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Abstract

Background: Although simulation studies show that combining multiple breeds in one reference population
increases accuracy of genomic prediction, this is not always confirmed in empirical studies. This discrepancy might
be due to the assumptions on quantitative trait loci (QTL) properties applied in simulation studies, including
number of QTL, spectrum of QTL allele frequencies across breeds, and distribution of allele substitution effects. We
investigated the effects of QTL properties and of including a random across- and within-breed animal effect in a
genomic best linear unbiased prediction (GBLUP) model on accuracy of multi-breed genomic prediction using
genotypes of Holstein-Friesian and Jersey cows.

Methods: Genotypes of three classes of variants obtained from whole-genome sequence data, with moderately low,
very low or extremely low average minor allele frequencies (MAF), were imputed in 3000 Holstein-Friesian and 3000
Jersey cows that had real high-density genotypes. Phenotypes of traits controlled by QTL with different properties were
simulated by sampling 100 or 1000 QTL from one class of variants and their allele substitution effects either randomly
from a gamma distribution, or computed such that each QTL explained the same variance, i.e. rare alleles had a large
effect. Genomic breeding values for 1000 selection candidates per breed were estimated using GBLUP models
including a random across- and a within-breed animal effect.

Results: For all three classes of QTL allele frequency spectra, accuracies of genomic prediction were not affected by
the addition of 2000 individuals of the other breed to a reference population of the same breed as the selection
candidates. Accuracies of both single- and multi-breed genomic prediction decreased as MAF of QTL decreased,
especially when rare alleles had a large effect. Accuracies of genomic prediction were similar for the models with
and without a random within-breed animal effect, probably because of insufficient power to separate across- and
within-breed animal effects.

Conclusions: Accuracy of both single- and multi-breed genomic prediction depends on the properties of the QTL that
underlie the trait. As QTL MAF decreased, accuracy decreased, especially when rare alleles had a large effect. This
demonstrates that QTL properties are key parameters that determine the accuracy of genomic prediction.
Background
In livestock breeding programs, genomic information is
widely used to estimate genomic breeding values for se-
lection candidates. Genomic estimated breeding values
(GEBV) are calculated from marker effects estimated in
a reference population that consists of animals with phe-
notypes and marker genotypes. Accuracy of GEBV for
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selection candidates, that typically have no phenotypes
of their own, depends on the size of the reference popu-
lation i.e. the larger the size of the reference population,
the more accurately breeding values can be predicted,
e.g. [1-3]. For numerically small breeds, assembling such
a large reference population is challenging, therefore, an
attractive approach would be to combine purebred refer-
ence populations from different breeds or lines to estab-
lish large reference populations [4-7]. However, the
benefit of adding another breed or line to the reference
population may be reduced by the inconsistency in allele
substitution effects across breeds [8-10], by between-
breed differences in linkage disequilibrium (LD) between
l. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
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single nucleotide polymorphisms (SNPs) and quantitative
trait loci (QTL) that influence a trait across breeds or
lines, e.g. [7,11,12], as well as by the absence of close fam-
ily relationships between breeds or lines [13]. In addition,
the accuracy of prediction using both single-breed and
multi-breed reference populations may be affected by the
properties of the QTL that control a trait, i.e. number of
QTL for the trait, joint distribution of QTL allele frequen-
cies across breeds, and distribution of QTL effects.
In Bos taurus cattle populations, LD phase is conserved

across breeds among SNP alleles at short distances (5 to
30 kb) [11]. Therefore, a high marker density might over-
come the problem of differences in LD between SNPs and
QTL across breeds or lines [11]. Indeed, simulation studies
using high-density markers showed that prediction accur-
acy increased when reference populations were combined
across breeds compared to single-breed reference popula-
tions [6,14]. However, in empirical studies, the increase in
prediction accuracy was smaller and sometimes absent
[12,15,16], even when more than 600 000 SNPs were used
[4,17,18]. Part of this difference between accuracies
obtained from simulation and empirical studies could be
explained by the assumptions made in simulation studies
on the properties of the QTL that underlie a trait, which
may not completely reflect the reality. One of these QTL
properties that could affect prediction accuracy is the
pattern of QTL allele frequencies. For most complex traits,
the QTL that underlie a trait have a low minor allele
frequency (MAF) [19-21]. Due to ascertainment bias of
SNP chips [22], SNPs tend to have higher MAF than QTL,
which reduces the LD between QTL and SNPs and there-
fore the accuracy of genomic prediction, particularly across
breeds and lines. Besides differences in allele frequencies
between SNPs and QTL, differences in allele frequencies of
QTL across breeds may also influence prediction accuracy.
In extreme cases, QTL may even only segregate in one of
the breeds. When the SNPs that flank a breed-specific QTL
are segregating across breeds, the apparent effect of SNPs
may vary across breeds. The above examples show that the
properties of QTL that underlie a trait are likely to affect
the accuracy of multi-breed or line genomic prediction.
In spite of potential differences in QTL properties across

breeds, most studies on multi-breed genomic prediction
estimate only one effect for each SNP across all breeds, e.g.
[4,15,23]. Makgahlela et al. [24] and Olson et al. [25]
accounted for differences in SNP effects across breeds by
fitting a multi-trait model in which the same trait in differ-
ent breeds was treated as a different trait and both studies
showed a minor increase in prediction accuracy using ~40
000 SNPs. Another way to account for breed-specific SNP
effects and at the same time benefit from increasing the size
of the reference population by adding another breed could
be to estimate an across-breed SNP effect and a within-
breed SNP effect. Khansefid et al. [26] showed that this can
be done by including a random across-breed animal effect
and a within-breed animal effect in a genomic best linear
unbiased prediction (GBLUP) model.
The first objective of this study was to investigate the

effect of the properties of the QTL that underlie the trait
on the accuracy of multi-breed genomic prediction. The
second objective was to investigate the effect of a GBLUP
model with a random across-breed animal and a within-
breed animal effect on the accuracy of multi-breed genomic
prediction. In this study, real genotypes of Holstein-Friesian
and Jersey dairy cows were used. Phenotypes were simu-
lated using different properties of QTL by sampling 100 or
1000 QTL from three different classes of markers with
average MAF that ranged from moderately low (represent-
ing allele frequencies expected under a neutral model) to
extremely low values, and by simulating allele substitution
effects using two different models.

Methods
For this study, two different datasets were used. For the
first dataset, including genotypes of Australian cows,
samples were collected for DNA extraction as approved
by the Department of Primary Industries Victoria Animals
Ethics Committee (protocol: 2010-19). For the second
dataset, sequence information from the 1000 bull ge-
nomes project was used, for which DNA for most animals
was extracted from semen. Only for Angus animals, sam-
ples were collected for DNA extraction as approved by
the New South Wales Department of Primary Industries
Animals Ethics Committee.

