Abdelmadjid Boudaoud 
  
Diophantine approximation with improvement of the simultaneous control of the error and of the denominator

Keywords: 1991 Mathematics Subject Classi…cation. 11J13, 03H05, 26E35 Diophantine approximation, Farey series, Nonstandard Analysis

In this work we proof the following theorem which is, in addition to some other lemmas, our main result: theorem. Let X = f(x 1 , t 1 ) , (x 2 , t 2 ) , ..., (x n , t n )g be a …nite part of R R + , then there exist a …nite part R of R + such that for all " > 0 there exists r 2 R such that if 0 < " r then there exist rational

numbers

p i q i=1;2;:::;n such that: 8 < :

x i p i q "t i "q t i , i = 1; 2; :::; n.

(*)

It is clear that the condition "q t i for i = 1; 2; :::; n is equivalent to "q t = M in i=1;2;:::;n (t i ). Also, we have (*) for all " verifying 0 < " " 0 = min R.

The previous theorem is the classical equivalent of the following one which is formulated in the context of the nonstandard analysis ( [START_REF] Diener | Analyse Non Standard[END_REF], [START_REF] Lutz | Non Standard Analysis. A practical guide with applications[END_REF], [START_REF] Nelson | Internal set theory : A new approach to non standard analysis[END_REF], [START_REF] Van Den | Nonstandard Asymptotic Analysis[END_REF]). theorem. For every positive in…nitesimal real ", there exists an unlimited integer q depending only of ", such that 8 st x 2 R 9 p x 2 Z:

1 ( x = p x q + "
"q = 0 .

For this reason, to prove the nonstandard version of the main result and to get its classical version we place ourselves in the context of the nonstandard analysis.

Introduction, Notations and Rappel

We dispose in the domain of Diophantine approximation of many results (refer for example to [START_REF] Hardy | An introduction to the theory of numbers[END_REF], [START_REF] Schmidt | Diophantine approximation[END_REF]). In the following, we give as an example, the two most used theorems: Theorem (Dirichlet) 1.1. [START_REF] Schmidt | Diophantine approximation[END_REF]. Suppose that x 1 ; x 2 ; ::: ;x n are n real numbers and that T > 1 is an integer. Then there exist integers q,p 1 ,p 2 ,:::,p n with 8 < :

x i p i q 1 T q (i = 1; 2; :::; n)

1 q < T n . (1.1)
Theorem (Kronecker) 1.2. [START_REF] Schmidt | Diophantine approximation[END_REF]. For any reals 1 ; 2 ; ::: ; n and any t > 0, the system of inequalities 8 > > < > > :

jq 1 p 1 1 j < t jq 2 p 2 2 j < t ::::::::::::::::::

jq n p n n j < t (1.2)
is solvable in integers q, p 1 ; p 2 ; ::: ;p n if and only if 1 ; 2 ; ::: ; n are not rationally dependent. Note that 1 ; 2 ; ::: ; n are said rationally dependent if there exist integers r, r 1 ; r 2 ; ::: ;r n not all zero such that r 1 1 + r 2 2 + ::: + r n n = r.

2

When we take 1 = 2 = ::: = n = 0, this theorem is used to approximate the reals i by using rationals p i q to errors smaller than t q .

In general, in these results we observe that the simultaneous control between the error and the common denominator q should be clari…ed and spec-i…ed. This, because the approximation to a given error (which is generally small) requires a denominator that is generally too big. Conversely, the approximation with a small denominator might give an error that is not really small. This question has motivated us to give the following theorem which is, in addition to some other lemmas, our main result of this work.

Theorem 1.3. Let X = f(x 1 , t 1 ) , (x 2 , t 2 ) , ..., (x n , t n )g be a …nite part of R R + , then there exist a …nite part R of R + such that for all " > 0 there exists r 2 R such that if 0 < " r then there exist rational numbers p i q i=1;2;:::;n such that: 8 < :

x i p i q "t i "q t i , i = 1; 2; :::; n. (1.3) 
We note that in (1.3) the condition "q t i for i = 1; 2; :::; n is equivalent to "q t = M in i=1;2;:::;n (t i ). Also, under the assumption of theorem 1.3, for all " verifying 0 < " " 0 = min R we obtain (1.3). The theorem 1.3 is the classical equivalent of the following theorem (theorem 1.4.) formulated in the context of the nonstandard analysis. Theorem 1.4. For every positive in…nitesimal real ", there exists an integer Q depending only of ", such that 8 st x 2 R 9 P x 2 Z: 8 < :

x = P x Q + " "Q = 0 . (1.4)
In the following we make a comparison between our result (theorem 1.3) and the existing results such as Dirichlet's theorem and Kronecker's theorem.

