5.8) |tr(u)|2m,σ,τ̃ =
m
∑

j=0

∣

∣Op(µm−j+σ
T

) trj(u)
∣

∣

2

∂
, u ∈ S (R

n
+).

5.2. Transmission problem with two calculi. In the present setting, using the system formulation of Sec-

tion 1.6.2 we shall in fact work in {xn ≥ 0} with two weight functions, namely ϕr/ℓ = e
γψr/ℓ . With each

weight function we shall associate a pseudo-differential calculus, classes of symbols and pseudo-differential
operators, and Sobolev norms, as introduced in the previous section.

We shall thus define τ̃r/ℓ(x) = τγϕr/ℓ(x),

µ2r/ℓ = τ̃2r/ℓ + |ξ|2, µ2
T,r/ℓ

= τ̃2r/ℓ + |ξ|2,
the associated metrics

gr/ℓ = γ2|dx|2 + |dξ|2
µ2r/ℓ

, gT,r/ℓ = γ2|dx|2 + |dξ′|2
µ2
T,r/ℓ

,

and the symbol classes Sm(gr/ℓ), S
m(gT,r/ℓ), S

m
cl (gT,r/ℓ), S

m,σ
cl (gT,r/ℓ) and the associated operator classes

Ψm(gr/ℓ), Ψ
m(gT,r/ℓ), Ψ

m
cl (gT,r/ℓ), Ψ

m,σ
cl (gT,r/ℓ).
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Accordingly for a function defined in {xn ≥ 0} we denote by ‖u‖m,τ̃r/ℓ and ‖u‖m,σ,τ̃r/ℓ the associated

norms as in (5.6)–(5.7).

Observe that the two calculi coincide at xn = 0, that is, on the interface, since ψℓ|xn=0+ = ψr |xn=0+ ,
implying ϕℓ|xn=0+ = ϕr |xn=0+ and µℓ|xn=0+ = µr |xn=0+ . In particular we shall keep the notation

|tr(u)|m,σ,τ̃ = |tr(u)|m,σ,τ̃ℓ = |tr(u)|m,σ,τ̃r
as in (5.8) for interface norms.

5.3. Interface quadratic forms.

Definition 5.2. Let w = (wℓ, wr) ∈
(

S (R
n
+)

)2
. We say that

G (w) =
N
∑

s=1

(

Asℓwℓ|xn=0+ +Asrwr |xn=0+ , B
s
ℓwℓ|xn=0+ +Bs

rwr |xn=0+
)

∂
,

withAsr/ℓ = asr/ℓ(x,D, τ, γ) andBs
r/ℓ

= bsr/ℓ(x,D, τ, γ), is an interface quadratic form of type (mℓ − 1,mr − 1, σ)

with C∞ coefficients, if for each s = 1, . . . , N , we have asr/ℓ(̺), b
s
r/ℓ
(̺) ∈ S

mr/ℓ
−1,σr/ℓ

cl (gT,r/ℓ)(R
n
+ × R

n),

with σℓ + σr = 2σ, ̺ = (̺′, ξn) with ̺′ = (x, ξ′, τ, γ).
As in Section 3 we associate to G a bilinear symbol ΣG (̺

′,w, w̃).

We let W be an open conic set in R
n−1 × R

n−1 × R+.

Definition 5.3. Let G be an interface quadratic form of type (mℓ−1,mr−1, σ) associated with the bilinear

symbol ΣG (̺
′,w, w̃). We say that G is positive definite in W if there exists C > 0 and R > 0 such that

ReΣG (̺
′′, xn = 0+,w,w) ≥ C

(mℓ−1
∑

j=0
µT,ℓ

2(mℓ−1−j+σℓ)
|xn=0+

∣

∣zℓj
∣

∣

2
+
mr−1
∑

j=0
µT,r

2(mr−1−j+σr)
|xn=0+

∣

∣zrj
∣

∣

2
)

,

for any w = (zℓ, zr), z
r/ℓ = (z

r/ℓ
0 , . . . , z

r/ℓ
mr/ℓ

−1) ∈ C
mr/ℓ , and ˜̺′′ ∈ W , such that µT,ℓ|xn=0+ = µT,r|xn=0+ ≥

R, with ̺′′ = (x′, ξ′, τ, γ) and ˜̺′′ = (x′, ξ′, τ̃ (x′, xn = 0+)).

We have the following Gårding estimate.

Lemma 5.4. Let W be an open conic set in R
n−1 × R

n−1 × R+ and let G be an interface quadratic form

of type (0,mℓ− 1,mr − 1, σ) that is positive definite in W . Let χ̂ ∈ S0
T,τ be homogeneous of degree 0, with

supp(χ̂|xn=0+) ⊂ W and let N ∈ N. Then there exist τ∗ ≥ 1, γ∗ ≥ 1, C > 0, CN > 0 such that

ReG (Op(χ)u) ≥ C
(

|tr(Op(χℓ)uℓ)|2mℓ−1,σℓ,τ̃
+ |tr(Op(χr)ur)|2mr−1,σr ,τ̃

)

− CN
(

|tr(uℓ)|2mℓ−1,σℓ−N,τ̃
+ |tr(ur)|2mr−1,σr−N,τ̃

)

for u = (uℓ, ur) ∈
(

S (R
n
+)

)2
, τ ≥ τ∗, γ ≥ γ∗, and χr/ℓ(̺

′) = χ̂(˜̺′r/ℓ) ∈ S0
T,τ̃ , with ̺′ = (x, ξ′, τ, γ) and

˜̺′r/ℓ = (x, ξ′, τ̃r/ℓ(x)).

The proof is similar to that of Lemma 3.3 using that the two calculi, associated with ψℓ and ψr respec-
tively, coincide on the interface S = {xn = 0}. In particular note that χℓ|xn=0+ = χr |xn=0+ as τ̃ℓ coincides
with τ̃r at the interface.
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6. CARLEMAN ESTIMATE WITH TWO LARGE PARAMETERS

With a weight function of the form ϕ(x) = exp(γψ(x)), some condition on ψ can yield ϕ to fulfill
the sub-ellipticity condition of Definition 1.1. Those are the strong pseudo-convexity conditions introduced
by L. Hörmander (see [18], [19, Section 8.6] and [22, Section 28.3]). We shall see that along with the
transmission condition they are sufficient to derive Carleman estimates with an explicit dependency upon
the additional parameter γ. In fact the strong pseudo-convexity condition is also necessary if one considers
a weight function of this form; for such question we refer to [31].

6.1. Strong pseudo-convexity. We recall the notion of strong pseudo-convexity and then adapt it to the
geometry we consider.

As we restrict ourselves to elliptic operators in the present article, the classical notion of strong pseudo-
convexity then reduces to the following one (the reader can compare with Section 28.3 in [22]).

Definition 6.1 (strong pseudo-convexity up to a boundary). Let O be an open set. We say that a smooth

function ψ is strongly pseudo-convex at x ∈ O w.r.t. p if ψ′(x) 6= 0 and if for all ξ ∈ R
n and τ̂ > 0,

(s-Ψc) p(x, ξ + iτ̂ψ′(x)) = 0 and
{

p, ψ
}

(x, ξ + iτ̂ψ′(x)) = 0

⇒ 1

2i

{

p(x, ξ − iτ̂ψ′(x)), p(x, ξ + iτ̂ψ′(x))
}

> 0.

Let U be an open subset of O. The function ψ is said to be strongly pseudo-convex w.r.t. p in U up to the
boundary if (s-Ψc) is valid for all x ∈ U .

Definition 6.2 (strong pseudo-convexity at an interface). Let Ω, Ω1, Ω2, and S be as in Section 1. Let ψ be

a continuous function such that ψk = ψ|Ωk are smooth for k = 1, 2. Let U be an open subset of Ω that meets

S. The function ψ is said to be strongly pseudo-convex w.r.t. P1 and P2 in U up to the interface if both ψk,

k = 1, 2, are strongly pseudo-convex w.r.t. Pk in Uk = U ∩ Ωk up to the boundary.