Genotypes
Genotypes were available for 3000 Holstein-Friesian cows
and 3000 Jersey cows from Australia. Individuals were ge-
notyped with the Illumina BovineHD Beadchip (777 k, Illu-
mina, San Diego, CA) or the Illumina BovineSNP50
Beadchip (50 k, Illumina, San Diego, CA). Animals geno-
typed at the lower density (50 k) were imputed to high
density (777 k) using the software package Beagle 3.0 [27]
and a reference population of 1072 animals (Holstein-Frie-
sian and Jersey) that were genotyped with the high-density
(777 k) chip. Quality was checked using a larger dataset
that included those 6000 individuals. SNPs of low quality
based on the same criteria as described in Erbe et al. [4]
were removed, leaving 606 384 SNPs for the analyses.
In order to obtain plausible QTL allele frequencies that

ranged from frequencies of loci that are effectively neutral
to frequencies of loci that are expected to have large pleio-
tropic effects on fitness, sequence data of variants in
annotated classes from the 1000 bull genomes project [28]
was used. This included sequence information of 129
Holstein-Friesian, 15 Jersey, 47 Angus and 43 Simmental
animals. Variants in this dataset were annotated as either
synonymous mutations (80 515 mutations), missense
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mutations (97 296 mutations), and premature stop codon
mutations (4064 mutations), with about the same number
of variants in each class as presented in Daetwyler et al.
[28]. More information about the samples, alignment,
variant calling and filtering, and annotation of the
sequenced animal genomes is in Daetwyler et al. [28].
Our aim was to simulate different groups of QTL that

had decreasing MAF and that were increasingly more
difficult to tag with SNPs on the SNP chip and were
equally distributed across the whole genome. Therefore,
the three classes of annotated variants that varied in aver-
age MAF (Table 1) and MAF pattern [See Additional file
1 Figure S1 and Additional file 2 Figure S2], were used to
represent different patterns of QTL MAF; the syn-
onymous mutations represented QTL with on average
a moderately low MAF (average MAF of 0.122), the
missense mutations represented QTL with on average
a very low MAF (average MAF of 0.077), and the pre-
mature stop codon mutations represented QTL with
on average an extremely low MAF (average MAF of
0.016). It should be noted that these classes of variants
were only used to represent differences in patterns of
QTL MAF and not differences in biological functions
of the QTL.
Genotypes for the three classes of variants were im-

puted in 3000 Holstein-Friesian and 3000 Jersey animals
with real high-density SNP genotypes [27]. Imputation
was done using all sequenced animals from the reference
population, which included the Angus and Simmental
animals, since it has been shown that using animals
from other breeds improves imputation accuracy
[28,29]. Allele frequency patterns of the imputed variants
Table 1 Characteristics of different classes of variants used to

Characteristic per class

Moderately low average MAF1,2

Segregating variants

Number of breed-specific variants

Percentage of breed-specific variants

Average MAF1 of the 65 920 segregating variants (± standard deviation)

Very low average MAF1,3

Segregating variants

Number of breed-specific variants

Percentage of breed-specific variants

Average MAF1 of the 67 097 segregating variants (± standard deviation)

Extremely low average MAF1,4

Segregating variants

Number of breed-specific variants

Percentage of breed-specific variants

Average MAF1 of the 2142 segregating variants (± standard deviation)
1MAF =minor allele frequency; 2annotated as synonymous mutations; 3annotated a
were similar to the allele frequency patterns in se-
quenced animals [See Additional file 1 Figure S1 and
Additional file 2 Figure S2]. Other characteristics of the
three classes of imputed variants are in Table 1. For im-
puted and real sequence data, the number of segregating
variants was much smaller for the Jersey population than
for the Holstein-Friesian population. This is probably
due to the small number of Jersey sequenced genomes
in the dataset, since more polymorphic SNPs are de-
tected when the group of genotyped individuals is larger
[30-32]. Reliabilities (i.e. R2 values) of imputation were
low (average reliabilities estimated by Beagle were equal
to 0.67 for variants with on average a moderately low
MAF, 0.51 for variants with on average a very low MAF,
and 0.32 for variants with on average an extremely low
MAF), which probably results from the relatively small
number of animals with sequence data in combination
with the low MAF of the variants. This decrease in reli-
abilities of imputation as average MAF of variants de-
creases confirms the assumption that LD between
variants with a low MAF and neighboring SNPs on the
commercial SNP chip decreases, i.e. that tagging the var-
iants with SNPs on the chip was increasingly more
difficult.

Simulation of phenotypes
Traits that were controlled by QTL with different prop-
erties were simulated by varying: (1) the average MAF of
the QTL that underlie the trait, by sampling QTL from
one of the three classes described above, (2) the number
of QTL that underlie the trait, and (3) the distribution of
allele substitution effects. In each simulation, 100 or
simulate QTL

Holstein-Friesian Jersey Total

63 119 55 363 65 920

10 557 2801 13 358

16.0 4.2 20.3

0.130 ± 0.169 0.115 ± 0.168 0.122 ± 0.146

61 302 49 473 67 097

17 624 5795 23 419

26.3 8.6 34.9

0.082 ± 0.146 0.072 ± 0.142 0.077 ± 0.127

1804 1245 2142

897 338 1235

41.9 15.8 57.7

0.017 ± 0.067 0.015 ± 0.066 0.016 ± 0.059

s missense mutations; 4annotated as premature stop codon mutations.
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1000 QTL were sampled assuming that they followed
one of the three QTL MAF patterns i.e. moderately low
average MAF, very low average MAF, or extremely low
average MAF. All variants that segregated in the entire
dataset, consisting of 3000 Holstein-Friesian and 3000
Jersey individuals, were considered as potential QTL,
which resulted in 65 920 potential QTL with a moder-
ately low average MAF, 67 097 with a very low average
MAF, and 2142 with an extremely low average MAF. It
should be noted that the percentage of breed-specific
variants increased as the MAF of the variants decreased
(Table 1).
Allele substitution effects were sampled using two dif-

ferent models: (1) a pseudo-infinitesimal model, where
small allele substitution effects were randomly assigned
to QTL independently of allele frequency (RANDOM
model), and (2) a ‘rare allele, large effect’ model, where
larger allele substitution effects were assigned to QTL
with a lower MAF such that each QTL explained an
equal amount of the total genetic variance (VAR model).
Under the RANDOM model, allele substitution effects
were randomly sampled from a gamma distribution with
a shape parameter of 0.4 and a scale parameter of 1.66,
following Meuwissen et al. [1]. Under the VAR second
model, the variance explained by each QTL was kept
constant across all QTL by computing allele substitution

effects as a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var QTLð Þ
2p 1−pð Þ