Our main result is used to approximate at a reduced common denominator q since "q t (i.e. q t " ) and at a di¤erent errors since x i p i q "t i for i = 1; 2; :::; n. In addition, if we take t 1 = t 2 = ::: = t n = t > 0 and " 0 = M in R then for every 0 < " " 0 there exist integers q,p 1 ,p 2 ,:::,p n such that M ax i2f1;2;:::;ng

x i p i q "t and q t " (1.5) 
i.e., a denominator q t " enough for an error not exceeding "t. Look when we use, under the same hypotheses, the Dirichlet's theorem.

It may happen that when we take 1 T > "t, the common denominator q 1 is small enough so that the maximum error is strictly greater than "t i.e.

"t < M ax i2f1;2;:::;ng

x i p i q 1 T q 1 T .
In contrast, when we take T satisfying 1 T "t then we are sure that the maximum error is smaller than or equal to "t i.e. M ax i2f1;2;:::;ng

x i p i q 1 T q 1 T "t.
But in this case it may happen that the common denominator q, since that 1 q < T n , is very close to

T n 1 ("t) n ( q = T n 1 1 ("t) n 1; for instance). Consequently, to be sure of the realization of the approximation asked, it is necessary to choose 1 T "t and q can be too big in this case as we have seen. On his part the Kronecker's theorem is purely existential and don't say anything on the common denominator.

From the above we can see that the theorem 1.3 ensure the ability to control the size of q and of the maximum error; especially when " (resp. n) become small (resp. large). For its proof we place ourselves in the framework of the nonstandard analysis and we proceed as follows :

(1) We …rst show theorem 1.4 (In the sequel noted theorem 2.1.) by using some lemmas.

(2) We translate theorem 1.4 by using the Nelson's algorithm.

Notations

i) For a number x (integer or non) we have the following usages: 1) Abbreviation, st(x) indicates that x is standard; 8 st x signi…es 8x [st(x) =) ::].

2) x = +1 ( resp. x = 0) signi…es that x is a positive unlimited (resp. x an in…nitesimal). x > = 0 signi…es that x is an in…nitesimal real strictly positive.

3) $(resp. ) signi…es a limited real (resp. an in…nitesimal real) on which one doesn't say anything besides. 4) kxk is the di¤erence, taken positively, between x and the nearest integer. 5) E (x) (resp. fxg) is the integral part of x (resp. the fractional part of x; that is fxg = x E (x)). 6) Let " be an in…nitesimal real, one designates by " galaxie (x) the set fy : y = x + "$g and by " halo (x) the set fy : y = x + " g. 7) x 0 signi…es, for x limited, the standard part of x. ii) 8) If E is a given set, E (resp. jEj) designates the external set formed, only, by the standard elements of E (resp. the cardinality of E). 9) One notes by (x 1 ; x 2 ; :::; x n ) T the vector column

0 B B B @ x 1 x 2 . . . x n 1 C C C A . 1.2 Rappel 1.2.

Farey series([3])

The Farey series F N of order N is the ascending series of irreducible fractions between 0 and 1 whose denominators do not exceed N . Thus h k belongs to

F N if 0 h k N , (h; k) = 1
the numbers 0 and 1 are included in the forms 0 1 and

1 1 . If h k < h 0 k 0 < h 00
k 00 are three successive elements of F N (N > 1), then one has the following properties:

1 0 ) kh 0 hk 0 = 1. 2 0 ) h 0 k 0 = h + h 00 k + k 00 . 3 0 ) k + k 0 > N and h k < h + h 0 k + k 0 < h 0 k 0 . 4 0 ) If N > 1, two successive elements of F N don't have the same denominator. 5 0 ) Let h 1 k 1 , h 2 k 2 be two successive elements of F N (N 1) with h 1 k 1 < h 2 k 2
, and let the two following sequences: 8 > < > :

U 0 = h 2 k 2 , U 1 = h 2 + h 1 k 2 + k 1 , ... ,U i = h 2 + ih 1 k 2 + ik 1 , ... V 0 = h 1 k 1 , V 1 = h 1 + h 2 k 1 + k 2 , ..., V j = h 1 + jh 2 k 1 + jk 2 , ... . (1.6)
We prove easily that the sequence

(U i ) i2N (resp. (V j ) j2N
) is decreasing (resp. increasing); besides we have: 8 > < > :

U i U i+1 = 1 (k 2 + ik 1 ) (k 2 + (i + 1) k 1 ) , U i h 1 k 1 = 1 k 1 (k 2 + ik 1 ) V j+1 V j = 1 (k 1 + jk 2 ) (k 1 + (j + 1) k 2 ) , h 2 k 2 V j = 1 k 2 (k 1 + jk 2 )
.

(1.7)

Approximation to the in…nitesimal sense of reals

Theorem 1.5. [START_REF] Boudaoud | Modélisation de phénomènes discrets et approximations diophantiennes in…nitésimales[END_REF]. Let be a real number. Then for all positive in…nitesimal real " there exist a rational number p q and a limited real l such that:

( = p i q + "l "q = 0 . (1.8)
2 Simultaneous approximation to the in…nitesimal sense of standard reals

We prove in this section the following theorem whose translation by the algorithm of Nelson gives the theorem 1.3 .