Note in particular that for x ∈ S ∩ U (s-Ψc) is required to hold for both k = 1 and k = 2.

6.2. Conjugated operators and transmission condition. Here we use directly the notation introduced in
Section 1.6.2 with the weight functions of the form ϕr/ℓ = exp(γψr/ℓ), which is sensible as the transmission
is a coordinate invariant property.

The principal symbol of Pr/ℓ,ϕ = e
τϕr/ℓPr/ℓe

−τϕr/ℓ ∈ Ψm,0
cl (gr/ℓ) in the present calculus is

pr/ℓ,ϕ(x, ξ, τ) = pr/ℓ(x, ξ + iτϕ′
r/ℓ
(x)) = pr/ℓ(x, ξ + iτ̃r/ℓ(x)ψ

′
r/ℓ
(x)) = pr/ℓ,ψ(x, ξ, τ̃r/ℓ(x)) ∈ Sm,0cl (gr/ℓ),

Similarly, the principal symbol of T jr/ℓ,ϕ = e
τϕr/ℓT jr/ℓe

−τϕr/ℓ ∈ Ψβk,0
cl (gr/ℓ), j = 1, . . . ,m, is

tjr/ℓ,ϕ(x, ξ, τ) = tjr/ℓ(x, ξ + iτϕ′(x)) = tjr/ℓ(x, ξ + iτ̃r/ℓ(x)ψ
′(x)) = tjr/ℓ,ψ(x, ξ, τ̃

r/ℓ(x)) ∈ S
βk,0
cl (gr/ℓ).

The dependency upon γ is hidden either in ϕ or in τ̃ .

Setting κr/ℓ,ϕ = p+r/ℓ,ϕp
0
r/ℓ,ϕ

and κr/ℓ,ψ = p+r/ℓ,ψp
0
r/ℓ,ψ

, we then find

κr/ℓ,ϕ(x, ξ, τ) = κr/ℓ,ψ(x, ξ, τ̃r/ℓ(x)).

From these simple observations we thus conclude that {Pr/ℓ , T
j
r/ℓ
, ϕ, j = 1, . . . ,m} satisfies the trans-

mission condition at (x0, ξ′0, τ0), with x0 ∈ S, if and only if {Pr/ℓ , T
j
r/ℓ
, ψ, j = 1, . . . ,m} satisfies the

transmission condition at (x0, ξ′0, τ̃0) with τ̃0 = τ̃ℓ(x0) = τ̃r(x0).
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6.3. Statement of the Carleman estimate with two large parameters. We shall prove the following theo-
rem, counterpart of Theorem 1.6 in the case of a weight function of the form ϕ = exp(γψ), with an explicit
dependency with respect to the second large parameter γ.

Theorem 6.3. Let x0 ∈ S and let ψ ∈ C 0(Ω) be such that ψk = ψ|Ωk ∈ C∞(Ωk) for k = 1, 2 and such that

ψ has the strong pseudo-convexity property of Definition 6.2 with respect to P1 and P2 in a neighborhood

of x0 in Ω. Moreover, assume that
{

Pk, T
j
k , ψ, k = 1, 2, j = 1, . . . ,m

}

satisfies the transmission condition

at x0. Then there exist a neighborhood W of x0 in R
n and three constants C , τ∗ > 0, and γ∗ > 0 such that

for ϕk = exp(γψk) and τ̃k = τγϕk:

(6.1)
∑

k=1,2

(∥

∥τ̃
−1/2
k eτϕkuk

∥

∥

2

mk,τ̃k
+ |eτϕ|S tr(uk)|2mk−1,1/2,τ̃

)

≤ C
(

∑

k=1,2

‖eτϕkPk(x,D)uk‖2L2(Ωk)
+

m
∑

j=1
|eτϕ|S (T j1 (x,D)u1 + T j2 (x,D)u2)|S |2m−1/2−βj ,τ̃

)

,

for all uk = wk |Ωk with wk ∈ C∞
c (W ), τ ≥ τ∗, and γ ≥ γ∗.

Here norms of defined on Ωk and S. They are locally equivalent to their counterpart defined on {xn > 0}
and {xn = 0} above.

6.4. Preliminary estimates. The following lemma is the counterpart of Lemma 4.1, that is, an elliptic
estimate. It will be applied on both the ℓ and r “sides”. Hence, we formulate it for a weight funtion ϕ, τ̃ and
phase-space metric g in place of ϕr/ℓ , τ̃r/ℓ , and gr/ℓ .

With ̺′ = (x, ξ′, τ, γ) ∈ R
n
+×R

n−1×R+×R+ we shall associate ˜̺′ = (x, ξ′, τ̃ (x)) ∈ R
n
+×R

n−1×R+,
with τ̃(x) = τγϕ(x).

Lemma 6.4. Let h(̺) ∈ Sk,0cl (g), with ̺ = (x, ξ, τ, γ) and k ≥ 1, be polynomial in ξn with homogeneous

coefficients in (ξ′, τ̃ ) and H = h(x,D, τ, γ). When viewed as a polynomial in ξn the leading coefficient

is 1. Let U be a conic open subset of V+ × R
n−1 × R+. We assume that all roots of h(̺′, ξn) = 0 have

negative imaginary part for ˜̺′ ∈ U . Letting χ̂(ˆ̺′) ∈ S0
T,τ , ˆ̺′ = (x, ξ′, τ̂), be homogeneous of degree 0 and

such that supp(χ̂) ⊂ U , and N ∈ N, there exist C > 0, CN > 0, τ∗ > 0 and γ∗, such that

‖Op(χ)w‖2k,τ̃ + |tr(Op(χ)w)|2k−1,1/2,τ̃ ≤ C ‖H Op(χ)w‖2+ + CN
(

‖w‖2k,−N,τ̃ + |tr(w)|2k−1,−N,τ̃

)

,

for w ∈ S (R
n
+) and τ ≥ τ∗, γ ≥ γ∗ and χ(̺′) = χ̂(˜̺′) ∈ S0(gT).

We refer to [4] for a proof.
The following proposition is the counterpart of Proposition 4.2, that is, an estimate exploiting the trans-

mission condition, yielding an estimate of an interface norm.

Proposition 6.5. Assume that the transmission condition for
{

Pr/ℓ , T
j
r/ℓ
, ψr/ℓ , j = 1, . . . ,m

}

is satisfied at

(x0, ξ
′
0, τ̂0) ∈ S

∗
T,τ (V ) with x0 ∈ S ∩ V . Then there exists U , a conic open neighborhood of (x0, ξ

′
0, τ̂0) in

V+ × R
n−1 × R+, such that for χ̂ ∈ S0

T,τ , homogeneous of degree 0, with supp(χ̂) ⊂ U , and there exist

C > 0, τ∗ > 0, and γ∗ > 0 such that

C
(

|tr(Op(χℓ)vℓ)|2mℓ−1,1/2,τ̃ + |tr(Op(χr)vr)|2mr−1,1/2,τ̃

)

≤
m
∑

j=1

∣

∣T jℓ,ϕvℓ|xn=0+ + T jr,ϕvr |xn=0+
∣

∣

2

m−1/2−βj ,τ̃
+ ‖Pℓ,ϕvℓ‖2+ + ‖Pr,ϕvr‖2+

+ γ2
(

‖vℓ‖2mℓ,−1,τ̃ℓ
+ ‖vr‖2mr ,−1,τ̃r

+ |tr(vℓ)|2mℓ−1,−1/2,τ̃ + |tr(vr)|2mr−1,−1/2,τ̃

)

,
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for τ ≥ τ∗, γ ≥ γ∗, vℓ, vr ∈ S (R
n
+) and χr/ℓ(̺

′) = χ̂(˜̺′r/ℓ) ∈ S0(gT,r/ℓ), with ̺′ = (x, ξ′, τ, γ) and

˜̺′r/ℓ = (x, ξ′, τ̃r/ℓ(x)).