q
; where a is the allele substitution

effect assuming a purely additive model, Var(QTL) is the
variance of the QTL which is constant across the QTL
and was set to 1, and p is the allele frequency of the QTL
across all 6000 individuals (3000 Holstein-Friesian and
3000 Jersey cows). Under the two models, both alleles at a
given QTL had an equal chance to have a positive or a
negative effect on the simulated trait and the effect was
the same in both breeds. The simulated allele substitution
effects were multiplied by the genotype codes (0, 1, or 2)
to calculate a true breeding value (TBV) for each individ-
ual. Over all individuals and across the breeds, TBV were
rescaled to a mean of 0 and a variance of 1.
Allele frequencies for the loci selected as QTL differed

between the two breeds [See Additional file 3 Figure
S3]). These differences in allele frequencies resulted in
differences in average TBV between breeds. To calculate
the genetic variance as the variance across TBV, breed
effects were first subtracted from all TBV to avoid breed
effects influencing the simulated heritability. Thereafter,
the environmental effect per individual was sampled
from a normal distribution with a mean of 0 and vari-

ance 1
h2
−1

� �
*(variance of TBV corrected for breed ef-

fect). For each individual, the phenotype was calculated
as the sum of its TBV, including its breed effect and the
randomly sampled environmental effect.
In this study, a rather simple situation was simulated
to be able to investigate the effect of QTL properties on
the accuracy of both single- and multi-breed genomic
prediction. Heritabilities and allele substitution effects
were assumed to be the same across breeds, such that
phenotypic differences between breeds were only due to
differences in QTL allele frequencies. Phenotypes were
simulated using a heritability of 0.8, which is similar to
the heritability of daughter yield deviation of a bull for
milk yield if the bull has approximately 100 daughters.
We chose this rather high heritability value to achieve
high accuracies of genomic prediction, which resulted in
more pronounced differences in accuracies between the
different scenarios for the small reference population
size used in the simulations. According to the formula of
Daetwyler et al. [2,33], a trait with a heritability of 0.8 is
expected to yield the same accuracy as a trait with a her-
itability of 0.25 but using a reference population that in-
cludes 3.2 times more animals.
To decide on the number of replicates, the variance of

the squared accuracy (r2) was calculated from the sam-
pling variance of a correlation coefficient as [34]:

Var r2
� � ¼ 1−r2ð Þ2

N−1
;

where N is the number of selection candidates. There-
after, the required number of replicates (n) was calcu-
lated as [35]:

n >
1:962 � Var r2ð Þ� �

0:022
;

where 1.96 refers to the z-value on the standard normal
distribution relating to a confidence interval of 95%, and
0.02 is the maximum allowable difference between the
estimated and true mean. This resulted in a maximum
required number of replicates of 9.62 with an actual ac-
curacy of 0, and a minimum required number of repli-
cates of 0.004 with an actual accuracy of −0.99 or 0.99.
Thus, 10 replicates are sufficient to cover the whole
spectrum of possible accuracies.

Investigating the accuracy of genomic prediction
For each replicate, the accuracy of genomic prediction
was empirically calculated for a fixed group of 1000
Holstein-Friesian and 1000 Jersey selection candidates
that were selected from the 3000 animals per breed that
were used in this study. Due to the presence of overlap-
ping generations and the use of cow data with small pro-
geny groups, selection candidates were randomly sampled
from the full dataset. The other 2000 Holstein-Friesian
and 2000 Jersey cows were used as reference animals in
seven reference populations (Table 2), with different num-
bers of Holstein-Friesian and Jersey individuals that



Table 2 Overview of the different reference populations

Reference population

Scenarios Number of Holstein-Friesian Number of Jersey

1 2000 2000

2 2000 500

3 2000 100

4 2000 0

5 500 2000

6 100 2000

7 0 2000

Wientjes et al. Genetics Selection Evolution  (2015) 47:42 Page 5 of 16
ranged from a single-breed reference population to a
multi-breed reference population with equal numbers of
animals of both breeds. Each of the smaller reference pop-
ulations was a random subset from the larger reference
populations.
Since LD patterns between QTL and SNPs differed

across breeds and some QTL segregated only in one of
the breeds, SNP effects were expected to differ across
breeds. To account for these differences in SNP ef-
fects, a Genomic-Relatedness-Matrix Residual Max-
imum Likelihood model (GREML) including both a
random across-breed animal effect and a within-breed
animal effect was run in ASReml [36]. A GREML
model has the same features as the commonly known
GBLUP model (assuming a normal distribution of
SNP effects), but it estimates the variances and the
breeding values simultaneously using REML. This was
done using the following model, hereafter called the
base model:

y ¼ 1nμþ Zga þ Zgw þ e;

where y is a vector containing the simulated phenotypes,
1n is a vector of ones, μ is the overall mean across
breeds, ga and gw are vectors of the genomic breeding
values predicted either across breeds or within breeds

(ga ~ N 0;Gaσ2ga

� �
and gw ~ N 0;Gwσ2gw

� �
), Z is an inci-

dence matrix that allocates genomic breeding values
(both ga and gw) to the individuals and e is a vector con-
taining the residuals ~ N 0; Iσ2e

� �
. Note that only one σ2ga

and one σ2gw were estimated, which reflect the variances

in the base population of the genomic relationship
matrices (Ga and Gw), which was set to be the popula-
tion immediately before Holstein-Friesian and Jersey
breeds diverged by using the method of Erbe et al. [4].
As a first step to calculate Ga and Gw, the G matrix was
calculated as [4]:
G ¼ WW0

2
Xn
j¼1

pj 1−pj
� � ;

where n is the number of loci, W is a matrix of stan-
dardized genotypes for individual i at locus j calculated
as wij = gij − 2pj, where gij codes the genotype as 0, 1 and
2, and pj is the allele frequency for the second allele (for
which the homozygote genotype is coded 2) calculated
as pj = αpj,HF + (1 − α)pj,Jer. In this last equation, pj,HF is
the allele frequency in the Holstein-Friesian population,
pj,Jer is the allele frequency in the Jersey population and

α is calculated as α ¼ FJer

FJerþFHF
, and represents the propor-

tion of Holstein-Friesian haplotypes in the ancestral
population. The inbreeding coefficient for the Jersey
population was calculated as:

FJer ¼ 1−

Xn
j¼1

2pj;Jer 1−pj;Jer
� �

Xn
j¼1

pj;HF 1−pj;Jer
� �

þ pj;Jer 1−pj;HF

� �h i :

The inbreeding coefficient for the Holstein-Friesian
population was calculated in the same way by substitut-
ing the two breeds accordingly. As described by Erbe
et al. [4], inbreeding in G can be adjusted for the in-
breeding that occurred relative to the base set at the
time of divergence of the two breeds as G* =G(1 − F) +
2F. In this equation, F is the inbreeding relative to an F1
base population calculated as F ¼ FJerFHF