Theorem 2.1. For every positive in…nitesimal real ", there exists an integer Q depending only of ", such that 8 st x 2 R 9 P x 2 Z: 8 < :

x = P x Q + " "Q = 0 . (2.1)
Let " be a positive in…nitesimal real. We need to the following lemmas Lemma 2.2. Let ( 1 ; 2 ; :::; N ) a system of real numbers with N 1 limited. Then for all positive in…nitesimal real there are rational numbers p i q i=1;2;:::;N and limited reals (l i ) i=1;2;:::;N such that for i = 1; 2; :::; N :

( i = p i q + l i q = 0 . (2.2)
Proof. Consider, for every n 2 N , the formula:

B (n) =
"8 ( 1 ; 2 ; :::; n ) 2 R n with n 1 and 8 > = 0 9 P i Q i=1;2;:::;n such that for every i 2 f1; 2; :::; ng : 8 < :

x i P i Q = $ Q = 0 " .
By theorem 1.5, we have B (1). Suppose, for 1 n a standard integer, B (n) and prove B (n + 1). Let 1 ; 2 ; :::; n ; n+1 2 R n+1 and let > = 0, then by B (n) there are rational numbers p i q i=1;2;:::;n such that

8 > > > > > > < > > > > > > : 1 = p 1 q + $ 2 = p 2 q + $ . . . = . . . n = p n q + $ (2.3)
where q = 0. Now, since q = 0, the application of theorem 1.5 implies

q n+1 = p n+1 q n+1 + ( q) $, ( q) q n+1 = 0. Hence n+1 = p n+1 qq n+1 + $, qq n+1 = 0. (2.4)
We deduct from (2.3) and (2.4) that:

> > > > > > > > > > > > < > > > > > > > > > > > > : 1 = p 1 q n+1 qq n+1 + $ = P 1 Q + $ 2 = p 2 q n+1 qq n+1 + $ = P 2 Q + $ . . . = . . . = . . . n = p n q n+1 qq n+1 + $ = P n Q + $ n+1 = p n+1 qq n+1 + $ = P n+1 Q + $
where, from (2.4), Q = qq n+1 = 0. Consequently B (n + 1). Therefore, by the external recurrence principle, we have

8 st n 1 B (n).
Lemma 2.3. Let E be a given set. For all integer ! = +1, there is a …nite subset F E containing all standard elements of E (i.e. E F ) and whose cardinal is strictly inferior to ! (jF j < !).

Proof. Let ! = +1. Let B (F; z) be the internal formula: "F E, jF j < !, z 2 F ". Let Z E be a standard …nite part. Then there exists a …nite part F E with jF j < ! such that every element z of Z belongs to F , i.e. we have B (F; z). Indeed it su¢ ces to take F = Z. Therefore, the principle of idealization (I) asserts the existence of a …nite part F E with jF j < ! such that any standard element of L belongs to F . Lemma 2.4. Let = +1 be a real number such that p " = 0. Let F M be the Farey sequence of order

M = E p " . If p 1 q 1 , p 2 q 2
are two elements of F M such that q 1 ' +1, q 2 ' +1 and p 1 q 1 , p 2 q 2 doesn't contain any standard rational number (in this case

p 1 q 1 = p 2 q 2
). Then there exist a …nite sequence of irreducible rational numbers l i m i i=1;2;:::;g such that:

p 1 q 1 = l 1 m 1 < l 2 m 2 < ::: < l g m g = p 2 q 2
where l i+1 m i+1 l i m i = " for i = 1; 2; :::; g 1. Besides for i = 1; 2; :::; g we have "m i = 0 and m i = +1.

Proof. Let us consider the case where p 2 q 2 p 1 q 1 is not of " form; otherwise the lemma is proved. Let t i i i=1;2;:::;r be the elements of F M such that

p 1 q 1 = t 1 1 < t 2 2 < ::: < t r r = p 2 q 2 .
Let i 0 2 f1; 2; :::; r 1g such that

t i 0 +1 i 0 +1 t i 0 i 0 is not of " form, because if
a such i 0 does not exist the lemma is proved. From the properties of F M ( 1.2.1), i 0 +1 and i 0 cannot be equal. Then there are two cases: A) i 0 +1 > i 0 : Let us take, in this case, g 0 = +1 an integer such that g 0 i 0 = 0 ( the existence of g 0 is assured by Robinson's lemma). Let X = E g 0 " i 0 and

H = t i 0 i 0 ; U p ; U p 1 ; :::; U 0 where p = E X i 0 +1
i 0 and U i = t i 0 +1 + i:t i 0 i 0 +1 + i: i 0 (i = 0; 1; :::; p 1; p). Now we prove that : p is an unlimited integer, the product of the denominator of every element of H by " is an in…nitesimal and the distance between two successive elements of H is of the " form.