Proof. The beginning of the proof is nearly identical to that of Proposition 4.2. In particular the neighbor-
hood U is chosen similarly. Inequality (4.1) becomes

m′
ℓ

∑

j=m+1
λ
2(mℓ−1/2−βj

ℓ
)

T

∣

∣ ˆ̃χ(ˆ̺′)Σ
ej
ℓ,ψ

(ˆ̺′, zℓ)
∣

∣

2
+

m′
r

∑

j=m+1
λ
2(mr−1/2−βjr)
T

∣

∣ ˆ̃χ(ˆ̺′)Σ
ej
r,ψ

(ˆ̺′, zr)
∣

∣

2

+
m
∑

j=1
λ
2(m−1/2−βj )
T

∣

∣Σ
tj
ℓ,ψ

(ˆ̺′, zℓ)+Σ
tj
r,ψ

(ˆ̺′, zr)
∣

∣

2 ≥ C
(

mℓ−1
∑

j=0
λ
2(mℓ−1/2−j)
T

∣

∣

∣zℓj

∣

∣

∣

2
+
mr−1
∑

j=0
λ
2(mr−1/2−j)
T

|zrj |2
)

,

for z
r/ℓ ∈ C

mr/ℓ and ˆ̺′ = (x′, xn = 0+, ξ′, τ̂) ∈ U ∩ {xn = 0} with λ2
T
= |ξ|′2 + τ̂2. Here, ˆ̃χ ∈ S0

T,τ

is homogeneous of degree 0 and such that ˆ̃χ = 1 in a neighborhood of U . We set χ̃r/ℓ(x, ξ
′, τ, γ) =

ˆ̃χ(x, ξ′, τ̃r/ℓ) ∈ S0(gT,r/ℓ).
We then obtain, taking ˆ̺′ = ˜̺′ = (x′, xn = 0+, ξ′, τ̃(x)),

m′
ℓ

∑

j=m+1
µT

2(mℓ−1/2−βj
ℓ
)

|xn=0+

∣

∣χ̃(̺′′)Σ
ej
ℓ,ϕ

(̺′, zℓ)
∣

∣

2
+

m′
r

∑

j=m+1
µT

2(mr−1/2−βjr)
|xn=0+

∣

∣χ̃(̺′′)Σ
ejr,ϕ

(̺′, zr)
∣

∣

2

+
m
∑

j=1
µT

2(m−1/2−βj )
|xn=0+

∣

∣Σ
tj
ℓ,ϕ

(̺′, zℓ)+Σ
tjr,ϕ

(̺′, zr)
∣

∣

2 ≥ C
(

mℓ−1
∑

j=0
µT

2(mℓ−1/2−j)
|xn=0+

|zℓj |2+
mr−1
∑

j=0
µT

2(mr−1/2−j)
|xn=0+

|zrj |2
)

,

for all z
r/ℓ ∈ C

mr/ℓ and ̺′ = (x′, xn = 0+, ξ′, τ, γ) and ̺′′ = (x′, ξ′, τ, γ) such that ˜̺′ ∈ U ∩ {xn = 0}.
Here χ̃(̺′′) = ˆ̃χ(˜̺′′, xn = 0+) with ˜̺′′ = (x′, ξ′, τ̃(x′, xn = 0+)). We have χ̃(̺′′) = χ̃ℓ(̺

′)|xn=0+ =

χ̃r(̺
′)|xn=0+ . We set

GS(u) =
m
∑

j=1

∣

∣T jℓ,ϕuℓ|xn=0+ + T jr,ϕur |xn=0+
∣

∣

2

m−1/2−βj ,τ

+
m′
ℓ

∑

j=m+1

∣

∣Ejℓ,ϕuℓ|xn=0+
∣

∣

2

m+m−
ℓ
+1/2−j,τ

+
m′
r

∑

j=m+1

∣

∣Ejr,ϕuℓ|xn=0+
∣

∣

2

m+m−
r +1/2−j,τ

.

withEr/ℓ,ϕ = Op(χ̃r/ℓer/ℓ,ϕ). Then, according to the Gårding inequality of Lemma 5.4 for interface quadratic
forms of type (mℓ − 1,mr − 1, 1/2), there exists τ∗ > 0, γ∗ > 0, C > 0, and CN > 0 such that

GS(v) = ReGS(v) ≥ C
(

|tr(vℓ)|2mℓ−1,1/2,τ̃ + |tr(vr)|2mr−1,1/2,τ̃

)

(6.2)

− CN
(

|tr(vℓ)|2mℓ−1,1/2−N,τ̃ + |tr(vr)|2mr−1,1/2−N,τ̃

)

,

with v = (vℓ, vr) and vr/ℓ = Op(χr/ℓ)vr/ℓ , for v = (vℓ, vr) ∈
(

S (R
n
+)

)2
, τ ≥ τ∗, and γ ≥ γ∗.

Now, arguing as in the proof of Proposition 4.2 we write χr/ℓpr/ℓ,ϕ = χr/ℓκr/ℓ,ϕp
−
r/ℓ,ϕ

= χr/ℓ χ̃r/ℓκr/ℓ,ϕp̃
−
r/ℓ,ϕ

,

where p̃−r/ℓ,ϕ denotes an extension of p−r/ℓ,ϕ to the whole phase space. Then

Op(χr/ℓ)Pr/ℓ,ϕ = Op(p̃−r/ℓ,ϕ)Op(χr/ℓ)Op(χ̃r/ℓκr/ℓ,ϕ) +Rr/ℓ ,
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with Rr/ℓ in γΨm,−1
cl (gr/ℓ). Applying Lemma 6.4 to Op(p̃−r/ℓ,ϕ) and wr/ℓ = Op(χ̃r/ℓκr/ℓ,ϕ)vr/ℓ we find

‖Op(χℓ)wℓ‖2m−
ℓ ,τ̃ℓ

+ ‖Op(χr)wr‖2m−
r ,τ̃r

+ |tr(Op(χℓ)wℓ)|2m−
ℓ −1,1/2,τ̃

+ |tr(Op(χr)wr)|2m−
r −1,1/2,τ̃

. ‖Pℓ,ϕvℓ‖2+ + ‖Pr,ϕvr‖2+ + γ2
(

‖vℓ‖2mℓ,−1,τ̃ℓ
+ ‖vr‖2mr ,−1,τ̃r

)

+ |tr(vℓ)|2mℓ−1,−N,τ̃ + |tr(vr)|2mr−1,−N,τ̃ ,

yielding

m−
ℓ −1
∑

j=0

∣

∣Dj
nOp(χℓ)wℓ|xn=0+

∣

∣

2

m−
ℓ −1/2−j,τ̃

+
m−
r −1
∑

j=0

∣

∣Dj
nOp(χr)wr |xn=0+

∣

∣

2

m−
r −1/2−j,τ̃

. ‖Pℓ,ϕvℓ‖2+ + ‖Pr,ϕvr‖2+ + γ2
(

‖vℓ‖2mℓ,−1,τ̃ℓ
+ ‖vr‖2mr ,−1,τ̃r

)

+ |tr(vℓ)|2mℓ−1,−N,τ̃ + |tr(vr)|2mr−1,−N,τ̃ ,

Recalling that ej+m+1
r/ℓ,ϕ

= κr/ℓ,ϕξ
j
n, j = 0, . . . ,m−

r/ℓ
− 1 in a neighborhood of U we have

Dj
nOp(χr/ℓ)Op(χ̃r/ℓκr/ℓ,ϕ)vr/ℓ = Ej+m+1

r/ℓ,ϕ
vr/ℓ +Rr/ℓ,jvr/ℓ ,

with Rr/ℓ,j ∈ γΨ
mr/ℓ

−m−
r/ℓ

+j,−1

cl (gr/ℓ). We thus obtain

m−
ℓ
−1

∑

j=0

∣

∣Ej+m+1
ℓ,ϕ vℓ|xn=0+

∣

∣

2

m−
ℓ
−1/2−j,τ̃

+
m−
r −1
∑

j=0

∣

∣Ej+m+1
r,ϕ vr |xn=0+

∣

∣

2

m−
r −1/2−j,τ̃

(6.3)

. ‖Pℓ,ϕvℓ‖2+ + ‖Pr,ϕvr‖2+ + γ2
(

‖vℓ‖2mℓ,−1,τ̃ℓ
+ ‖vr‖2mr ,−1,τ̃r

)

+ |tr(vℓ)|2mℓ−1,−1/2,τ̃ + |tr(vr)|2mr−1,−1/2,τ̃

)

.