FJerþFHF
. The relation-

ship matrix based on the pedigree, A, was rescaled to
the same base by rescaling the within-Holstein-Friesian
block as A* =A[1 − (FHF − fHF)] + 2(FHF − fHF), in which
fHF is the amount of inbreeding in the Holstein-Friesian
population since the base of the pedigree. The within-
Jersey block was rescaled in the same way and the
across-breed block was set to 0. Thereafter, the rescaled
G* matrix was regressed back to the rescaled A* matrix
following Yang et al. [21] and Goddard et al. [37] to cal-
culate Ga. The regression was done separately across and
within breed as well as per bin of pedigree relationship
(<0.10, 0.10-0.25, 0.25-0.50, > 0.5), because the sampling
error on elements of G* depends on the level of family
relationships. Across these bins of relationships, the dif-
ferent regression coefficients ranged from 0.994 to 0.999
when all 606 384 SNPs were used to calculate Ga. The
Gw matrix was formed from the Ga matrix by setting the
elements between individuals of different breeds to zero,
while the within-breed elements of Gw were equal to the
corresponding elements in Ga.
In this base model, genomic breeding values were pre-

dicted across breeds as well as within breeds. For each
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selection candidate, the genomic breeding values across
and within breed were summed to calculate the total gen-
omic breeding value. The accuracy of genomic prediction
was calculated per breed as the correlation between the
total genomic breeding values and the simulated true
breeding values of all selection candidates of that breed.
Analyses were performed using different numbers of

SNPs to set-up Ga and Gw, namely: (1) 606 384 SNPs,
(2) 60 000 SNPs, (3) 606 384 SNPs plus the genotypes of
all imputed variants representing QTL, and (4) 60 000
SNPs plus the genotypes of all imputed variants repre-
senting QTL. The 60 000 SNPs were randomly selected
from the 606 384 SNPs to study the accuracy that could
be achieved with a lower marker density. When geno-
types for the imputed variants representing QTL were
included in the dataset used to calculate Ga and Gw, ge-
notypes of all imputed variants in the three classes were
used i.e. 80 515 variants with a moderately low average
MAF, 97 296 with a very low average MAF and 4064
with an extremely low average MAF. In this way, the po-
tential accuracy of genomic prediction was studied when
the causal mutations, i.e. the QTL, were included in the
marker dataset.
The power of the base model to separate across- and

within-breed animal effects was investigated for one of
the scenarios, namely the RANDOM scenario with 1000
QTL and 2000 Holstein-Friesian and 2000 Jersey
animals in the reference population. Due to computa-
tional reasons, only one of the scenarios was
investigated. The base model that included a random
across-breed animal effect and a within-breed animal
effect, was run once for each specific replicate in this
scenario and the total genetic variance was calculated.
Thereafter, the model was run again by fixing the
within-breed variance to 1, 10, 20, 30, 40, 50, 60, 70, 80,
90, 99 % of the total genetic variance and assigning the
remaining part to the across-breed variance. To test for
significance, twice the difference in log-likelihood
between the model with fixed variance components and
the model with estimated variance components was
compared with the 5% significance threshold (2.71)
taken from a mixed Chi-square distribution with 0 and
1 degrees of freedom.
To investigate the advantage in terms of prediction ac-

curacy of using a GBLUP type of model with a random
across-breed animal effect and a within-breed animal ef-
fect over a model with only a random across-breed ani-
mal effect, the analyses were repeated using a model
where Zgw was removed. The effect of a fixed breed ef-
fect on accuracy of multi-breed genomic prediction was
also studied by running the base model including breed
as a fixed effect. Both alternative models were run for
the RANDOM and VAR scenarios using all reference
populations when 100 QTL controlled the trait.
Results
The results presented in this section are the averages
across the 10 replicates, with standard errors computed
across the replicates. In general, the standard errors
across replicates were small. To further investigate if 10
replicates were sufficient for this study, the impact of the
number of replicates was analyzed by comparing the av-
erages after 10 replicates with the averages after the first
five replicates. In general, the absolute difference in ac-
curacy was only ~0.01 between the averages after five
and 10 replicates for all scenarios using the base model
and QTL with a moderately low average MAF, very low
average MAF or extremely low average MAF. Standard
errors were, as expected, slightly higher with five repli-
cates. The low standard errors and the small differences
in averages after five and 10 replicates indicate that
using only 10 replicates did not affect the conclusions of
our study.

QTL properties
Average accuracies for the base model using all 606 384
SNPs for the different reference populations are in
Figure 1 when 100 QTL controlled the simulated trait,
both for the RANDOM (A) and VAR (B) scenarios. For
all reference populations, accuracies were greater for the
RANDOM scenario than for the VAR scenario, regard-
less of the average MAF of QTL. Moreover, accuracies
were slightly greater for Jersey selection candidates than
for Holstein-Friesian selection candidates when the
number of individuals in the reference population from
the evaluated breed was the same, which reflects the
smaller effective population size of this breed.
As the number of reference individuals of a breed de-

creased, the achieved prediction accuracies for the selec-
tion candidates from the same breed decreased as
expected for all scenarios. For the RANDOM scenario,
prediction accuracy decreased by ~0.51 for the Jersey
and ~0.01 for the Holstein-Friesian selection candidates
when the number of Jersey individuals changed from
2000 to 0 in the reference population, and it decreased
by ~0.01 for the Jersey and ~0.50 for the Holstein-
Friesian selection candidates when the number of
Holstein-Friesian individuals changed from 2000 to 0 in
the reference population. For the VAR scenario, the de-
crease in accuracy due to a decreasing number of ani-
mals from the breed itself was also large, although this
decrease was less pronounced due to smaller accuracies,
and the decrease in accuracy due a decreasing number
of animals from the other breed was negligible. Thus,
the effect of including another breed in the reference
population on prediction accuracy was small for both
scenarios.
In general, accuracies were greatest for QTL with a

moderately low average MAF and smallest for QTL with



Figure 1 Accuracies of genomic prediction for traits that are controlled by QTL with different properties when 100 QTL underlie the trait. Average
accuracies of genomic prediction (± standard errors) for Holstein-Friesian (HF, solid fill) and Jersey (J, diagonal fill) animals using a model that included
a random across-breed animal effect and a within-breed animal effect, 606 384 SNPs, seven different reference populations and using simulated allele
substitution effects (A) randomly sampled from a gamma distribution or (B) with each QTL explaining an equal proportion of the genetic variance,
when 100 QTL underlying the trait were sampled from variants with on average a moderately low allele frequency (black), very low minor allele
frequency (dark grey) or extremely low minor allele frequency (light grey).