Indeed, we have

X = E g 0 " i 0 = g 0 " i 0 X where X 2 [0; 1[. X i 0 +1 i 0 = g 0 " i 0 i 0 X i 0 i 0 +1 i 0 = g 0 " i 0 X " i 0 i 0 +1 " i 0 i 0 .
Since " i 0 X = 0, " i 0 i 0 +1 is a limited real number otherwise

t i 0 +1 i 0 +1 t i 0 i 0 = 1 i 0 i 0 +1
= " what contradicts the supposition. Then g 0 " i 0 X " i 0 i 0 +1 is a positive unlimited real. On the other hand " i 0 i 0 is limited; then

X i 0 +1 i 0
is a positive unlimited real, therefore p is also. The greatest

denominator in H is i 0 +1 + p i 0 where p = g 0 " i 0 i 0 X i 0 i 0 +1 i 0 with 2 [0; 1[. " i 0 +1 + p i 0 = " i 0 +1 + g 0 " i 0 i 0 X i 0 i 0 +1 i 0 i 0 = " i 0 +1 + g 0 i 0 " X " i 0 +1 " i 0 = 0 .
Hence the product of the denominator of every element of H by " is an in…nitesimal. It remains to prove that the distance between two elements of H is of the " form; Indeed: Let i 2 f0; 1; :::; p 1g, from (1:7) we have

U i U i+1 = 1 i 0 +1 + i: i 0 i 0 +1 + (i + 1) : i 0 .
By hypothesis we have i 0 +1 > i 0 , then of properties of Farey's series

(1.2.1)) 2 i 0 +1 > i 0 +1 + i 0 > M , then i 0 +1 > M 2 . Let d i = " i 0 +1 + i: i 0 i 0 +1 + (i + 1) : i 0 .
Seen that

i 0 +1 2 > M 2 2
, d i is unlimited, therefore U i U i+1 = " . To …nish the proof, we have of (1:7):

U p t i 0 i 0 = 1 i 0 +1 + p i 0 i 0 .
Let d p = " i 0 +1 + p: i 0 i 0 , after the replacement by the value of p, we obtain

d p = " i 0 +1 i 0 + g 0 " X i 0 " i 0 +1 i 0 " i 0 i 0 .
Since " i 0 = 0, " i 0 i 0 is limited, then d p is unlimited; hence

U p t i 0 i 0 = " .
Thus, we end what we perceived.

B) i 0 > i 0 +1 : Let us take, in this case, g 1 = +1 an integer such that g 1

i 0 +1
= 0 (the existence of g 1 is assured by Robinson's lemma). Let e

X = E g 1 " i 0 +1
and

e H = V 0 ; V 1 ; :::; V p 0 1 ; V p 0 ; t i 0 +1 i 0 +1
where p

0 = E e X i 0 i 0 +1 ! and V j = t i 0 + j:t i 0 +1 i 0 + j: i 0 +1
( j = 0; 1; :::; p

0 1; p 0 ).
Since the symmetry of this case with the case A) we prove, as in the case of H, that p 0 is an unlimited integer, the product of the denominator of every element of e H by " is an in…nitesimal and the distance between two successive elements of e H is of the " form. Thus the elements of H (or of e H ) form a subdivision of the inter-

val t i 0 i 0 ; t i 0 +1 i 0 +1
. For the other intervals t i i ; t i+1 i+1 i2f1;2;:::;r 1g fi 0 g which don't have a length of " form we do the same construction as we did

with t i 0 i 0 ; t i 0 +1 i 0 +1
.

By regrouping rational numbers which subdivide intervals

t i i ; t i+1 i+1 (i 2 
f1; 2; :::; r 1g) not having a length of the " form and the rationals which are borders of intervals having a length of the " form, we obtain the …nite sequence l i m i i=1;2;:::;g . The irreducibility of the elements of the sequence l i m i i=1;2;:::;g results from properties of Farey's series.

Lemma 2.5. Let 2 [0 , 1] be a real, if is not in the "-galaxie of a standard rational number then there exists two irreducible rational numbers

h 1 k 1 ; h 2 k 2 of the interval [0; 1] such that 2 h 1 k 1 ; h 2 k 2 ; k 1 = +1; k 2 = +1; "k 1 = "k 2 = 0 and h 2 k 2 h 1 k 1 = " .
Proof. Let us take, as in the lemma 2.4, a positive unlimited real number such that p " = 0 and let F M be the Farey sequence of order M = E p " .