Collecting (6.2) and (6.3) we obtain the result of Proposition 6.5, for τ and γ chosen sufficiently large, with
an additional commutator argument as in the end of the proof of Proposition 4.2. �

6.5. Proof of the Carleman estimate with two-large parameters. We prove a microlocal result, counter-
part of that of Theorem 4.4. Patching microlocal estimates of this type, arguing as in Section 4.4 we can
then obtain the local Carleman estimate of Theorem 6.3. The proof is left to the reader.

Theorem 6.6. Let x0 ∈ S ∩ V and let ψ ∈ C 0(V ) be such that ψr/ℓ ∈ C∞(V +) has the strong pseudo-

convexity property of Definition 6.1 with respect to Pr/ℓ in a neighborhood of x0 in V+. Moreover, assume

that
{

Pr/ℓ , ψr/ℓ , T
j
r/ℓ
, j = 1, . . . ,m

}

satisfies the transmission condition at (x0, ξ
′
0, τ̂0) ∈ S

∗
T,τ (V+). Then

there exists U a conic open neighborhood of (x0, ξ
′
0, τ̂0) in V+ × R

n−1 × R+ such that for χ̂ ∈ S0
T,τ ,

homogeneous of degree 0, with supp(χ̂) ⊂ U , there exist C > 0, τ∗ > 0, and γ∗ > 0 such that, for

ϕr/ℓ = exp(γψr/ℓ) and τ̃r/ℓ = τγϕr/ℓ ,

(6.4) ‖Pℓ,ϕvℓ‖2+ + ‖Pr,ϕvr‖2+ +
m
∑

j=1

∣

∣T jℓ,ϕvℓ|xn=0+ + T jr,ϕvr |xn=0+
∣

∣

2

m−βj−1/2,τ̃

+ γ2
(

‖vℓ‖2mℓ,−1,τ̃ℓ
+ ‖vr‖2mr ,−1,τ̃r

+ |tr(vℓ)|2mℓ−1,−1/2,τ̃ + |tr(vr)|2mr−1,−1/2,τ̃

)

≥ C
(∥

∥τ̃
− 1

2
ℓ Op(χℓ)vℓ

∥

∥

2

mℓ,τ̃ℓ
+

∥

∥τ̃
− 1

2
r Op(χr)vr

∥

∥

2

mr ,τ̃r

+ |tr(Op(χℓ)vℓ)|2mℓ−1,1/2,τ̃ + |tr(Op(χr)vr)|2mr−1,1/2,τ̃

)

,
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for all vℓ, vr ∈ S (R
n
+), τ ≥ τ∗, γ ≥ γ∗, and χr/ℓ(̺

′) = χ̂(˜̺′r/ℓ) ∈ S0(gT,r/ℓ), with ˜̺′r/ℓ = (x, ξ′, τ̃r/ℓ(x)) for

̺′ = (x, ξ′, τ, γ).

Proof. Applying Lemma 6.8 in [4] we obtain that there exists U a conic open neighborhood of (x0, ξ′0, τ̂0)
in V+ × R

n−1 × R+ such that for χ̂ ∈ S0
T,τ , homogeneous of degree 0, with supp(χ̂) ⊂ U , there exist

C > 0, τ0 > 0, and γ0 > 0 such that

(6.5) C
∥

∥Pr/ℓ,ϕvr/ℓ
∥

∥

2

+
− ReBar/ℓ

,br/ℓ
(Op(χr/ℓ)vr/ℓ) ≥ C ′

∥

∥τ̃
− 1

2
r/ℓ

Op(χr/ℓ)vr/ℓ
∥

∥

2

mr/ℓ
,τ̃r/ℓ

− C ′′
(

γ2
∥

∥vr/ℓ
∥

∥

2

mr/ℓ
,−1,τ̃r/ℓ

+
∣

∣τ̃
− 1

2
r/ℓ

tr(Op(χr/ℓ)vr/ℓ)
∣

∣

2

mr/ℓ
−1,1/2,τ̃r/ℓ

+ γ
∣

∣tr(Op(χr/ℓ)vr/ℓ)
∣

∣

2

mr/ℓ
−1,0,τ̃r/ℓ

)

,

for τ ≥ τ0, γ ≥ γ0, and χr/ℓ(̺
′) = χ̂(˜̺′r/ℓ) ∈ S0(gT,r/ℓ), where Bar/ℓ

,br/ℓ
satisfies

∣

∣

∣Bar/ℓ
,br/ℓ

(Op(χr/ℓ)vr/ℓ)
∣

∣

∣ .
∣

∣tr(Op(χr/ℓ)vr/ℓ)
∣

∣

2

mr/ℓ
−1,1/2,τ̃

.

With Proposition 6.5, making use of the transmission condition, we obtain for M chosen sufficiently large,
in a possibly reduced neighborhood U ,

ReBaℓ,bℓ(Op(χℓ)vℓ) + ReBar ,br(Op(χr)vr) +M
m
∑

j=1

∣

∣T jℓ,ϕvℓ|xn=0+ + T jr,ϕvr |xn=0+
∣

∣

2

m−1/2−βj ,τ̃
(6.6)

≥ C
(

|tr(Op(χℓ)vℓ)|2mℓ−1,1/2,τ̃ + |tr(Op(χr)vr)|2mr−1,1/2,τ̃

)

− C ′
(

‖Pℓ,ϕvℓ‖2+ + ‖Pr,ϕvr‖2+
+ γ2

(

‖vℓ‖2mℓ,−1,τ̃ℓ
+ ‖vr‖2mr ,−1,τ̃r

+ |tr(vℓ)|2mℓ−1,−1/2,τ̃ + |tr(vr)|2mr−1,−1/2,τ̃

)

,

Summing (6.5)ℓ, (6.5)r, and (6.6) we obtain the result of Theorem 6.6, by taking τ and γ sufficiently large.
�

6.6. Estimate with the simple characterisitic property. As in [31] and [4] a stronger estimate with two
parameters can be achieved if one assumes that the operator P and the weight function ψ fulfills the so-called
simple characterisitic property.

We introduce the map

ρx,ξ : R
+ → C,

τ̂ 7→ p(x, ξ + iτ̂ψ′(x)),
(6.7)

where x ∈ Ω and ξ ∈ R
n.

Definition 6.7. Let U be an open subset of Ω. Given a weight function ψ and an operator P we say that the

simple-characteristic property is satisfied in U if, for all x ∈ U , we have ξ = 0 and τ̂ = 0 when the map

ρx,ξ has a double root.

Remark 6.8. In fact the simple-characteristic property implies the property of strong pseudo-convexity. We
refer the reader to [31] and [4].

We have the following result.

Theorem 6.9. Let x0 ∈ S and let ψ ∈ C 0(Ω) be such that ψk = ψ|Ωk ∈ C∞(Ωk) for k = 1, 2 and such

that ψk and Pk have the simple characteristic property of Definition 6.7 in a neighborhood of x0 in Ωk.

Moreover, assume that
{

Pk, T
j
k , ψ, k = 1, 2, j = 1, . . . ,m

}

satisfies the transmission condition at x0.
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Then there exist a neighborhood W of x0 in R
n and three constants C , τ∗ > 0, and γ∗ > 0 such that, for

ϕk = exp(γψk) and τ̃k = τγϕk ,

(6.8)
∑

k=1,2

(

γ
∥

∥τ̃
− 1

2
k eτϕkuk

∥

∥

2

mk,τ̃k
+ |eτϕ|S tr(uk)|2mk−1,1/2,τ̃

)

≤ C
(

∑

k=1,2

‖eτϕkPk(x,D)uk‖2L2(Ωk)
+

m
∑

j=1

∣

∣eτϕ|S (T j1 (x,D)u1 + T j2 (x,D)u2)|S
∣

∣

2

m−1/2−βj ,τ̃

)

,

for all uk = wk |Ωk with wk ∈ C∞
c (W ), τ ≥ τ∗ and γ ≥ γ∗.