Table 3 Average estimated heritabilities of QTL with different properties

Sc. Nb
HF1

Nb
J2

RANDOM VAR

Moderately
low MAF3

Very low
MAF3

Extremely
low MAF3

Moderately
low MAF3

Very low
MAF3

Extremely
low MAF3

1 2000 2000 0.78 (0.003) 0.77 (0.002) 0.72 (0.011) 0.60 (0.001) 0.44 (0.002) 0.21 (0.002)

2 2000 500 0.76 (0.004) 0.75 (0.006) 0.70 (0.023) 0.54 (0.002) 0.38 (0.004) 0.18 (0.001)

3 2000 100 0.75 (0.005) 0.75 (0.007) 0.70 (0.027) 0.54 (0.002) 0.36 (0.004) 0.18 (0.002)

4 2000 0 0.75 (0.005) 0.75 (0.007) 0.70 (0.029) 0.54 (0.002) 0.37 (0.004) 0.18 (0.002)

5 500 2000 0.79 (0.004) 0.78 (0.002) 0.70 (0.008) 0.64 (0.001) 0.47 (0.002) 0.22 (0.006)

6 100 2000 0.78 (0.007) 0.76 (0.005) 0.62 (0.017) 0.62 (0.001) 0.44 (0.002) 0.19 (0.004)

7 0 2000 0.78 (0.008) 0.76 (0.006) 0.58 (0.025) 0.61 (0.002) 0.42 (0.002) 0.17 (0.004)

Average heritabilities (standard errors across replicates) estimated with a model including a random across-breed animal effect and a within-breed animal effect and
using 606 384 SNPs to calculate the genomic relationship matrix using different reference populations, different average minor allele frequencies (MAF) of the 100 QTL
that underlie the trait and using simulated allele substitution effects randomly sampled from a gamma distribution (RANDOM) or with each QTL explaining an equal
proportion of the genetic variance (VAR).
Sc. = scenarios; 1Nb HF = number of Holstein-Friesian animals; 2Nb J = number of Jersey animals; 3MAF =minor allele frequency.
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an extremely low average MAF. The differences in ac-
curacies between classes of QTL with different average
MAF were more pronounced for the VAR scenario than
for the RANDOM scenario, mainly as a result of a
smaller accuracy for QTL with a very low average MAF
and a much smaller accuracy for QTL with an extremely
low average MAF. These results are consistent with the
estimated heritabilities for each scenario (Table 3); esti-
mated heritabilities decreased when the average MAF of
QTL decreased and the differences were more pro-
nounced for the VAR scenario than for the RANDOM
scenario. For all scenarios, the estimated heritability was
below the simulated heritability, but for the RANDOM
scenario, the differences were small. This indicates that
it was difficult for the GBLUP model to capture all the
genetic variance when the QTL that underlie the simu-
lated trait had on average a low MAF, especially when
rare alleles had a large effect.
Figure 2 Accuracies of genomic prediction for traits that are controlled by Q
accuracies of genomic prediction (± standard errors) for Holstein-Friesian (HF,
a random across-breed animal effect and a within-breed animal effect, 606 38
substitution effects (A) randomly sampled from a gamma distribution or (B) w
when 1000 QTL underlying the trait were sampled from variants with on aver
frequency (dark grey) or extremely low minor allele frequency (light grey).
For the RANDOM scenario, the number of QTL
underlying a trait had a limited effect on prediction ac-
curacies (Figures 1 and 2); accuracies were slightly
greater for QTL with a very low average MAF (~0.03) or
extremely low average MAF (~0.07) when 1000 QTL in-
stead of 100 controlled the trait. This reduced the effect
of the average MAF of QTL on accuracy with 1000 QTL
compared to 100 QTL. For the VAR scenario, the effect
of the number of QTL on accuracy was very small for all
situations (Figures 1 and 2). Estimated heritabilities with
1000 QTL underlying the trait were similar to those with
100 QTL underlying the trait, both for the RANDOM
and VAR scenarios [See Additional File 4 Table S1].

Marker densities and mutations
With 100 QTL underlying the trait, average accuracies
achieved with the base model that used genomic rela-
tionship matrices based on different marker densities,
TL with different properties when 1000 QTL underlie the trait. Average
solid fill) and Jersey (J, diagonal fill) animals using a model that included
4 SNPs, seven different reference populations and using simulated allele
ith each QTL explaining an equal proportion of the genetic variance,
age a moderately low allele frequency (black), very low minor allele
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with or without the simulated QTL, are in Figure 3 for
the RANDOM scenario (A) and VAR scenario (B). For
both scenarios, a decrease in the number of SNPs used
to calculate the genomic relationship matrices from 606
384 to 60 000 resulted in similar accuracies of genomic
prediction, although values were slightly, but consist-
ently, lower (~0.007) with 60 000 SNPs than with 606
384 SNPs. Estimated heritabilities using 60 000 or 606
384 SNPs were also similar (Table 4).
Adding the genotypes of the simulated QTL to the

SNPs used to calculate the genomic relationship matri-
ces increased prediction accuracy (Figure 3), and the
percentage of increase was higher when the average
MAF of QTL was lower [See Additional file 5 Figure S4
and Additional file 6 Figure S5]. This increase in accur-
acy was greater when 60 000 SNPs were used (increase
in accuracy of ~0.08 and ~0.06 for the RANDOM and
Figure 3 Accuracies of genomic prediction using different marker densities t
genomic prediction (± standard errors) for Holstein-Friesian (HF, solid fill) and
across-breed animal effect and a within-breed animal effect, seven differe
effects (A) randomly sampled from a gamma distribution or (B) with eac
100 QTL underlying the trait were sampled from variants with on average a m
were calculated using 606 384 SNPs (black), 60 000 SNPs (dark grey), 606 384
(light grey).
VAR scenarios, respectively) than when 606 384 SNPs
were used (increase in accuracy of ~0.02 for both sce-
narios). Thus, prediction accuracies were greatest when
60 000 SNPs plus the genotypes of the simulated QTL
were used to calculate the genomic relationship matri-
ces. As expected, the same pattern was observed with
estimated heritabilities (Table 4). This indicates that in-
cluding the simulated QTL in the marker set to calculate
genomic relationship matrices improved the ability of
the model to capture all the genetic variance present in
the reference population, probably because the QTL can
capture the effects without depending on LD between
marker and QTL.