Let p 1 q 1 , p 2 q 2 be two successive elements of F M such that 2 p 1 q 1 ; p 2 q 2 . Two cases are distinguished: A) Nor p 1 q 1 nor p 2 q 2 is a standard rational : In this case by applying the lemma 2.4, we obtain two irreducible rationals

l i 0 m i 0 and l i 0 +1 m i 0 +1 such that 2 l i 0 m i 0 , l i 0 +1 m i 0 +1 , m i 0 = +1, m i 0 +1 = +1, "m i 0 = "m i 0 +1 = 0, l i 0 +1 m i 0 +1 l i 0 m i 0 = " .
Hence the lemma is proved by taking

l i 0 m i 0 for h 1 k 1 and l i 0 +1 m i 0 +1 for h 2 k 2 . B) p 1 q 1 or p 2 q 2
is standard (cannot be both at the same time standard). Let us suppose that p 1 q 1 is standard (the other case, seen the symmetry, can be treated by the same way.). Then p 1 q 1 = "w where w = +1. Let us put

L = E 2= p 1 q 1 then "L = 0 and p 1 q 1 + 1 L < . Let l m be the reduced form of p 1 q 1 + 1 L
, then "m = 0 because m Lq 1 and q 1 is a standard. m > M because l m is not an element of F M . Therefore "m 2 is an unlimited because "m 2 > "M 2 and "M 2 is an unlimited. This means that m is of the E are two successive non standard elements of F m . Thus the case B) comes back itself to the case A), therefore the proposition is also proved for this case.

Remark. We easily see that this proof is also a proof for the theorem 1.5.

Let be a positive unlimited real such that ": ' 0, then Lemma 2.6. There exists a …nite set 8 < :

x i = P i Q + " "Q = 0
; i = 1; 2; :::; n.

(2.6)

Proof. Consider the formula:

A(n) " 8 fx 1 ; x 2 ; :::; x n g S 9 P i Q i=1;2;:::;n such that:

8 < :

x i = P i Q + " "Q = 0
; i = 1; 2; :::; n ".

According to the corollary 2.7, a real x of S is a standard rational or is outside of " galaxies of standard rationals. In addition, according to lemma 2.5, if x is not in the " galaxy of a rational standard, x is written in the form 8 < :

x = P Q + " "Q = 0
. Then in all cases x is written in the form 8 < :

x = P Q + " "Q = 0
. Consequently we have A (1).

Suppose A (n), for a standard integer n, and prove A (n + 1). Let (x 1 ; x 2 ; :::; x n ; x n+1 ) S. Since A is veri…ed for n we have

( x i = p i q
+ " ; i = 1; 2; :::; n "q = 0 .

(2.7)

If x n+1 = h 1 k 1
is standard, then because k 1 is standard and of (2:7) we have 8 > > > < > > > :

x i = p i k 1 qk 1 + " = P i Q + " ; i = 1; 2; :::; n x n+1 = h 1 q k 1 q + ":0 = P n+1 Q + " "Q = "qk 1 = 0 . (2.8)
Let us look at the case where x n+1 is not a rational standard. In this case the application of the theorem 1.5 to the real qx n+1 with the in…nitesimal "q implies:

(

qx n+1 = M N + ("q) a ("q) N = 0
where a is limited. If a = 0, then from this and (2:7) : 8 > > > < > > > :

x i = p i N qN + " = P i Q + " ; i = 1; 2; :::; n x n+1 = M qN + "a = P n+1 Q + " "Q = "qN = 0 . (2.9)
Let us look at the case where a is appreciable. Suppose a > 0, then 8 > > > < > > > :

x i = N p i N q
+ " ; i = 1; 2; :::; n

x n+1 = M N q + "a "N q = 0 . (2.10)
The reduced form of M N q cannot be a rational standard. Otherwise, x n+1 and M N q become two elements of S such that the separating distance between them, is of the "a form. What, according to lemma 2.6, is not true for two elements of S; for the same reason x n+1 cannot be in the " galaxy of a standard rational. According to the lemma 2.5: 8 < :

x n+1 = h 1 k 1 + " 1 = h 2 k 2 " 2 "k 1 = "k 2 = 0 ; k 1 = k 2 = +1 (2.11)
Where 1 0 and 2 0 are two in…nitesimal reals and

h 1 k 1 , h 2 k 2 are irre- ducibles.
Let the element of S succeeding immediately x n+1 in S (x n+1 < ). Then by lemma 2.6 :

x n+1 = "! = 0, ! .
The real number x n+1 + 2 is not in the " galaxy of a rational standard, otherwise, x n+1 and does not become two successive elements of S. Hence, according to the lemma 2.5

( x n+1 + 2 = s l " 4
"l = 0 ; l = +1 ; 4 0 and 4 = 0 

. ( 2 
s i l i 1 i e such that h 2 k 2 = s 1 l 1 < s 2 l 2 < ::: < s e l e =
s l where e = +1 and for i = 1; 2; :::; e 1 we have :

s i+1 l i+1 s i l i = " .
Besides we have "l i = 0, l i = +1 for i = 1; 2; :::; e ; s e l e s 1 l 1 = " ! 2 + 4 2 . In this paragraph we will associate to each i 2 f1; 2; :::; eg a vector V i in Q n+1 such that the n …rst components of V i are in the "-galaxie of the n …rst components of (x 1 ; x 2 ; :::; x n ; x n+1 ), respectively. Whereas the (n + 1) th component of V i is equal to s i l i . Indeed, for i = 1 apply lemma 2.2 to the system (l 1 x 1 ; l 1 x 2 ; :::; l 1 x n ) with the in…nitesimal "l 1 : 8 < :