We prove the following microlocal result and the result of Theorem 6.9 can be deduced, arguing as in
Section 4.4.

Theorem 6.10. Let x0 ∈ S ∩ V and let ψ ∈ C 0(V ) be such that ψr/ℓ ∈ C∞(V +) and such that ψr/ℓ and

Pr/ℓ have the simple characteristic property of Definition 6.7 in a neighborhood of x0 in V +. Moreover,

assume that
{

Pr/ℓ , T
j
r/ℓ
, ψr/ℓ , j = 1, . . . ,m

}

satisfies the transmission condition at (x0, ξ
′
0, τ̂0) ∈ S

∗
T,τ (V+).

Then there exists U a conic open neighborhood of (x0, ξ
′
0, τ̂0) in V+ ×R

n−1 × R+ such that for χ̂ ∈ S0
T,τ ,

homogeneous of degree 0, with supp(χ̂) ⊂ U , there exist C > 0, τ∗ > 0, and γ∗ > 0 such that, for

ϕr/ℓ = exp(γψr/ℓ) and τ̃r/ℓ = τγϕr/ℓ ,

(6.9) ‖Pℓ,ϕvℓ‖2+ + ‖Pr,ϕvr‖2+ +
m
∑

j=1

∣

∣T jℓ,ϕvℓ|xn=0+ + T jr,ϕvr |xn=0+
∣

∣

2

m−βj−1/2,τ̃

+ γ2
(

‖vℓ‖2mℓ,−1,τ̃ℓ
+ ‖vr‖2mr ,−1,τ̃r

+ |tr(vℓ)|2mℓ−1,−1/2,τ̃ + |tr(vr)|2mr−1,−1/2,τ̃

)

≥ C
(

γ
∥

∥τ̃
− 1

2
ℓ Op(χℓ)vℓ

∥

∥

2

mℓ,τ̃ℓ
+ γ

∥

∥τ̃
− 1

2
r Op(χr)vr

∥

∥

2

mr ,τ̃r

+ |tr(Op(χℓ)vℓ)|2mℓ−1,1/2,τ̃ + |tr(Op(χr)vr)|2mr−1,1/2,τ̃

)

,

for all vℓ, vr ∈ S (R
n
+), τ ≥ τ∗, γ ≥ γ∗, and χr/ℓ(̺

′) = χ̂(˜̺′r/ℓ) ∈ S0(gT,r/ℓ), with ˜̺′r/ℓ = (x, ξ′, τ̃r/ℓ(x)) for

̺′ = (x, ξ′, τ, γ).

Proof. Applying Lemma 6.13 in [4] we obtain that there exists U a conic open neighborhood of (x0, ξ′0, τ̂0)
in V+ × R

n−1 × R+ such that for χ̂ ∈ S0
T,τ , homogeneous of degree 0, with supp(χ̂) ⊂ U , there exist

C > 0, τ0 > 0, and γ0 > 0 such that

(6.10) C
∥

∥Pr/ℓ,ϕvr/ℓ
∥

∥

2

+
− ReBar/ℓ

,br/ℓ
(Op(χr/ℓ)vr/ℓ) ≥ C ′γ

∥

∥τ̃
− 1

2
r/ℓ

Op(χr/ℓ)vr/ℓ
∥

∥

2

mr/ℓ
,τ̃r/ℓ

− C ′′
(

γ2
∥

∥vr/ℓ
∥

∥

2

mr/ℓ
,−1,τ̃r/ℓ

+
∣

∣τ̃
− 1

2
r/ℓ

tr(Op(χr/ℓ)vr/ℓ)
∣

∣

2

mr/ℓ
−1,1/2,τ̃

+ γ
∣

∣tr(Op(χr/ℓ)vr/ℓ)
∣

∣

2

mr/ℓ
−1,0,τ̃

)

,

for τ ≥ τ0, γ ≥ γ0, and χr/ℓ(̺
′) = χ̂(˜̺′r/ℓ) ∈ S0(gT,r/ℓ), where Bar/ℓ

,br/ℓ
satisfies

∣

∣

∣
Bar/ℓ

,br/ℓ
(Op(χr/ℓ)vr/ℓ)

∣

∣

∣
.

∣

∣tr(Op(χr/ℓ)vr/ℓ)
∣

∣

2

mr/ℓ
−1,1/2,τ̃

.

Summing (6.10)ℓ, (6.10)r, and (6.6) we obtain the result of Theorem 6.10 by taking τ and γ sufficiently
large. �

6.7. Shifted estimates. As in [4] it may be interesting to consider shifted estimates in the Sobolev scales.
Namely we may wish to have an estimate of the following form.
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Corollary 6.11. Let x0 ∈ S and let ψ ∈ C 0(Ω) be such that ψk = ψ|Ωk ∈ C∞(Ωk) for k = 1, 2
and such that ψ has the strong pseudo-convexity property of Definition 6.2 with respect to P1 and P2 in

a neighborhood of x0 in Ω. Moreover, assume that
{

Pk, T
j
k , ψ, k = 1, 2, j = 1, . . . ,m

}

satisfies the

transmission condition at x0. Let ℓ ∈ N and s ∈ R. Then there exist a neighborhood W of x0 in R
n and

three constants C , τ∗ > 0, and γ∗ > 0 such that for ϕk = exp(γψk) and τ̃k = τγϕk:

(6.11)
∑

k=1,2

(∥

∥τ̃
s−1/2
k eτϕkuk

∥

∥

2

ℓ+mk,τ̃k
+ |τ̃ skeτϕ|S tr(uk)|2ℓ+mk−1,1/2,τ̃

)

≤ C
(

∑

k=1,2

‖τ̃ skeτϕkPk(x,D)uk‖2ℓ,τ̃k +
m
∑

j=1
|τ̃ skeτϕ|S (T j1 (x,D)u1 + T j2 (x,D)u2)|S|2ℓ,m−1/2−βj ,τ̃

)

,

for all uk = wk |Ωk with wk ∈ C∞
c (W ), τ ≥ τ∗, and γ ≥ γ∗.

Corollary 6.12. Let x0 ∈ S and let ψ ∈ C 0(Ω) be such that ψk = ψ|Ωk ∈ C∞(Ωk) for k = 1, 2 and

such that ψk and Pk have the simple characteristic property of Definition 6.7 in a neighborhood of x0 in

Ωk. Moreover, assume that
{

Pk, T
j
k , ψ, k = 1, 2, j = 1, . . . ,m

}

satisfies the transmission condition at x0.

Let ℓ ∈ N and s ∈ R. Then there exist a neighborhood W of x0 in R
n and three constants C , τ∗ > 0, and

γ∗ > 0 such that, for ϕk = exp(γψk) and τ̃k = τγϕk,

(6.12)
∑

k=1,2

(

γ
∥

∥τ̃
s− 1

2
k eτϕkuk

∥

∥

2

ℓ+mk,τ̃k
+ |τ̃ skeτϕ|S tr(uk)|2ℓ+mk−1,1/2,τ̃

)

≤ C
(

∑

k=1,2

‖τ̃ skeτϕkPk(x,D)uk‖2ℓ,τ̃k +
m
∑

j=1

∣

∣τ̃ ske
τϕ|S (T j1 (x,D)u1 + T j2 (x,D)u2)|S

∣

∣

2

ℓ,m−1/2−βj ,τ̃

)

,

for all uk = wk |Ωk with wk ∈ C∞
c (W ), τ ≥ τ∗ and γ ≥ γ∗.

The proofs of these two corollaries can be adapted from the proofs of their counterpart at a boundary,
namely Corollaries 6.14 and 6.15 in [4].

7. APPLICATION TO UNIQUE CONTINUATION

With the Carleman estimates we have derived here we can obtain unique continuation results near an inter-
face for high-order elliptic operators with the transmission condition, if we make a geometrical assumption,
namely the strong pseudo-convexity condition. Result for a product of two operators can be obtained if
additionaly the simple characteristic propery holds for one of them.