Different models
The base model of this study contained a random
across-breed animal effect and a within-breed animal
o calculate the genomic relationship matrix. Average accuracies of
Jersey (J, diagonal fill) animals using a model that included a random
nt reference populations and using simulated allele substitution
h QTL explaining an equal proportion of the genetic variance, when
oderately low minor allele frequency. The genomic relationship matrices
SNPs plus all sampled QTL (grey), or 60 000 SNPs plus all sampled QTL



Table 4 Average estimated heritabilities using different marker densities to calculate the genomic relationship matrix

Sc. Nb HF1 Nb J2 RANDOM VAR

600 k 60 k 600 k + QTL 60 k + QTL 600 k 60 k 600 k + QTL 60 k + QTL

1 2000 2000 0.78 (0.003) 0.77 (0.003) 0.80 (0.002) 0.84 (0.001) 0.59 (0.001) 0.58 (0.001) 0.61 (0.001) 0.64 (0.001)

2 2000 500 0.76 (0.004) 0.74 (0.004) 0.78 (0.003) 0.82 (0.003) 0.54 (0.003) 0.53 (0.003) 0.57 (0.003) 0.59 (0.003)

3 2000 100 0.75 (0.005) 0.73 (0.005) 0.77 (0.004) 0.80 (0.005) 0.54 (0.004) 0.53 (0.004) 0.57 (0.004) 0.59 (0.004)

4 2000 0 0.75 (0.005) 0.73 (0.005) 0.77 (0.004) 0.81 (0.005) 0.55 (0.004) 0.54 (0.004) 0.58 (0.004) 0.60 (0.004)

5 500 2000 0.79 (0.004) 0.78 (0.005) 0.80 (0.003) 0.83 (0.002) 0.61 (0.006) 0.60 (0.005) 0.63 (0.005) 0.66 (0.005)

6 100 2000 0.78 (0.007) 0.77 (0.007) 0.80 (0.006) 0.82 (0.005) 0.58 (0.006) 0.58 (0.006) 0.60 (0.006) 0.63 (0.005)

7 0 2000 0.78 (0.008) 0.77 (0.008) 0.79 (0.007) 0.82 (0.006) 0.56 (0.006) 0.55 (0.006) 0.57 (0.005) 0.60 (0.005)

Average heritabilities (standard errors across replicates) estimated with a model including a random across-breed animal effect and a within-breed animal effect using
different reference populations, 100 QTL underlying the trait with on average a moderately low minor allele frequency and using simulated allele substitution effects
randomly sampled from a gamma distribution (RANDOM) or with each QTL explaining an equal proportion of the genetic variance (VAR). The genomic relationship
matrix was calculated using 606 384 SNPs (600 k), 60 000 SNPs (60 k), 606 384 SNPs plus all sampled QTL (600 k + QTL), or 60 000 SNPs plus all sampled
QTL (60 k + QTL).
Sc. = scenarios; 1Nb HF = number of Holstein Friesian animals; 2Nb J = number of Jersey animals.
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effect to account for differences in SNP effects across
breeds. For the multi-breed reference populations, the
proportion of variance explained by the within-breed
animal component was equal to ~27% and ~52% for the
RANDOM and VAR scenarios, respectively, when QTL
had a moderately low average MAF, ~33% and ~53%
when QTL had a very low average MAF, and ~40% and
~63% when QTL had an extremely low average MAF.
The power to separate across-breed animal and

within-breed animal effects was investigated in Figure 4.
This figure shows that for the three classes of QTL with
different average MAF and for most of the replicates,
the model that estimated across- and within-breed ani-
mal variances was not significantly better than a model
without a random within-breed animal effect (P < 0.05).
This is because the log-likelihood is rather flat. More-
over, prediction accuracies and heritabilities estimated
with the base model that included a random across-
breed animal effect and a within-breed animal effect
were very similar to those estimated with a model with-
out a random within-breed animal effect for all scenarios
(results not shown). These results indicate that the
power to separate across- and within-breed animal ef-
fects was limited in our simulated data. Similar predic-
tion accuracies were achieved with a model that
included a fixed breed effect (results not shown). Thus,
for all scenarios for which a random within-breed animal
effect and/or fixed breed effect is included in the model,
accuracies of genomic prediction were not affected, and
therefore, they are not shown.

Discussion
Accuracy of multi-breed genomic prediction
For an accurate prediction of genomic breeding values, a
large group of animals with both genotypes and pheno-
types is required, e.g. [1-3]. Therefore, an attractive ap-
proach is to enlarge small reference populations of a
particular breed by using information from other breeds.
This might be especially interesting for traits that are
difficult to measure, such as feed efficiency and dry mat-
ter intake in dairy cattle [38,39], and for numerically
small breeds. In this study, the effect of adding another
breed to the reference population on prediction accuracy
was investigated in different scenarios using Holstein-
Friesian and Jersey animals. Accuracy of genomic predic-
tion was not significantly increased by adding 2000
individuals of the other breed to a reference population of
animals from the same breed as the selection candidates
regardless of marker density. The accuracy of across-
breed genomic prediction, i.e. using a reference population
consisting only of individuals from the other breed, ranged
from 0.01 to 0.19. The positive accuracies of across-breed
genomic prediction indicated that useful information was
present in the other breed, although adding animals from
the other breed to the reference population did not in-
crease prediction accuracy. This suggests that the number
of reference individuals from the other breed compared to
the number of reference individuals from the breed of the
selection candidates was relatively too small to see an in-
crease in accuracy, as suggested by Hozé et al. [40]. The
benefit of using a multi-breed reference population might
also depend on the model used to analyze the data, Bayes-
ian models, for example, might gain more from multiple
breeds [41].

Effect of QTL properties on the accuracy of genomic
prediction
The first objective of this study was to investigate the ef-
fect of properties of QTL that underlie the trait on the
accuracy of multi-breed genomic prediction using
Holstein-Friesian and Jersey animals. Phenotypes of
traits that are controlled by QTL with different proper-
ties were simulated by sampling 100 or 1000 QTL from
three different classes of variants that had an average



Figure 4 (See legend on next page.)
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Figure 4 Log likelihood comparison of models with fixed or estimated random across-breed and within-breed animal effects. Twice the difference in
log-likelihood for each of the 10 replicates and 5% significance threshold (black dotted line) using models with fixed variance components for
the random across-breed animal effect and a within-breed animal effect compared to a model that estimated both variance components. The
genomic relationship matrix was calculated based on 606 384 SNPs, the reference population consisted of 2000 Holstein Friesian and 2000
Jersey animals, allele substitution effects were sampled from a gamma distribution, when 1000 QTL underlying the trait were sampled from
variants with on average a (A) moderately low allele frequency, (B) very low minor allele frequency or (C) extremely low minor
allele frequency.
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MAF ranging from moderately low to extremely low,
and by sampling allele substitution effects either based
on a model where effect size was independent of allele
frequency (RANDOM) or based on a ‘rare allele, large
effect’ model (VAR). The three different classes of vari-
ants were imputed using sequenced animal genomes,
such that the QTL displayed characteristics that were
present on the actual bovine genome. Our results
showed that the accuracy of both single-breed and
multi-breed genomic prediction was influenced by the
properties of the QTL that control the trait. A lower
QTL MAF decreased prediction accuracy and this effect
was more pronounced when QTL with the lowest MAF
had the largest effect, which is consistent with the re-
sults from other studies that showed that the prediction
model could better capture the genetic variance and pro-
vided a greater accuracy of genomic prediction when a
small group of QTL explained a large part of the genetic
variance [42,43].
A decrease in QTL MAF was expected to decrease ac-