l 1 x i = T i;1 t 1 + ("l 1 ) $ ; i = 1; 2; :::; n l 1 t 1 = 0 . Hence 8 < 
:

x i = T i;1 l 1 t 1 + "$ ; i = 1; 2; :::; n "l 1 t 1 = 0 . Then 8 > < > :
x i = T i;1 l 1 t 1 + "$ ; i = 1; 2; :::; n

x n+1 = T n+1;1 l 1 t 1 1
(2.13) whereT n+1;1 = s 1 t 1 , "l 1 t 1 = 0 and 1 = " 2 . Then we obtain the vector

V 1 = T 1;1 l 1 t 1 ; T 2;1 l 1 t 1 ; :::; T n+1;1 l 1 t 1 T
, where

x n+1 = T n+1;1 l 1 t 1 = s 1 l 1 .
Again the application of the lemma 2.2 to the system (l 2 x 1 ; l 2 x 2 ; :::; l 2 x n ) with the in…nitesimal "l 2 , gives:

:

l 2 x i = T i;2 t 2 + ("l 2 ) $ ; i = 1; 2; :::; n l 2 t 2 = 0 . Hence 8 < 
:

x i = T i;2 l 2 t 2 + "$ ; i = 1; 2; :::; n "l 2 t 2 = 0
. Then

> <

> :

x i = T i;2 l 2 t 2 + "$ ; i = 1; 2; :::; n x n+1 = T n+1;2 l 2 t 2 2 (2.14) 
where T n+1;2 = s 2 t 2 , "l 2 t 2 = 0 and 2 = " 2 + " with 0 < 1 < 2 . Then we obtain the vector V 2 = T 1;2 l 2 t 2 ; T 2;2 l 2 t 2 ; :::; T n+1;2 l 2 t 2

T

, where

x n+1 = T n+1;2 l 2 t 2 = s 2 l 2 .
Thus we construct the following vectors:

V i = T 1;i l i t i ; T 2;i l i t i ; :::; T n+1;i l i t i T ; i = 1; 2; :::; e (2.15) 
where for i = 1; 2; :::; e :

x n+1 = T n+1;i l i t i i = s i l i i with "l i t i = 0.
Besides 0 < " 2 = 1 < 2 < ::: < e = "! 2 + " 4 and for i = 1; 2; :::; e 1: i+1 i = " . Let h be the smallest integer such that hN q max i (l i t i ), then "hN q = 0. On the other hand and according to Robinson's lemma it exists an integer W = +1 such that: "W hN q = 0.

Put K = hN q. From (2:10): 8 > < > :

x i = hN p i hN q + " = H i K + " ; i = 1; 2; :::; n x n+1 = hM hN q + "a = H n+1 K + "a (2.16)
where

"K = 0, K max i (l i t i ). Let W = min W , ! 2 + 4 2 and
T n+1;i 0 l i 0 t i 0 be the element of the sequence T n+1;i l i t i i=1;2;:::;e which is the farthest from T n+1;1 l 1 t 1 verifying

T n+1;i 0 l i 0 t i 0 T n+1;1 l 1 t 1 = "W
with W W . One notices that W = +1 because by construction W W = . Let R 1 be the integer such that Rl i 0 t i 0 K < (R + 1) l i 0 t i 0 . In this case Rl i 0 t i 0 and K are of the same order of magnitude i.e. : K Rl i 0 t i 0 = where is a positive appreciable. Consider, the rationals of the following vector:

RT 1;i 0 Rl i 0 t i 0 , RT 2;i 0 Rl i 0 t i 0 , ..., RT n;i 0 Rl i 0 t i 0 , RT n+1;i 0 Rl i 0 t i 0 T .
(2.17)

Where the n …rst components of (x 1 ; x 2 ; :::; x n ; x n+1 ) are in the " galaxies of the n …rst components of the (2.17), respectively. Whereas x n+1 is far from the last component of (2.17) by "W + " 2 . We will search a positive integer j 0 for which the rational

RT n+1;i 0 + j 0 H n+1 Rl i 0 t i 0 + j 0 K becomes equal to H n+1 K + "a + "
i.e. equal to x n+1 + " . Indeed, put

j = RT n+1;i 0 + jH n+1 Rl i 0 t i 0 + jK H n+1 K . ( 2 

.18)

Then j = 1 + j where is the distance between RT n+1;i 0 Rl i 0 t i 0 and H n+1 K which is equal to "W + " 2 + "a. Put 1 + j = "a. For this 1 + j = "a . Hence

j = 1 "a "a = 1 "W + " 2 "a ! = W + 2 a = +1
.