7.1. Uniqueness under strong pseudo-convexity and transmission condition.

Theorem 7.1. Let Pk and T jk , j = 1, . . . ,m be given as in Section 1. Let x0 ∈ S, f ∈ C 0(Ω), and V be a

neighborhood of x0, be such that f has the strong pseudo-convexity property of Definition 6.2 with respect

to P1 and P2 in V . Moreover, assume that
{

Pk, f, T
j
k , k = 1, 2, j = 1, . . . ,m

}

satisfies the transmission

condition at x0. Assume that u is such that uk = u|Ωk ∈ Hmk(Ωk) and satisfies

•
|Pkuk(x)| ≤ C

∑

|α|≤m−1

|Dαuk(x)|, a.e. in Vk = V ∩Ωk, k = 1, 2;(7.13)

• for j = 1, . . . ,m and |α| ≤ m− βj , with α ∈ N
n−1,

|Dα
T

(

T j1u1(x) + T j2u2(x)
)

| ≤ C
∑

k=1,2

∑

|α′|≤|α|

+β
j
k
−1

|Dα′
uk(x)|, a.e. in V ∩ S;(7.14)

• and u vanishes in {x ∈ V ; f(x) ≥ f(x0)}.
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V ′′

V ′

Σ

{ϕ(x) = ϕ(x0)− δ}
{ϕ(x) = ϕ(x0)− δ/2}
{ϕ(x) = ϕ(x0)}

{f(x) = f(x0)}B
W
u = 0

S

x0

FIGURE 1. Local geometry for the unique continuation problem. The shaded region Σ

contains the supports of [P, χ]u and [χ,Dj
xk ]u. In the figure the funtions f and ϕ are

continuous and yet only piecewise smooth. Here unique continuation is performed across a
surface that is not related to S.

Then u vanishes in a neighborhood of x0.

Here Dα
T

denotes a familly of differential operators that act tangentially to the interface S and, in local
coordinates near x0, where S = {xn = 0}, their principal symbol is ξ′α.

Proof. Strong pseudo-convexity is a stable notion in C 2 (see Proposition 28.3.2 in [22]). Here the function
f is continuous and piecewise smooth. The argument of [22] applies on both sides of the interface. For
ε chosen sufficiently small, there exists a neighborhood V ′ of x0 such that the function ψ(x) = f(x) −
ε|x − x0|2 has the strong pseudo-convexity property of Definition 6.2 with respect to P1 and P2 in V ′.
Similary we saw in Section 1.6.4 for the proof of Proposition 1.8, that the transmission condition (or rather
property (1.29) ) is robust upon perturbation of the weight function. Hence if ε is chosen sufficiently small
{

P,ψ,Bk, k = 1, . . . , µ
}

will also satisfy this condition.
We set ϕ = exp(γψ). As shown in Proposition 28.3.3 in [22] the strong pseudo-convexity of the function

ψ with respect to P1 and P2 implies the sub-ellipticity condition for {Pk, ϕk} for γ chosen sufficiently large

for both k = 1, 2 with ϕk = ϕ|Ωk . Moreover, as seen in Section 6.2
{

Pk, T
j
k , ϕ; k = 1, 2, j = 1, . . . , µ

}

also satisfies the transmission condition at x0.
The geometrical situation we describre is illustrated in Figures 1 and 2. The two figures show different

unique continuation configuration: across an hypersuface that is not related to the interface S, or across the
interface S. We call W the region {x ∈ V ; f(x) ≥ f(x0)} (region beneath {f(x) = f(x0)} in Figure 1)
where u vanishes by assumption. We choose V ′′ a neighborhood of x0 such that V ′′ ⋐ V ′.

We pick a function χ ∈ C∞
c (Rn) such that χ = 1 in V ′′ and supp(χ) ∩ V ⊂ V ′. We observe that the

Carleman estimate of Theorem 1.6 applies to χu by density (possibly by reducing the neighborhoods V and
V ′ of x0):

(7.15)
∑

k=1,2

(

τ−1/2 ‖eτϕkχuk‖mk ,τ + |eτϕ|S tr(χuk)|mk−1,1/2,τ

)

.
∑

k=1,2

‖eτϕkPk(χuk)‖L2(Ωk)
+

m
∑

j=1

∣

∣eτϕ|S
(

T j1 (χ)u1 + T j2 (χu2)
)

|S

∣

∣

m−1/2−βj ,τ
,

for τ ≥ τ0.
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S

u = 0

W

{f(x) = f(x0)}

{ϕ(x) = ϕ(x0)}
{ϕ(x) = ϕ(x0)− δ/2}

B

Σ

V ′

V ′′x0

{ϕ(x) = ϕ(x0)− δ}

FIGURE 2. Local geometry for the unique continuation problem. Here, unique continuation
is performed across the interface S.

We have Pk(χuk) = χPkuk+ [Pk, χ]uk, where the commutator is a differential operator of order m− 1.
With (7.13) we have

‖eτϕkPk(χuk)‖L2(Ωk)
.

∑

|α|≤m−1

‖eτϕkχDαuk‖L2(Ωk)
+ ‖eτϕk [Pk, χ]uk‖L2(Ωk)

.
∑

|α|≤m−1

‖eτϕkDα(χuk)‖L2(Ωk)
+

∑

i∈Ik

‖eτϕkMk,iuk‖L2(Ωk)
,

where Ik is finite and the operators Mk,i are commutators fo χ and differential operators. They are of order
mk − 1 at most.

We also write

∣

∣eτϕ|S
(

T j1 (χu1) + T j2 (χu2)
)

|S

∣

∣

m−1/2−βj ,τ

≤
∣

∣eτϕ|S
(

T j1 (χu1) + T j2 (χu2)
)

|S

∣

∣

m−βj ,τ

=
∑

r+|α|

≤m−βj

∣

∣τ reτϕ|SDα
T

(

T j1 (χu1) + T j2 (χu2)
)

|S

∣

∣

L2(S)
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We write Dα
T
T jk (χuk) = χDα

T
T jkuk + [Dα

T
T jk , χ]uk and have

∣

∣eτϕ|S
(

T j1 (χu1) + T j2 (χu2)
)

|S

∣

∣

m−1/2−βj ,τ

.
∑

r+|α|

≤m−βj

(

∣

∣τ reτϕ|Sχ
(

Dα
T
T j1u1 +Dα

T
T j2u2

)

|S

∣

∣

L2(S)

+
∣

∣τ reτϕ|S
(

[Dα
T
T j1 , χ]u1 + [Dα

T
T j2 , χ]u2

)

|S

∣

∣

L2(S)

)

.
∑

k=1,2

∑

r+|α|

≤m−βj

∑

|α′|≤|α|

+β
j
k
−1

∣

∣τ reτϕ|Sχ(Dα′
uk)|S

∣

∣

L2(S)

+
∑

k=1,2

∑

r+|α|

≤m−βj

∣

∣τ reτϕ|S
(

[Dα
T
T jk , χ]uk

)

|S

∣

∣

L2(S)
,

Using commutators once more we write
∣

∣τ reτϕ|Sχ(Dα′
uk)|S

∣

∣

L2(S)
≤

∣

∣τ rDα′
(eτϕ|Sχuk)|S

∣

∣

L2(S)
+

∣

∣τ r([eτϕ|Sχ,Dα′
]uk)|S

∣

∣

L2(S)
.

We thus find
m
∑

j=1

∣

∣eτϕ|S
(

T j1 (χu1) + T j2 (χu2)
)

|S

∣

∣

m−1/2−βj ,τ

.
m
∑

j=1

∑

k=1,2

∑

r+|α|

≤m−βj

∑

|α′|≤|α|

+β
j
k
−1

∣

∣τ r
(

Dα′
(eτϕ|Sχuk)

)

|S

∣

∣

L2(S)
+

∑

k=1,2

∑

i∈Jk

∣

∣(M̃k,iuk)|S
∣

∣

L2(S)

.
∑

k=1,2

∣

∣ tr(eτϕχuk)
∣

∣

mk−1,0,τ
+

∑

k=1,2

∑

i∈Jk

∣

∣M̃k,iuk
∣

∣

L2(S)
,

where Jk is finite and M̃k,i is the commutator of χ with a differential operator. The operator M̃k,i is of order
at most mk − 1 (w.r.t. to τ and ξ).