curacy of multi-breed genomic prediction, since the per-
centage of breed-specific variants increased when the
MAF of the variants decreased, thereby reducing the po-
tential benefit of adding another breed. Moreover, LD
between SNPs and QTL decreases as the allele frequency
of QTL becomes more extreme, due to ascertainment
bias of the SNPs on the chip [22]. The existence of as-
certainment bias was confirmed by the fact that imput-
ation reliabilities decreased when QTL MAF decreased
and that the prediction accuracies increased most when
QTL had the lowest MAF and QTL genotypes were
added to the markers. Moreover, the low LD between
SNPs and QTL is reflected in the increasing underesti-
mation of the heritability as the average QTL MAF de-
creased. This is in agreement with other studies, that
showed that simulating QTL with a low MAF resulted
in underestimated heritability estimates [21,44] and
lower accuracy of genomic prediction [44,45]. QTL for
many complex traits have a low MAF [19-21], which in-
dicates that the probability of underestimating the herit-
ability for those traits is high. Heritability may also be
underestimated because only a subset of the animals
from a population is used in the analyses. When QTL
MAF are low and the size of the reference population is
small, the probability that all these QTL are segregating
in the reference population is reduced. Therefore, the in-
crease in accuracy of genomic prediction achieved by
enlarging the reference population, as shown by e.g.
[1-3], might not only result from a more accurate pre-
diction of SNP effects, but also from capturing a larger
proportion of the alleles that segregate in the complete
population.
Many previous simulation studies have simulated QTL

based on SNP characteristics [6,10,14]. However, the
SNPs that are commonly used on chips are selected to
have a reasonably high MAF and to segregate in multiple
breeds. In our data, the average MAF of the SNPs across
breeds was 0.27, which is much higher than the average
MAF of the other variants (Table 1). As shown in Figure 5,
prediction accuracies increase as the average QTL MAF
increases; therefore, it is clear that using the pattern of
SNP MAF to simulate QTL will result in a substantially
larger expected accuracy of both across-breed and multi-
breed genomic prediction. This can explain why the bene-
fits of using information from another breed are much
larger in other simulation studies compared to our simula-
tion study [6,10,14] and compared to empirical studies,
e.g. [4,12,15].
It should be noted that there are two caveats regarding

our results, but we consider that they do not affect the
overall conclusions greatly. First, the effect of low MAF
on accuracy and heritability may be somewhat exagger-
ated by the imperfect imputation of causal variants. This
means that the QTL are not as well tracked by the SNPs
as they should be. Second, the formula used to calculate
the G matrix might be more appropriate for the scenario
with allele substitution effects that are sampled inde-
pendently of allele frequencies than for the scenario
using the ‘rare allele, large effect’ model, which might be
better analyzed by the G matrix described by Yang et al.
[21]. However, for a fair comparison of the scenarios, we
decided to use the same G matrix for both scenarios.

Marker densities and mutations
In this study, the data was analyzed with a GBLUP type
of model using genomic relationship matrices based on
606 384 or 60 000 SNPs. Reducing the number of SNPs
from 606 384 to 60 000 resulted in similar accuracies of
genomic prediction. This is in agreement with empirical
studies using dairy cattle data that showed that increasing



Figure 5 Accuracy of across- and multi-breed genomic prediction versus average minor allele frequency of QTL. The average accuracy of across- and
multi-breed genomic prediction for (A) Holstein-Friesian and (B) Jersey selection candidates versus the average minor allele frequency of the
100 simulated QTL. Black points represent the scenarios with allele substitution effects randomly sampled from a gamma distribution and grey
points represent the scenario with each QTL explaining an equal proportion of the genetic variance. The circles represent the accuracy for the
multi-breed reference population with 2000 Holstein-Friesian and 2000 Jersey animals, the triangles represent the accuracy of across-breed
genomic prediction with a reference population of 2000 animals from the other breed.
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the number of SNPs from 50 k to high-density (777 k)
had almost no effect on the accuracy of multi-breed gen-
omic prediction, e.g. [4,17], in contrast to earlier expecta-
tions [11].
For all scenarios, accuracy of genomic prediction was

slightly greater when the simulated QTL were added to
the subset of markers used to calculate the genomic re-
lationship matrices. This indicates that the model could
better capture QTL effects with the markers, which led
to higher estimated heritabilities and accuracies, when
the simulated QTL were used as markers, which was
also shown in other studies [46,47]. The increase in pre-
diction accuracy due to adding the simulated QTL was
larger when 60 000 SNPs were used than when 606 384
SNPs were used. This is likely an artifact of the GBLUP
model for which all markers are assumed to explain the
same amount of variance. This means that as the num-
ber of markers increases, each marker effect is a priori
smaller. Thus, with a larger number of markers, the ef-
fects of true markers in the dataset are diluted to a
greater degree. By using sequence data in the analyses,
the causal variants or QTL are supposed to be included
in the data, as well as a large number of other variants.
Therefore, on the one hand, the expected benefit of se-
quence data achieved with a GBLUP model is small, and
smaller than that with Bayesian models, which allow
some marker effects to be zero, as demonstrated by
Meuwissen and Goddard [46]. On the other hand, our
result does demonstrate that if the marker set can be
enriched with real causative mutations from the se-
quence data, as we did here by including the QTL in the
SNP dataset, accuracies can be increased. The larger in-
crease in prediction accuracy achieved with a smaller
number of other variants in the dataset highlights the
importance to filter sequence variants that are included
in genomic prediction, for example by using biological
information [48].
Both in the single-breed and multi-breed scenarios

using Holstein-Friesian and Jersey animals, the percent-
age of increase in accuracies due to adding the QTL ge-
notypes to the markers was higher when the average
MAF of QTL was lower. This can be explained by the
fact that the QTL with a lower MAF were in lower LD
with the SNPs on the chip, particularly across breeds.
Besides differences in LD across breeds, the accuracy of
multi-breed genomic prediction might also be influenced
by other factors, such as the absence of family relation-
ships or differences in allele frequencies, e.g. [2,13,49].
As explained by Daetwyler et al. [2], a QTL with a large
effect and a low allele frequency in one breed can be im-
precisely estimated within that breed. Since that QTL
only explains a small proportion of the genetic variance
in that breed, the negative effect on the accuracy of
single-breed genomic prediction might be small. If the
estimated effect was used to predict breeding values for
another breed, the effect on accuracy would be more
detrimental when the allele frequency of that QTL is
higher in that breed. This indicates that it is important
that the QTL and SNPs that segregate in the selection
candidate population are also segregating with a reason-
able allele frequency in the reference population to be
able to estimate the effects accurately. When the rela-
tionships between selection candidates and reference in-
dividuals are larger, the probability that SNPs and QTL
segregating in the selection candidate population are
segregating in the reference population becomes higher
as well. Overall, these results indicate that the accuracy
of across-breed genomic prediction is small because of
differences in LD, e.g. [7,11], absence of family relation-
ships, e.g. [13,49], and differences in allele frequency
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across breeds, e.g. [2]; in addition, all these factors are
probably entangled with each other.