Let us take

j 0 = E W + 2 a ! , hence j 0 = W + 2 a with 2 [0; 1[. Then j 0 = 1 + j 0 .
After the substitution by the value of and of j 0 :

j 0 = a: "W + " 2 + "a a + W + 2 a = "a W + 2 + a W + 2 + a a ! .
Hence

j 0 = "a: W + 2 + a W + 2 + a 1 a W + 2 + a ! = "a 1 1
.

Since 1 1 = 1 + , then :

j 0 = "a + " . (2.19)
On the other hand j 0 and W are of the same order of magnitude; indeed:

j 0 W = 1 W W + 2 a a ! = 1 + a .
Therefore

j 0 W = A with A is appreciable, hence j 0 = AW . Since W W
one has: j 0 = AW AW AW .

Lemma 2.9. The denominator of RT i;i 0 + j 0 H i Rl i 0 t i 0 + j 0 K ( i = 1; 2; :::; n + 1) veri…es " (Rl i 0 t i 0 + j 0 K) = 0 and for i = 1; 2; :::; n; n + 1 we have:

x i = RT i;i 0 + j 0 H i Rl i 0 t i 0 + j 0 K + " (2.20) Rl i 0 t i 0 + j 0 K = K + j 0 K = K 1 + j 0 .
Hence Rl i 0 t i 0 + j 0 K K 1 + AW . From the fact that "W K = 0; A and are two appreciable numbers, we have " (Rl i 0 t i 0 + j 0 K) = 0. On the other hand for i = n + 1 we have from (2.16) x n+1 = H n+1 K + "a and from (2.18) and (2.19)

j 0 = RT n+1;i 0 + j 0 H n+1 Rl i 0 t i 0 + j 0 K H n+1 K = "a + " . Hence RT n+1;i 0 + j 0 H n+1 Rl i 0 t i 0 + j 0 K " = H n+1 K + "a = x n+1 , this means that x n+1 = RT n+1;i 0 + j 0 H n+1 Rl i 0 t i 0 + j 0 K + " .
For i = 1; 2; :::; n we know from (2:17) that:

RT i;i 0 Rl i 0 t i 0 x i = "$. (2.21) Hence RT i;i 0 Rl i 0 t i 0 H i K = RT i;i 0 Rl i 0 t i 0 x i + x i H i K RT i;i 0 Rl i 0 t i 0 x i + x i H i K = "$ + " = "$ . 20 Therefore RT i;i 0 Rl i 0 t i 0 H i K = RT i;i 0 K H i Rl i 0 t i 0 KRl i 0 t i 0 = $. (2.22)
Then we have:

RT i;i 0 + j 0 H i Rl i 0 t i 0 + j 0 K H i K = RT i;i 0 K H i Rl i 0 t i 0 KRl i 0 t i 0 1 + j 0 : K Rl i 0 t i 0 = $ 1 + j 0 .
Since j 0 = +1, then

RT i;i 0 + j 0 H i Rl i 0 t i 0 + j 0 K H i K = "
and seen that for i = 1; 2; :::; n, the rational numbers H i K are, respectively, in the " halos of x 1 ; x 2 ; :::; x n then:

x i = RT i;i 0 + j 0 H i Rl i 0 t i 0 + j 0 K + " .
So the lemma is proved.

Since " (Rl i 0 t i 0 + j 0 K) = 0, then if for i = 1; 2; :::; n; n + 1 one takes RT i;i 0 + j 0 H i Rl i 0 t i 0 + j 0 K for P i Q then 8 < :

x i = P i Q + " , i = 1; 2; :::; n + 1 "Q = 0 . ( 2 

.23)

In the case where a < 0 we take the element of S that precedes x n+1 i.e. < x n+1 (S is ordered) and by doing, to a symmetry near, as we did for the case a > 0. From (2:8), (2:9) and (2:23) we have A(n + 1). Hence, according to the external recurrence principle, the lemma 2.8 is proved.

Let us return to the proof of theorem 2.1 De…ne for Z = fx 1 ; x 2 ; :::; x s g [0; 1], the formula: .

B (Z) = "9 P i Q i=1;
According to lemma 2.8, L (N ) . If L is internal then, according to the Cauchy principle, it must contain (N ) strictly and therefore there is an integer ! = +1 and ! 2 L. If L is external then by the idealization principle (I) we can write L as follows:

L = 8 > < > :
n 2 N : n jSj &8s 2 f1,:::,ng 8Z = fx 1 ; x 2 ; :::; x s g S, 8 stf ini M 9 P i Q i=1;2;:::;s 8m 2 M G Z, P i Q i=1;2;:::;s , m ! 9 > = > ; .

where M belongs to the set of …nite parts of N . Therefore, L is an halo ([4], [START_REF] Nelson | Internal set theory : A new approach to non standard analysis[END_REF]). Of the fact that (N ) L and no halo is a galaxy (Fehrele principle), then (N ) Consequently in the two cases (L internal or external ) we …nds that it exists an integer ! = +1 and ! 2 L, this signi…es that ! jSj.