As

|eτϕ|S tr(χu)|mk−1,1/2,τ ≥ τ
1
2 |eτϕ|S tr(χuk)|mk−1,0,τ ≥ τ

1
2 |tr(eτϕkχuk)|mk−1,0,τ ,

for τ chosen sufficiently large, from (7.15) we thus obtain
∑

k=1,2

(

τ−1/2 ‖eτϕkχuk‖mk,τ + |eτϕk tr(χuk)|mk−1,1/2,τ

)

.
∑

k=1,2

(

∑

i∈Ik

∥

∥eτϕkMk,iuk
∥

∥

L2(Ωk)
+

∑

i∈Jk

∣

∣(M̃k,iuk)|S
∣

∣

L2(S)

)

,

We set Σ := V ′ \ (V ′′ ∪W ) (see the shaded region in Figure 1). We have

supp(Mk,iuk) ⊂ Σ, i ∈ Ik and supp(M̃k,juk) ⊂ Σ, i ∈ Jk,

as they are confined in the region where χ varies and u does not vanish.
We thus obtain
∑

k=1,2

(

τ−1/2 ‖eτϕkχuk‖mk,τ + |eτϕk tr(χuk)|mk−1,1/2,τ

)

.
∑

k=1,2

(

∑

|α|≤mk−1

∥

∥eτϕkDαuk
∥

∥

L2(Σ)
+

∑

r+|α|≤mk−1

∣

∣τ r(Dαuk)|S
∣

∣

L2(Σ∩S)

)

.
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For all δ > 0, we set Vδ = {x ∈ V ; ϕ(x) ≤ ϕ(x0)− δ}. There exists δ > 0 such that Σ ⋐ Vδ. We then
choose B a neighborhood of x0 such that B ⊂ V ′′ \ Vδ/2 and obtain, as χ ≡ 1 on B,

eτ infB ϕ
∑

k=1,2

‖uk‖Hm
k (B) . eτ(supΣ ϕ+δ/2)

∑

k=1,2

(

‖uk‖Hm
k (Σ) +

∑

|α|≤mk−1

∣

∣Dαu|S
∣

∣

L2(Σ∩S

)

, τ ≥ τ1

for some τ1 > 0. Since infB ϕ > supΣ ϕ+ δ/2, letting τ go to ∞, we obtain u = 0 in B. �

7.2. Uniqueness for products of operators. We now consider two sets of elliptic operators: P1 and Q1

defined on Ω1 and P2 and Q2 defined on Ω2. We denote their respective orders by mp
1, mq

1, mp
2, and mq

2.
We assume that mp

1 = mp
2 = mp.

We also consider interface operators T p,jk , k = 1, 2, j = 1, . . . ,mp of order βp,jk and T q,jk , k = 1, 2,

j = 1, . . . ,mq of order βq,jk with mq = (mq
1+m

q
2)/2. We assume that mp−βp,j1 = mp−βp,j2 = mp−βp,j

and mq
1 − βq,j1 = mq

2 − βq,j2 = mq − βq,j . Then the operators P1, P2, T p,jk , k = 1, 2, j = 1, . . . ,mp, allow

one to define an elliptic transmission problem as presented in Section 1. The same is valid for Q1, Q2, T q,jk ,
k = 1, 2, j = 1, . . . ,mq.

We observe that P1Q1, P2Q2, and the intreface operators T p,jk Qk, k = 1, 2, j = 1, . . . ,mp, and T q,jk ,
k = 1, 2, j = 1, . . . ,mq also allow to define an elliptic transmission problem. In fact, the operators P1Q1

and P2Q2 are of respective orderm1 = mp+mq
1 andm2 = mp+mq

2. We setm = mp+mq = (m1+m2)/2.
The interface operator T q,jk is of order βq,jk and we have m1 − βq,j1 = m2 − βq,j2 = m− βq,j . The interface

operator T p,jk Qk is of order βp,jk +mq
k and we have m1 − (βp,j1 +mq

1) = m2 − (βp,j2 +mq
2).

One may possibly wonder about unique continuation for this product transmission problem, in particuler
in the case no Carleman estimate of the type derived here can be achieved. Let us however assume that for
a function ψ and the weigth function ϕ = exp(γψ) we can derive Carleman estimates for the transmission
problems associated with P1, P2 and Q1, Q2. More precisely we assume that the first problem satisfies the
simple characteristic property while the second one only satisfies the strong pseudo-convexity condition.

Theorem 7.2. Let Pk, T p,jk , k = 1, 2, j = 1, . . . ,mp, and Qk, T q,jk , k = 1, 2, j = 1, . . . ,mq , be given as

above. Let x0 ∈ S, f ∈ C 0(Ω), with fk = f|Ωk and V a neighborhood of x0, be such that

(1) fk and Pk have the simple characteristic property of Definition 6.7 in V ∩ Ωk;

(2) f has the strong pseudo-convexity property of Definition 6.2 with respect to Q1 and Q2 in V ;

(3)
{

Pk, f, T
p,j
k , k = 1, 2, j = 1, . . . ,mp

}

satisfies the transmission condition at x0;

(4)
{

Qk, f, T
q,j
k , k = 1, 2, j = 1, . . . ,mq

}

satisfies the transmission condition at x0.

Assume that u is such that uk = u|Ωk ∈ Hmp+mqk(Ωk) and satisfies

•
|PkQkuk(x)| ≤ C

∑

|α|≤mp+mq
k
−1

|Dαuk(x)|, a.e. in Vk = V ∩ Ωk, k = 1, 2;(7.16)

• for j = 1, . . . ,mp, |α| ≤ mp − βp,j , with α ∈ N
n−1,

|Dα
T

(

T p,j1 Q1u1(x) + T p,j2 Q2u2(x)
)

| ≤ C
∑

k=1,2

∑

|α′|≤|α|+m
q
k

+β
p,j
k

−1

|Dα′
uk(x)|, a.e. in V ∩ S;(7.17)

• for j = 1, . . . ,mq , |α1| ≤ mp, |α2| ≤ mq − βq,j , with α1 ∈ N
n and α2 ∈ N

n−1,

|Dα1Dα2
T

(

T q,j1 u1(x) + T q,j2 u2(x)
)

| ≤ C
∑

k=1,2

∑

|α′|≤|α1|+|α2|

+β
q,j
k

−1

|Dα′
uk(x)|, a.e. in V ∩ S;(7.18)
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• and u vanishes in {x ∈ V ; f(x) ≥ f(x0)}.

Then u vanishes in a neighborhood of x0.

Here Dα
T

denotes a familly of differential operators that act tangentially to the interface S and, in local
coordinates near x0, where S = {xn = 0}, their principal symbol is ξ′α.

Remark 7.3. Here we have assume that mp
1 = mp

2. It would be interesting to know if such an assumption
can be removed. This assumption is connected to the shifted estimate of Corollary 6.11, where the shift is
the same on both sides of the interface. Having different Sobolev-scale shifts from one side to the other leads
to technical difficulties with the transmission terms on the interface. It is not clear whether such estimates
can be achieved without modifying the properties of the transmission operators.

Proof. The proof follows that of Theorem 7.1. We set ψ(x) = f(x) − ε|x − x0|2 and conditions (1)-(4)
in the statement of the theorem are also satisfied by ψ for ε chosen sufficiently small in a neighborhood
V ′ ⊂ V of x0. We then set ϕ = exp(γψ).