Effect of random within-breed animal effect on the
accuracy of genomic prediction
The second objective of this study was to investigate the
effect of including a random across-breed animal effect
and a within-breed animal effect in a GBLUP model on
the accuracy of multi-breed genomic prediction. Our re-
sults showed that, in contrast to our expectations, add-
ing a random within-breed animal effect did not
influence prediction accuracy. In particular, if the QTL
were breed-specific and if the SNPs segregated in both
breeds, which was to a high extent the case when the
average MAF of QTL was extremely low, an increase in
accuracy due to the inclusion of a random within-breed
animal effect was expected because of differences in ap-
parent SNP effects across breeds. The power of this ap-
proach to separate across- and within-breed animal
effects was limited when allele substitution effects were
randomly assigned to QTL, which may explain why add-
ing a within-breed animal effect was not beneficial. For
the scenarios for which each QTL explained the same
variance, the power to separate both effects might differ,
but adding a within-breed animal effect was still not
beneficial in terms of accuracy. Using a larger reference
population with more animals of each breed may enable
to properly separate across-breed animal and within-
breed animal effects in a better way, but enlarging
reference populations for numerically small breeds is
challenging. Thus, to give a conclusive answer about
this objective, more data is needed to investigate if it is
possible to separate random across-breed and within-
breed animal effects, and if this is case, then it is
necessary to investigate whether it is beneficial for
multi-breed genomic prediction.

Conclusions
The results of this study show that the accuracy of both
single- and multi-breed genomic prediction depends on
the properties of the QTL that control the trait. A de-
crease in average QTL MAF decreased accuracy of gen-
omic prediction, especially when rare alleles had a large
effect. Therefore, we demonstrated that the properties of
the QTL that control traits (i.e. allele frequency spectra
of QTL, distribution of QTL effects) are key parameters
that determine the accuracy of both single- and multi-
breed genomic predictions. Based on these results, the
properties of QTL that underlie a trait can explain the
limited benefit or the absence of benefit of combining
information from multiple breeds that is described in
empirical studies as opposed to the substantial benefit
that is achieved in simulation studies. Accuracy of
single-, but especially multi-breed genomic prediction,
could be increased by using sequence data, since the
causative mutations are probably included in the dataset.
The results show that the increase in accuracy was con-
sistently, although not significantly, larger when the
number of other variants included in the dataset was
smaller. Finally, adding a random within-breed animal
effect to a GBLUP type of model had no effect on the
accuracy of genomic prediction, most likely because the
power to separate random across-breed and within-
breed animal effects was low.
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Additional file 1: Figure S1. Allele frequency distribution of imputed
and genotyped variants in Holstein Friesian animals. Description: Figure
S1 shows the distribution of allele frequencies of variants with on
average a moderately low minor allele frequency (MAF), very low MAF or
extremely low MAF in real data and imputed data for Holstein-Friesian
animals.

Additional file 2: Figure S2. Allele frequency distribution of imputed
and genotyped variants in Jersey animals. Description: Figure S2 shows
the distribution of allele frequencies of variants with on average a
moderately low minor allele frequency (MAF), very low MAF or extremely
low MAF in real data and imputed data for Jersey animals.

Additional file 3: Figure S3. Allele frequencies of Holstein Friesian
versus Jersey animals. Description: Figure S3 shows patterns of allele
frequencies for Holstein-Friesian versus Jersey animals. (A) Variants with
on average a moderately low minor allele frequency; (B) Variants with on
average a very low minor allele frequency; (C) Variants with on average
an extremely low minor allele frequency.

Additional file 4: Table S1. Average estimated heritabilities for QTL
with different properties when 1000 QTL underlie the trait. Description:
Table S1 contains average heritabilities (standard errors across replicates)
estimated with a model including a random across-breed animal effect
and a within-breed animal effect and using 606 384 SNPs to calculate the
genomic relationship matrix using different reference populations, differ-
ent average minor allele frequencies (MAF) of the 1000 QTL that underlie
the trait and using simulated allele substitution effects randomly sampled
from a gamma distribution (RANDOM) or with each QTL explaining an
equal proportion of the genetic variance (VAR).

Additional file 5: Figure S4. Accuracies of genomic prediction using
different marker densities to calculate the genomic relationship matrix
and QTL with very low minor allele frequency. Description: Figure S4
shows average accuracies of genomic prediction (± standard errors) for
Holstein-Friesian (HF, solid fill) and Jersey (J, diagonal fill) animals using a
model that included a random across-breed animal effect and a within-
breed animal effect, seven different reference populations and using
simulated allele substitution effects (A) randomly sampled from a gamma
distribution or (B) with each QTL explaining an equal proportion of the
genetic variance, when 100 QTL underlying the trait were sampled from
variants with on average a very low minor allele frequency. The genomic
relationship matrices were calculated using 606 384 SNPs (black), 60 000
SNPs (dark grey), 606 384 SNPs plus all sampled QTL (grey), or 60 000
SNPs plus all sampled QTL (light grey).

Additional file 6: Figure S5. Accuracies of genomic prediction using
different marker densities to calculate the genomic relationship matrix
and QTL with extremely low minor allele frequency. Description: Figure
S5 shows average accuracies of genomic prediction (± standard errors)
for Holstein-Friesian (HF, solid fill) and Jersey (J, diagonal fill) animals
using a model that included a random across-breed animal effect and a
within-breed animal effect, seven different reference populations and
using simulated allele substitution effects (A) randomly sampled from a
gamma distribution or (B) with each QTL explaining an equal proportion
of the genetic variance, when 100 QTL underlying the trait were sampled
from variants with on average an extremely low minor allele frequency.

http://www.gsejournal.org/content/supplementary/s12711-015-0124-6-s1.pdf
http://www.gsejournal.org/content/supplementary/s12711-015-0124-6-s2.pdf
http://www.gsejournal.org/content/supplementary/s12711-015-0124-6-s3.pdf
http://www.gsejournal.org/content/supplementary/s12711-015-0124-6-s4.pdf
http://www.gsejournal.org/content/supplementary/s12711-015-0124-6-s5.pdf
http://www.gsejournal.org/content/supplementary/s12711-015-0124-6-s6.pdf


Wientjes et al. Genetics Selection Evolution  (2015) 47:42 Page 15 of 16
The genomic relationship matrices were calculated using 606 384 SNPs
(black), 60 000 SNPs (dark grey), 606 384 SNPs plus all sampled QTL (grey),
or 60 000 SNPs plus all sampled QTL (light grey).
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