By lemma 2.3, there is a …nite part F [0; 1] containing all standard elements of [0; 1] such that jF j = ! 0 = +1 and ! 0 < !. Then F \ S is a …nite part of S containing all standard elements of [0; 1] with jF \ Sj jF j = ! 0 < !. Put F \ S = fx 1 ; x 2 ; :::; x n 0 g. Then 9 P i Q i=1;2;:::;n 0 such 22 that :

8 < :

x i P i Q = "
"Q = 0 ; i = 1; 2; :::; n 0 . It follows that if x 2 R is a standard then x E (x) = P i 1 Q + " where i 1 2 f1; 2; :::; n 0 g since x E (x) is a standard of [0; 1]. Hence

x = E (x) +

P i 1 Q + " = P x Q + "
where "Q = 0. Thus the proof is complete.

3 Deduction of the classical equivalent of the main result

The theorem 2.1. can be written as follows 8" 8 st r (0 < " r) =) 9q 8 st x 8 st t (k qx k< "qt & "q t)

where ", r 2 R + , q 2 N, x 2 R and t 2 R + . By using the idealization principle (I), the last formula is equivalent to 8" 8 st r (0 < " r) =) 8 st f ini X 9q 8 (x, t) 2 X (k qx k< "qt & "q t) where X belongs to the set of …nite parts of R R + . This last formula is equivalent to 8 st f ini X8"9 st r f(0 < " r) =) 9q 8 (x, t) 2 X (k qx k< "qt & "q t)g . Again, by using the idealization principle (I), the last formula is equivalent to 8 st f ini X 9 st f ini R 8" 9r 2 R f(0 < " r) =) 9q 8 (x, t) 2 X (k qx k< "qt & "q t)g .

6 =L.

 6 Hence it exists an integer ! = +1 and ! 2 L.

  N : n jSj & 8s 2 f1,:::,ng 8Z = fx 1 ; x 2 ; :::; x s g S : B(Z)g . (2.25) where S is the set that has been constructed in the lemma 2.6 .Then N : n jSj &8s 2 f1,:::,ng 8Z = fx 1 ; x 2 ; :::; x s g S,

	where G Z, ternal.	P i Q i=1;2;:::;s	, m	!	8 > < > :	1 "	x i j"Qj	P i Q	1 m	1 m	; = 1; 2; :::; s	is in-
	Consider the set									
	L = fn 2 L = 8 > < > :	n 2 9	P i Q i=1;2;:::;s	8 st m 2 N G Z,		P i Q i=1;2;:::;s	, m	!	9 > = > ;
													!
			2;:::;s	such that :8 st m 2 N G Z,	P i Q i=1;2;:::;s	, m	"
													(2.24)

S = fl 1 ; l 2 ; :::; l n g [0; 1] (2.5) containing all standard elements of [0; 1] such that jl i+1 l i j " for i 2 f1; 2; :::; n 1g.

Proof. Let B (S; z) be the internal formula: "S

1] be a standard …nite part. Then there exists a …nite part S [0; 1] such that every element z of Z belongs to S and 8 (x 1 , x 2 ) 2 S S (jx 1 x 2 j " ), i.e. we have B (S; z). Indeed it su¢ ces to take S = Z. Therefore, the principle of idealization (I) asserts the existence of a …nite part S [0; 1] such that any standard element of [0; 1] belongs to S and 8 (x 1 , x 2 ) 2 S S (jx 1 x 2 j " ). Put S = fl 1 ; l 2 ; :::; l n g, where jl i+1 l i j " for i 2 f1; 2; :::; n 1g and any standard element of [0; 1] belongs to S.

Corollary 2.7. For every element l i of S (S is the set that has been constructed in the lemma 2.6 ) we have only one of the two cases: 1) l i is a standard rational number.

2) l i is outside of " galaxies of all standard rational number.

Proof. Let l i 2 S, then 1) l i can be a standard rational because S contains all standard elements of [0; 1].

2) l i is not a standard rational then l i is not in the " galaxy of any standard rational. Indeed, suppose that l i = p q + "$ ($ 6 = 0), where p q is standard.

Then l i and p q are elements of S with l i p q = j"$j < " which contradicts lemma 2.6 .

Lemma 2.8. For every standard integer n 1. The real numbers x i of all system fx 1 ; x 2 ; :::; x n g S (S is the set that has been constructed in the lemma 2.6.) are approximated by rational numbers P i Q i=1;2;:::;n to " near with "Q = 0. that is to say:

where R belongs to the set of …nite parts of R + . By the transfer principle (T), this last formula is equivalent to

This last formula is exactly the main theorem announced in the abstract. Indeed, if X = f(x 1 , t 1 ) , (x 2 , t 2 ) , ..., (x n , t n )g is a …nite part of R R + , then there exist a …nite part R of R + such that for all " > 0 there exists r 2 R such that if 0 < " r then there exist rational numbers p i q i=1;2;:::;n such that: 8 < :

x i p i q "t "q t ; = 1; 2; :::; n.