We derive an estimate for PkQk. We first write an estimate for Pk. By Theorem 6.9, there exists V1
neighborhood of x0 in R

n such that V1 ⊂ V ′ and

∑

k=1,2

(

γ1/2
∥

∥τ̃
− 1

2
k eτϕkvk

∥

∥

mp,τ̃k
+ |eτϕ|S tr(vk)|mp−1,1/2,τ̃

)

.
∑

k=1,2

‖eτϕkPkvk‖L2(Ωk)
+

mp
∑

j=1

∣

∣eτϕ|S (T p,j1 v1 + T p,j2 v2)|S
∣

∣

mp−1/2−βp,j ,τ̃
,

for all vk = wk |Ωk with wk ∈ C∞
c (V1), τ ≥ τ1 and γ ≥ γ1, for τ1 and γ1 chosen sufficiently large.

For Qk, by Corollary 6.11, there exists V2 neighborhood of x0 in R
n such that V2 ⊂ V ′ and

∑

k=1,2

(∥

∥τ̃−1
k eτϕkvk

∥

∥

mp+mq
k
,τ̃k

+
∣

∣τ̃−1/2eτϕ|S tr(vk)
∣

∣

mp+mq
k
−1,1/2,τ̃

)

.
∑

k=1,2

∥

∥τ̃
−1/2
k eτϕkQkvk

∥

∥

mp,τ̃k
+

mq
∑

j=1

∣

∣τ̃−1/2eτϕ|S (T q,j1 v1 + T q,j2 v2)|S
∣

∣

mp,mq−1/2−βq,j ,τ̃
,

for all vk = wk |Ωk with wk ∈ C∞
c (V2), τ ≥ τ2 and γ ≥ γ2, for τ2 and γ2 chosen sufficiently large.

Letting V3 = V1 ∩ V2 with the previous two estimates we obtain

(7.19) γ1/2
∑

k=1,2

(∥

∥τ̃−1
k eτϕkvk

∥

∥

mp+mq
k
,τ̃k

+
∣

∣τ̃−1/2eτϕ|S tr(vk)
∣

∣

mp+mq
k
−1,1/2,τ̃

)

.
∑

k=1,2

‖eτϕkPkQkvk‖L2(Ωk)
+

mp
∑

j=1

∣

∣eτϕ|S (T p,j1 Q1v1 + T p,j2 Q2v2)|S
∣

∣

mp−1/2−βp,j ,τ̃

+ γ1/2
mq
∑

j=1

∣

∣τ̃−1/2eτϕ|S (T q,j1 v1 + T q,j2 v2)|S
∣

∣

mp,mq−1/2−βq,j ,τ̃
,

for all vk = wk |Ωk with wk ∈ C∞
c (V3), τ ≥ τ3 and γ ≥ γ3, for τ3 and γ3 chosen sufficiently large.

We choose χ as in the proof of Theorem 7.1 and we apply estimate (7.19) to vk = χuk as can be done by
a density argument. We now sketch how the remainder of the proof can be carried out.
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We have PkQk(χu) = χPkQku+[PkQk, χ]u. The term [PkQk, χ]u is supported in the set Σ introduced
in the proof of Theorem 7.1 and can be handle as it is done there. For the first term, with (7.16) we have

‖eτϕχPkQku‖L2(Ωk)
.

∑

|α|≤mp+mq
k
−1

‖eτϕχDαu‖L2(Ωk)

.
∑

|α|≤mp+mq
k
−1

‖eτϕDα(χu)‖L2(Ωk)
+

∑

|α|≤mp+mq
k
−1

‖eτϕ[χ,Dα]u‖L2(Ωk)
.

The second term in the r.h.s. concerns functions with support located in Σ and their treatment is done as in
the proof of Theorem 7.1. For the first term we have

∑

|α|≤mp+mq
k
−1

‖eτϕDα(χu)‖L2(Ωk)
. ‖eτϕχu‖mp+mq

k
−1,τ̃k

.
∥

∥τ̃−1
k eτϕχu

∥

∥

mp+mq
k
,τ̃k
,

which can be absorbed by the first term in (7.19) by chosing γ sufficiently large.
Next we have

∣

∣eτϕ|S (T p,j1 Q1v1 + T p,j2 Q2v2)|S
∣

∣

mp−1/2−βp,j ,τ̃
≤

∣

∣eτϕ|S (T p,j1 Q1v1 + T p,j2 Q2v2)|S
∣

∣

mp−βp,j ,τ̃

=
∑

r+|α|

≤mp−βp,j

∣

∣τ̃ rDα
T
eτϕ|S (T p,j1 Q1v1 + T p,j2 Q2v2)|S

∣

∣

L2(S)

.
∑

r+|α|

≤mp−βp,j

∣

∣τ̃ reτϕ|SDα
T
(T p,j1 Q1v1 + T p,j2 Q2v2)|S

∣

∣

L2(S)
.

Writing Dα
T
T p,jk Qkvk = χDα

T
T p,jk Qkuk + [Dα

T
T p,jk Qk, χ]u we have

∣

∣eτϕ|S (T p,j1 Q1v1 + T p,j2 Q2v2)|S
∣

∣

mp−1/2−βp,j ,τ̃

.
∑

r+|α|

≤mp−βp,j

∣

∣τ̃ reτϕ|SχDα
T
(T p,j1 Q1u1 + T p,j2 Q2u2)|S

∣

∣

L2(S)

+
∑

r+|α|

≤mp−βp,j

∣

∣τ̃ reτϕ|S ([Dα
T
T p,j1 Q1, χ]uk + [Dα

T
T p,j2 Q2, χ]v2)|S

∣

∣

L2(S)
.

The terms [Dα
T
T p,jk Qk, χ]u are supported in the set Σ and can be treated as in the proof of Theorem 7.1. For

the first term, with (7.17) we have
∣

∣τ̃ reτϕ|SχDα
T
(T p,j1 Q1u1 + T p,j2 Q2u2)|S

∣

∣

L2(S)

.
∑

k=1,2

∑

|α′|≤|α|+m
q
k

+β
p,j
k

−1

∣

∣τ̃ reτϕ|S (χDα′
uk)|S

∣

∣

L2(S)

.
∑

k=1,2

∑

|α′|≤|α|+m
q
k

+β
p,j
k

−1

∣

∣τ̃ rDα′
(eτϕkχuk)|S

∣

∣

L2(S)
+

∑

k=1,2

∑

|α′|≤|α|+m
q
k

+β
p,j
k

−1

∣

∣τ̃ r([eτϕ|Sχ,Dα′
]uk)|S

∣

∣

L2(S)

The second term in the r.h.s. concerns functions with support located in Σ and their treatment is done as in
the proof of Theorem 7.1. For the first term we have r + |α| ≤ mp − βp,j and |α′| ≤ |α| +mq

k + βp,jk − 1
and thus we write

∣

∣τ̃ rDα′
(eτϕkχuk)|S

∣

∣

L2(S)
.

∣

∣ tr(eτϕkχuk)
∣

∣

mp+mq
k
−1,0,τ̃

.
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As

γ1/2
∣

∣τ̃−1/2eτϕ|S tr(χuk)
∣

∣

mp+mq
k
−1,1/2,τ̃

≥ γ1/2
∣

∣eτϕ|S tr(χuk)
∣

∣

mp+mq
k
−1,0,τ̃

& γ1/2
∣

∣ tr(eτϕkχuk)
∣

∣

mp+mq
k
−1,0,τ̃

we see that the above terms can be absorbed by the second term in (7.19) by chosing γ sufficiently large.
We finally write

mq
∑

j=1

∣

∣τ̃−1/2eτϕ|S (T q,j1 v1 + T q,j2 v2)|S
∣

∣

mp,mq−1/2−βq,j ,τ̃

≤
mq
∑

j=1

∣

∣τ̃−1/2eτϕ|S (T q,j1 v1 + T q,j2 v2)|S
∣

∣

mp,mq−βq,j ,τ̃

.
∑

|α1|≤m
p

|α2|≤m
q−βq,j

r+|α1|+|α2|≤m
p+mq−βq,j

∣

∣τ̃ r−1/2Dα1Dα2
T
eτϕ|S (T q,j1 v1 + T q,j2 v2)|S

∣

∣,

which can be treated as above by using (7.18). We then conclude the proof as in that of Theorem 7.1. �
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